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Climate changes influence the suitability for S. titanus in the Northwestern Alps.

The suitability of all areas improved over the period under study.

The areas under study displayed different responses to temperature changes.

Similar analysis may be implemented in regions outside the scope of this paper.

The risk of new viticultural areas to be colonized by S. titanus can be specified.
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21 ABSTRACT

22 The paper aims to elucidate the influence of abrupt and gradual climate changes on the suitability 

23 for colonization of Scaphoideus titanus populations in grapevine-growing areas of the Northwestern 

24 Alpine region. This study spans several decades of temperature recordings and is carried out in ten 

25 grapevine-growing areas. A time-varying distributed delay with attrition model, linked to a 

26 grapevine phenology model, is used to simulate the development of S. titanus populations and 

27 produce an annual Climatic Suitability Index (CSI). Area-specific CSI time series were obtained. 

28 The Breusch-Godfrey test revealed few significant partial autocorrelations in nine areas and the 

29 occurrence of six consecutive - first decreasing and then increasing - partial correlations in one case 

30 only. The occurrence of abrupt and gradual changes of the index were studied via multiple least 

31 square regression analyses. In general, the climatic suitability of all areas tended to improve through 

32 time. However, gradual and abrupt temperature changes were not consistently reflected in gradual 

33 and abrupt CSI patterns: abrupt and gradual CSI changes were observed in two areas, abrupt 



34 changes were detected in three areas, and exclusively gradual changes in the remaining five. Pest 

35 control institution of the region under study may deal with different scenarios of pest status such as 

36 long-time presence and increasing risks, high colonization risks or limited colonization risks for the 

37 foreseeable future. Institutions charged with pest control elsewhere are advised to use a mechanistic 

38 demographic model to study area-specific infestation patterns and colonization risks because the 

39 results obtained here cannot be transferred to other areas without site-specific evaluations.

40

41 Key words: climate change, physiologically-based demographic model, climatic suitability, 

42 forecast, colonization risk

43

44 1. Introduction

45

46 Many studies have been undertaken to document changing climates at different spatial and 

47 temporal scale extents and resolutions (Anisimov et al., 2013; Anwer, 2015; Portmann et al., 2009; 

48 Reiter et al., 2012). According to the global dataset HadCRUT4 (Morice et al., 2012), global 

49 temperatures increased by +0.85°C since 1850, while the main part of this increase (about +0.5°C) 

50 occurred in the period 1977-1998. During the same period, European temperatures increased by 

51 about +1.3°C (Mariani et al., 2012).

52 Voluminous literatures deal with the effects of changing climates on populations, 

53 communities and ecosystems (Graham and Grimm, 1990; Gutierrez et al., 2008; Parmesan, 2006; 

54 Yates et al., 2010). The temperature component of climate change is particularly important for 

55 poikilothermic organisms whose development depend on body temperatures that vary broadly with 

56 environmental temperatures (May, 2005). The methods used to investigate the impact of changing 

57 temperatures on population development and geographical distributions of poikilotherms fall 

58 broadly into two categories. The first category comprises species distribution models (SDMs) that 

59 combine observations of species occurrence or abundance with environmental estimates to 

60 characterize climatically the species to gain ecological and evolutionary insights and to predict 

61 distributions across landscapes, sometimes requiring extrapolation in space and time (Elith and 

62 Leathwick, 2009).

63 The second category of interest here comprises of physiologically-based demographic models 

64 (PBDMs), built on mechanistic representations of poikilothermic population development. PBDMs 

65 model the biology of the target species, and, when driven by weather, predict the phenology, age-

66 structured dynamics, and distribution of the species across wide geographic areas independent of 



67 the availability of distribution information (Ponti et al., 2015). Since weather is an important driver 

68 for PBDMs, they are particularly appropriate for dealing with climate change effects.

69 In the case of pests and their abundance, the capacity of PBDMs to predict the potential 

70 geographic distribution under past, current and future climate change scenarios is fundamental in 

71 developing sound policies for their control (Gutierrez and Ponti, 2013; Ponti et al., 2015). Their 

72 ability to represent the regional suitability and the spatial distributions of insect pests on explanatory 

73 grounds is a complement to the work of international organizations such as the European and 

74 Mediterranean Plant Protection Organization (EPPO) that monitors and delineates the spread of 

75 pests and provides directions on quarantine pests management (Smith et al., 1996). 

76 The Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera, Cicadellidae), vector of the 

77 Grapevine Flavescence dorée (FD) phytoplasma, is a key pest of grapevine in Europe. S. titanus 

78 was accidentally introduced in France in the 1950s (Bonfils and Schvester 1960; Schvester et al. 

79 1961, 1962a, 1962b) and gradually extended its area of distribution. Actually, it is present 

80 throughout Western and Southeastern Europe from the Atlantic Ocean to the Black Sea, and the 

81 area of distribution is still expanding (Chuche and Thiéry, 2014; Tóthová et al., 2015). 

82 Since the spread of S. titanus and FD continues, pest control institutions in regions with high 

83 risks of being invaded and colonized should prepare in time for intensive monitoring and expensive 

84 control operations. The risk of invasion and colonization depends on the dispersal ability of S. 

85 titanus and the suitability of the newly-invaded area. After its accidental introduction into Europe, 

86 the spread was so fast that most grapevine-growing areas should have been colonized by now. This 

87 is not the case, however, and the ongoing expansion suggests that the influence of the high dispersal 

88 ability on distribution patterns is constrained by other factors. Empirical and theoretical evidence 

89 suggest that climate, undergoing the aforementioned changes since the time of S. titanus 

90 introduction, plays an important role. In fact, Rigamonti et al. (2014b) found that the climate in two 

91 Swiss grapevine-growing areas changed in favor of S. titanus and hypothesized that the climatic 

92 suitability determines the colonization success and largely explains the changing geographical 

93 distribution in Europe.

94 Since the temperature regime in European grapevine-growing regions has and will undergo 

95 changes (IPCC, 1996), a previously-unsuitable region may become suitable through time. Mariani 

96 et al. (2012) viewed climate variability as the superimposition of gradual and abrupt changes. 

97 Gradual changes can be interpreted as the effect of progressive changes in forcings (IPCC, 2013), 

98 while abrupt changes are the result of sharp changes in the frequency and persistence of different 

99 circulation patterns (Sneyers et al., 1993). During the period 1977-1998, European temperatures 



100 increased by about 1.3°C, while the main part of this increase was observed at the end of the 1980s, 

101 where an abrupt change is evident on thermal time series (Mariani et al., 2012). 

102 The paper aims to elucidate the effects of abrupt and gradual climate change on S. titanus 

103 population development through an analysis of long-term suitability patterns in a geographically-

104 restricted region with high temperature variability among grapevine-growing areas. For each area, a 

105 PBDM provides a long-term time series of annual suitability indices whose similarity, depending on 

106 time lags, prepares the ground for testing the appearance of abrupt and gradual changes in area-

107 specific patterns of the suitability index.

108

109 2. Materials and Methods

110

111 2.1. Study sites and temperature recordings

112

113 The suitability of grapevine-growing regions for S. titanus colonization is assessed in a region 

114 referred to as Northwestern Alps (Figure 1, Table 1). This region has been selected because of its 

115 location near the northern limits of S. titanus distribution and the high climatic variability among 

116 grapevine growing areas therein. Both aspects are considered as useful prerequisites for elucidating 

117 the effects of climate change on the suitability of the region for colonization by S. titanus. Though 

118 outside the Alpine zone, we included the Zürich area in the analysis. At meteorological stations 

119 located in the different areas, daily temperature maxima and minima were readily available over 54 

120 or 39 years periods (Table 1). To simplify the geographical notations, the location name is used as a 

121 name for the area. The locations of all the weather stations except Grenoble, are within or close to 

122 the grapevine growing areas.

123 The temperatures measured at the Swiss locations (Zürich, Lugano, Genève, Aigle, Sion, 

124 Chur and Magadino) are referred to as revised data retrieved from the data bank of the Swiss 

125 National Weather Service (MeteoSwiss). Namely, during the measuring periods, the position of the 

126 temperature sensors was often changed and new equipment were adopted. MeteoSwiss corrected for 

127 these changes (Begert et al., 1999, 2003, 2005) and kindly made available a data set referred to as 

128 homogenized data. Most of the data for Sondrio were kindly made available by Dr. M. Salvetti 

129 (Fondazione Fojanini, Sondrio) and reportedly did not require any correction. In the absence of 

130 respective information, the raw data measured at the Aosta and Grenoble stations obtained from 

131 Yang et al. (2010) at [https://beaumont.tamu.edu/ClimaticData/] and from the US weather service at 

132 [http://www.geodata.us/weather/], respectively, were used in the analyses. The gaps in the Sondrio 

133 and Aosta data sets were respectively filled by linear regression of Sondrio data on data measured at 



134 the nearby Poschiavo station operated by MeteoSwiss, and linear regression of Aosta data were 

135 regressed from data measured at the Torino-Caselle station.

136

137

138 Figure 1. The Northwestern Alpine region with the different areas in that the development of Grape 
139 leafhopper Scaphoideus titanus populations was simulated.
140

141 Table 1. Information on the Northwestern Alpine region with the different areas in that the 
142 development of Grape leafhopper Scaphoideus titanus populations was simulated. The 
143 homogenized daily temperature maxima and minima for the Swiss meteorological stations were 
144 kindly made available by MeteoSwiss (National Weather Service of Switzerland). Additional 
145 temperature data were retrieved from the Texas A&M University, Beaumont, USA 
146 (https://beaumont.tamu.edu/ClimaticData/), the National Climate Data Centre (NCDC), Climate 
147 Services Branch (USA) and the Fojanini Foundation (FFS), Sondrio (I). Gaps in the data sets for 
148 Aosta and Sondrio were filled by using information from Torino Caselle (I) and Poschiavo (CH), 
149 respectively.

Site 
specification

Area and 
meteorological 

station

Beginning 
of 

simulations

Latitude N
(degrees)

Longitude E 
(degrees)

Altitude
(meters above 

sea level)

Source for 
temperatures 

data 

Genève (CH) 46.250 6.133 416

Aigle (CH) 46.333 6.917 383

Sion (CH) 46.217 7.317 428

Zürich (CH) 47.383 8.567 569

Western and 
Northern 

areas

Chur (CH)

1959

46.867 9.533 533

MeteoSwiss

Grenoble (F) 45.367 5.333 386 NCDC

Aosta (I)
1973

45.740 7.376 547 Texas A&M

Magadino (CH) 46.167 8.883 198

Lugano (CH)
1959

46.000 8.967 276
MeteoSwiss

Western and 
Southern 

areas

Sondrio (I) 1973 46.168 9.853 323 FFS

150



151 2.2. Model characteristics and computation of the Climatic Suitability Index

152

153 Basic model development. Rigamonti et al. (2011, 2014a) took into account the high 

154 variability in development times of nymphs relative to the mean (cf. Di Cola et al., 1999) and linked 

155 the appropriate “time-varying distributed delay with attrition” variant of the widely used time 

156 distributed delay models (Gutierrez, 1996; Gutierrez et al., 2015; Manetsch, 1976; Vansickle, 1977; 

157 Welch, 1984; Welch et al., 1978) to the grapevine plant phenology model of Mariani et al. (2013). 

158 They noticed that the S. titanus population model was appropriate for long-term studies since it 

159 allows the representation of multi-cohort and multi-generation poikilothermic population 

160 development. The model represents the flow of individuals through diapausing egg, post-diapausing 

161 egg, nymph and adult life stages

162
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164 j = 1, 2, 3, 4

165 i = 1, 2, …, kj 

166

167 where t is time [days], rji(t) is the transition rate of the i-th substage in the j-th life stage, kj is 

168 the number of delay substages in the j-th life stage, DELj(t) is the time-dependent developmental 

169 time (days) in the absence of losses in the j-th life stage, and ARj(t) is the time dependent 

170 proportional change or attrition in the j-th life stage. The occurrence Qj(t) of individuals in each life 

171 stage can be obtained from

172
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175 Rigamonti et al. (2011, 2014a) discretized model [1] according to Abkin and Wolf (1976) and 

176 used a 1-hour time step length. 

177

178 Model components. The following aspects briefly summarize model components detailed by 

179 Rigamonti et al. (2011, 2014a).

180 i) The stage-specific developmental rate dj,[T(t)], i.e., the inverse of developmental time DEL[T(t)], 

181 is temperature-dependent between lower and upper thresholds, and 0.001 or 0.01, for diapausing 



182 and non-diapausing stages respectively, outside this range. The time-dependent temperatures 

183 T(t) are obtained by forcing a cosine function through daily temperature maxima and minima.

184 ii) The stage-specific survival rate sj[T(t)] is composed of a) a temperature-dependent survival, 

185 modeled through attrition AR[T(t)], operating between lower and upper thresholds, b) a 

186 temperature-dependent survival below the lower threshold, and c) mortalities of non-diapausing 

187 life stages between the grapevine plant phenological stages BBCH 93 (beginning of leaf fall) and 

188 BBCH 11 (first leaf unfolded and spread away from shoot) (Lorenz et al., 1994). Before and after 

189 these plant stages, nymphs and adults are suffering from an additional mortality of 0.5 % per 

190 day.

191 iii) The reproduction rate m[T(t)] of females becomes the input into the diapausing egg stage. It is 

192 the product of the reproductive profile, i.e. the relative age-specific fecundity rate and the 

193 temperature-dependent reproductive potential F(T), i.e., the total number of eggs laid by a 

194 female (cf. Curry and Feldman, 1987) (m[T(t)]>0 between the lower and an upper thresholds 

195 and m[T(t)]=0 outside this range).

196 iv) The model is initialized with a flow of hatching eggs into the nymphal stage (see below). The 

197 use of a single data set for model initialization at other locations may negatively affect the 

198 model performance in the first years. Therefore, the subsequent analysis disregards the first 

199 computations of the CSI  The simulations are carried out over the time periods specified below.

200

201 Model parametrization. The respective temperature-dependent rate functions (i, ii, iii) were 

202 developed and parametrized under constant temperatures but used under time-varying temperature 

203 regimes. Briefly, temperature-dependent values for the developmental time and mortality of 

204 nymphs older than the first stage were obtained from age-specific life tables established under 

205 various but constant temperatures (Rigamonti et al., 2011, 2014a). The developmental time of post-

206 diapausing eggs, and the developmental time and mortality of first stage nymphs were obtained 

207 from field observations carried out in four vineyards located in Southern Switzerland over a period 

208 of three years, whereas data from literature were used to estimate adult female developmental time 

209 and associated variability. The respective field data, expert opinions and literature information were 

210 used to compute diapause periods. A linear model for first stage nymphs and the non-linear model 

211 of Brière et al. (1999) for the remaining stages were used to represent the temperature-dependency 

212 of developmental rates. The developmental rate of the widely-cultivated Chardonnay variety, and 

213 the phenologica1 stages BBCH 11 and 93, were obtained from the model of Mariani et al. (2007, 

214 2013) and calibrated with information obtained in vineyards located in Southern Switzerland.

215 Reproduction is composed of the reproductive profile fi, i.e., the relative age-specific 



216 fecundity rate in the i-th substage, and the temperature-dependent reproductive potential F(T), i.e., 

217 the total number of eggs laid by a female conditioned on her living throughout the oviposition 

218 period (Curry and Feldman, 1987). The substage-independent fi was estimated on the basis of 

219 literature data, whereas a Beta function fitted to literature data represented the temperature-

220 dependency of F(T).

221 Egg hatching in 2008 was recorded weekly on 20 caged plants in a vineyard. The cumulative 

222 proportion of the total number is represented by the cumulative density Weibull function und 

223 provided time step-specific inputs (iv) into the delay model.

224

225 Model validation is detailed by Rigamonti et al. (2011, 2014a). Over a period of five years, 

226 from 2006 to 2010, nymph and adult occurrences were occasionally monitored in five vineyards 

227 located in FD-free zones of Western Switzerland (Yvorne, Lutry) and Southern Switzerland 

228 (Contone, Biasca, Sessa). Data on nymphs were obtained through the beating tray method, while 

229 yellow sticky traps yielded information on adult presence. The plant phenology model was 

230 validated with observations made in Southern Switzerland’s vineyards,. The model predictions 

231 satisfactorily corresponded to field observations and opened the door for the use of the model.

232

233 Model use relies on a Climatic Suitability Index calculated as follows. Once the plant has 

234 reached the BBCH 11 stage, it is assumed to allow the development of S. titanus nymphs. On the 

235 day with the first BBCH 11 occurrence, eq. [2] computes, in each year, diapausing and post-

236 diapausing eggs as the only individuals giving rise to the subsequent infestations. The number 

237 computed in a particular year is divided by the corresponding number in the previous year to yield a 

238 CSI. Population densities are declining, stationary or increasing if CSI<1, CSI=1 or CSI>1, 

239 respectively. In a preliminary analysis based on a visual examination of figures depicting the 

240 response obtained at two locations, the CSI was found suitable for studying climate change effects 

241 (Rigamonti et al, 2014b).

242

243 2.3. Autocorrelation analysis

244

245 To correct for the influence of the abrupt temperature shift occurring in the late 1980s 

246 (Mariani et al., 2012), we deducted 1°C from the daily maximum and minimum temperatures, after 

247 1987, in all data sets. Autocorrelation is the similarity between observations as a function of the 

248 time lag between them. For visual examination, the partial CSI autocorrelations, as obtained by the 

249 SPSS software package (IBM Software Group, 2016) for each area, are depicted in Figure 2. To test 



250 whether the autocorrelations of CSI values over differently lagged years are different from zero, the 

251 Lagrange multiplier based Breusch-Godfrey test (Breusch, 1978; Godfrey, 1978) is used since Rois 

252 et al. (2012) consider it as the most appropriate test for detecting autocorrelation in dynamic 

253 models. The number of lags reported is limited to 13 for Swiss locations and 10 for the other 

254 locations to limit the analysis to statistically-reliable data series. The statsmodels module of the 

255 PYTHON programming language (Seabold and Perktold, 2010) computes the Breusch-Godfrey test 

256 statistics for time lags, compares it with the 2 distribution and produces lag-specific p-values. If 

257 the p-value exceeds the standard significance level of 0.05, the null hypothesis of no autocorrelation 

258 is not rejected. 

259

260 2.4. Regression analysis

261

262 To test the hypothesis that the time series of CSI values undergo gradual and abrupt 

263 temperature changes, we evaluated the regression model

264

265 [3]  DbtbaDtCSI 210, 

266

267 where a0=intercept, t=time in years beginning with year zero, b1=regression coefficient reflecting a 

268 gradual change through time of CSI values, D=dummy variable representing the temperature shift 

269 (D=0 before and D=1 after 1987); b2 = regression coefficient for the dummy variable that separates 

270 the time periods into two sub-groups. Note that b1> 0 and b2> 0 at the P=0.01 level of significance 

271 indicate both gradual and abrupt changes in CSI and confirm the validity of a sloped step model 

272 (SSM); if either b1 or b2 are not different from 0 at the P=0.01 level of significance, CSI was 

273 regressed either on time t or D, and the relationship with the higher correlation coefficient was used 

274 to express either a gradual (b1>0) or an abrupt (b2> 0) change at the P=0.01 level of significance. 

275 To represent abrupt and gradual patterns, reference is made to a flat step model (FSM), and linear 

276 trend model (LTM), respectively.

277

278 3. Results and Discussion

279

280 3.1. Analyses of suitability index time series

281

282 Model design and multiannual temperature regimes produced few significant autocorrelations 

283 (Table 2). After disregarding two rare cases (lag 13 for Chur, lag 1 for Grenoble), in all areas except 



284 Sondrio, the null hypothesis of no autocorrelation cannot be rejected at the standard significance 

285 level of p=0.05. In Sondrio, however, the null hypothesis of no autocorrelation has to be rejected for 

286 the first three decreasing partial autocorrelations and the next three increasing partial 

287 autocorrelations (Figure 2). The decreasing positive effect followed by the decreasing negative 

288 effect appearing in only 1 out of 10 cases (Table 2) is difficult to explain without detailed studies of 

289 demographic processes affecting the long-term dynamics of S. titanus populations. Undoubtedly, 

290 more cases than considered in this paper are required to ascertain the appearance of few significant 

291 autocorrelations in CSI time series and find explanations for distinct pattern as exemplified by the 

292 Sondrio case. The rare appearance of significant autocorrelations in most cases and a distinct 

293 pattern in one case only are presumably insufficient to sustain a dependency of observations that, in 

294 a statistical analysis, would violate the assumptions for statistical inference (Bence, 1995; Boyce et 

295 al., 2010; Monserud and Marshall, 2001). Nevertheless, we take into account the restrictions given 

296 by Bence (1995) who studied the effects of temporal dependencies on regression analyses and 

297 applied high probability requirements to regression analyses. 

298

299

300 Figure 2. Autocorrelation functions in differently-lagged Climatic Suitability Indices for S. titanus 
301 in Northwestern Alpine grapevine-growing areas. 
302

303 Table 2. The p-values of the Breusch-Godfrey test for autocorrelation in area-specific Climatic 
304 Suitability Indices (CSI) for S. titanus in Northwestern Alpine grapevine-growing areas. If the p-
305 value is smaller than the standard significance level of 0.05 (numbers in bold), the null hypothesis 
306 of no autocorrelation is rejected (n.c. = not computed).

Lag Genève Aigle Sion Zürich Chur Grenoble Aosta Magadino Lugano Sondrio

1 0.1812 0.4103 0.0904 0.7810 0.8587 0.0302 0.1517 0.3404 0.4930 0.0002

2 0.3538 0.3972 0.2145 0.8909 0.8900 0.0706 0.2780 0.5163 0.7121 0.0010

3 0.5084 0.4321 0.3784 0.9647 0.9341 0.1165 0.4494 0.7112 0.6624 0.0031

4 0.6768 0.5330 0.4400 0.8244 0.9782 0.2057 0.4665 0.7062 0.7948 0.0058



5 0.6681 0.5900 0.4468 0.7490 0.9547 0.2827 0.2997 0.6894 0.7560 0.0102

6 0.7461 0.3884 0.5404 0.7660 0.7344 0.2725 0.2995 0.7588 0.8292 0.0172

7 0.6530 0.4388 0.4159 0.4190 0.6790 0.3194 0.4748 0.8252 0.8700 0.0305

8 0.4396 0.5432 0.3478 0.5160 0.7569 0.2880 0.4674 0.6484 0.8787 0.0483

9 0.5199 0.3368 0.2741 0.4324 0.3854 0.3357 0.1454 0.7372 0.6860 0.0752

10 0.6047 0.4244 0.3448 0.5195 0.4774 0.4184 0.1860 0.7533 0.6624 0.1108

11 0.3544 0.4979 0.4064 0.6090 0.5687 n.c. n.c. 0.7896 0.7437 n.c.

12 0.3763 0.5788 0.4064 0.2786 0.5694 n.c. n.c 0.8493 0.7998 n.c.

13 0.2095 0.1355 0.1660 0.0660 0.0378 n.c. n.c. 0.6759 0.8506 n.c.

307

308 3.2. Climatic suitability patterns

309

310 Table 3 shows a generally-improving climatic suitability through time across areas within the 

311 region under study. Regarding the second observation on the reflection of gradual and abrupt 

312 temperature changes in gradual and abrupt changes in CSI, however, no generalization across areas 

313 is possible. Namely, Table 3 reports significant b1 and b2 values that indicate both gradual and 

314 abrupt changes of CSI in the Sion and the Magadino areas only. In these areas, a sloped step model 

315 (SSM), describing CSI by a linear trend model in the two sub-periods before and after 1988, is 

316 adequate. Table 3 also reports significant b2 but insignificant b1 values, indicating abrupt changes in 

317 the Grenoble, Aosta and Sondrio areas. These changes are adequately represented by an FSM. On 

318 the other hand, an LTM is appropriate to describe the patterns of CSI in the remaining regions The 

319 differences indicate that predictions of climate change on climatic suitability of grapevine-growing 

320 areas should be done carefully.

321

322 Table 3. Regression statistics for selecting the adequate model to describe the response of the 
323 Climatic Suitability Index in the different regions. The applicability of a sloped step model (SSM) 
324 is tested in all regions; for Sion and Magadino, the SSM remained valid, while a flat step model 
325 (FSM) is selected for Grenoble, Aosta and Sondrio, and a linear trend model (LTM) is appropriate 
326 for Genève, Aigle, Lugano, Zürich and Chur. (n = simulation period in years, R2 = coefficient of 
327 determination, F = F value, a, b1, b2 = parameters of regression model [1], t = Student’s t, if t 
328 >t0.05(2), (n-2) then H0:bi=0 is rejected for b1, and b2 (marked with *), cf. Zar (1974)). 

Site n Model type R2, F A b1 b2

SSM 0.93E-01
F=2.56 0.19 0.40E-02

t=1.628
-0.47E-01
t=0.627Genève 53

LTM 0.86E-01
F=4.77 0.21 0.27E-02*

t=2.184

SSM 0.47
F=22.30 -0.59E-02 0.61E-02*

t=2.719
0.48E-01
t=0.695Zürich 53

LTM 0.47
F=44.57 -0.18E-01 0.75E-02*

t=6.676
Aigle 53 SSM 0.34 0.77E-01 0.49E-02 0.67E-01



F=13.08 t=1.819 t=0.815

LTM 0.33
F=25.66 0.61E-01 0.68E-02*

t=5.066

Sion 53 SSM 0.76
F=80.50 0.97E-01 0.62E-02*

t=3.101
0.23*
t=3.466

SSM 0.59
F=36.55 -0.45E-01 0.88E-02*

t=3.885
0.31E-01
t=0.444Chur 53

LTM 0.59
F=74.07 -0.53E-01 0.97E-02*

t=8.606

SSM 0.41
F=12.51 0.27 -0.24E-02

t=-0.586
0.99E-01*
t=3.344Grenoble 39

FSM 0.40
F=25.12 0.25 0.28*

t=5.012

SSM 0.21
F=4.730 0.52 -0.12E-02

t=-0.170
0.32
t=1.911Aosta 39

FSM 0.21
F=9.69 0.51 0.30*

t=3.113

Magadino 53 SSM 0.57
F=33.78 0.53 0.31E-02*

t=2.164
0.20*
t=2.091

SSM 0.18
F=5.43 0.83 0.52E-02

t=1.267
0.53E-01
t=0.424Lugano 53

LTM 0.18
F=10.86 0.82 0.67E-02*

t=3.295

SSM 0.11
F=2.28 0.69 -0.30E-02

t=-0.534
0.22
t=1.622Sondrio 39

FSM 0.11
F=4.37 0.68 0.16*

t=2.089
329

330 The appropriateness of the area-specific models has to be evaluated under two aspects. First, 

331 the temperature recordings have been made at weather stations often located at some distance from 

332 the actual vineyards (Genève, Zürich, Chur, Grenoble, Aosta). Since the vineyards have been 

333 established in favorable sites inside the areas, the temperatures experienced by S. titanus could have 

334 been underestimated. However, we do not expect a time effect on the reliability of the temperature 

335 measurements and hence, considered the responses to temperature changes as valid. Second, the 

336 regions with CSI undergoing only abrupt changes are separated from the other regions by three 

337 qualities. i) there was no information on possible changes in the measuring technique available for 

338 both Grenoble and Aosta and hence, we used raw data. As previously mentioned, no changes in the 

339 measuring procedure occurred at Sondrio. ii) gaps in the data sets for Aosta and Sondrio were filled 

340 by modified data from nearby weather stations as explained above. iii) the simulation period at 

341 Grenoble, Aosta and Sondrio were restricted to 39 years as opposed to 53 years of other regions. 

342 The influence of the reliability of temperature measurements and the influence of the duration (see 

343 below) on the patterns of CSI is unknown. Unlikely, however, these influences are responsible for 

344 the pattern and hence, the applicability of the FSM.

345 If we accept an area-specific response of the suitability index, the responses of CSI in Table 3 

346 and Fig. 3, depicting the CSI time series for each of the 10 areas, do not correspond to the responses 



347 obtained when using yearly mean temperatures. Namely, Mariani et al. (2012) stated that the yearly 

348 temperatures predicted by an LTM are less accurate than the predictions by the equally well-

349 performing SSM and FSM models. Nevertheless, the different performances of the SSM, the FSM 

350 and the LTM to describe the patterns of CSI and the analyses of yearly temperatures is not 

351 unexpected. This is because the temperature influences CSI through a series of uncorrelated 

352 curvilinear functions (Rigamonti et al., 2014a). The influence of these functions on CSI patterns 

353 becomes clear in a highly variable temperature environment. Hence, the results support the 

354 hypothesis that the selection of a region located at the northern limit of the geographic distribution 

355 with areas characterized by high temperature variability facilitates the study of abrupt and gradual 

356 climate change effects. It also confirms the utility of weather-driven PBDMs, operating at small-

357 time resolutions, for investigating climate change effects on population dynamics and species 

358 distributions. 

359



360

361 Figure 3. The simulated Climatic Suitability Index (CSI) for Sion and Magadino (A), Grenoble, 
362 Aosta and Sondrio (B) and Genève, Aigle, Lugano, Zürich and Chur (C) by a sloped step model 
363 (SSM), a flat step model (FSM), and linear trend model (LTM), respectively.
364

365 The CSI patterns appear to depend on whether the area was suitable or not for S. titanus prior 

366 to this investigation. In unsuitable areas with initial values close to zero, the changes were 

367 negligible or too small to allow S. titanus to settle and reach an economically relevant pest status in 

368 the foreseeable future (Zürich, Chur), while in areas characterized by more favorable initial 

369 conditions the temperature changes led to continuously-increasing CSIs (Aosta, Sondrio) with 

370 favorable conditions appearing in the 1990s. 



371 In areas already suitable in the 1960s, the model predicts a small increase in CSIs (Lugano). 

372 There are indications that, in warmer areas located at the southern limits of S. titanus distribution, 

373 the temperature increase may lead to a decrease in CSIs that indicates negatively-affected 

374 population development due by high temperatures.

375

376 3.3. Pest management considerations

377

378 In the different areas of the region under study, institutions charged with pest control may 

379 take into account the following aspects. In the South, the Lugano and Magadino areas have been 

380 colonized early and face increasingly favorable conditions for S. titanus development and possibly 

381 FD transmission. They may represent areas that were colonized early without spreading to other 

382 regions because of unfavorable conditions for colonization. The other areas in the South (Aosta and 

383 Sondrio) became suitable after the climate shift in 1988 and may represent areas colonized in the 

384 second wave of spread (Bertignono et al., 2006; Posenato et al., 2001). The spread will likely lead 

385 to the colonization of the neighboring Aigle, Sion and Grenoble areas, if not yet colonized. 

386 Institutions charged with pest control in the areas of Zürich and Chur should note that their areas are 

387 unlikely to provide suitable climate conditions any time soon. 

388 In other regions, institutions charged with pest control may take note that CSI information 

389 complements monitoring efforts by EPPO and local phytosanitary organizations to explain the past, 

390 current and future colonization of grapevine-growing areas. However, pest control institutions 

391 should take into account that the CSI is derived from a PBDM characterized by thresholds and 

392 several non-linear temperature-dependencies, and the extension of the here obtained results to other 

393 areas is questionable. Rather, they are advised to run the model with temperatures specific to the 

394 areas of interest for representing infestation patterns and assessing the risk of colonization. In doing 

395 so, they may acquire a quantitative tool that has been proven useful in supervised pest management 

396 in already colonized areas (Jermini et al., 2013; Prevostini et al., 2013).

397

398 4. Concluding Remarks

399

400 The Northwestern Alpine region, located near the northern limits of the actual geographical 

401 distribution of S. titanus, with grapevine-growing areas characterized by high temperature 

402 variability, was appropriate for studying the effects of gradual and abrupt temperature changes on 

403 the suitability of the areas to S. titanus. From a methodological standpoint, an annual Climatic 

404 Suitability Index (CSI) developed on the basis of a physiologically-based demographic model was 



405 useful for providing critical area-specific information on changing pest presence over time periods 

406 with changing climates. Furthermore, time series analyses of CSIs were instrumental to obtain the 

407 information required for the design and use of regression models aiming at quantifying the effect of 

408 temperature changes on CSIs. Thus, the methodology was useful to study the influence of abrupt 

409 and gradual temperature changes on the climate suitability of Northwestern Alpine grapevine-

410 growing areas for S. titanus.

411 In general, the climatic suitability of all areas tends to improve during the study period. 

412 Across the areas, however, the gradual and abrupt temperature changes are not consistently 

413 reflected in gradual and abrupt CSI changes. The different area-specific CSI patterns may be due to 

414 the non-linear functions relating S. titanus life table parameters to temperature in the simulation 

415 model. The respective relationships may be responsible for the CSI patterns arising under variable 

416 area-specific temperature regimes. This indicates that the results of this study cannot be generally 

417 applied to areas located within other regions and similar studies are required to elucidate respective 

418 temperature change effects. Furthermore, it suggests the possibility that climate change may change 

419 the area-specific climatic suitability to either the advantage or disadvantage of S. titanus.  

420 From a pest management standpoint, the study allows making recommendations to pest 

421 management institutions located in the region. Specifically, the methodology allows the assessment 

422 of colonization risk and the undertaking of adequate pest control measures. The application of the 

423 methodology to areas outside the Northwestern Alpine region holds the promise to provide 

424 decision-support to a wider range of institutions charged with S. titanus control then considered 

425 here.

426

427 Author contributions

428

429 IE Rigamonti, overall project coordinator with leading role in model parametrization.

430 L Mariani, developed the plant phenology model, oversaw the linkage to the pest population model 
431 and defined spatial scale resolution and extent.

432 G Cola, participated in crop and pest model implementation, and in definition and use of the 
433 Climatic Suitability Index (CSI).

434 M Jermini, responsible for linking the project team with the viticultural practice, the agricultural 
435 research institutions, the extension services and the Swiss Meteorological Service.

436 J Baumgärtner, responsible for the design of plant and pest population system models.

437



438 Acknowledgements 

439

440 The Swiss Meteorological Service (MeteoSwiss, Zürich, Switzerland) kindly made available the 

441 weather data for the Swiss locations. The advice on data use by Dr. Marco Gaia of the MeteoSwiss 

442 Locarno-Monti station, and Dr. Martino Salvetti of the Fondazione Fojanini di Studi Superiori, 

443 Sondrio, are appreciated. We are grateful to Ms. Lina Torrizo, San Pablo City, Philippines, for 

444 editorial assistance. Dr. J. Lengler, Algorithm Consulting Service, Department of Computer 

445 Science, Swiss Federal Institute of Technology (ETH), developed the algorithm and assisted in 

446 computing the parameters of the Breusch-Godfrey test. This research did not receive any specific 

447 grant from funding agencies in the public, commercial, or nonprofit sectors.

448

449 References

450
451 Abkin, M.H., Wolf., C., 1976. Distributed Delay Routines. Department of Agricultural Economics, 
452 Michigan State University. CLASS Document No. 8. East Lansing, USA.
453
454 Anisimov, O., Kokorev, V., Zhil’tsova, Y., 2013. Temporal and spatial patterns of modern climatic 
455 warming: case study of Northern Eurasia. Clim. Change 118, 871–883. 
456 https://doi.org/10.1007/s10584-013-0697-4.
457
458 Anwer, M., 2015. Nature of Centennial Global Climate Change from Observational Records. Am. J. 
459 Clim. Change 4, 337-354. https://doi.org/10.4236/ajcc.2015.44027.
460
461 Begert, M., Giroud, M., Kegel, R., Seiz, G., Koehli, V., Bochnicek, O., Fukasz, M., Nieplova, E., 
462 Sramo, L., 1999. Operational homogenization of long term climate data series at SMI and 
463 SHMI. In: Proceedings of the 2nd Seminar of Homogenization of Surface Climatological Data, 
464 Budapest, 9-13 November 1998. WCDMP-No. 41, WMO-TD No. 962. HMS-WMO. 
465
466 Begert, M., Seiz, G., Schlegel, T., Moesch, M., Musa, M., Baudraz, G., 2003. Homogenisierung 
467 von Klimamessreihen der Schweiz und Bestimmung der Normwerte 1961-1990. 
468 Schlussbericht des Projekts NORM90. Veröffentlichung der MeteoSchweiz, vol. 67. 
469 Meteoschweiz, Zurich. 
470
471 Begert, M., Schlegel, T., Kirchhofer, W., 2005. Homogeneous temperature and precipitation series 
472 of Switzerland from 1864 to 2000. Int. J. Climatol. 25, 65-80. 
473 https://doi.org/10.1002/joc.1118.
474
475 Bence, J.R., 1995. Analysis of short time series: correcting for autocorrelation. Ecology 76, 628-
476 639. https://doi.org/10.2307/1941218.
477
478 Bertignono, L., Barrel, I., Bondaz, M., Lessio, F., Tedeschi, R., Alma, A., 2006. Presence of 
479 Auchenorrhyncha known or suspected vectors of phytoplasmas in vine growing areas of the 
480 Aosta Valley. In: Proceedings of the 1st International Congress of Mountain and Steep Slope 
481 Viticulture. Saint Vincent (Italy), 17-18 March 2006. Available from 
482 http://ag.udel.edu/delpha/6367.pdf. [Accessed 4 January 2018].



483
484 Bonfils, J., Schvester, D., 1960. Les cicadelles (Homoptera: Auchenorrhyncha) dans leurs rapports 
485 avec la vigne dans le Sud-Ouest de la France. Ann. Epiphyties 9, 325-336.
486
487 Boyce, M.S., Pitt, J., Northrup, J.M., Morehouse, A.T., Knopff, K.H., Cristescu, B., Stenhouse, 
488 G.B., 2010. Temporal autocorrelation functions for movement rates from global positioning 
489 system radiotelemetry data. Phil. Trans. R. Soc. B 365, 2213–2219. 
490 https://doi.org/10.1098/rstb.2010.0080.
491
492 Breusch, T.S., 1978. Testing for autocorrelation in dynamic linear models. Austral. Econ. Papers 
493 17, 334–355. https://doi.org/10.1111/j.1467-8454.1978.tb00635.x
494
495 Brière, J.F., Pracros, P., Le Roux, A.I., Pierre, J.S., 1999. A novel rate model of temperature-
496 dependent development for arthropods. Environ. Entomol. 28, 22-29. 
497 https://doi.org/10.1093/ee/28.1.22.
498
499 Chuche, J., Thiéry, D., 2014. Biology and ecology of the Flavescence dorée vector Scaphoideus 
500 titanus: a review. Agron. Sustain. Dev. 34, 381-403. https://doi.org/10.1007/s13593-014-
501 0208-7.
502
503 Curry, G.L., Feldman, R.M., 1987. Mathematical foundations of population dynamics. Monograph 
504 series 3. Texas Engineering Experiment Station. Texas A&M University Press, College 
505 Station, Texas.
506
507 Di Cola, G., Gilioli, G., Baumgärtner, J., 1999. Mathematical models for age-structured population 
508 dynamics. In: Huffaker, C.B., Gutierrez, A.P. (Eds.), Ecological Entomology, 2nd ed. John 
509 Wiley and Sons, New York, pp. 503-534. 
510
511 Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction 
512 across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677-697. 
513 https://doi.org/10.1146/annurev.ecolsys.110308.120159.
514
515 Godfrey, L.G., 1978. Testing against general autoregressive and moving average error models when 
516 the regressors include lagged dependent variables. Econometrica 46, 1293–1301. 
517 https://doi.org/10.2307/1913829. 
518
519 Graham, R.W., Grimm, E.C., 1990. Effects of global climate change on the patterns of terrestrial 
520 biological communities. Trends Ecol. Evol. 5, 289–292. https://doi.org/10.1016/0169-
521 5347(90)90083-P.
522
523 Gutierrez, A. P., 1996. Applied Population Ecology: A Supply–Demand Approach. John Wiley and Sons, 
524 New York.
525
526 Gutierrez, A.P., Ponti, L., d’Oultremont, T., Ellis, C.K., 2008. Climate change effects on 
527 poikilotherm tritrophic interactions. Clim. Change 87 (suppl. 1), S167-S192. 
528 https://doi.org/10.1007/s10584-007-9379-4.
529
530 Gutierrez, A.P., Ponti, L., 2013. Eradication of invasive species: why the biology matters. Environ. 
531 Entomol. 42 (3), 395-411. https://doi.org/10.1603/EN12018.
532



533 Gutierrez, A.P., Ponti, L., He, H.R., Baumgärtner, J., Kenmore, P.E., 2015. Deconstructing Indian 
534 cotton: weather, yields, and suicides. Environ. Sci. Eu. 27, 12. https://doi.org/10.1186/s12302-
535 015-0043-8.
536
537 IBM Software Group, 2016. IBM SPSS Statistics 24 core user’s manual, version 24th ed. IBM 
538 Software Group, Chicago, Illinois.
539
540 Intergovernmental Panel on Climate Change (IPCC), 1996. Climate Change 1995: IPCC second 
541 assessment report. Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, 
542 A., Maskell, K. (Eds.), Cambridge University Press, Cambridge.
543
544 Intergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013: The Physical 
545 Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 
546 Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor 
547 M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M (Eds.), Cambridge 
548 University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 
549 https://doi.org/10.1017/CBO9781107415324.
550
551 Jermini, M., Trivellone, V., Cara, C., Baumgärtner, J., 2013. Marrying research and management 
552 activities: adaptive management of grape leafhopper Scaphoideus titanus. IOBC/wprs Bull. 
553 85, 49–56.
554
555 Lorenz, D.H., Eichhorn, K.W., Blei-Holder H., Klose, R., Meier, U., Weber, E., 1994. 
556 Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Vitic. Enol. 
557 Sci. 49, 66-70.
558
559 Manetsch, T.J., 1976. Time-varying distributed delays and their use in aggregative models of large 
560 systems. IEEE Trans. Syst. Man Cybern. 6, 547-553. 
561 https://doi.org/10.1109/TSMC.1976.4309549.
562
563 Mariani, L., Failla, O., Dal Monte G., Facchinetti, D., 2007. IPHEN: a model for real time 
564 production of grapevine phenological maps. Congress on Climate and Viticulture, Zaragoza, 
565 10-14 April 2007. pp. 272-278. 
566
567 Mariani, L., Parisi, S.G., Cola, G., Failla, O., 2012. Climate change in Europe and effects on 
568 thermal resources for crops. Int. J. Biometeorol. 56, 1123-1124. 
569 https://doi.org/10.1007/s00484-012-0528-8.
570
571 Mariani, L., Alilla, R., Cola, G., Dal Monte, G., Epifani, C., Puppi, G., Failla, O., 2013. IPHEN – a 
572 real-time network for phenological monitoring and modelling in Italy. Int. J. Biometeorol. 57, 
573 881-893. https://doi.org/10.1007/s00484-012-0615-x.
574
575 May, M.L., 2005. Hot bugs: body temperature of insects in sunshine. J. Exp. Biol. 208, 2623-2624. 
576 https://doi.org/10.1242/jeb.01724.
577
578 Monserud, R.A., Marshall, J.D., 2001. Time-series analysis of δ13C from tree rings. I. Time trends 
579 and autocorrelation. Tree Physiol. 21, 1087–1102. 
580 https://doi.org/10.1093/treephys/21.15.1087.
581



582 Morice, C.P., Kennedy, J.J., Rayner, N.A., Jones, P.D., 2012. Quantifying uncertainties in global 
583 and regional temperature change using an ensemble of observational estimates: the 
584 HadCRUT4 dataset. J. Geophys. Res. 117, D08101. https://doi.org/10.1029/2011JD017187.
585
586 Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. 
587 Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100.
588
589 Ponti L., Gutierrez A.P., Altieri M.A., 2015. Holistic approach in invasive species research: the case 
590 of the tomato leaf miner in the Mediterranean basin. Agroecol. Sustain. Food Syst. 39, 436-
591 468. https://doi.org/10.1080/21683565.2014.990074.
592
593 Portmann, R.W., Solomon, S., Hegerl, G.C., 2009. Spatial and seasonal patterns in climate change, 
594 temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA 106, 
595 7324–7329. https://doi.org/10.1073/pnas.0808533106.
596
597 Posenato, G., Mori, N., Bressan, A., Girolami, V., Sancassani, G.P., 2001. Scaphoideus titanus, 
598 vettore della flavescenza dorata: conoscerlo per combatterlo. L’Informatore Agrario 57 (15), 
599 91-94.
600
601 Prevostini, M., Taddeo, A.V., Balac, K., Rigamonti, I., Baumgärtner, J., Jermini, M., 2013. WAMS 
602 - an adaptive system for knowledge acquisition and decision support: the case of Scaphoideus 
603 titanus. IOBC/wprs Bull. 85, 57–64.
604
605 Reiter, A., Weidinger, R., Mauser, W., 2012. Recent climate change at the upper Danube – a 
606 temporal and spatial analysis of temperature and precipitation time series. Clim. Change 111, 
607 665–696. https://doi.org/10.1007/s10584-011-0173-y.
608
609 Rigamonti, I.E., Jermini, M., Fuog, D., Baumgärtner J., 2011. Toward an improved understanding of 
610 the dynamics of vineyard-infesting Scaphoideus titanus leafhopper populations for better timing 
611 of management activities. Pest Manag. Sci. 67, 1222-1229. https://doi.org/10.1002/ps.2171.
612
613 Rigamonti, I.E., Trivellone, V., Jermini M., Fuog, D., Baumgärtner, J.,. 2014a. Multiannual 
614 infestation patterns of grapevine plant inhabiting Scaphoideus titanus (Hemiptera: 
615 Cicadellidae) leafhoppers. Can. Entomol. 146, 67-79. https://doi.org/10.4039/tce.2013.51.
616
617 Rigamonti, I.E., Jermini, M., Mariani, L., Cola, G., Baumgärtner, J., 2014b. Temporal dynamics of 
618 Scaphoideus titanus populations: from annual occurrence patterns to changing climate 
619 suitability assessments. IOBC/wprs Bull. 105, 169-176.
620
621 Rois, R., Basak, T., Rahman, M.M., Majumder, A.,K., 2012. Modified Breusch-Godfrey test for 
622 restricted higher order autocorrelation in dynamic linear model – a distance based approach. 
623 Int. J. of Bus. Manag. 7 (17), 88-97. https://doi.org/10.5539/ijbm.v7n17p88.
624
625 Seabold, S., Perktold, J., 2010. Statsmodels: econometric and statistical modeling with python. 
626 Proc. of the 9th Python in Science Conference (SCIPY 2010), 57-61.
627
628 Schvester, D., Carle, P., Moutous, G., 1961. Sur la transmission de la Flavescence dorée de la vigne 
629 par une Cicadelle. C. R. Acad. Agr. Fr. 67, 1021-1024.
630
631 Schvester, D., Moutous, G., Bonfils, J., Carle, P., 1962a. Étude biologique des cicadelles de la 
632 vigne dans le sud-ouest de la France. Ann. Epiphyt. 18, 205-237.



633
634 Schvester, D., Moutous, G., Carle, P., 1962b. Scaphoideus littoralis Ball (Homopt. Jassidae) 
635 cicadelle vectrice de la Flavescence dorée de la vigne. Rev. Zool. Agr. Appl. 61 (10-12), 118-
636 131.
637
638 Smith, I.M., McNamara, D.G., Scott, P.R., Holderness, M. (eds.), 1996. Quarantine Pests for 
639 Europe. 2nd ed., CAB International, Wallingford.
640
641 Sneyers, R., Palmieri, S., Siani, A.M., 1993. Characterizing trends in climatological time series. An 
642 application to Brera observatory (Milan) rainfall series. Proceedings of International 
643 Conference on Applications of Time Series Analysis to Astronomy and Meteorology, 
644 Università di Padova, 6-10 Settembre 1993, pp. 321-328.
645
646 Tóthová, M., Bokor, P., Cagáň, L., 2015. The first detection of leafhopper Scaphoideus titanus Ball 
647 (Hemiptera, Cicadellidae) in Slovakia. Plant Protect. Sci. 51, 88-93. 
648 https://doi.org/10.17221/64/2014-PPS.
649
650 Vansickle, J., 1977. Attrition in distributed delay models. IEEE Trans. Syst. Man Cybern. 7, 635–
651 638. https://doi.org/10.1109/TSMC.1977.4309800.
652
653 Welch, S.M., 1984. Developments in computer-based IPM extension delivery systems. Annu. Rev. Entomol. 
654 29, 359–381. Doi: https://doi.org/10.1146/annurev.en.29.010184.002043.
655
656 Welch, S.M., Croft, B.A., Brunner, J.F., Michels, M.F., 1978. PETE: an extension phenology modeling 
657 system for management of multi-species pest complex. Environ. Entomol. 7, 487–494. 
658 https://doi.org/10.1093/ee/7.4.487.
659
660 Yang, Y., Wilson, L.T., Wang, J., 2010. Development of an automated climatic data scraping, 
661 filtering and display system. Comput. Electron. Agric. 71, 77–87. 
662 https://doi.org/10.1016/j.compag.2009.12.006.
663
664 Yates, C.J., Elith, J., Latimer, A.M., Le Maitre, D., Midgley, G.F., Schurr, F.M., West, A.G., 2010. 
665 Projecting climate change impacts on species distributions in megadiverse South African 
666 Cape and Southwest Australian Floristic Regions: opportunities and challenges. Aust. Ecol. 
667 35, 374-391. https://doi.org/10.1111/j.1442-9993.2009.02044.x.
668
669 Zar, J.H., 1974. Biostatistical analysis. Prentice Hall, Englewood Cliffs, New Jersey, 620 p. 
670



672
673

674 Table 1. Information on the Northwestern Alpine region with the different areas in that the 
675 development of Grape leafhopper Scaphoideus titanus populations was simulated. The 
676 homogenized daily temperature maxima and minima for the Swiss meteorological stations were 
677 kindly made available by MeteoSwiss (National Weather Service of Switzerland). Additional 
678 temperature data were retrieved from the Texas A&M University, Beaumont, USA 
679 (https://beaumont.tamu.edu/ClimaticData/), the National Climate Data Centre (NCDC), Climate 
680 Services Branch (USA) and the Fojanini Foundation (FFS), Sondrio (I). Gaps in the data sets for 
681 Aosta and Sondrio were filled by using information from Torino Caselle (I) and Poschiavo (CH), 
682 respectively.

Site 
specification

Area and 
meteorological 

station

Beginning 
of 

simulations

Latitude N
(degrees)

Longitude E 
(degrees)

Altitude
(meters above 

sea level)

Source for 
temperatures 

data 

Genève (CH) 46.250 6.133 416

Aigle (CH) 46.333 6.917 383

Sion (CH) 46.217 7.317 428

Zürich (CH) 47.383 8.567 569

Western and 
Northern 

areas

Chur (CH)

1959

46.867 9.533 533

MeteoSwiss

Grenoble (F) 45.367 5.333 386 NCDC

Aosta (I)
1973

45.740 7.376 547 Texas A&M

Magadino (CH) 46.167 8.883 198

Lugano (CH)
1959

46.000 8.967 276
MeteoSwiss

Western and 
Southern 

areas

Sondrio (I) 1973 46.168 9.853 323 FFS

683

684



686

687

688 Table 2. The p-values of the Breusch-Godfrey test for autocorrelation in area-specific Climatic 
689 Suitability Indices (CSI) for S. titanus in Northwestern Alpine grapevine growing areas. If the p-
690 value is smaller than the standard significance level of 0.05 (numbers in bold), the null hypothesis 
691 of no autocorrelation is rejected (n.c. = not computed).

Lag Genève Aigle Sion Zürich Chur Grenoble Aosta Magadino Lugano Sondrio

1 0.1812 0.4103 0.0904 0.7810 0.8587 0.0302 0.1517 0.3404 0.4930 0.0002

2 0.3538 0.3972 0.2145 0.8909 0.8900 0.0706 0.2780 0.5163 0.7121 0.0010

3 0.5084 0.4321 0.3784 0.9647 0.9341 0.1165 0.4494 0.7112 0.6624 0.0031

4 0.6768 0.5330 0.4400 0.8244 0.9782 0.2057 0.4665 0.7062 0.7948 0.0058

5 0.6681 0.5900 0.4468 0.7490 0.9547 0.2827 0.2997 0.6894 0.7560 0.0102

6 0.7461 0.3884 0.5404 0.7660 0.7344 0.2725 0.2995 0.7588 0.8292 0.0172

7 0.6530 0.4388 0.4159 0.4190 0.6790 0.3194 0.4748 0.8252 0.8700 0.0305

8 0.4396 0.5432 0.3478 0.5160 0.7569 0.2880 0.4674 0.6484 0.8787 0.0483

9 0.5199 0.3368 0.2741 0.4324 0.3854 0.3357 0.1454 0.7372 0.6860 0.0752

10 0.6047 0.4244 0.3448 0.5195 0.4774 0.4184 0.1860 0.7533 0.6624 0.1108

11 0.3544 0.4979 0.4064 0.6090 0.5687 n.c. n.c. 0.7896 0.7437 n.c.

12 0.3763 0.5788 0.4064 0.2786 0.5694 n.c. n.c 0.8493 0.7998 n.c.

13 0.2095 0.1355 0.1660 0.0660 0.0378 n.c. n.c. 0.6759 0.8506 n.c.

692



694

695

696 Table 3. Regression statistics for selecting the adequate model to describe the response of the 
697 Climatic Suitability Index in the different regions. The applicability of a sloped step model (SSM) 
698 is tested in all regions; for Sion and Magadino, the SSM remained valid, while a flat step model 
699 (FSM) is selected for Grenoble, Aosta and Sondrio, and a linear trend model (LTM) is appropriate 
700 for Genève, Aigle, Lugano, Zürich and Chur. (n = simulation period in years, R2 = coefficient of 
701 determination, F = F value, a, b1, b2 = parameters of regression model [1], t = Student’s t, if t 
702 >t0.05(2), (n-2) then H0:bi=0 is rejected for b1, and b2 (marked with *), cf. Zar (1974)). 

Site n Model type R2, F a b1 b2

SSM 0.93E-01
F=2.56 0.19 0.40E-02

t=1.628
-0.47E-01
t=0.627Genève 53

LTM 0.86E-01
F=4.77 0.21 0.27E-02*

t=2.184

SSM 0.47
F=22.30 -0.59E-02 0.61E-02*

t=2.719
0.48E-01
t=0.695Zürich 53

LTM 0.47
F=44.57 -0.18E-01 0.75E-02*

t=6.676

SSM 0.34
F=13.08 0.77E-01 0.49E-02

t=1.819
0.67E-01
t=0.815Aigle 53

LTM 0.33
F=25.66 0.61E-01 0.68E-02*

t=5.066

Sion 53 SSM 0.76
F=80.50 0.97E-01 0.62E-02*

t=3.101
0.23*
t=3.466

SSM 0.59
F=36.55 -0.45E-01 0.88E-02*

t=3.885
0.31E-01
t=0.444Chur 53

LTM 0.59
F=74.07 -0.53E-01 0.97E-02*

t=8.606

SSM 0.41
F=12.51 0.27 -0.24E-02

t=-0.586
0.99E-01*
t=3.344Grenoble 39

FSM 0.40
F=25.12 0.25 0.28*

t=5.012

SSM 0.21
F=4.730 0.52 -0.12E-02

t=-0.170
0.32
t=1.911Aosta 39

FSM 0.21
F=9.69 0.51 0.30*

t=3.113

Magadino 53 SSM 0.57
F=33.78 0.53 0.31E-02*

t=2.164
0.20*
t=2.091

SSM 0.18
F=5.43 0.83 0.52E-02

t=1.267
0.53E-01
t=0.424Lugano 53

LTM 0.18
F=10.86 0.82 0.67E-02*

t=3.295

SSM 0.11
F=2.28 0.69 -0.30E-02

t=-0.534
0.22
t=1.622Sondrio 39

FSM 0.11
F=4.37 0.68 0.16*

t=2.089
703



705 FIGURE LEGENDS

706

707 Figure 1. The Northwestern Alpine region with the different areas in that the development of Grape 
708 leafhopper Scaphoideus titanus populations was simulated.
709

710

711 Figure 2. Autocorrelation functions in differently-lagged Climatic Suitability Indices for S. titanus 
712 in Northwestern Alpine grapevine growing areas. 
713

714

715 Figure 3. The simulated Climatic Suitability Index (CSI) for Sion and Magadino (A), Grenoble, 
716 Aosta and Sondrio (B) and Genève, Aigle, Lugano, Zürich and Chur (C) by a sloped step model 
717 (SSM), a flat step model (FSM), and linear trend model (LTM), respectively.
718
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740 ABSTRACT

741 The paper aims to elucidate the influence of abrupt and gradual climate changes on the suitability 

742 for colonization of Scaphoideus titanus populations in grapevine-growing areas of the Northwestern 

743 Alpine region. This study spans several decades of temperature recordings and is carried out in ten 

744 grapevine-growing areas. A time-varying distributed delay with attrition model, linked to a 

745 grapevine phenology model, is used to simulate the development of S. titanus populations and 

746 produce an annual Climatic Suitability Index (CSI). Area-specific CSI time series were obtained. 

747 The Breusch-Godfrey test revealed few significant partial autocorrelations in nine areas and the 

748 occurrence of six consecutive - first decreasing and then increasing - partial correlations in one case 

749 only. The occurrence of abrupt and gradual changes of the index were studied via multiple least 

750 square regression analyses. In general, the climatic suitability of all areas tended to improve through 

751 time. However, gradual and abrupt temperature changes were not consistently reflected in gradual 

752 and abrupt CSI patterns: abrupt and gradual CSI changes were observed in two areas, abrupt 



753 changes were detected in three areas, and exclusively gradual changes in the remaining five. Pest 

754 control institution of the region under study may deal with different scenarios of pest status such as 

755 long-time presence and increasing risks, high colonization risks or limited colonization risks for the 

756 foreseeable future. Institutions charged with pest control elsewhere are advised to use a mechanistic 

757 demographic model to study area-specific infestation patterns and colonization risks because the 

758 results obtained here cannot be transferred to other areas without site-specific evaluations.

759

760 Key words: climate change, physiologically-based demographic model, climatic suitability, 

761 forecast, colonization risk

762

763 1. Introduction

764

765 Many studies have been undertaken to document changing climates at different spatial and 

766 temporal scale extents and resolutions (Anisimov et al., 2013; Anwer, 2015; Portmann et al., 2009; 

767 Reiter et al., 2012). According to the global dataset HadCRUT4 (Morice et al., 2012), global 

768 temperatures increased by +0.85°C since 1850, while the main part of this increase (about +0.5°C) 

769 occurred in the period 1977-1998. During the same period, European temperatures increased by 

770 about +1.3°C (Mariani et al., 2012).

771 Voluminous literatures deal with the effects of changing climates on populations, 

772 communities and ecosystems (Graham and Grimm, 1990; Gutierrez et al., 2008; Parmesan, 2006; 

773 Yates et al., 2010). The temperature component of climate change is particularly important for 

774 poikilothermic organisms whose development depend on body temperatures that vary broadly with 

775 environmental temperatures (May, 2005). The methods used to investigate the impact of changing 

776 temperatures on population development and geographical distributions of poikilotherms fall 

777 broadly into two categories. The first category comprises species distribution models (SDMs) that 

778 combine observations of species occurrence or abundance with environmental estimates to 

779 characterize climatically the species to gain ecological and evolutionary insights and to predict 

780 distributions across landscapes, sometimes requiring extrapolation in space and time (Elith and 

781 Leathwick, 2009).

782 The second category of interest here comprises of physiologically-based demographic models 

783 (PBDMs), built on mechanistic representations of poikilothermic population development. PBDMs 

784 model the biology of the target species, and, when driven by weather, predict the phenology, age-

785 structured dynamics, and distribution of the species across wide geographic areas independent of 



786 the availability of distribution information (Ponti et al., 2015). Since weather is an important driver 

787 for PBDMs, they are particularly appropriate for dealing with climate change effects.

788 In the case of pests and their abundance, the capacity of PBDMs to predict the potential 

789 geographic distribution under past, current and future climate change scenarios is fundamental in 

790 developing sound policies for their control (Gutierrez and Ponti, 2013; Ponti et al., 2015). Their 

791 ability to represent the regional suitability and the spatial distributions of insect pests on explanatory 

792 grounds is a complement to the work of international organizations such as the European and 

793 Mediterranean Plant Protection Organization (EPPO) that monitors and delineates the spread of 

794 pests and provides directions on quarantine pests management (Smith et al., 1996). 

795 The Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera, Cicadellidae), vector of the 

796 Grapevine Flavescence dorée (FD) phytoplasma, is a key pest of grapevine in Europe. S. titanus 

797 was accidentally introduced in France in the 1950s (Bonfils and Schvester 1960; Schvester et al. 

798 1961, 1962a, 1962b) and gradually extended its area of distribution. Actually, it is present 

799 throughout Western and Southeastern Europe from the Atlantic Ocean to the Black Sea, and the 

800 area of distribution is still expanding (Chuche and Thiéry, 2014; Tóthová et al., 2015). 

801 Since the spread of S. titanus and FD continues, pest control institutions in regions with high 

802 risks of being invaded and colonized should prepare in time for intensive monitoring and expensive 

803 control operations. The risk of invasion and colonization depends on the dispersal ability of S. 

804 titanus and the suitability of the newly-invaded area. After its accidental introduction into Europe, 

805 the spread was so fast that most grapevine-growing areas should have been colonized by now. This 

806 is not the case, however, and the ongoing expansion suggests that the influence of the high dispersal 

807 ability on distribution patterns is constrained by other factors. Empirical and theoretical evidence 

808 suggest that climate, undergoing the aforementioned changes since the time of S. titanus 

809 introduction, plays an important role. In fact, Rigamonti et al. (2014b) found that the climate in two 

810 Swiss grapevine-growing areas changed in favor of S. titanus and hypothesized that the climatic 

811 suitability determines the colonization success and largely explains the changing geographical 

812 distribution in Europe.

813 Since the temperature regime in European grapevine-growing regions has and will undergo 

814 changes (IPCC, 1996), a previously-unsuitable region may become suitable through time. Mariani 

815 et al. (2012) viewed climate variability as the superimposition of gradual and abrupt changes. 

816 Gradual changes can be interpreted as the effect of progressive changes in forcings (IPCC, 2013), 

817 while abrupt changes are the result of sharp changes in the frequency and persistence of different 

818 circulation patterns (Sneyers et al., 1993). During the period 1977-1998, European temperatures 



819 increased by about 1.3°C, while the main part of this increase was observed at the end of the 1980s, 

820 where an abrupt change is evident on thermal time series (Mariani et al., 2012). 

821 The paper aims to elucidate the effects of abrupt and gradual climate change on S. titanus 

822 population development through an analysis of long-term suitability patterns in a geographically-

823 restricted region with high temperature variability among grapevine-growing areas. For each area, a 

824 PBDM provides a long-term time series of annual suitability indices whose similarity, depending on 

825 time lags, prepares the ground for testing the appearance of abrupt and gradual changes in area-

826 specific patterns of the suitability index.

827

828 2. Materials and Methods

829

830 2.1. Study sites and temperature recordings

831

832 The suitability of grapevine-growing regions for S. titanus colonization is assessed in a region 

833 referred to as Northwestern Alps (Figure 1, Table 1). This region has been selected because of its 

834 location near the northern limits of S. titanus distribution and the high climatic variability among 

835 grapevine growing areas therein. Both aspects are considered as useful prerequisites for elucidating 

836 the effects of climate change on the suitability of the region for colonization by S. titanus. Though 

837 outside the Alpine zone, we included the Zürich area in the analysis. At meteorological stations 

838 located in the different areas, daily temperature maxima and minima were readily available over 54 

839 or 39 years periods (Table 1). To simplify the geographical notations, the location name is used as a 

840 name for the area. The locations of all the weather stations except Grenoble, are within or close to 

841 the grapevine growing areas.

842 The temperatures measured at the Swiss locations (Zürich, Lugano, Genève, Aigle, Sion, 

843 Chur and Magadino) are referred to as revised data retrieved from the data bank of the Swiss 

844 National Weather Service (MeteoSwiss). Namely, during the measuring periods, the position of the 

845 temperature sensors was often changed and new equipment were adopted. MeteoSwiss corrected for 

846 these changes (Begert et al., 1999, 2003, 2005) and kindly made available a data set referred to as 

847 homogenized data. Most of the data for Sondrio were kindly made available by Dr. M. Salvetti 

848 (Fondazione Fojanini, Sondrio) and reportedly did not require any correction. In the absence of 

849 respective information, the raw data measured at the Aosta and Grenoble stations obtained from 

850 Yang et al. (2010) at [https://beaumont.tamu.edu/ClimaticData/] and from the US weather service at 

851 [http://www.geodata.us/weather/], respectively, were used in the analyses. The gaps in the Sondrio 

852 and Aosta data sets were respectively filled by linear regression of Sondrio data on data measured at 



853 the nearby Poschiavo station operated by MeteoSwiss, and linear regression of Aosta data were 

854 regressed from data measured at the Torino-Caselle station.

855

856

857 Figure 1. The Northwestern Alpine region with the different areas in that the development of Grape 
858 leafhopper Scaphoideus titanus populations was simulated.
859

860 Table 1. Information on the Northwestern Alpine region with the different areas in that the 
861 development of Grape leafhopper Scaphoideus titanus populations was simulated. The 
862 homogenized daily temperature maxima and minima for the Swiss meteorological stations were 
863 kindly made available by MeteoSwiss (National Weather Service of Switzerland). Additional 
864 temperature data were retrieved from the Texas A&M University, Beaumont, USA 
865 (https://beaumont.tamu.edu/ClimaticData/), the National Climate Data Centre (NCDC), Climate 
866 Services Branch (USA) and the Fojanini Foundation (FFS), Sondrio (I). Gaps in the data sets for 
867 Aosta and Sondrio were filled by using information from Torino Caselle (I) and Poschiavo (CH), 
868 respectively.

Site 
specification

Area and 
meteorological 

station

Beginning 
of 

simulations

Latitude N
(degrees)

Longitude E 
(degrees)

Altitude
(meters above 

sea level)

Source for 
temperatures 

data 

Genève (CH) 46.250 6.133 416

Aigle (CH) 46.333 6.917 383

Sion (CH) 46.217 7.317 428

Zürich (CH) 47.383 8.567 569

Western and 
Northern 

areas

Chur (CH)

1959

46.867 9.533 533

MeteoSwiss

Grenoble (F) 45.367 5.333 386 NCDC

Aosta (I)
1973

45.740 7.376 547 Texas A&M

Magadino (CH) 46.167 8.883 198

Lugano (CH)
1959

46.000 8.967 276
MeteoSwiss

Western and 
Southern 

areas

Sondrio (I) 1973 46.168 9.853 323 FFS

869



870 2.2. Model characteristics and computation of the Climatic Suitability Index

871

872 Basic model development. Rigamonti et al. (2011, 2014a) took into account the high 

873 variability in development times of nymphs relative to the mean (cf. Di Cola et al., 1999) and linked 

874 the appropriate “time-varying distributed delay with attrition” variant of the widely used time 

875 distributed delay models (Gutierrez, 1996; Gutierrez et al., 2015; Manetsch, 1976; Vansickle, 1977; 

876 Welch, 1984; Welch et al., 1978) to the grapevine plant phenology model of Mariani et al. (2013). 

877 They noticed that the S. titanus population model was appropriate for long-term studies since it 

878 allows the representation of multi-cohort and multi-generation poikilothermic population 

879 development. The model represents the flow of individuals through diapausing egg, post-diapausing 

880 egg, nymph and adult life stages

881
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886 where t is time [days], rji(t) is the transition rate of the i-th substage in the j-th life stage, kj is 

887 the number of delay substages in the j-th life stage, DELj(t) is the time-dependent developmental 

888 time (days) in the absence of losses in the j-th life stage, and ARj(t) is the time dependent 

889 proportional change or attrition in the j-th life stage. The occurrence Qj(t) of individuals in each life 

890 stage can be obtained from

891
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893

894 Rigamonti et al. (2011, 2014a) discretized model [1] according to Abkin and Wolf (1976) and 

895 used a 1-hour time step length. 

896

897 Model components. The following aspects briefly summarize model components detailed by 

898 Rigamonti et al. (2011, 2014a).

899 i) The stage-specific developmental rate dj,[T(t)], i.e., the inverse of developmental time DEL[T(t)], 

900 is temperature-dependent between lower and upper thresholds, and 0.001 or 0.01, for diapausing 



901 and non-diapausing stages respectively, outside this range. The time-dependent temperatures 

902 T(t) are obtained by forcing a cosine function through daily temperature maxima and minima.

903 ii) The stage-specific survival rate sj[T(t)] is composed of a) a temperature-dependent survival, 

904 modeled through attrition AR[T(t)], operating between lower and upper thresholds, b) a 

905 temperature-dependent survival below the lower threshold, and c) mortalities of non-diapausing 

906 life stages between the grapevine plant phenological stages BBCH 93 (beginning of leaf fall) and 

907 BBCH 11 (first leaf unfolded and spread away from shoot) (Lorenz et al., 1994). Before and after 

908 these plant stages, nymphs and adults are suffering from an additional mortality of 0.5 % per 

909 day.

910 iii) The reproduction rate m[T(t)] of females becomes the input into the diapausing egg stage. It is 

911 the product of the reproductive profile, i.e. the relative age-specific fecundity rate and the 

912 temperature-dependent reproductive potential F(T), i.e., the total number of eggs laid by a 

913 female (cf. Curry and Feldman, 1987) (m[T(t)]>0 between the lower and an upper thresholds 

914 and m[T(t)]=0 outside this range).

915 iv) The model is initialized with a flow of hatching eggs into the nymphal stage (see below). The 

916 use of a single data set for model initialization at other locations may negatively affect the 

917 model performance in the first years. Therefore, the subsequent analysis disregards the first 

918 computations of the CSI  The simulations are carried out over the time periods specified below.

919

920 Model parametrization. The respective temperature-dependent rate functions (i, ii, iii) were 

921 developed and parametrized under constant temperatures but used under time-varying temperature 

922 regimes. Briefly, temperature-dependent values for the developmental time and mortality of 

923 nymphs older than the first stage were obtained from age-specific life tables established under 

924 various but constant temperatures (Rigamonti et al., 2011, 2014a). The developmental time of post-

925 diapausing eggs, and the developmental time and mortality of first stage nymphs were obtained 

926 from field observations carried out in four vineyards located in Southern Switzerland over a period 

927 of three years, whereas data from literature were used to estimate adult female developmental time 

928 and associated variability. The respective field data, expert opinions and literature information were 

929 used to compute diapause periods. A linear model for first stage nymphs and the non-linear model 

930 of Brière et al. (1999) for the remaining stages were used to represent the temperature-dependency 

931 of developmental rates. The developmental rate of the widely-cultivated Chardonnay variety, and 

932 the phenologica1 stages BBCH 11 and 93, were obtained from the model of Mariani et al. (2007, 

933 2013) and calibrated with information obtained in vineyards located in Southern Switzerland.

934 Reproduction is composed of the reproductive profile fi, i.e., the relative age-specific 



935 fecundity rate in the i-th substage, and the temperature-dependent reproductive potential F(T), i.e., 

936 the total number of eggs laid by a female conditioned on her living throughout the oviposition 

937 period (Curry and Feldman, 1987). The substage-independent fi was estimated on the basis of 

938 literature data, whereas a Beta function fitted to literature data represented the temperature-

939 dependency of F(T).

940 Egg hatching in 2008 was recorded weekly on 20 caged plants in a vineyard. The cumulative 

941 proportion of the total number is represented by the cumulative density Weibull function und 

942 provided time step-specific inputs (iv) into the delay model.

943

944 Model validation is detailed by Rigamonti et al. (2011, 2014a). Over a period of five years, 

945 from 2006 to 2010, nymph and adult occurrences were occasionally monitored in five vineyards 

946 located in FD-free zones of Western Switzerland (Yvorne, Lutry) and Southern Switzerland 

947 (Contone, Biasca, Sessa). Data on nymphs were obtained through the beating tray method, while 

948 yellow sticky traps yielded information on adult presence. The plant phenology model was 

949 validated with observations made in Southern Switzerland’s vineyards,. The model predictions 

950 satisfactorily corresponded to field observations and opened the door for the use of the model.

951

952 Model use relies on a Climatic Suitability Index calculated as follows. Once the plant has 

953 reached the BBCH 11 stage, it is assumed to allow the development of S. titanus nymphs. On the 

954 day with the first BBCH 11 occurrence, eq. [2] computes, in each year, diapausing and post-

955 diapausing eggs as the only individuals giving rise to the subsequent infestations. The number 

956 computed in a particular year is divided by the corresponding number in the previous year to yield a 

957 CSI. Population densities are declining, stationary or increasing if CSI<1, CSI=1 or CSI>1, 

958 respectively. In a preliminary analysis based on a visual examination of figures depicting the 

959 response obtained at two locations, the CSI was found suitable for studying climate change effects 

960 (Rigamonti et al, 2014b).

961

962 2.3. Autocorrelation analysis

963

964 To correct for the influence of the abrupt temperature shift occurring in the late 1980s 

965 (Mariani et al., 2012), we deducted 1°C from the daily maximum and minimum temperatures, after 

966 1987, in all data sets. Autocorrelation is the similarity between observations as a function of the 

967 time lag between them. For visual examination, the partial CSI autocorrelations, as obtained by the 

968 SPSS software package (IBM Software Group, 2016) for each area, are depicted in Figure 2. To test 



969 whether the autocorrelations of CSI values over differently lagged years are different from zero, the 

970 Lagrange multiplier based Breusch-Godfrey test (Breusch, 1978; Godfrey, 1978) is used since Rois 

971 et al. (2012) consider it as the most appropriate test for detecting autocorrelation in dynamic 

972 models. The number of lags reported is limited to 13 for Swiss locations and 10 for the other 

973 locations to limit the analysis to statistically-reliable data series. The statsmodels module of the 

974 PYTHON programming language (Seabold and Perktold, 2010) computes the Breusch-Godfrey test 

975 statistics for time lags, compares it with the 2 distribution and produces lag-specific p-values. If 

976 the p-value exceeds the standard significance level of 0.05, the null hypothesis of no autocorrelation 

977 is not rejected. 

978

979 2.4. Regression analysis

980

981 To test the hypothesis that the time series of CSI values undergo gradual and abrupt 

982 temperature changes, we evaluated the regression model

983

984 [3]  DbtbaDtCSI 210, 

985

986 where a0=intercept, t=time in years beginning with year zero, b1=regression coefficient reflecting a 

987 gradual change through time of CSI values, D=dummy variable representing the temperature shift 

988 (D=0 before and D=1 after 1987); b2 = regression coefficient for the dummy variable that separates 

989 the time periods into two sub-groups. Note that b1> 0 and b2> 0 at the P=0.01 level of significance 

990 indicate both gradual and abrupt changes in CSI and confirm the validity of a sloped step model 

991 (SSM); if either b1 or b2 are not different from 0 at the P=0.01 level of significance, CSI was 

992 regressed either on time t or D, and the relationship with the higher correlation coefficient was used 

993 to express either a gradual (b1>0) or an abrupt (b2> 0) change at the P=0.01 level of significance. 

994 To represent abrupt and gradual patterns, reference is made to a flat step model (FSM), and linear 

995 trend model (LTM), respectively.

996

997 3. Results and Discussion

998

999 3.1. Analyses of suitability index time series

1000

1001 Model design and multiannual temperature regimes produced few significant autocorrelations 

1002 (Table 2). After disregarding two rare cases (lag 13 for Chur, lag 1 for Grenoble), in all areas except 



1003 Sondrio, the null hypothesis of no autocorrelation cannot be rejected at the standard significance 

1004 level of p=0.05. In Sondrio, however, the null hypothesis of no autocorrelation has to be rejected for 

1005 the first three decreasing partial autocorrelations and the next three increasing partial 

1006 autocorrelations (Figure 2). The decreasing positive effect followed by the decreasing negative 

1007 effect appearing in only 1 out of 10 cases (Table 2) is difficult to explain without detailed studies of 

1008 demographic processes affecting the long-term dynamics of S. titanus populations. Undoubtedly, 

1009 more cases than considered in this paper are required to ascertain the appearance of few significant 

1010 autocorrelations in CSI time series and find explanations for distinct pattern as exemplified by the 

1011 Sondrio case. The rare appearance of significant autocorrelations in most cases and a distinct 

1012 pattern in one case only are presumably insufficient to sustain a dependency of observations that, in 

1013 a statistical analysis, would violate the assumptions for statistical inference (Bence, 1995; Boyce et 

1014 al., 2010; Monserud and Marshall, 2001). Nevertheless, we take into account the restrictions given 

1015 by Bence (1995) who studied the effects of temporal dependencies on regression analyses and 

1016 applied high probability requirements to regression analyses. 

1017

1018

1019 Figure 2. Autocorrelation functions in differently-lagged Climatic Suitability Indices for S. titanus 
1020 in Northwestern Alpine grapevine-growing areas. 
1021

1022 Table 2. The p-values of the Breusch-Godfrey test for autocorrelation in area-specific Climatic 
1023 Suitability Indices (CSI) for S. titanus in Northwestern Alpine grapevine-growing areas. If the p-
1024 value is smaller than the standard significance level of 0.05 (numbers in bold), the null hypothesis 
1025 of no autocorrelation is rejected (n.c. = not computed).

Lag Genève Aigle Sion Zürich Chur Grenoble Aosta Magadino Lugano Sondrio

1 0.1812 0.4103 0.0904 0.7810 0.8587 0.0302 0.1517 0.3404 0.4930 0.0002

2 0.3538 0.3972 0.2145 0.8909 0.8900 0.0706 0.2780 0.5163 0.7121 0.0010

3 0.5084 0.4321 0.3784 0.9647 0.9341 0.1165 0.4494 0.7112 0.6624 0.0031

4 0.6768 0.5330 0.4400 0.8244 0.9782 0.2057 0.4665 0.7062 0.7948 0.0058



5 0.6681 0.5900 0.4468 0.7490 0.9547 0.2827 0.2997 0.6894 0.7560 0.0102

6 0.7461 0.3884 0.5404 0.7660 0.7344 0.2725 0.2995 0.7588 0.8292 0.0172

7 0.6530 0.4388 0.4159 0.4190 0.6790 0.3194 0.4748 0.8252 0.8700 0.0305

8 0.4396 0.5432 0.3478 0.5160 0.7569 0.2880 0.4674 0.6484 0.8787 0.0483

9 0.5199 0.3368 0.2741 0.4324 0.3854 0.3357 0.1454 0.7372 0.6860 0.0752

10 0.6047 0.4244 0.3448 0.5195 0.4774 0.4184 0.1860 0.7533 0.6624 0.1108

11 0.3544 0.4979 0.4064 0.6090 0.5687 n.c. n.c. 0.7896 0.7437 n.c.

12 0.3763 0.5788 0.4064 0.2786 0.5694 n.c. n.c 0.8493 0.7998 n.c.

13 0.2095 0.1355 0.1660 0.0660 0.0378 n.c. n.c. 0.6759 0.8506 n.c.

1026

1027 3.2. Climatic suitability patterns

1028

1029 Table 3 shows a generally-improving climatic suitability through time across areas within the 

1030 region under study. Regarding the second observation on the reflection of gradual and abrupt 

1031 temperature changes in gradual and abrupt changes in CSI, however, no generalization across areas 

1032 is possible. Namely, Table 3 reports significant b1 and b2 values that indicate both gradual and 

1033 abrupt changes of CSI in the Sion and the Magadino areas only. In these areas, a sloped step model 

1034 (SSM), describing CSI by a linear trend model in the two sub-periods before and after 1988, is 

1035 adequate. Table 3 also reports significant b2 but insignificant b1 values, indicating abrupt changes in 

1036 the Grenoble, Aosta and Sondrio areas. These changes are adequately represented by an FSM. On 

1037 the other hand, an LTM is appropriate to describe the patterns of CSI in the remaining regions The 

1038 differences indicate that predictions of climate change on climatic suitability of grapevine-growing 

1039 areas should be done carefully.

1040

1041 Table 3. Regression statistics for selecting the adequate model to describe the response of the 
1042 Climatic Suitability Index in the different regions. The applicability of a sloped step model (SSM) 
1043 is tested in all regions; for Sion and Magadino, the SSM remained valid, while a flat step model 
1044 (FSM) is selected for Grenoble, Aosta and Sondrio, and a linear trend model (LTM) is appropriate 
1045 for Genève, Aigle, Lugano, Zürich and Chur. (n = simulation period in years, R2 = coefficient of 
1046 determination, F = F value, a, b1, b2 = parameters of regression model [1], t = Student’s t, if t 
1047 >t0.05(2), (n-2) then H0:bi=0 is rejected for b1, and b2 (marked with *), cf. Zar (1974)). 

Site n Model type R2, F A b1 b2

SSM 0.93E-01
F=2.56 0.19 0.40E-02

t=1.628
-0.47E-01
t=0.627Genève 53

LTM 0.86E-01
F=4.77 0.21 0.27E-02*

t=2.184

SSM 0.47
F=22.30 -0.59E-02 0.61E-02*

t=2.719
0.48E-01
t=0.695Zürich 53

LTM 0.47
F=44.57 -0.18E-01 0.75E-02*

t=6.676
Aigle 53 SSM 0.34 0.77E-01 0.49E-02 0.67E-01



F=13.08 t=1.819 t=0.815

LTM 0.33
F=25.66 0.61E-01 0.68E-02*

t=5.066

Sion 53 SSM 0.76
F=80.50 0.97E-01 0.62E-02*

t=3.101
0.23*
t=3.466

SSM 0.59
F=36.55 -0.45E-01 0.88E-02*

t=3.885
0.31E-01
t=0.444Chur 53

LTM 0.59
F=74.07 -0.53E-01 0.97E-02*

t=8.606

SSM 0.41
F=12.51 0.27 -0.24E-02

t=-0.586
0.99E-01*
t=3.344Grenoble 39

FSM 0.40
F=25.12 0.25 0.28*

t=5.012

SSM 0.21
F=4.730 0.52 -0.12E-02

t=-0.170
0.32
t=1.911Aosta 39

FSM 0.21
F=9.69 0.51 0.30*

t=3.113

Magadino 53 SSM 0.57
F=33.78 0.53 0.31E-02*

t=2.164
0.20*
t=2.091

SSM 0.18
F=5.43 0.83 0.52E-02

t=1.267
0.53E-01
t=0.424Lugano 53

LTM 0.18
F=10.86 0.82 0.67E-02*

t=3.295

SSM 0.11
F=2.28 0.69 -0.30E-02

t=-0.534
0.22
t=1.622Sondrio 39

FSM 0.11
F=4.37 0.68 0.16*

t=2.089
1048

1049 The appropriateness of the area-specific models has to be evaluated under two aspects. First, 

1050 the temperature recordings have been made at weather stations often located at some distance from 

1051 the actual vineyards (Genève, Zürich, Chur, Grenoble, Aosta). Since the vineyards have been 

1052 established in favorable sites inside the areas, the temperatures experienced by S. titanus could have 

1053 been underestimated. However, we do not expect a time effect on the reliability of the temperature 

1054 measurements and hence, considered the responses to temperature changes as valid. Second, the 

1055 regions with CSI undergoing only abrupt changes are separated from the other regions by three 

1056 qualities. i) there was no information on possible changes in the measuring technique available for 

1057 both Grenoble and Aosta and hence, we used raw data. As previously mentioned, no changes in the 

1058 measuring procedure occurred at Sondrio. ii) gaps in the data sets for Aosta and Sondrio were filled 

1059 by modified data from nearby weather stations as explained above. iii) the simulation period at 

1060 Grenoble, Aosta and Sondrio were restricted to 39 years as opposed to 53 years of other regions. 

1061 The influence of the reliability of temperature measurements and the influence of the duration (see 

1062 below) on the patterns of CSI is unknown. Unlikely, however, these influences are responsible for 

1063 the pattern and hence, the applicability of the FSM.

1064 If we accept an area-specific response of the suitability index, the responses of CSI in Table 3 

1065 and Fig. 3, depicting the CSI time series for each of the 10 areas, do not correspond to the responses 



1066 obtained when using yearly mean temperatures. Namely, Mariani et al. (2012) stated that the yearly 

1067 temperatures predicted by an LTM are less accurate than the predictions by the equally well-

1068 performing SSM and FSM models. Nevertheless, the different performances of the SSM, the FSM 

1069 and the LTM to describe the patterns of CSI and the analyses of yearly temperatures is not 

1070 unexpected. This is because the temperature influences CSI through a series of uncorrelated 

1071 curvilinear functions (Rigamonti et al., 2014a). The influence of these functions on CSI patterns 

1072 becomes clear in a highly variable temperature environment. Hence, the results support the 

1073 hypothesis that the selection of a region located at the northern limit of the geographic distribution 

1074 with areas characterized by high temperature variability facilitates the study of abrupt and gradual 

1075 climate change effects. It also confirms the utility of weather-driven PBDMs, operating at small-

1076 time resolutions, for investigating climate change effects on population dynamics and species 

1077 distributions. 

1078



1079

1080 Figure 3. The simulated Climatic Suitability Index (CSI) for Sion and Magadino (A), Grenoble, 
1081 Aosta and Sondrio (B) and Genève, Aigle, Lugano, Zürich and Chur (C) by a sloped step model 
1082 (SSM), a flat step model (FSM), and linear trend model (LTM), respectively.
1083

1084 The CSI patterns appear to depend on whether the area was suitable or not for S. titanus prior 

1085 to this investigation. In unsuitable areas with initial values close to zero, the changes were 

1086 negligible or too small to allow S. titanus to settle and reach an economically relevant pest status in 

1087 the foreseeable future (Zürich, Chur), while in areas characterized by more favorable initial 

1088 conditions the temperature changes led to continuously-increasing CSIs (Aosta, Sondrio) with 

1089 favorable conditions appearing in the 1990s. 



1090 In areas already suitable in the 1960s, the model predicts a small increase in CSIs (Lugano). 

1091 There are indications that, in warmer areas located at the southern limits of S. titanus distribution, 

1092 the temperature increase may lead to a decrease in CSIs that indicates negatively-affected 

1093 population development due by high temperatures.

1094

1095 3.3. Pest management considerations

1096

1097 In the different areas of the region under study, institutions charged with pest control may 

1098 take into account the following aspects. In the South, the Lugano and Magadino areas have been 

1099 colonized early and face increasingly favorable conditions for S. titanus development and possibly 

1100 FD transmission. They may represent areas that were colonized early without spreading to other 

1101 regions because of unfavorable conditions for colonization. The other areas in the South (Aosta and 

1102 Sondrio) became suitable after the climate shift in 1988 and may represent areas colonized in the 

1103 second wave of spread (Bertignono et al., 2006; Posenato et al., 2001). The spread will likely lead 

1104 to the colonization of the neighboring Aigle, Sion and Grenoble areas, if not yet colonized. 

1105 Institutions charged with pest control in the areas of Zürich and Chur should note that their areas are 

1106 unlikely to provide suitable climate conditions any time soon. 

1107 In other regions, institutions charged with pest control may take note that CSI information 

1108 complements monitoring efforts by EPPO and local phytosanitary organizations to explain the past, 

1109 current and future colonization of grapevine-growing areas. However, pest control institutions 

1110 should take into account that the CSI is derived from a PBDM characterized by thresholds and 

1111 several non-linear temperature-dependencies, and the extension of the here obtained results to other 

1112 areas is questionable. Rather, they are advised to run the model with temperatures specific to the 

1113 areas of interest for representing infestation patterns and assessing the risk of colonization. In doing 

1114 so, they may acquire a quantitative tool that has been proven useful in supervised pest management 

1115 in already colonized areas (Jermini et al., 2013; Prevostini et al., 2013).

1116

1117 4. Concluding Remarks

1118

1119 The Northwestern Alpine region, located near the northern limits of the actual geographical 

1120 distribution of S. titanus, with grapevine-growing areas characterized by high temperature 

1121 variability, was appropriate for studying the effects of gradual and abrupt temperature changes on 

1122 the suitability of the areas to S. titanus. From a methodological standpoint, an annual Climatic 

1123 Suitability Index (CSI) developed on the basis of a physiologically-based demographic model was 



1124 useful for providing critical area-specific information on changing pest presence over time periods 

1125 with changing climates. Furthermore, time series analyses of CSIs were instrumental to obtain the 

1126 information required for the design and use of regression models aiming at quantifying the effect of 

1127 temperature changes on CSIs. Thus, the methodology was useful to study the influence of abrupt 

1128 and gradual temperature changes on the climate suitability of Northwestern Alpine grapevine-

1129 growing areas for S. titanus.

1130 In general, the climatic suitability of all areas tends to improve during the study period. 

1131 Across the areas, however, the gradual and abrupt temperature changes are not consistently 

1132 reflected in gradual and abrupt CSI changes. The different area-specific CSI patterns may be due to 

1133 the non-linear functions relating S. titanus life table parameters to temperature in the simulation 

1134 model. The respective relationships may be responsible for the CSI patterns arising under variable 

1135 area-specific temperature regimes. This indicates that the results of this study cannot be generally 

1136 applied to areas located within other regions and similar studies are required to elucidate respective 

1137 temperature change effects. Furthermore, it suggests the possibility that climate change may change 

1138 the area-specific climatic suitability to either the advantage or disadvantage of S. titanus.  

1139 From a pest management standpoint, the study allows making recommendations to pest 

1140 management institutions located in the region. Specifically, the methodology allows the assessment 

1141 of colonization risk and the undertaking of adequate pest control measures. The application of the 

1142 methodology to areas outside the Northwestern Alpine region holds the promise to provide 

1143 decision-support to a wider range of institutions charged with S. titanus control then considered 

1144 here.

1145

1146 Author contributions

1147

1148 IE Rigamonti, overall project coordinator with leading role in model parametrization.

1149 L Mariani, developed the plant phenology model, oversaw the linkage to the pest population model 
1150 and defined spatial scale resolution and extent.

1151 G Cola, participated in crop and pest model implementation, and in definition and use of the 
1152 Climatic Suitability Index (CSI).

1153 M Jermini, responsible for linking the project team with the viticultural practice, the agricultural 
1154 research institutions, the extension services and the Swiss Meteorological Service.

1155 J Baumgärtner, responsible for the design of plant and pest population system models.

1156



1157 Acknowledgements 

1158

1159 The Swiss Meteorological Service (MeteoSwiss, Zürich, Switzerland) kindly made available the 

1160 weather data for the Swiss locations. The advice on data use by Dr. Marco Gaia of the MeteoSwiss 

1161 Locarno-Monti station, and Dr. Martino Salvetti of the Fondazione Fojanini di Studi Superiori, 

1162 Sondrio, are appreciated. We are grateful to Ms. Lina Torrizo, San Pablo City, Philippines, for 

1163 editorial assistance. Dr. J. Lengler, Algorithm Consulting Service, Department of Computer 

1164 Science, Swiss Federal Institute of Technology (ETH), developed the algorithm and assisted in 

1165 computing the parameters of the Breusch-Godfrey test. This research did not receive any specific 

1166 grant from funding agencies in the public, commercial, or nonprofit sectors.

1167

1168 References

1169
1170 Abkin, M.H., Wolf., C., 1976. Distributed Delay Routines. Department of Agricultural Economics, 
1171 Michigan State University. CLASS Document No. 8. East Lansing, USA.
1172
1173 Anisimov, O., Kokorev, V., Zhil’tsova, Y., 2013. Temporal and spatial patterns of modern climatic 
1174 warming: case study of Northern Eurasia. Clim. Change 118, 871–883. 
1175 https://doi.org/10.1007/s10584-013-0697-4.
1176
1177 Anwer, M., 2015. Nature of Centennial Global Climate Change from Observational Records. Am. J. 
1178 Clim. Change 4, 337-354. https://doi.org/10.4236/ajcc.2015.44027.
1179
1180 Begert, M., Giroud, M., Kegel, R., Seiz, G., Koehli, V., Bochnicek, O., Fukasz, M., Nieplova, E., 
1181 Sramo, L., 1999. Operational homogenization of long term climate data series at SMI and 
1182 SHMI. In: Proceedings of the 2nd Seminar of Homogenization of Surface Climatological Data, 
1183 Budapest, 9-13 November 1998. WCDMP-No. 41, WMO-TD No. 962. HMS-WMO. 
1184
1185 Begert, M., Seiz, G., Schlegel, T., Moesch, M., Musa, M., Baudraz, G., 2003. Homogenisierung 
1186 von Klimamessreihen der Schweiz und Bestimmung der Normwerte 1961-1990. 
1187 Schlussbericht des Projekts NORM90. Veröffentlichung der MeteoSchweiz, vol. 67. 
1188 Meteoschweiz, Zurich. 
1189
1190 Begert, M., Schlegel, T., Kirchhofer, W., 2005. Homogeneous temperature and precipitation series 
1191 of Switzerland from 1864 to 2000. Int. J. Climatol. 25, 65-80. 
1192 https://doi.org/10.1002/joc.1118.
1193
1194 Bence, J.R., 1995. Analysis of short time series: correcting for autocorrelation. Ecology 76, 628-
1195 639. https://doi.org/10.2307/1941218.
1196
1197 Bertignono, L., Barrel, I., Bondaz, M., Lessio, F., Tedeschi, R., Alma, A., 2006. Presence of 
1198 Auchenorrhyncha known or suspected vectors of phytoplasmas in vine growing areas of the 
1199 Aosta Valley. In: Proceedings of the 1st International Congress of Mountain and Steep Slope 
1200 Viticulture. Saint Vincent (Italy), 17-18 March 2006. Available from 
1201 http://ag.udel.edu/delpha/6367.pdf. [Accessed 4 January 2018].



1202
1203 Bonfils, J., Schvester, D., 1960. Les cicadelles (Homoptera: Auchenorrhyncha) dans leurs rapports 
1204 avec la vigne dans le Sud-Ouest de la France. Ann. Epiphyties 9, 325-336.
1205
1206 Boyce, M.S., Pitt, J., Northrup, J.M., Morehouse, A.T., Knopff, K.H., Cristescu, B., Stenhouse, 
1207 G.B., 2010. Temporal autocorrelation functions for movement rates from global positioning 
1208 system radiotelemetry data. Phil. Trans. R. Soc. B 365, 2213–2219. 
1209 https://doi.org/10.1098/rstb.2010.0080.
1210
1211 Breusch, T.S., 1978. Testing for autocorrelation in dynamic linear models. Austral. Econ. Papers 
1212 17, 334–355. https://doi.org/10.1111/j.1467-8454.1978.tb00635.x
1213
1214 Brière, J.F., Pracros, P., Le Roux, A.I., Pierre, J.S., 1999. A novel rate model of temperature-
1215 dependent development for arthropods. Environ. Entomol. 28, 22-29. 
1216 https://doi.org/10.1093/ee/28.1.22.
1217
1218 Chuche, J., Thiéry, D., 2014. Biology and ecology of the Flavescence dorée vector Scaphoideus 
1219 titanus: a review. Agron. Sustain. Dev. 34, 381-403. https://doi.org/10.1007/s13593-014-
1220 0208-7.
1221
1222 Curry, G.L., Feldman, R.M., 1987. Mathematical foundations of population dynamics. Monograph 
1223 series 3. Texas Engineering Experiment Station. Texas A&M University Press, College 
1224 Station, Texas.
1225
1226 Di Cola, G., Gilioli, G., Baumgärtner, J., 1999. Mathematical models for age-structured population 
1227 dynamics. In: Huffaker, C.B., Gutierrez, A.P. (Eds.), Ecological Entomology, 2nd ed. John 
1228 Wiley and Sons, New York, pp. 503-534. 
1229
1230 Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction 
1231 across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677-697. 
1232 https://doi.org/10.1146/annurev.ecolsys.110308.120159.
1233
1234 Godfrey, L.G., 1978. Testing against general autoregressive and moving average error models when 
1235 the regressors include lagged dependent variables. Econometrica 46, 1293–1301. 
1236 https://doi.org/10.2307/1913829. 
1237
1238 Graham, R.W., Grimm, E.C., 1990. Effects of global climate change on the patterns of terrestrial 
1239 biological communities. Trends Ecol. Evol. 5, 289–292. https://doi.org/10.1016/0169-
1240 5347(90)90083-P.
1241
1242 Gutierrez, A. P., 1996. Applied Population Ecology: A Supply–Demand Approach. John Wiley and Sons, 
1243 New York.
1244
1245 Gutierrez, A.P., Ponti, L., d’Oultremont, T., Ellis, C.K., 2008. Climate change effects on 
1246 poikilotherm tritrophic interactions. Clim. Change 87 (suppl. 1), S167-S192. 
1247 https://doi.org/10.1007/s10584-007-9379-4.
1248
1249 Gutierrez, A.P., Ponti, L., 2013. Eradication of invasive species: why the biology matters. Environ. 
1250 Entomol. 42 (3), 395-411. https://doi.org/10.1603/EN12018.
1251



1252 Gutierrez, A.P., Ponti, L., He, H.R., Baumgärtner, J., Kenmore, P.E., 2015. Deconstructing Indian 
1253 cotton: weather, yields, and suicides. Environ. Sci. Eu. 27, 12. https://doi.org/10.1186/s12302-
1254 015-0043-8.
1255
1256 IBM Software Group, 2016. IBM SPSS Statistics 24 core user’s manual, version 24th ed. IBM 
1257 Software Group, Chicago, Illinois.
1258
1259 Intergovernmental Panel on Climate Change (IPCC), 1996. Climate Change 1995: IPCC second 
1260 assessment report. Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, 
1261 A., Maskell, K. (Eds.), Cambridge University Press, Cambridge.
1262
1263 Intergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013: The Physical 
1264 Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 
1265 Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor 
1266 M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M (Eds.), Cambridge 
1267 University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 
1268 https://doi.org/10.1017/CBO9781107415324.
1269
1270 Jermini, M., Trivellone, V., Cara, C., Baumgärtner, J., 2013. Marrying research and management 
1271 activities: adaptive management of grape leafhopper Scaphoideus titanus. IOBC/wprs Bull. 
1272 85, 49–56.
1273
1274 Lorenz, D.H., Eichhorn, K.W., Blei-Holder H., Klose, R., Meier, U., Weber, E., 1994. 
1275 Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Vitic. Enol. 
1276 Sci. 49, 66-70.
1277
1278 Manetsch, T.J., 1976. Time-varying distributed delays and their use in aggregative models of large 
1279 systems. IEEE Trans. Syst. Man Cybern. 6, 547-553. 
1280 https://doi.org/10.1109/TSMC.1976.4309549.
1281
1282 Mariani, L., Failla, O., Dal Monte G., Facchinetti, D., 2007. IPHEN: a model for real time 
1283 production of grapevine phenological maps. Congress on Climate and Viticulture, Zaragoza, 
1284 10-14 April 2007. pp. 272-278. 
1285
1286 Mariani, L., Parisi, S.G., Cola, G., Failla, O., 2012. Climate change in Europe and effects on 
1287 thermal resources for crops. Int. J. Biometeorol. 56, 1123-1124. 
1288 https://doi.org/10.1007/s00484-012-0528-8.
1289
1290 Mariani, L., Alilla, R., Cola, G., Dal Monte, G., Epifani, C., Puppi, G., Failla, O., 2013. IPHEN – a 
1291 real-time network for phenological monitoring and modelling in Italy. Int. J. Biometeorol. 57, 
1292 881-893. https://doi.org/10.1007/s00484-012-0615-x.
1293
1294 May, M.L., 2005. Hot bugs: body temperature of insects in sunshine. J. Exp. Biol. 208, 2623-2624. 
1295 https://doi.org/10.1242/jeb.01724.
1296
1297 Monserud, R.A., Marshall, J.D., 2001. Time-series analysis of δ13C from tree rings. I. Time trends 
1298 and autocorrelation. Tree Physiol. 21, 1087–1102. 
1299 https://doi.org/10.1093/treephys/21.15.1087.
1300



1301 Morice, C.P., Kennedy, J.J., Rayner, N.A., Jones, P.D., 2012. Quantifying uncertainties in global 
1302 and regional temperature change using an ensemble of observational estimates: the 
1303 HadCRUT4 dataset. J. Geophys. Res. 117, D08101. https://doi.org/10.1029/2011JD017187.
1304
1305 Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. 
1306 Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100.
1307
1308 Ponti L., Gutierrez A.P., Altieri M.A., 2015. Holistic approach in invasive species research: the case 
1309 of the tomato leaf miner in the Mediterranean basin. Agroecol. Sustain. Food Syst. 39, 436-
1310 468. https://doi.org/10.1080/21683565.2014.990074.
1311
1312 Portmann, R.W., Solomon, S., Hegerl, G.C., 2009. Spatial and seasonal patterns in climate change, 
1313 temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA 106, 
1314 7324–7329. https://doi.org/10.1073/pnas.0808533106.
1315
1316 Posenato, G., Mori, N., Bressan, A., Girolami, V., Sancassani, G.P., 2001. Scaphoideus titanus, 
1317 vettore della flavescenza dorata: conoscerlo per combatterlo. L’Informatore Agrario 57 (15), 
1318 91-94.
1319
1320 Prevostini, M., Taddeo, A.V., Balac, K., Rigamonti, I., Baumgärtner, J., Jermini, M., 2013. WAMS 
1321 - an adaptive system for knowledge acquisition and decision support: the case of Scaphoideus 
1322 titanus. IOBC/wprs Bull. 85, 57–64.
1323
1324 Reiter, A., Weidinger, R., Mauser, W., 2012. Recent climate change at the upper Danube – a 
1325 temporal and spatial analysis of temperature and precipitation time series. Clim. Change 111, 
1326 665–696. https://doi.org/10.1007/s10584-011-0173-y.
1327
1328 Rigamonti, I.E., Jermini, M., Fuog, D., Baumgärtner J., 2011. Toward an improved understanding of 
1329 the dynamics of vineyard-infesting Scaphoideus titanus leafhopper populations for better timing 
1330 of management activities. Pest Manag. Sci. 67, 1222-1229. https://doi.org/10.1002/ps.2171.
1331
1332 Rigamonti, I.E., Trivellone, V., Jermini M., Fuog, D., Baumgärtner, J.,. 2014a. Multiannual 
1333 infestation patterns of grapevine plant inhabiting Scaphoideus titanus (Hemiptera: 
1334 Cicadellidae) leafhoppers. Can. Entomol. 146, 67-79. https://doi.org/10.4039/tce.2013.51.
1335
1336 Rigamonti, I.E., Jermini, M., Mariani, L., Cola, G., Baumgärtner, J., 2014b. Temporal dynamics of 
1337 Scaphoideus titanus populations: from annual occurrence patterns to changing climate 
1338 suitability assessments. IOBC/wprs Bull. 105, 169-176.
1339
1340 Rois, R., Basak, T., Rahman, M.M., Majumder, A.,K., 2012. Modified Breusch-Godfrey test for 
1341 restricted higher order autocorrelation in dynamic linear model – a distance based approach. 
1342 Int. J. of Bus. Manag. 7 (17), 88-97. https://doi.org/10.5539/ijbm.v7n17p88.
1343
1344 Seabold, S., Perktold, J., 2010. Statsmodels: econometric and statistical modeling with python. 
1345 Proc. of the 9th Python in Science Conference (SCIPY 2010), 57-61.
1346
1347 Schvester, D., Carle, P., Moutous, G., 1961. Sur la transmission de la Flavescence dorée de la vigne 
1348 par une Cicadelle. C. R. Acad. Agr. Fr. 67, 1021-1024.
1349
1350 Schvester, D., Moutous, G., Bonfils, J., Carle, P., 1962a. Étude biologique des cicadelles de la 
1351 vigne dans le sud-ouest de la France. Ann. Epiphyt. 18, 205-237.



1352
1353 Schvester, D., Moutous, G., Carle, P., 1962b. Scaphoideus littoralis Ball (Homopt. Jassidae) 
1354 cicadelle vectrice de la Flavescence dorée de la vigne. Rev. Zool. Agr. Appl. 61 (10-12), 118-
1355 131.
1356
1357 Smith, I.M., McNamara, D.G., Scott, P.R., Holderness, M. (eds.), 1996. Quarantine Pests for 
1358 Europe. 2nd ed., CAB International, Wallingford.
1359
1360 Sneyers, R., Palmieri, S., Siani, A.M., 1993. Characterizing trends in climatological time series. An 
1361 application to Brera observatory (Milan) rainfall series. Proceedings of International 
1362 Conference on Applications of Time Series Analysis to Astronomy and Meteorology, 
1363 Università di Padova, 6-10 Settembre 1993, pp. 321-328.
1364
1365 Tóthová, M., Bokor, P., Cagáň, L., 2015. The first detection of leafhopper Scaphoideus titanus Ball 
1366 (Hemiptera, Cicadellidae) in Slovakia. Plant Protect. Sci. 51, 88-93. 
1367 https://doi.org/10.17221/64/2014-PPS.
1368
1369 Vansickle, J., 1977. Attrition in distributed delay models. IEEE Trans. Syst. Man Cybern. 7, 635–
1370 638. https://doi.org/10.1109/TSMC.1977.4309800.
1371
1372 Welch, S.M., 1984. Developments in computer-based IPM extension delivery systems. Annu. Rev. Entomol. 
1373 29, 359–381. Doi: https://doi.org/10.1146/annurev.en.29.010184.002043.
1374
1375 Welch, S.M., Croft, B.A., Brunner, J.F., Michels, M.F., 1978. PETE: an extension phenology modeling 
1376 system for management of multi-species pest complex. Environ. Entomol. 7, 487–494. 
1377 https://doi.org/10.1093/ee/7.4.487.
1378
1379 Yang, Y., Wilson, L.T., Wang, J., 2010. Development of an automated climatic data scraping, 
1380 filtering and display system. Comput. Electron. Agric. 71, 77–87. 
1381 https://doi.org/10.1016/j.compag.2009.12.006.
1382
1383 Yates, C.J., Elith, J., Latimer, A.M., Le Maitre, D., Midgley, G.F., Schurr, F.M., West, A.G., 2010. 
1384 Projecting climate change impacts on species distributions in megadiverse South African 
1385 Cape and Southwest Australian Floristic Regions: opportunities and challenges. Aust. Ecol. 
1386 35, 374-391. https://doi.org/10.1111/j.1442-9993.2009.02044.x.
1387
1388 Zar, J.H., 1974. Biostatistical analysis. Prentice Hall, Englewood Cliffs, New Jersey, 620 p. 
1389



1391
1392

1393 Table 1. Information on the Northwestern Alpine region with the different areas in that the 
1394 development of Grape leafhopper Scaphoideus titanus populations was simulated. The 
1395 homogenized daily temperature maxima and minima for the Swiss meteorological stations were 
1396 kindly made available by MeteoSwiss (National Weather Service of Switzerland). Additional 
1397 temperature data were retrieved from the Texas A&M University, Beaumont, USA 
1398 (https://beaumont.tamu.edu/ClimaticData/), the National Climate Data Centre (NCDC), Climate 
1399 Services Branch (USA) and the Fojanini Foundation (FFS), Sondrio (I). Gaps in the data sets for 
1400 Aosta and Sondrio were filled by using information from Torino Caselle (I) and Poschiavo (CH), 
1401 respectively.

Site 
specification

Area and 
meteorological 

station

Beginning 
of 

simulations

Latitude N
(degrees)

Longitude E 
(degrees)

Altitude
(meters above 

sea level)

Source for 
temperatures 

data 

Genève (CH) 46.250 6.133 416

Aigle (CH) 46.333 6.917 383

Sion (CH) 46.217 7.317 428

Zürich (CH) 47.383 8.567 569

Western and 
Northern 

areas

Chur (CH)

1959

46.867 9.533 533

MeteoSwiss

Grenoble (F) 45.367 5.333 386 NCDC

Aosta (I)
1973

45.740 7.376 547 Texas A&M

Magadino (CH) 46.167 8.883 198

Lugano (CH)
1959

46.000 8.967 276
MeteoSwiss

Western and 
Southern 

areas

Sondrio (I) 1973 46.168 9.853 323 FFS

1402

1403



1405

1406

1407 Table 2. The p-values of the Breusch-Godfrey test for autocorrelation in area-specific Climatic 
1408 Suitability Indices (CSI) for S. titanus in Northwestern Alpine grapevine growing areas. If the p-
1409 value is smaller than the standard significance level of 0.05 (numbers in bold), the null hypothesis 
1410 of no autocorrelation is rejected (n.c. = not computed).

Lag Genève Aigle Sion Zürich Chur Grenoble Aosta Magadino Lugano Sondrio

1 0.1812 0.4103 0.0904 0.7810 0.8587 0.0302 0.1517 0.3404 0.4930 0.0002

2 0.3538 0.3972 0.2145 0.8909 0.8900 0.0706 0.2780 0.5163 0.7121 0.0010

3 0.5084 0.4321 0.3784 0.9647 0.9341 0.1165 0.4494 0.7112 0.6624 0.0031

4 0.6768 0.5330 0.4400 0.8244 0.9782 0.2057 0.4665 0.7062 0.7948 0.0058

5 0.6681 0.5900 0.4468 0.7490 0.9547 0.2827 0.2997 0.6894 0.7560 0.0102

6 0.7461 0.3884 0.5404 0.7660 0.7344 0.2725 0.2995 0.7588 0.8292 0.0172

7 0.6530 0.4388 0.4159 0.4190 0.6790 0.3194 0.4748 0.8252 0.8700 0.0305

8 0.4396 0.5432 0.3478 0.5160 0.7569 0.2880 0.4674 0.6484 0.8787 0.0483

9 0.5199 0.3368 0.2741 0.4324 0.3854 0.3357 0.1454 0.7372 0.6860 0.0752

10 0.6047 0.4244 0.3448 0.5195 0.4774 0.4184 0.1860 0.7533 0.6624 0.1108

11 0.3544 0.4979 0.4064 0.6090 0.5687 n.c. n.c. 0.7896 0.7437 n.c.

12 0.3763 0.5788 0.4064 0.2786 0.5694 n.c. n.c 0.8493 0.7998 n.c.

13 0.2095 0.1355 0.1660 0.0660 0.0378 n.c. n.c. 0.6759 0.8506 n.c.

1411



1413

1414

1415 Table 3. Regression statistics for selecting the adequate model to describe the response of the 
1416 Climatic Suitability Index in the different regions. The applicability of a sloped step model (SSM) 
1417 is tested in all regions; for Sion and Magadino, the SSM remained valid, while a flat step model 
1418 (FSM) is selected for Grenoble, Aosta and Sondrio, and a linear trend model (LTM) is appropriate 
1419 for Genève, Aigle, Lugano, Zürich and Chur. (n = simulation period in years, R2 = coefficient of 
1420 determination, F = F value, a, b1, b2 = parameters of regression model [1], t = Student’s t, if t 
1421 >t0.05(2), (n-2) then H0:bi=0 is rejected for b1, and b2 (marked with *), cf. Zar (1974)). 

Site n Model type R2, F a b1 b2

SSM 0.93E-01
F=2.56 0.19 0.40E-02

t=1.628
-0.47E-01
t=0.627Genève 53

LTM 0.86E-01
F=4.77 0.21 0.27E-02*

t=2.184

SSM 0.47
F=22.30 -0.59E-02 0.61E-02*

t=2.719
0.48E-01
t=0.695Zürich 53

LTM 0.47
F=44.57 -0.18E-01 0.75E-02*

t=6.676

SSM 0.34
F=13.08 0.77E-01 0.49E-02

t=1.819
0.67E-01
t=0.815Aigle 53

LTM 0.33
F=25.66 0.61E-01 0.68E-02*

t=5.066

Sion 53 SSM 0.76
F=80.50 0.97E-01 0.62E-02*

t=3.101
0.23*
t=3.466

SSM 0.59
F=36.55 -0.45E-01 0.88E-02*

t=3.885
0.31E-01
t=0.444Chur 53

LTM 0.59
F=74.07 -0.53E-01 0.97E-02*

t=8.606

SSM 0.41
F=12.51 0.27 -0.24E-02

t=-0.586
0.99E-01*
t=3.344Grenoble 39

FSM 0.40
F=25.12 0.25 0.28*

t=5.012

SSM 0.21
F=4.730 0.52 -0.12E-02

t=-0.170
0.32
t=1.911Aosta 39

FSM 0.21
F=9.69 0.51 0.30*

t=3.113

Magadino 53 SSM 0.57
F=33.78 0.53 0.31E-02*

t=2.164
0.20*
t=2.091

SSM 0.18
F=5.43 0.83 0.52E-02

t=1.267
0.53E-01
t=0.424Lugano 53

LTM 0.18
F=10.86 0.82 0.67E-02*

t=3.295

SSM 0.11
F=2.28 0.69 -0.30E-02

t=-0.534
0.22
t=1.622Sondrio 39

FSM 0.11
F=4.37 0.68 0.16*

t=2.089
1422



1424 FIGURE LEGENDS

1425

1426 Figure 1. The Northwestern Alpine region with the different areas in that the development of Grape 
1427 leafhopper Scaphoideus titanus populations was simulated.
1428

1429

1430 Figure 2. Autocorrelation functions in differently-lagged Climatic Suitability Indices for S. titanus 
1431 in Northwestern Alpine grapevine growing areas. 
1432

1433

1434 Figure 3. The simulated Climatic Suitability Index (CSI) for Sion and Magadino (A), Grenoble, 
1435 Aosta and Sondrio (B) and Genève, Aigle, Lugano, Zürich and Chur (C) by a sloped step model 
1436 (SSM), a flat step model (FSM), and linear trend model (LTM), respectively.
1437
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