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ABSTRACT

Background Statins inhibit hydroxymethylglutaryl-coenzyme A reductase, decrease plasma low-density lipo-
protein cholesterol and reduce cardiovascular morbidity and mortality. They can also exert adverse effects,
mostly affecting skeletal muscle, ranging from mild myalgia to rhabdomyolysis.

Materials and methods Based on a PubMed search until December 2014, this review summarizes studies on
statin effects on muscle mitochondrial morphology and function in the context of myopathy.

Results Possible mechanisms of statin-induced myopathy include lower cholesterol synthesis and production
of prenylated proteins, reduced dolichols and increased atrogin-1 expression. Statin-treated patients frequently
feature decreased muscle coenzyme Q10 (CoQ10) contents, suggesting that statins might impair mitochondrial
function. In cell cultures, statins diminish muscle oxygen consumption, promote mitochondrial permeability
transient pore opening and generate apoptotic proteins. Animal models confirm the statin-induced decrease in
muscle CoQ10, but reveal no changes in mitochondrial enzyme activities. Human studies yield contradictory
results, with decreased CoQ10, elevated lipids, decreased enzyme activities in muscle and impaired maximal
oxygen uptake in several but not all studies. Some patients are susceptible to statin-induced myopathy due to
variations in genes encoding proteins involved in statin uptake and biotransformation such as the solute carrier
organic anion transporter family member 1B1 (SLCO1B1) or cytochrome P450 (CYP2D6, CYP3A4, CYP3A5).
Carriers for carnitine palmitoyltransferase II deficiency and McArdle disease also present with higher prevalence
of statin-induced myopathy.

Conclusions Despite the widespread use of statins, the pathogenesis of statin-induced myopathy remains
unclear, requiring prospective randomized controlled trials with intensive phenotyping also for identifying
strategies for its risk assessment, prevention and treatment.
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Introduction

Statins are highly effective drugs on lowering plasma low-den-

sity lipoprotein (LDL) cholesterol by competitively inhibiting

hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, an

enzyme catalysing the rate-limiting step in the mevalonate

pathway. Their action takes placemainly in the liver, where LDL

receptors are increased due to the decreased hepatocyte choles-

terol. Other effects include the modest increase in high-density

lipoprotein (HDL) cholesterol and minor decrease of plasma

triglycerides [1]. Next to these lipid-lowering effects, statins

increase stability of the atherosclerotic plaques, decrease

inflammation and oxidative stress and improve endothelial

function [2]. Taken together these different ‘pleiotropic’ actions

are likely responsible for the lower risk of cardiovascular

morbidity and mortality of statin-treated patients even in the

primary prevention setting [3].

Although statins are generally consideredwell-tolerated, their

wide use has shed light on adverse effects that can result to

intolerance and discontinuation of the treatment. Aside from

elevation of liver enzymes and risk of incident diabetes, themost

common side effect is myotoxicity. Mild muscle symptoms are

reported in 10–20% of the patients treated with statins in large

community based studies [4–6]. The term ‘myopathy’ defines a

wide range of muscular symptoms, whereas ‘myositis’ demands

the increase of creatine kinase (CK) levels,with ‘rhabdomyolysis’

being themost life-threatening formwith excessive CK elevation

as a result of massive muscle destruction and myoglobinuria.

However, the incidence of rhabdomyolysis during statin treat-

ment is very low (0�003–0�1%) [5–7]. The wide range of reported
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data on the incidence may be due to the lack of standardized

clinical diagnostic criteria for statin-related adverse events. Of

note, CK elevation is not generally considered to be required for

treatment discontinuation, when patients claim muscle pain [8].

There are several mechanisms that are proposed to be

involved in the statin-induced myopathy. Statin-induced inhi-

bition of HMG-CoA reductase also results in the lowering of

several other intermediates of the pathway, such as dolichols,

prenylated proteins and electron transport chain proteins,

heme A and ubiquinone (coenzyme Q10, CoQ10), which shut-

tles between complex I and II (CI and CII) of the mitochondrial

electron transport chain (ETC.). The frequent observation of

decreased concentrations of CoQ10 not only in the circulation,

but also in skeletal muscle of statin-treated humans and rodents

[9], has led to the suggestion that statins may interfere with

mitochondrial function, which could in turn impair muscle

function and damage muscle morphology.

The aim of this review was to summarize studies in cell lines,

animal models and humans on the impact of statins on the key

features of muscle mitochondrial morphology and function both

in vivo and in vitro. Furthermore, this review includes studies on

possible mechanistic interactions between muscle mitochondria

and statin-induced myopathy. Finally, risk factors for muscle

statin intolerance are also briefly discussed. There have been

previous reviews addressing related topics [4,6,9–11].
To this end, we identified publications in English language

referring to statin treatment and muscle adverse events via a

PubMed search until December 2014. Publications specifically

addressing the relationship between statin treatment and

mitochondrial function impairment were analysed in detail.

The PubMed search was performed using the following com-

binations of the terms: ‘statin AND mitochondria AND myop-

athy AND human, animal, cell cultures’, respectively. We

identified 22 original papers on humans, 19 publications on

animal models, 10 publications in cell cultures and 13 reviews.

We included only these studies, which reported data on ubi-

quinone content, mitochondrial morphology and mitochondrial

complex activity. We excluded all studies that examined statin

effects on mitochondria in tissues other than skeletal muscle or

focused on muscle fibre alteration rather than reporting data on

mitochondrial function. We finally included 12 original papers

on humans, five on animal models, five on cell cultures and

eight reviews meeting the criteria. Additional publications

were identified from the reference list of the retrieved publi-

cations or from authors’ knowledge.

Possible mechanisms of statin-induced
myopathy not directly linked to mitochondria

Cholesterol is a basic component of the cell membrane, contrib-

uting to its stability. Its reduction by statins results in changes in

membrane fluidity and modification of muscle membrane sus-

ceptibility. Membrane alterations can modulate the function of

sodium, potassium and chloride channels, subsequently dam-

aging myocytes and causing myopathy [12,13] (Fig. 1).

Statins also inhibit farnesyl pyrophosphate and geranylger-

anyl pyrophosphate, intermediates of the mevalonate pathway,

which are involved in the post-translational modification of

proteins such as small GTPases and lamins. GTPases and

lamins play an important role in cell maintenance and

chromatin organization (Fig. 1). Dysprenylation of small GTP-

ases has been shown to result in muscle fibre degeneration and

apoptosis, whereas lamin dysprenylation may result in fragile

nuclear membranes and induce muscle cell apoptosis [14,15].

Dolichols, other intermediates of the mevalonate pathway,

promote protein N-glycosylation. Inhibition of their production

by statins impairs the expression of receptors and the produc-

tion of structural proteins, which may also lead to myopathy

[12,15] (Fig. 1). Treatment of pre-adipocytes with 10 nmol/L

cerivastatin resulted in impaired production of structural pro-

teins and receptors with accumulation of proreceptors and

apoptosis after prolonged exposure [16], suggesting disruption

of N-glycosylation, as the mechanism underlying cell damage.

Statins have been also associated with increased expression of

atrogin-1, a gene linked to muscle atrophy [17]. Atrogin-1

expression occurs early during the development of muscle

atrophy, and its increase precedes the loss of muscle mass. Of

note, patients with statin-associated myopathy exhibit increased

mRNA levels of atrogin-1 in biopsies of quadriceps muscle [18].

The role of CoQ10 during statin treatment

The impact of mitochondria on statin-induced myopathy orig-

inally derived from the finding of lower CoQ10 in the circula-

tion and skeletal muscle of statin-treated patients and higher

lactate/pyruvate ratios, as indicator of abnormal mitochondrial

function [19,20]. CoQ10 is a basic electron transporter of the

respiratory chain of the mitochondria and the end product of

the mevalonate pathway.

Several studies reported a decrease in plasma CoQ10 levels

in statin-induced myopathy, as recently reviewed [9]. However,

the reported decreases in CoQ10 levels may be due to the

simultaneous reduction of LDL cholesterol, which is the main

transporter of CoQ10 in the circulation [9]. There also seems to

be a statin type-specific influence on CoQ10 levels, as rosu-

vastatin but not atorvastatin was found to preserve CoQ10

levels in patients with coronary artery disease, when each drug

was combined with aerobic exercise. However, this study did

not include a control group treated with the statins or exercise

only [21]. Lower plasma CoQ10 levels do not generally reflect

lower muscle CoQ10 levels, as demonstrated by contradictory

results of skeletal muscle biopsies [22–24].
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Thus, it is not surprising that the supplementation with

CoQ10 to prevent or treat statin-induced myopathy revealed

contradictory results. Some studies showed that CoQ10

administration can increase CoQ10 blood levels in statin-trea-

ted patients [25–28]. Two studies on the frequency of myo-

pathic symptoms reported improvement of statin-related

muscle complaints upon CoQ10 (240 mg/day) coadministration

in patients with gastric adenocarcinoma treated with high-dose

lovastatin (35–45 mg/kg/day) [29,30]. However, the absence of

control groups and data from muscle biopsies prevents us from

drawing conclusions on the benefit of CoQ10 administration in

these specific patient cohorts. Most reviews, finally, do not

support any benefit from CoQ10 supplementation when com-

pared to placebo in patients on usual statin doses [9,10,31–33].
One recent study examined the effect of 600 mg/d CoQ10

supplementation on myopathic symptoms of patients assigned

to 20 mg/d simvastatin. Myopathy appeared irrespective of the

assignment to CoQ10 treatment [34]. Of note, current guide-

lines or position statements do not recommend CoQ10 sup-

plementation to increase adherence to statin treatment [8,35].

Possible mechanisms of statin-induced
myopathy directly linked to mitochondria

Next to the lowering CoQ10 levels, statins were suggested to

exert direct effects on the ETC., as pravastatin accelerated the

age-dependent impairment of CI function in rat muscle cells

[36].

Furthermore, impaired calcium signalling could also con-

tribute to statin-induced myopathy. Statins are proposed to

induce mitochondrial depolarization and calcium release

resulting in cytoplasmic calcium waves with subsequent cal-

cium release by the sarcoplasmic reticulum as a possible

mechanism of caspase activation and induction of apoptosis

[9,15,37–39] (Fig. 1). The cytosolic calcium increase may also

raise Ca2+- and phospholipid-dependent protein kinase C (PKC)

activity, which promotes closing of the chloride channel 1, CLC-

1, resulting in membrane hyperexcitability, as shown in muscles

of rats chronically treated with fluvastatin or atorvastatin [40].

Moreover, there is evidence of increased lipid peroxidation

and oxidative stress after statin treatment. Exposing primary

Figure 1 Possible mechanisms of statin-induced myopathy. Statin-treated patients feature lower cholesterol synthesis and
production of prenylated proteins and dolichols, which can lead to membranolysis and/or apoptosis in skeletal muscle. Impaired
mitochondrial function and elevated ROS can result from reduced CoQ10 content, as well as inhibition of the electron transport
chain and of beta oxidation. Finally, increased intracellular calcium levels due to accelerated mitochondrial MPT pore opening can
also cause apoptosis or via PKC inhibit CLC-1 channels with consecutive hyperexcitability of the cytoplasmic membrane. HMG-CoA:
hydroxymethylglutaryl-coenzyme A, PKC: protein kinase C, CLC-1: chloride channel protein-1, CoQ10: coenzyme Q10, cyt c:
cytochrome c, ROS: reactive oxygen species, TCA cycle: tricarboxylic acid cycle, MPT pore: mitochondrial permeability transition
pore.
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human muscle cells to simvastatin for 48 h resulted in impaired

ADP-stimulated mitochondrial respiration, increased reactive

oxygen species (ROS) production and activation of apoptosis

[41] (Fig. 1). In contrast, statins may exert opposite effects on

cardiac muscle mitochondria by enhancing PGC-1a expression

and lowering ROS production [42], whereas oxidative capacity

appeared to be decreased in skeletal muscle of statin-treated

patients.

Studies on the effects of statins on muscle
mitochondria and energy metabolism

The effects of statins on muscle energy metabolism have been

studied in cell cultures (Table 1), animal models (Table 2) as

well as in humans (Table 3). The most interesting features

tested in cell cultures were mitochondrial membrane potential,

maximal oxygen uptake and ATP levels. In animal models and

human studies, muscle CoQ10 levels have been also measured

in addition to assessing mitochondrial enzyme activities and

ROS production.

Studies in cell cultures

Few studies have examined the effect of statin application on

cell cultures, mainly providing indications for a mitochondrial

mechanism involved in muscle cell apoptosis (Table 1).

Exposure of rat L6 cell lines to cerivastatin, fluvastatin, ator-

vastatin, simvastatin but not pravastatin decreases glutamate-

driven state 3 respiration and respiratory control, and lowered

beta oxidation and DNA fragmentation by 88–96% indicating

that lipophilic statins mainly impair mitochondrial function,

with pravastatin being less toxic [43]. In C2C12myotubes but not

HepG12 cells, simvastatin decreased mitochondrial membrane

potential and oxygen consumption [44]. This was attributed to

impaired insulin growth factor-1/protein kinase B (Igf-1/Akt)

signalling leading to abnormal mitochondrial function, whereas

some liver cell lines may be protected by intact Igf-1/Akt

signalling.

In differentiated primary human skeletal muscle cells, sim-

vastatin decreased maximal oxygen consumption, promoted

mitochondrial PTP opening and increased levels of Bax and

Bcl-2 proteins, in line with impaired complex I respiration [41].

Another study in human rhabdomyosarcoma cells treated with

simvastatin showed a decrease in ATP levels, which was

reversed by the application of ubiquinone [45]. These data

provide evidence for impaired mitochondrial function, which

can be reversed by CoQ10 at least in cell cultures.

Studies in animal models

Although studies in several animal models have confirmed

muscle injury upon statin treatment, they did not consistently

support the concept of compromised muscle mitochondrial

function (Table 2).

Treating male rabbits with simvastatin and pravastatin

resulted in decreased muscle ubiquinone content, but did not

affect mitochondrial enzyme activities [46]. Interestingly, ceri-

vastatin but not pravastatin treatment of female rats for 15 days

raised serum CK levels and induced muscle necrosis along with

swollen mitochondria, while mitochondrial enzyme activities

were unchanged [47]. Nevertheless, another study on treating

Table 1 Parameters of mitochondrial function studied in cell cultures

Reference Statin (name, dose) Cell type Findings

Sirvent et al. [39] S Rat skinned skeletal muscle Inhibition of CI

Kaufmann et al. [43] C, F, A, S, P 100 mmol/L L6 cells S,F,A: 46–65% ↓ Mitochondrial membrane

potential, C,S,F,A:↓Respiratory control

ratio, ↓Glutamate-driven state 3 respiration,

88–96%↓ b oxidation, DNA fragmentation

mitochondrial swelling

Mullen et al. [44] S, 20 lmol/L for 72 h Primary mouse skeletal muscle

myocytes, C2C12 myotubes

and liver HepG2 cells

↓Mitochondrial membrane potential, ↓O2

consumption and Akt PY in C2C12 myotubes

but not in HepG2 cells

Kwak et al. [41] S, 5�0 lmol/L

S, 5�0 lmol/L+ mevalonate

50 lmol/L for 48 h

Differentiated primary human

skeletal muscle cells

S: 32–27%↓Maximal ADP-stimulated O2

consumption

↑Protein levels of Bax and Bcl-2

Vaughan et al. [45] S, 5, 10 lmol/L

S, 5 lmol/L +ubiquinone

0�5, 1�0 lmol/L for 24 h or 48 h

Rhabdomyosarcoma cells S: ↓ mito staining, ↓ATP
Ubiquinone reverses suppression

at 1�0 lmol/L

S, simvastatin; A, atorvastatin; C, cerivastatin; P, pravastatin; F, fluvastatin; C I, complex I; Akt PY, protein kinase B phosphorylation; ATP, adenosintriphosphate;

ADP, adenosindiphosphate; Bcl-2 protein, B-cell lymphoma-2 protein; Bax, Bcl-2-associated protein.
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rats with cerivastatin documented type I fibre muscle injury

and swollen mitochondria prior to the onset of muscle necrosis

suggesting early involvement of mitochondria in the develop-

ment of statin-induced myopathy [48]. Moreover, 2-weeks

treatment with atorvastatin increased ROS production and

decreased PGC-1a expression in rat skeletal muscle cells, pro-

viding evidence for decreased mitochondrial biogenesis and

augmented oxidative stress [42]. Of note, these authors also

found that endurance training of the rats improved mitochon-

drial respiration and oxidative capacity and protected the

skeletal muscle mitochondria against statin exposure [49]. Also,

mevalonate recovers abnormalities in skeletal muscle mor-

phology rapidly within 24 h in a C. elegans hmgr-1 mutant,

which lacks HMG-CoA reductase and can therefore serve as a

model of statin treatment [50].

Studies in humans

Several studies examined the effect of statins on skeletal muscle

of patients treated with different statins at various doses. Some

studies specifically examined the effect of statins on mito-

chondrial function in muscle biopsies in statin-treated patients

with or without signs of myopathy as well as in control persons

[22–24,42,51–57] (Table 3).

Lactate/pyruvate ratios were found to be significantly higher

in patients treated with statins compared to controls, a finding

that provided the first evidence that statin therapy may be

associated with abnormal mitochondrial metabolism [19]. In

three patients with symptoms of myopathy likely related to

statin use, muscle biopsies showed abnormally elevated lipid

stores, ragged red fibres and fibres with decreased staining for

cytochrome c activity, a biomarker of mitochondrial activity

[58]. These abnormalities disappeared after withdrawal of the

statin. The retrospective design accounts for the lack of biopsies

at baseline and the absence of a control group of patients with

myopathy unrelated to statin use and represents a shortcoming

of this study. Comparing treatment of 80 mg/day simvastatin

with that of 40 mg/day atorvastatin for 8 weeks showed a 30%

decrease of muscle CoQ10 in the simvastatin group along with

decreased ETC. enzyme activities and apparently 39% lower

plasma CoQ10 levels in the atorvastatin group [22]. Three other

studies on simvastatin, atorvastatin or placebo treatment found

lower muscle CoQ10 levels in the simvastatin-treated groups

[23,24,59]. Hypercholesterolaemic patients on simvastatin

treatment (10–40 mg/day) had lower muscle content of ubi-

quinone and CIV activity along with decreased maximal ex vivo

oxidative capacity [23]. Of note, mitochondrial content was

comparable in the simvastatin-treated group and control

groups. Strengths of this study are its well-matched control

group and the use of established methods for assessment of

mitochondrial CoQ10 content and mitochondrial function. In 48

patients assigned to simvastatin 80 mg/day, atorvastatin

40 mg/day or placebo for 8 weeks, muscle CoQ10 decreased in

the simvastatin group only and mtDNA/nDNA ratio fell by

47% in both statin-treated groups suggesting lower mitochon-

drial density [24]. A small study in patients presenting with

myopathic symptoms during statin treatment revealed signs of

abnormal mitochondrial function, such as subsarcolemmal

Table 2 Parameters of mitochondrial function studied in animal models

Reference Statin (name, dose)

Duration

in days Animal model Findings

Nakahara et al. [46] S, 100 mg/kg/day

P, 100 mg/kg/day

P, 200 mg/kg/day

+ 300 mg/kg/day

28

28

21/21

Male New Zealand

white rabbits

S: ↑CK, muscle necrosis, ↓ Ubiquinone

content = Mitochondrial enzyme activities

in all groups

Schaefer et al. [47] C, 0�1, 0�5, 1�0 mg/kg/day 15 Female Sprague-Dawley

Crl: CD(SD)IGSBR rats

↑CK, muscle necrosis, inflammation

at higher dose

Altered mitochondria in fibres with

degeneration

Obayash et al. [48] C, 2 mg/kg/day 10 F344 rats Necrosis of soleus muscle fibres, prior to

manifestation swollen mitochondria

Bouitbir et al. [42] A, 10 mg/kg/day 14 Male Wistar rats ↑ROS in skeletal muscle, ↓PGC-1 a expression

Ranji et al. [50] – – C. elegans hmgr-1 mutant

(lacks HMG-CoA reductase)

Defective mitochondrial morphology,

protein prenylation

Reversible with mevalonate within 24 h

S, simvastatin; A, atorvastatin; C, cerivastatin; P, pravastatin; CK, creatine kinase; ROS, reactive oxygen species; PGC-1 a, peroxisome proliferator-activated

receptor gamma coactivator 1-a.
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accumulation of mitochondria, lipid increase and Cox negative

fibres [59].

However, not all studies come to the conclusion that muscle

mitochondrial function is impaired due to statin treatment. Six

months of simvastatin treatment (20 mg/day) neither resulted

in changes from baseline in CoQ10 levels nor in high-energy

phosphate concentrations in skeletal muscle biopsies, com-

pared to the untreated control persons [60]. While this was

explained by the rather low dose of simvastatin used, another

albeit retrospective analysis of muscle biopsies obtained from

23 patients with statin-related myopathy compared to those of

patients with statin-unrelated myopathy found no direct asso-

ciation with statins [56]. Nevertheless, muscle mtDNA was

lower in patients with statin-induced myopathy, but there was

no difference between both groups in mtDNA deletion score or

oxidative mtDNA damage, suggesting that the observed

mtDNA depletion did not lead to qualitative damage of muscle

mitochondria. A limitation of this study is the absence of data

on baseline mtDNA content.

Another study assessed mitochondrial biogenesis and oxi-

dative stress from ROS production and PGC-1a and PGC-1b
gene expression in skeletal and cardiac muscle cells of patients

Table 3 Parameters of mitochondrial function studied in humans

Reference Cohort (n, diagnosis)

Statin

(name, dose)

Duration in

months

Muscle

CoQ10 Other findings

Paiva et al. [22] 48 hypercholesterolaemia S, 80 mg/day

A, 40 mg/day

2 30% in S S: ↓ CI, II, III, IV, CS 30% ↓ CoQ10

A: 39% ↓ CoQ10

Lamperti et al. [51] 18 hypercholesterolaemia

with myopathic symptoms

S, C, A,

R 5/10/20 mg/day

n. r. in 10 pts Cytochrome c oxidase-negative

ragged red fibres in 2 pts

Guis et al. [52] 11 hypercholesterolaemia

with statin-induced CK

elevation 8 healthy

A, 10 mg/day

S, 5-20 mg/day

C, 10 mg/day

P, 5–20 mg/day

F, 10 mg/day

n. r. – = cytochrome oxidase activity,

PCr recovery

F,S,A,P,S: Abnormal in vitro

contracture tests in 7 pts

Schick et al. [24], 48 hypercholesterolaemia S, 80 mg/day

A, 40 mg/day

Placebo

2 in S S: 47%

↓ mtDNA/nDNA

Traustadottir et al. [53] 12 healthy men and

women, LDL > 130 mg/dl

S, 80 mg/day 3 – = VO2max, RER, O2 uptake kinetics

Wu et al. [54] 10 hypercholesterolaemia S, 20 mg/day 1 – ↓PCr recovery

Bouitbir et al. [42] 5 statin-induced myopathy A, 10 mg/day

R, 10 mg/day

S, 10–20 mg/day

6-60 – A,R,S:↑ROS, ↓PGC-1a, ↓PGC-1b

Mikus et al. [55] 37 with > 2 metabolic

syndrome risk factors

S, 40 mg/day 3 – S: 4.5%↓ CS

=VO2max/kg

Stringer et al. [56] 23 statin-induced myopathy S > 80 mg/day,

< 80 mg/day

A > 40 mg/day

n. r. S: ↓mtDNA, ↓mtDNA/nDNA

Larsen et al. [23] 10 hypercholesterolaemia S, 10–40 mg/day 60 in S ↓C, IV
=mito content

OXPHOS

Parker et al. [57] 420 healthy A, 80 mg/day 6 – ↑muscle complaints

=muscle strength

VO2max

S, simvastatin; A, atorvastatin; C, cerivastatin; R, rosuvastatin; P, pravastatin; F, fluvastatin; CoQ10, coenzyme Q10; PCr recovery, phosphocreatine recovery; pts,

patients; CK, creatine kinase; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; LDL, low-density lipoprotein; VO2max, maximal oxygen uptake; RER, respiratory

exchange ratio; ROS, reactive oxygen species; PGC-1 a, b, peroxisome proliferator-activated receptor gamma coactivator 1- a, b; n.r, not reported; OXPHOS,

oxidative phosphorylation; ATP, adenosintriphosphate.
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treated with statins. Here, the five patients with statin-induced

myopathy exhibited increased ROS production and decreased

PGC-1a and PGC-1b gene expression [42]. This study provides

evidence for a different mechanism of statin action on skeletal

and cardiac muscle mitochondria. In cardiac muscle cells, ROS-

induced PGC-1 family expression was stimulated, whereas in

skeletal muscle cells, which lack sufficient antioxidant mecha-

nisms, the oxidative damage prevailed. Using animal models

and cell cultures allowed for comprehensive investigation of

the possible mechanisms of statin action.

Only few studies employed non-invasive in vivo techniques

to quantify submaximal oxidative capacity, such as spiroerg-

ometry and 31P magnetic resonance spectroscopy. Two spir-

oergometry studies found no changes of maximal oxygen

uptake (VO2max) and oxygen uptake kinetics after 12 weeks of

simvastatin treatment (80 mg/day) in 10 patients [53] or after

6 months of atorvastatin (80 mg/day) when compared with

placebo [57]. Of note, CK levels and muscle symptoms were

higher in the atorvastatin group despite unchanged parameters

of exercise performance after 6 weeks of atorvastatin treatment.

However, these studies lack efficient control of exercise moni-

toring during the intervention period, as well as data from

intramuscular CoQ10 levels, because no muscle biopsies were

performed. Interestingly, an exercise training study provided

some evidence for reduced physical performance after statin

use [55]. This study randomized patients, who had features of

the metabolic syndrome, to aerobic training with or without

simvastatin (40 mg/day) for 12 weeks. VO2max increased by

10% in the statin-free group, but only by 1�5% in the statin-

treated group, which also showed a small 4�5% decrease in

muscle citrate synthase enzyme activity, a marker of mito-

chondrial density and/or activity. A limitation of this study

resides in the lack of placebo administration in the control

group performing exercise only. Nevertheless, statins may

blunt the beneficial effect of exercising on cardiorespiratory and

muscular fitness via interfering with mitochondria.

While spiroergometry yields a rather indirect measure with

several limitations, measurement of the half-time of muscle

phosphocreatine (PCr) recovery upon exercise-induced PCr

depletion using 31P magnetic resonance spectroscopy provides

a direct measure of submaximal mitochondrial oxidative

capacity [61]. Using this method, simvastatin (20 mg/day)

treatment for 4 weeks led to prolonged, that is impaired PCr

recovery time in 10 hypercholesterolaemic patients [54]. In this

study, four of five patients with prior statin use experienced

myalgia suggests a bias in the patient selection, as the symptom

frequency is not representative for the general population

treated with statins. Another study reported normal PCr

recovery times in statin-treated patients and suggested that

myoskeletal symptoms may become evident only in the pres-

ence of altered calcium homoeostasis [52]. However, the small

sample size with only 11 patients treated with various doses of

five statins for an unreported period of time makes it difficult to

compare the different statins and doses.

Risk factors for statin-induced myopathy

It is clinically relevant to detect factors that increase the risk of

statin-induced myopathy in order to identify persons at risk

and/or to adjust or modify the treatment of such patients.

Increasing age [62], female gender [63], renal insufficiency,

subclinical hypothyroidism and polypharmacy have been

related to increased risk of statin-induced myopathy [10,11,64].

Other risk factors include high levels of physical activity,

alcohol and drug abuse, HIV infection, severe trauma and

surgery with increased metabolic demands [10].

In addition, genetic factors may also play a role by increasing

the susceptibility of some patients to adverse effects of statins.

The SLCO1B1 gene encodes a protein responsible for the

hepatic uptake of statins, and polymorphisms in this gene are

tightly associated with statin-induced myopathy [65,66]. Also,

polymorphisms in genes of the cytochrome P450 system

(CYP2D6, CYP3A4, CYP3A5) and efflux transporters (ABCB1,

ABCG2) have been studied in this context [66]. CYP2D6 gene

polymorphisms have been associated with increased suscepti-

bility to atorvastatin-induced muscle side effects [67]. Several

mutations in the PYGM gene (McArdle’s disease), CPT-II

deficiency and AMPD1 gene as well as the ryanodine receptor 1

(RYR1) gene have also been associated with increased risk and

severity of statin-associated myopathy [68,69].

Specifically, patients with inherited mitochondrial diseases,

such as mitochondrial myopathy, encephalopathy, lactic aci-

dosis and stroke-like episodes (MELAS syndrome) [10],

myoadenylate deaminase (MADA) deficiency and variations of

the CoQ10 gene appear to have higher susceptibility for statin-

associated myopathy [70]. Polymorphisms of the CoQ2 gene,

which is important for the CoQ10 synthesis, are associated with

primary CoQ10 deficiency and severe mitochondrial myopathy

[65]. But even mild variants of this gene were associated to

increased susceptibility of the carriers for statin-induced

myopathy. On the other hand, statin treatment per se can

induce MELAS-like syndrome in vulnerable individuals [71].

Of note, a case report of a woman with MELAS syndrome due

to A3243G mutation showed marked reduction not only of

insulin secretion but also of muscle ATP synthesis at baseline

and during insulin stimulation [72]. Another case report of a

teenager with the A3243G mutation, which accounts for more

than 80% of the mutations found in MELAS syndrome patients,

showed that statin treatment led to increased CK levels and

myopathic symptoms despite normal CoQ10 levels and respi-

ratory chain enzyme activities [73]. This suggests that direct

effects of statins on mitochondria do not necessarily explain
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increased susceptibility in all patients with mitochondrial

diseases.

Statin dose and properties are important determinants of

myotoxicity, with higher lipophilicity and interaction with drug

metabolizing pathways such as CYP increasing risk for adverse

muscle [11,74]. A recent study also showed that individuals

with 25-OH vitamin D3 below 15 mg/mL on statin had a

higher incidence of muscle adverse effects compared to those

without statin, providing some evidence that vitamin D defi-

ciency also represents another risk condition for muscle

adverse effects in patients treated with statins [75].

Of note, patients with diabetes mellitus and/or obesity seem

to be at greater risk of statin-related adverse events. Among

patients with diabetes, statin use was associated with 29%

higher risk for statin-associated myopathy [76]. In the SEARCH

trial using treatment with 80 mg/day simvastatin, diabetes at

baseline was associated with ‘definite or incipient myopathy’

with an overall relative risk of 1�7 and a relative risk of 2�3 after

1 year [77]. Overall statin-associated complications were also

more frequent in patients with body mass index (BMI) above

29 kg/m2 [78]. Given the increasing prevalence of diabetes and

obesity, studies on statin-related adverse events should specif-

ically address obese patients with type 2 diabetes in future

studies.

Conclusions

This review focused on the effect of statins on mitochondrial

function in cell cultures, animal models and humans. It remains

unclear whether or not impaired mitochondrial function is a

consistent result of statin treatment and involved in statin-

associated myopathy. Most available studies suffer from certain

limitations, such as including small cohort size, inconsistencies

in the diagnostics of statin-associated myopathy and applica-

tion methods, which do not allow for exact assessment of

mitochondrial function. Larger prospective randomized con-

trolled trials on a multinational level with specific phenotyping

are therefore needed for the better understanding of the path-

ogenesis of statin-induced myopathy and the role of muscle

mitochondrial function. Intensified and standardized pheno-

typing including detailed assessment of mitochondrial function

as well as genetic screening, mRNA and proteomic finger-

printing are likely the most promising strategies for the iden-

tification of persons susceptible to adverse muscle effects of

statins. These measures would support guidelines regarding

effective statin use and thereby promote prevention, reversal

and treatment of unwanted effects of statins.
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