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Abstract

The problem of establishing reliable estimates or bounds for the (T)VaR of a joint risk portfolio is a relevant subject in connection
with the computation of total economic capital in the Basel regulatory framework for the finance sector as well as with the Solvency
regulations for the insurance sector. In the computation of total economic capital, a financial institution faces a considerable
amount of model uncertainty related to the estimation of the interdependence amongst the marginal risks. In this paper, we propose
to apply a clustering procedure in order to partition a risk portfolio into independent subgroups of positively dependent risks. Based
on available data, the portfolio partition so obtained can be statistically validated and allows for a reduction of capital and the
corresponding model uncertainty. We illustrate the proposed methodology in a simulation study and two case studies considering
an Operational and a Market Risk portfolio. A rule of thumb stems from the various examples proposed: in a mathematical
model where the risk portfolio is split into independent subsets with comonotonic dependence within, the smallest VaR-based
capital estimate (at the high regulatory probability levels typically used) is produced by assuming that the infinite-mean risks are
comonotonic and the finite-mean risks are independent. The largest VaR estimate is instead generated by obtaining the maximum
number of independent infinite-mean sums.
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1. Motivation

The problem of establishing reliable estimates or bounds
for the (T)VaR of a joint risk portfolio is a relevant subject in
connection with the computation of total economic capital in
the Basel regulatory framework for the finance sector as well
as with the Solvency regulations for the insurance sector. For
instance, the new regime for banks using internal models (Basel
Committee on Banking Supervision, 2016) prescribes the use
of TVaR in order to compute capital requirements for Market
Risk, and also requires a rigorous backtesting based on VaR.

The computation of the (T)VaR of an aggregate position
calls for a statistical model for the individual risk factors as
well for their interdependence. The statistical estimation of
the marginal distributions of the standalone risks is mature and
relatively robust even in the case of a small data sample, and
usually occurs in the form of historical data, or models chosen
in a stress-testing environment or resulting from a simulating
mechanism. On the contrary, the estimation of a multivariate
dependence structure (often performed via the notion of a cop-
ula) is a much more challenging task where the scarcity of joint
observations often leads to a large statistical uncertainty.

If one assumes full knowledge of the distributions of the in-
dividual risk factors held, such dependence uncertainty can be
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quantified using the Rearrangement Algorithm (RA) described
in Embrechts et al. (2013). However, the upper VaR bound pro-
duced by the RA, despite being mathematically sharp, is too
large for practical use and is attained by a seemingly unrealistic
multivariate scenario; see Aas and Puccetti (2014).

Recent research has focused on methods to reduce depen-
dence uncertainty based on extra (statistical) information to be
added on the top of the knowledge of the marginal distribu-
tions. For instance, in Sect. 4 of Embrechts et al. (2013) it is
shown that higher order (typically two-dimensional) marginals
information on the joint portfolio, when available, may lead to
improved VaR bounds. The worst VaR value can be similarly
reduced by estimating the values of the copula on some subset
of its domain (Bernard et al., 2013) or putting a variance con-
straint on the total position (Bernard et al., 2015). An approach
using factor models is provided in Bernard et al. (2017).

Intuitively, one might think that assuming that the risks are
positively dependent or positively correlated would imply a con-
siderably smaller value for the worst VaR estimate. It is how-
ever shown in Bignozzi et al. (2015) that additional positive
dependence information added on top of the marginal distri-
butions (for instance via the notions of PLOD risks) does not
substantially lower the estimate of the worst-possible VaR. In
particular, the assumption of a lower bound on the copula of
the risk portfolio does not allow one to lower the worst VaR
estimate below the sum of marginal VaRs; see Puccetti et al.
(2016).

A different approach combining prior information, scarce
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observations and expert opinion in order to reduce estimation
uncertainty is described in Arbenz and Canestraro (2012). The
problem of portfolio selection under dependence uncertainty is
treated in Pflug and Pohl (2017).

In this paper, we start from the observation (Puccetti et al.,
2017) that in practice some subgroups of the risk portfolio can
be assumed to be independent. Hence, we propose to apply
a clustering procedure to partition a risk portfolio into inde-
pendent clusters with (maximal) positive dependence within the
risks of each subgroup. The portfolio partition so obtained can
be statistically validated and allows for a reduction of the esti-
mate of economic capital, and the corresponding model uncer-
tainty. We will illustrate the methodology in two case studies
related to Operational and Market Risk.

A further motivation for other application areas of the clus-
tering approach discussed here comes from the paper Pretten-
thaler et al. (2017), where the authors quantify the VaR-based
diversification potential for flood risk in Europe by identify-
ing pools of countries that should group together if an overall
agreement on risk management cannot be achieved.

VaR diversification
If only the marginal distributions of a risk portfolio are fixed,

one can always find a dependence structure (copula) under which
the VaR is superadditive, i.e. the VaR of the sum of the marginals
is greater than the sum of marginal numbers; see the various ex-
amples given in Embrechts et al. (2014).

If the tails of the marginal distributions are extremely heavy
(i.e. they have infinite mean), then also diversification increases
portfolio riskiness. In other words, assuming that all the marginal
risks of a given portfolio are independent does not always yield
a safe lower bound on a VaR-based economic capital. This fal-
lacy of VaR has been identified in the identical marginals set-
ting since the examples provided in Embrechts et al. (2002).
Then, it has been formalized and extended to different depen-
dence scenarios in the paper Ibragimov (2009); see also Mainik
et al. (2013), Ibragimov and Prokhorov (2016) and the refer-
ences given therein. A comprehensive review of these results is
given in Ibragimov et al. (2015).

Whereas the case of homogeneous risks has been studied
under a variety of dependence assumptions, the case of inho-
mogeneous summands seems to be more intricate to fully char-
acterize. Stemming from the various examples proposed in this
paper, a novel conclusion can be formulated in the form of a
simple rule of thumb: if a risk portfolio is divided into indepen-
dent subsets with comonotonic dependence within, the smallest
VaR-based capital estimate (at the high regulatory probability
levels typically used) is produced by assuming that the infinite-
mean risks are comonotonic and the finite-mean risks are in-
dependent. The largest VaR estimate is instead generated by
obtaining the maximum number of independent infinite-mean
sums.

Since a clustering procedure produces several possible out-
comes that can be equally assessed as statistically relevant based
on the available observations, this rule of thumb can help to
choose a specific model amongst all the feasible partitions of
the same risk portfolio.

A discussion on infinite-mean models

The overall analysis carried out in this paper relies on the
assumption that the marginal distributions of the risk portfo-
lios under study are known. In particular, the proposed rule of
thumb assumes the existence and inclusion of marginal models
with an infinite mean.

A large number of studies in economics, finance and insur-
ance have documented financial and economic variables with
infinite mean; see for instance the papers Nešlehová et al. (2006)
and Chavez-Demoulin et al. (2006). Without a doubt, infinite-
mean models arise quite often for certain kinds of data, particu-
larly insurance claim data and operational loss data; see Chavez-
Demoulin et al. (2016) and Section 5. However, the use of
infinite-mean models in practice remains controversial: it is not
the risks themselves that have an infinite-mean, but rather cer-
tain models we might choose to describe them.

Even if financial institutions will generally have historical
data or a simulating mechanism to estimate the margins, there
is always an element of statistical uncertainty and discretion in
the choice of the marginal models. The inclusion of even a
single infinite-mean model has a significant effect on the quan-
tification of economic capital.

Infinite-mean models generally produce unreliable or huge
aggregate economic capitals, they do not allow for the use of
any coherent risk measure like the TVaR, they make the lower
and upper bounds produced by the RA too wide to make sense
in application.

A way out of the infinite-mean world is to take into account
notional upper limits to loss distribution: no loss can destroy
more than a bank’s or a company’s entire value. It may also
be possible to choose alternative models where the tail mimics
a power tail within the sample and then decays more quickly
at very extreme loss levels. A very good paper from which to
enlarge this discussion is Cirillo and Taleb (2016), where a no-
loss-is-infinite principle inspires a smooth procedure to provide
TVaR-based capital allocations in the presence of apparently
infinite-mean models. Also, if an infinite mean is statistically
identified, for a financial institution it might be preferable to
transfer part of the risk rather than to manage it.

From a mathematical viewpoint, the message of this paper
is that infinite-mean models in an inhomogeneous risk portfolio
deliver higher economic capitals if assumed to be independent
rather than comonotonic. As the use of infinite-mean models
is potentially disruptive, a financial institution should carefully
consider their inclusion and treatment at the governance level.

Summary

The paper is organized as follows. In Section 2 we for-
malize our mathematical model and set our notation, while in
Section 3 we describe the proposed clustering methodology. In
Section 4 we illustrate the above stated rule of thumb with some
toy Pareto models. Then, we provide two case studies of clus-
tering selection with application to an Operational Risk (Sec-
tion 5) and a Market Risk (Section 6) portfolio. In Section 7 we
draw our conclusions, relegating the more technical mathemat-
ical results and computational details to the Appendix.

2



2. Mathematical framework and notation

We assume that a financial institution holds a number of
d risk positions over a predetermined time horizon, represented
by the random variables X1, . . . , Xd over some probability space
(Ω,F , P). The institution’s aggregate exposure is given by the
sum of the individual risk positions

X+
d = X1 + · · · + Xd.

The total position X+
d is then mapped into the economic capital

VaRα(X+
d ) or TVaRα(X+

d ).
The Value-at-Risk (VaR) of a loss random variable X, com-

puted at the probability level α ∈ (0, 1), is the α-quantile of its
distribution, defined as

VaRα(X) = F−1
X (α) = inf{x ∈ R : FX(x) > α},

where FX(x) = P(X ≤ x) is the distribution function of X.
For a random variable X with finite mean, the Tail-Value-

at-Risk (TVaR), computed at the probability level α ∈ (0, 1), is
defined as

TVaRα(X) =
1

1 − α

∫ 1

α

VaRq(X) dq.

The TVaR, often referred to as the Expected Shortfall (ES), is
simply the average of all VaR values between the probability
levels α and 1.

The computation of the (T)VaR of the aggregate position
X+

d calls for a statistical model for the joint distribution of the
risk vector (X1, . . . , Xd), in the form of marginals information
regarding the risk factors and of a dependence structure cou-
pling them. It is realistic to assume that the marginal distribu-
tions F1, . . . , Fd of the individual random variables X1, . . . , Xd

are known by the financial institution. On the contrary, the es-
timation of a multivariate dependence structure, typically per-
formed via the notion of a copula (see for instance Ch. 7 in Mc-
Neil et al., 2015), requires a dataset of joint occurrences that is
seldom (if ever) available. As a practical example, consider the
six-dimensional portfolio of DNB, the largest Norwegian bank,
which has been extensively studied in Aas and Puccetti (2014).
A proper data-based statistical estimation of a six-dimensional
copula for a portfolio including Credit (X1), Market (X2), Own-
ership (X3), Operational (X4), Business (X5), and Insurance (X6)
risk is simply out of reach. As a result, the bank faces a con-
siderable model risk related to the choice of the multivariate
dependence structure (copula) on top of its marginals informa-
tion.

A successful numerical technique to assess the robustness
of a benchmark model with respect to dependence uncertainty
is the Rearrangement Algorithm (RA)1 described in Embrechts
et al. (2013). The RA evaluates

VaRα(X+
d ) = inf{VaRα(X+

d ) : X j ∼ F j, 1 ≤ j ≤ d}, (2.1a)

VaRα(X+
d ) = sup{VaRα(X+

d ) : X j ∼ F j, 1 ≤ j ≤ d}, (2.1b)

1See https://sites.google.com/site/rearrangementalgorithm/.

that represent the best and worst possible VaR for the total po-
sition X+

d , given solely the knowledge of the marginal distribu-
tions F1, . . . , Fd. Similarly, the RA is able to compute corre-
sponding best and worst possible values for the TVaR as

TVaRα(X+
d ) = inf{TVaRα(X+

d ) : X j ∼ F j, 1 ≤ j ≤ d}, (2.2a)

TVaRα(X+
d ) = sup{TVaRα(X+

d ) : X j ∼ F j, 1 ≤ j ≤ d}. (2.2b)

A benchmark probabilistic model for the risk portfolio is
represented by comonotonic scenario, under which the portfo-
lio individual risks X j are all assumed to be perfectly positively
dependent, i.e. almost surely increasing functions of a com-
mon random factor. Standard references on comonotonicity are
Dhaene et al. (2002) and McNeil et al. (2015, Sec. 7.2.1). The
comonotonic model implies additivity of the joint (T)VaR posi-
tions, that is

VaRα(X+
d ) = VaRα(X1) + · · · + VaRα(Xd), (2.3a)

TVaRα(X+
d ) = TVaRα(X1) + · · · + TVaRα(Xd). (2.3b)

Since TVaR is a coherent risk measure, the worst-case bound
TVaRα(X+

d ) coincides with the sum of marginal numbers, i.e.

TVaRα(X+
d ) = TVaRα(X1) + · · · + TVaRα(Xd).

On the contrary, for general marginal distributions the worst-
case VaR bound VaRα(X+

d ) is (considerably, for risks with infi-
nite mean) larger than the sum of marginal VaR estimates. In
the paper Embrechts et al. (2014), many examples are reported
where

VaRα(X+
d ) >> VaRα(X1) + · · · + VaRα(Xd).

To reduce the worst possible (T)VaR estimate, in this paper
we propose to apply a clustering procedure in order to parti-
tion a risk portfolio into independent clusters with (maximal)
positive dependence within the risks of each subgroup.

Formally, we assume that the marginal components of a
d-dimensional risk vector (X1, . . . , Xd) have fixed distributions
F1, . . . , Fd and the risk vector is split into k subgroups Ii. Let
I = {I1, . . . , Ik} be a partition of {1, . . . , d}, that is

⋃k
i=1 Ii =

{1, . . . , d} with Ii ∩ I j = ∅, i , j. Let XIi = (X j, j ∈ Ii) denote
the risk subvector of the i-th subgroup. For a given partition I,
denote by

VaRIα(X+
d ) and TVaRIα(X+

d ) (2.4)

the VaR and the TVaR of the aggregate position X+
d under the

assumption that:

the risk subvectors XI1 , . . . , XIk are independent while the
risks (X j, j ∈ Ii) within each subgroup are comonotonic;
see Figure 1.

In the applications that follow, we will apply a clustering
data-driven procedure in order to select feasible choices for
the partition I and we will see that the values VaRIα(X+

d ) and
TVaRIα(X+

d ) will deliver a large reduction of (T)VaR-based eco-
nomic capital and of the corresponding model uncertainty.
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Figure 1: Partitioning a risk portfolio into independent subgroups I1, . . . , Ik
with comonotonic dependence within the risks of each subgroup.

3. The hierarchical clustering methodology

In this section, we illustrate a clustering, data-driven statis-
tical procedure that allows one to split a risk portfolio into in-
dependent subsets with (close to) maximal dependence within
the subsets so as to fit the mathematical framework described
so far.

Clustering is a data-driven method that attempts to discover
structures in data, grouping together observations or variables
into sets, called clusters. In our work we focus the attention
on the clustering of (random) variables and on the hierarchical
clustering in the agglomerative approach, as described in Everitt
et al. (2011). This method creates a hierarchy of nested clus-
ters and, in the agglomerative version, the procedure starts with
each single variable forming a cluster and, at every step, it pro-
ceeds by merging one pair of clusters at a time. The procedure
stops when the last two clusters are merged to form the whole
group of variables.

In the hierarchical clustering context, the decision on which
clusters should be merged is based on a combination of two
measures: a measure of dissimilarity between two variables,
and a measure, called linkage rule, that specifies the dissimilar-
ity between two clusters as a function of the pairwise dissim-
ilarities of variables in the clusters. The choice of these two
measures influence the resulting clustering outcome: the vari-
ables belonging to the same cluster are similar in some sense,
depending on the dissimilarity measure/linkage rule used.

In our set-up we employ a correlation-based distance as
measure of pairwise dissimilarity, that considers two random
variables Xr and X j to be similar (dissimilar) if their observa-
tions are highly (slightly) correlated. As a dissimilarity mea-
sure, we use

d(Xr, X j) =

√
2(1 − ρS (Xr, X j)), (3.1)

where ρS (Xr, X j) is the sample Spearman’s rank correlation co-
efficient computed as the standard sample Pearson correlation
coefficient between the ranked observations from Xr and X j;
see p. 404 in Everitt and Skrondal (2010). The dissimilarity
measure (3.1) captures the comonotonic dependence relation-
ship between the two compared variables. In fact, if Xr and X j

are comonotonic, then ρS (Xr, X j) = 1 and d(Xr, X j) = 0. As
a result, the final clustering will have maximum within-group
dependence.

As for the way to evaluate the dissimilarity between two
clusters of variables (or between a cluster of variables and a

single variable), we employ the well-known and most used link-
ages: the complete, the single, and the average linkage. All
these provide a way to compute the dissimilarity between two
clusters of variables, say A and B, as a function of all pairwise
dissimilarities between the variables in A and the variables in B.
To be specific, the single, the complete and the average linkage
rule compute the dissimilarity between A and B, respectively as
the smallest, the largest and the average dissimilarity amongst
all pairwise dissimilarities between the variables in A and those
in B. For the mathematical details of the three linkages we refer
to Everitt et al. (2011) and James et al. (2013). Here, we em-
ploy all three methods to evaluate the robustness of the analysis
and the effect of the linkage on the hierarchy of nested cluster-
ing. The interested reader can retrieve the R code and a full
description of the performed analyses via the RunMyCode on-
line repository2.

The sequence of nested partitions obtained through the hi-
erarchical clustering procedure is visualized by means of a tree-
based representation of the variables called a dendrogram. The
dendrogram illustrates the process and the partition produced at
each step of the clustering procedure. As we move higher up
the tree, branches themselves merge, either with leaves or other
branches. The height of this fusion, as measured on the vertical
axis through the chosen linkage rule and dissimilarity measure,
indicates how similar the two (clusters of) variables are: vari-
ables that merge at the very bottom of the tree are quite simi-
lar to each other, whereas variables that merge close to the top
will tend to be quite different. A specific partition in the nested
sequence produced is selected by cutting the dendrogram at a
particular height.

Thus, the hierarchical clustering approach does not require
to choose a priori the number of clusters, k, which is an added
advantage over other unsupervised classification methods, such
as k-means clustering, self-organized maps, etc. The ideal num-
ber of clusters can be selected by looking at the dendrogram.
Moreover, the hierarchical clustering methodology does not re-
quire a starting classification which is instead needed, for ex-
ample, in other clustering methods (e.g. k-means and mixture-
based clustering). In general, a drawback of the hierarchical
method is its computational cost, which is relevant only for
high-dimensional data and does not affect our analysis.

4. A simulation study

Before illustrating the proposed clustering procedure in some
real case studies, it is illustrative to compute the (T)VaR val-
ues (2.4) in a simulation study considering all the possible par-
titions of a risk portfolio. We consider six five-dimensional
(d = 5) risk portfolios where each risk X j follows a Pareto(θ j)
marginal distribution

P(X j ≤ x) = 1 − (1 + x)−θ j , x ≥ 0, (4.1)

for some tail parameters θ j > 0. Recall that for the Pareto
model (4.1) the mean of X j is infinite when θ ≤ 1. We con-
sider the following six different portfolios:

2See http://www.runmycode.org/companion/view/2955.
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P1. A portfolio of homogeneous finite-mean risks with

θ j = 3, 1 ≤ j ≤ 5;

P2. A portfolio of homogeneous infinite-mean risks with

θ j = 0.98, 1 ≤ j ≤ 5;

P3. An inhomogeneous portfolio of mixed risks with

θ1 = 0.95, θ2 = 0.98, θ3 = 1.6, θ4 = 4, θ5 = 5.

P4. An inhomogeneous portfolio of mixed risks with

θ1 = 0.6, θ2 = 0.98, θ3 = 1.6, θ4 = 4, θ5 = 5.

P5. An inhomogeneous portfolio of mixed risks with

θ1 = 0.98, θ2 = 1.5, θ3 = 1.6, θ4 = 4, θ5 = 5.

P6. An inhomogeneous portfolio of mixed risks with

θ1 = 1.5, θ2 = 1.5, θ3 = 1.6, θ4 = 4, θ5 = 5.

In Table 1 we report estimates for:

• the minimum and maximum possible estimates for the
VaR of the total loss exposure, computed over the set Pd

of all possible partitions of {1, . . . , d}, and defined as

VaRPα (X+
d ) : = min

I∈Pd

VaRIα(X+
d ), (4.2a)

VaR
P

α (X+
d ) : = max

I∈Pd

VaRIα(X+
d ); (4.2b)

In the cases considered (d = 5), the total number of pos-
sible partitions is equal to 52.

• for portfolios P1 and P6, the minimum and maximum
possible estimates for the TVaR of the total loss exposure,
computed over all the possible partitions, and similarly
defined as

TVaRPα (X+
d ) : = min

I∈Pd

TVaRIα(X+
d ), (4.3a)

TVaR
P

α (X+
d ) : = max

I∈Pd

TVaRIα(X+
d ); (4.3b)

• the best and worst possible (T)VaR values for the total po-
sition X+

d , given solely the knowledge of the marginal dis-
tributions and computed via the RA; see (2.1) and (2.2);

• the comonotonic values (2.3) obtained as the simple sum
of marginal numbers, and corresponding to the trivial
partition {1, 2, 3, 4, 5}.

For the homogeneous risk portfolio with finite-mean risks
(P1), the lowest capital estimate is obtained when all the risks
are assumed to be independent ({1}, {2}, {3}, {4}, {5} is the best

partition), while the greatest capital stems from a full comono-
tonic model ({1, 2, 3, 4, 5} is the worst partition). For the homo-
geneous portfolio with infinite-mean risks (P2), these results are
reversed. The figures for portfolios P1-P2 are similar to those
obtained in Ibragimov (2009, Th. 4.1-4.2) for convolutions of
stable distributions. Within our mathematical set-up, it is easy
to prove the complete ordering of partitions for Pareto-like ho-
mogeneous portfolios; see Appendix A for the mathematical
details.

For an inhomogeneous portfolio mixing finite and infinite-
mean risks, the situation is more intricate and has not been for-
malized in the literature. From the results in Table 1 and the
examples illustrated in the remainder of the paper, a simple rule
of thumb for risk aggregation emerges. The least VaR-based
capital estimate (at the high probability levels used) is produced
by assuming that the infinite-mean risks are comonotonic and
the finite-mean risks are independent. For example, the best
partition for portfolios P3 and P4 is {1, 2}, {3}, {4}, {5}.

The largest VaR estimate over all the partitions is gener-
ated by obtaining the maximum number of independent infinite-
mean sums, that is by assigning each infinite-mean risk to a dif-
ferent subgroup. Thus, for portfolios P3 and P4, the highest
VaR-based capital estimate is obtained when the infinite-mean
risks X1 and X2 belong to different subgroups and are then as-
sumed to be independent. The behaviors of the inhomogeneous
portfolios P5 (only one infinite-mean risk) and P6 (no infinite-
mean risks) are analogous to that of P1 and are consistent with
our rule of thumb. However, the above stated rule of thumb
heavily depends on the probability levels used, which must be
sufficiently large; see Section 5 on this.

Since the VaR estimate for an aggregate risk is asymptoti-
cally driven by the heaviest tail (see Proposition A.1.), the in-
clusion of even a single infinite-mean model has a significant
impact on the quantification of economic capital. First, an infi-
nite marginal mean implies that the TVaR of the aggregate sum
is not defined. Second, in the presence of infinite-mean models
the VaR will tend to deliver extremely large values, especially
for the very high confidence level prescribed by regulation.

One can immediately appreciate the magnifying effect when
comparing portfolio P5 to portfolio P6 in Table 1, where the in-
clusion of a single infinite-mean model more than doubles the
corresponding best and worst VaR estimates at the 99% level.
The inclusion of a more extremely heavy-tailed case (θ = 0.6)
in portfolio P4 drastically increases the VaR-based capital es-
timates deteriorating their accuracy, measured by larger confi-
dence intervals.

In conclusion, the behavior of (T)VaR estimates amongst
the possible partitions is inextricably intertwined with the se-
lection of the marginal distributions and, in particular, their tail
behaviors.

5. An Operational Risk case study

We now propose two real case studies in which to apply the
clustering procedure described in Section 3: one belongs to the
heavy-tailed, data-sparse realm of Operational Risk, the other
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P1

VaRα(X+
d ) VaRPα (X+

d ) CI best partition VaR
P

α (X+
d ) CI worst partition comonotonic value VaRα(X+

d )

α = 0.950 1.8233 5.6554 [5.6397, 5.6707] {1}, {2}, {3}, {4}, {5} 8.5720 [8.5338, 8.6109] {1, 2, 3, 4, 5} 8.5721 14.6756

α = 0.975 2.4199 7.0264 [7.0008, 7.0526] {1}, {2}, {3}, {4}, {5} 12.1003 [12.0295, 12.1720] {1, 2, 3, 4, 5} 12.0998 19.7897

α = 0.990 3.6415 9.2439 [9.1912, 9.2965] {1}, {2}, {3}, {4}, {5} 18.2092 [18.0567, 18.3628] {1, 2, 3, 4, 5} 18.2079 28.6447

TVaRα(X+
d ) TVaRPα (X+

d ) CI best partition TVaR
P

α (X+
d ) CI worst partition comonotonic value TVaRα(X+

d )

α = 0.950 5.9894 8.1459 [8.1049, 8.1867] {1}, {2}, {3}, {4}, {5} 15.3576 [15.2393, 15.4780] {1, 2, 3, 4, 5} 15.3581 15.3581

α = 0.975 7.7853 10.0471 [9.9753, 10.1196] {1}, {2}, {3}, {4}, {5} 20.6481 [20.4390, 20.8634] {1, 2, 3, 4, 5} 20.6496 20.6496

α = 0.990 10.9104 13.2317 [13.0821, 13.3885] {1}, {2}, {3}, {4}, {5} 29.8069 [29.3648, 30.2706] {1, 2, 3, 4, 5} 29.8119 29.8119

P2

VaRα(X+
d ) VaRPα (X+

d ) CI best partition VaR
P

α (X+
d ) CI worst partition comonotonic value VaRα(X+

d )

α = 0.950 20.2607 101.3018 [100.3890, 102.2353] {1, 2, 3, 4, 5} 123.0954 [122.1062, 124.0797] {1}, {2}, {3}, {4}, {5} 101.3045 385.2407

α = 0.975 41.1273 210.6203 [207.9323, 213.3341] {1, 2, 3, 4, 5} 239.4450 [236.5916, 242.2609] {1}, {2}, {3}, {4}, {5} 210.6379 786.6000

α = 0.990 108.8486 544.3595 [533.3733, 555.5652] {1, 2, 3, 4, 5} 588.4729 [577.4243, 599.6371] {1}, {2}, {3}, {4}, {5} 544.2706 2011.3560

P3

VaRα(X+
d ) VaRPα (X+

d ) CI best partition VaR
P

α (X+
d ) CI worst partition comonotonic value VaRα(X+

d )

α = 0.950 22.4154 47.0963 [46.6884, 47.5069] {1, 2}, {3}, {4}, {5} 54.2111 [53.7668, 54.6667] {1}, {2, 3, 4, 5} 50.1153 121.8281

α = 0.975 47.5702 94.8298 [93.6694, 96.0371] {1, 2}, {3}, {4}, {5} 106.5601 [105.2982, 107.8572] {1, 3, 4, 5}, {2} 101.3346 238.5554

α = 0.990 126.4209 241.5839 [236.8072, 246.4360] {1, 2}, {3}, {4}, {5} 263.8447 [258.7939, 268.9411] {1, 3, 4, 5}, {2} 255.7386 584.8387

P4

VaRα(X+
d ) VaRPα (X+

d ) CI best partition VaR
P

α (X+
d ) CI worst partition comonotonic value VaRα(X+

d )

α = 0.950 146.3589 170.3672 [169.3407, 171.3924] {1, 2}, {3}, {4}, {5} 193.1536 [192.0576, 194.2430] {1 4 5}, {2 3} 174.0609 373.1082

α = 0.975 466.8276 512.7423 [508.3446, 517.2904] {1 2}, {3}, {4}, {5} 556.9200 [552.2811, 561.6270] {1 3 4 5}, {2} 520.6063 992.6268

α = 0.990 2153.2570 2265.9795 [2233.3220, 2297.6110] {1 2}, {3}, {4}, {5} 2371.9938 [2338.6924, 2404.9576] {1 3 4 5}, {2} 2282.7458 3796.9055

P5

VaRα(X+
d ) VaRPα (X+

d ) CI best partition VaR
P

α (X+
d ) CI worst partition comonotonic value VaRα(X+

d )

α = 0.950 20.2607 30.6411 [30.4228, 30.8659] {1}, {2}, {3}, {4}, {5} 34, 0695 [33.7975, 34.3451] {1, 2, 3, 4, 5} 34.0677 71.4667

α = 0.975 42.1267 55.6864 [55.0941, 56.2909] {1}, {2}, {3}, {4}, {5} 64.4557 [63.7459, 65.2037] {1, 2, 3, 4, 5} 64.4595 127.9082

α = 0.990 108.8486 128.0283 [125.7431, 130.4692] {1}, {2}, {3}, {4}, {5} 149.8718 [147.1879, 152.5900] {1, 2, 3, 4, 5} 149.8554 278.7862

P6

VaRα(X+
d ) VaRPα (X+

d ) CI best partition VaR
P

α (X+
d ) CI worst partition comonotonic value VaRα(X+

d )

α = 0.950 6.3681 16.6669 [16.5810, 16.7554] {1} {2}, {3}, {4}, {5} 20.1757 [20.0482, 20.3046] {1, 2, 3, 4, 5} 20.1749 41.5147

α = 0.975 10.6959 25.3693 [25.1798, 25.5576] {1}, {2}, {3}, {4}, {5} 33.0265 [32.7511, 33.3150] {1, 2, 3, 4, 5} 33.0280 65.8104

α = 0.990 20.5436 44.5180 [43.9817, 45.0640] {1}, {2}, {3}, {4}, {5} 61.5505 [60.7545, 62.3554] {1, 2, 3, 4, 5} 61.5457 119.8284

TVaRα(X+
d ) TVaRPα (X+

d ) CI best partition TVaR
P

α (X+
d ) CI worst partition comonotonic value TVaRα(X+

d )

α = 0.950 41.2347 44.3256 [42.8527, 48.6568] {1}, {2}, {3}, {4}, {5} 61.0083 [58.8910, 67.2682] {1, 2, 3, 4, 5} 61.6463 61.6463

α = 0.975 65.5188 68.4279 [65.5100, 77.0906] {1}, {2}, {3}, {4}, {5} 96.6062 [92.4150, 109.2116] {1, 2, 3, 4, 5} 97.8895 97.8895

α = 0.990 120.3731 122.1367 [114.9876, 143.7750] {1}, {2}, {3}, {4}, {5} 175.7929 [165.4839, 207.4321] {1, 2, 3, 4, 5} 179.0431 179.0431

Table 1: Estimates for the (T)VaR bounds defined in (2.1), (2.2), (2.3), (4.2), and (4.3) for the six Pareto risk portfolios described in Section 4. More detailed results
(at the partitions level) for the homogeneous portfolios P1 and P2 are to be found in Appendix A, and full computational details in Appendix B.

to the more statistically manageable domain of Market Risk.
Of course, the methodologies here described might well apply
to the broader variety of risks to which financial and insurance
regulations apply.

The current regulatory framework for OpRisk allows banks
to opt for increasingly sophisticated approaches, the most math-
ematically involved of which being the Advanced Measurement
Approach (AMA); see Basel Committee on Banking Supervi-
sion (2011). However, the Committee has decided to substitute
all the current existing approaches (including the AMA) by one
single standardised approach starting from Jan 1, 2022; we dis-
cuss this regulatory change below.

The AMA is commonly utilized via the Loss Distribution

Approach (LDA) based on a loss-frequency plus loss-severity
stochastic model, where financial institutions are given full free-
dom concerning the modeling assumptions used. The risk mea-
sure prescribed is the VaR of the 1-year aggregate exposure, at
the α = 99.9% probability level. For the LDA, the Basel frame-
work supports the structuring of a financial institution into a
number of business lines (BLs) and loss types (LTs); based on
data size, aggregation of OpRisk losses to the business line level
is widely chosen – similarly to what was done in Moscadelli
(2004).

In this paper, we consider the database of OpRisk losses col-
lected by Willis Professional Risks from public media and made
available to us by Willis Tower Watson. The database consists
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Business line (BL) data size

Not Available (NA) 61
Corporate Finance 42

Trading & Sales 201
Retail Banking 233

Commercial Banking 210
Payment & Settlement 12

Agency Services 18
Asset Management 79

Retail Brokerage 49
Insurance (life) 17

Insurance (non-life) 35

Total 957

Table 2: Data size for each Business Line in the Willis dataset.

of 1,413 OpRisk events reported in the public media since 1970.
For our analysis, we consider only the 957 available, inflation-
adjusted, gross losses in Million GBP from 1974–2013 and the
corresponding BLs as reported. Given the scarce availability
to the (academic) public of real OpRisk datasets, we use this
data even if it may not reflect all the features of an individual
company or consortium dataset.

For the estimation of the marginal distributions of each busi-
ness line, we follow a classical EVT-POT approach, for which
we refer for instance to the textbook reference McNeil et al.
(2015, Ch. 5). In order to achieve a significant number of ob-
servations leading to a more robust statistical analysis we have
merged some BLs, discarded the observations with NA and
hence worked with a total number of d = 5 BLs X1, . . . , X5;
see Table 3. A different aggregation scheme leading to differ-
ent estimates is possible, see the paper Embrechts and Puccetti
(2008) for the underlying methodological issues. Considering
that the above cited Moscadelli study considered d = 8 BLs
with a total amount of 47,000(!) observations, it is natural to
consider what follows just as an illustrative example.

Data size left alone, the reliability of the POT method highly
depends on the choice of the (sufficiently large) threshold be-
yond which a Generalized Pareto distribution (GPD) distribu-
tion is fitted. In our study, we select a different threshold for
each BL so that the fit to a GPD distribution is good and the
number of threshold exceedances is the same across all BLs.
This choice has two immediate advantages: - it allows a proper
application of the clustering procedure to follow within the frame-
work of an EVT analysis of exceedances; - it makes our study
not dependent on a subjective and possibly controversial choice
of a threshold (typically the Achille’s heel of the POT method-
ology).

Finally, for each BL we estimate the parameters of a GPD
and we assume that

P(X j ≤ x) = F j(x) = 1 −
(
1 + ξ j

x
β j

)−1/ξ j

, x ≥ 0, 1 ≤ j ≤ d.

(5.1)
The estimated parameters for the d = 5 marginal distributions
are collected in Table 3: recall that for the GPD model (5.1)

BL (initials) i ξi βi

CF + P&S + AS + INS 1 1.41 22.56
T&S 2 0.88 128.47
RBa 3 1.66 28.76
CB 4 1.20 83.49

AM + RBr 5 1.06 20.18

Table 3: Parameter values for the GPD-distributed risks. For our data analysis,
we adjust the gross loss amounts for inflation to 2013 prices exactly as done
in Chavez-Demoulin et al. (2016).

whenever ξ j ≥ 1, the mean of X j is infinite. The GPDs dis-
tribution are here assumed to hold over the entire loss domain
X j ≥ 0.

We do not consider a full LDA approach (we do not model
frequencies) for one practical and one mathematical reason.
First, a stochastic model for the frequency of claims in each
BL very much depends on one’s individual dataset at hand and
its full inclusion would distract the reader from the clustering
procedure which is the real aim of this paper. Second, it is
known that a total loss compound distribution inherits the tail
properties of the single claim distribution (assumed to be ho-
mogeneous within each BL); this has similarly been done in the
study carried out in Chavez-Demoulin et al. (2006).

Hence, we focus on the risk portfolio described in Table 3
and apply our clustering technique. All three linkage rules used
provide the same final clusterings; see Figure 2. The partitions
so-obtained, by varying the number of clusters from 2 to 4,
are ({1, 2, 4, 5}, {3}), ({1, 4, 5}, {2}, {3}) and ({1, 4}, {2}, {3}, {5}),
respectively.

The three nested partitions are reported in the middle part
of Table 4 with the corresponding estimates of the aggregate
VaR at different probability levels. All these partitions are valid
models for economic capital calculation and all yield a huge
reduction of capital estimate with respect to the worst possible
VaR value VaRα(X+

d ). The final model selection depends on the
firm-wide governance and risk management, and can be dele-
gated for instance to expert opinion.

Along with nested partitions as produced by the clustering
procedure, we also report VaR estimates for the partitions that
should yield the best possible VaR estimate ({1, 3, 4, 5}, {2}) and
one of the worst VaR estimates ({1, 2}, {3}, {4}, {5}) according
to our rule of thumb. One can observe that, while the parti-
tion {1, 2}, {3}, {4}, {5} always provides a larger VaR value, at
the levels α = 0.95, 0.99 the comonotonic value (corresponding
to the partition {1, 2, 3, 4, 5}, i.e. k = 1) provides a smaller VaR
estimate if compared to {1, 3, 4, 5}, {2}. Then, at α = 99.9%,
the partition ({1, 3, 4, 5}, {2}) delivers a smaller estimate than the
comonotonic one.

We take this example to remark that the illustrated rule of
thumb has not to be taken as a mathematical theorem and must
be used responsibly. First of all, it is an asymptotic statement,
where asymptotic means that it holds for sufficiently large prob-
ability levels α, but it might not hold at a prescribed finite level.
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Figure 2: Hierarchical clustering results for the OpRisk dataset described in Section 5 based on dissimilarity measure (3.1) and by varying linkage rule. From left
to right: single, complete and average method (the resulting partitions are identical).

OpRisk, d = 5

k α = 0.95 CI α = 0.99 CI α = 0.999 CI

VaRα(X+
d ) 4.066 · 104 3.440 · 105 8.677 · 106

4 {1, 2}, {3}, {4}, {5} 1.272 · 104 [1.269, 1.277] · 104 1.104 · 105 [1.094 , 1.135] · 105 3.201 · 106 [3.109 , 3.299] · 106

4 {1, 4}, {2}, {3}, {5} 1.199 · 104 [1.195 , 1.203] · 104 1.020 · 105 [1.011 , 1.028] · 105 2.991 · 106 [2.904 , 3.084] · 106

3 {1, 4, 5}, {2}, {3} 1.165 · 104 [1.161 , 1.169] · 104 1.004 · 105 [0.995 , 1.012] · 105 2.970 · 106 [2.883 , 3.061] · 106

2 {1, 2, 4, 5}, {3} 1.119 · 104 [1.115 , 1.123] · 104 1.001 · 105 [0.992 , 1.009] · 105 2.976 · 106 [2.889 , 3.069] · 106

2 {1, 3, 4, 5}, {2} 9.082 · 103 [9.051 , 9.113] · 103 7.627 · 104 [7.563 , 7.691] · 104 2.294 · 106 [2.226 , 2.362] · 106

1 comonotonic value 8.355 · 103 7.489 · 104 2.296 · 106

VaRα(X+
d ) 2.485 · 103 3.618 · 104 1.654 · 106

Table 4: Estimates of VaRIα (X+
d ) at different probability levels for the sum of d = 5 GPD random variables following the distributions in Table 3.

The new regulatory framework for Operational Risk
In December 2017, the Basel Committee published a revi-

sion (Basel Committee on Banking Supervision, 2017a) to the
current OpRisk regulatory framework. Starting from January 1,
2022, the so-called standardised approach for measuring min-
imum operational risk capital requirements will replace all ex-
isting approaches in the Basel II framework. As a consequence,
the operational risk capital charge will be computed on the basis
of a standard formula valid for all internationally active banks
on a consolidated basis. At the moment, no change is planned
for the Solvency OpRisk regulatory framework.

It is undeniable that the correct application of the AMA ap-
proach for OpRisk comes with many troublesome statistical is-
sues (data scarcity, limited collection periods, reporting bias,
cut-off values, access to reliable datasets, data contamination;
see Embrechts and Hofert, 2011) that we have only touched or
not considered in our study. All of the above problems are am-
plified by the choice of the OpRisk regulatory level. Looking
at the wide empirical confidence intervals for the 99.9% capital

estimates in Table 4, it is immediately clear why the choice of
α = 0.999 for the VaR capital charge has always been highly
contested; see, for instance Danı́elsson et al. (2001) and the ex-
amples in Embrechts et al. (2014).

However, it is also true that the possibility of opting for an
advanced modeling methodology has inspired mathematically
sound and very sophisticated techniques to deal with such is-
sues, as for instance the one described in Chavez-Demoulin
et al. (2016). In this sense, a brutal stop on the AMA would
probably imply an end to the mathematical development of fur-
ther enhanced methodologies.

It must be said that also the standard formula (SF) comes
with a number of deficiencies that cannot be deemed less rele-
vant if compared to the AMA approach. We agree with Scherer
and Stahl (2018) (an English summary of this paper can be
found in Stahl (2017)) that: being a world formula, the SF is
prone to significant model uncertainty; the SF does not satisfy
the axioms defining coherent risk measures; the SF is not law-
invariant; the SF is not back-testable and not necessarily con-
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j Ticker ν j µ j σ j

1 GS 5.09 -4.90e-04 5.81e-03
2 MMM 3.05 -2.93e-04 2.63e-03
3 BA 3.12 -1.27e-04 4.21e-03
4 UNH 3.70 -5.30e-04 3.63e-03
5 HD 3.72 -2.37e-05 3.69e-03
6 IBM 3.70 -3.23e-04 3.75e-03
7 MCD 4.55 -5.14e-05 3.14e-03
8 AAPL 2.97 -1.65e-04 4.06e-03
9 JNJ 3.17 -1.97e-04 2.40e-03

10 TRV 3.14 -1.40e-04 2.92e-03
11 UTX 2.84 -2.27e-04 2.98e-03
12 CAT 4.60 -5.36e-04 5.66e-03
13 CVX 3.73 -4.63e-04 4.67e-03
14 DIS 3.27 1.41e-05 3.12e-03
15 V 4.27 -1.04e-05 4.33e-03
16 PG 6.43 -9.85e-05 3.29e-03
17 JPM 2.15 -4.61e-04 3.54e-03
18 DD 4.36 -1.68e-04 4.76e-03
19 AXP 2.80 -1.09e-04 3.70e-03
20 XOM 3.17 -2.53e-04 3.51e-03
21 WMT 3.05 -2.07e-04 3.22e-03
22 MSFT 3.09 -1.95e-04 4.04e-03
23 MRK 4.09 -1.87e-04 3.85e-03
24 NKE 7.49 3.56e-04 5.27e-03
25 VZ 6.89 -2.48e-04 3.76e-03
26 KO 3.13 6.12e-05 2.57e-03
27 INTC 3.42 -8.87e-05 4.11e-03
28 PFE 3.87 -1.06e-05 3.65e-03
29 CSCO 3.08 -1.84e-04 3.72e-03
30 GE 2.98 -2.47e-05 3.05e-03

Table 5: Composition of the Dow Jones Industrial Average, with stocks ordered
by their weights in the index as of June 20, 2016. For the daily log-loss L j we
assume L j ∼ µ j + σ j tν j , where tν denotes a t-distribution with ν degrees of
freedom. MLE estimates for the marginal parameters ν j, µ j, and σ j are also
reported.

servative. Some of these topics are also discussed in more detail
in Stahl (2016).

If a solution of the conundrum AMA versus SF is clearly
beyond the scope of this paper, the insight on our methodol-
ogy given by the Willis dataset remains valid to illustrate the
diversification interplay between finite and infinite-mean distri-
butions.

6. A Market Risk case study

Financial markets constitute a framework where one can
conduct a higher dimensional, more robust statistical analysis.
Compared to OpRisk, Market Risk data are abundant, freely
available and less heavy-tailed. These factors translate into
more reliable (T)VAR estimates.

The revised regulatory framework (taking effect on January
1, 2022; see Basel Committee on Banking Supervision, 2017b)
for Market Risk – Internal Models Approach – prescribes a
four-step adjustment procedure based on the TVaR computed
(on a daily basis) at the quantile level α = 97.5% over a holding
period of 10 days; see Basel Committee on Banking Supervi-
sion (2016, pp.52-69). Here, we focus on the rigorous back-
testing of internal models prescribed by the new regime, which
includes the computation of two daily VaRs for each desk cali-
brated to a 99.0% and 97.5% level and a daily TVaR calibrated
to 97.5%. As an illustrative example within this new regulatory
set-up, we analyse the 252 daily log-losses reported in 2016 for
the d = 30 stocks composing the Dow Jones Industrial Average

(DJIA) index. Denoted by P j
t the close price at the end of day t

of the j-th stock, we study the time series

L j
t = − log

 P j
t

P j
t−1

 ,
for 1 ≤ j ≤ 30 and 2016/1/4 ≤ t ≤ 2016/12/30. One can of
course easily reproduce the analysis which follows for a differ-
ent holding period (for instance 10 days); and this possibly us-
ing the same data as overlapping observations are admitted by
the Basel guidelines. Close prices P j

t have been freely down-
loaded via Google Finance.

Using standard MLE techniques, for all the d = 30 marginal
stock log-losses we fit (with impressive accuracy) the param-
eters of a t-distribution. The composition of the DJIA index
and the corresponding estimated marginal stock distributions
are collected in Table 5. Similarly to Section 5, we focus on
a statistically viable and illustrative example of the methodol-
ogy treated in this paper, leaving the overall procedure to com-
pute and backtest a Market Risk economic capital to the specific
trading desks of one’s institution.

As for the cluster analysis of the marginal stock log-losses,
we apply the hierarchical methodology as introduced and de-
scribed in Section 5. Figure 3 presents the dendrogram of the 30
marginal stock log-losses for each linkage rule used. Contrary
to what happens in the OpRisk case study, here the kind of link-
age impacts the final clustering. Our further analysis focuses
on the nested partitions of the clustering based on the average
linkage, which are reported in Table 6. This example shows the
applicability of a clustering technique also in a higher dimen-
sional environment. When treating high dimensional portfolios,
however, the possible choices of the final clustering also grow
with the dimension and will call for a further (possibly, non sta-
tistical) selection (prior source of information or beliefs, expert
opinion, etc.).

Having all the risks with a finite mean, the estimates of the
joint (T)VaR for the (linearized) loss operator X+

d are perfectly
ordered in decreasing order on k starting from k = 1 (comono-
tonic scenario). This behavior is known since Proschan (1965);
see also Ju and Pan (2016) and references therein. Along with
the estimates produced by the cluster analysis, we provide the
portfolio (T)VaR when a multivariate t-distribution is fitted to
the data, and when a t-copula is estimated from data pseudo-
samples and then applied to the marginal distributions in Ta-
ble 5. As one can see from Table 6, the two multidimensional
t-models fall within the range of less diversified partitions. In
general, we support the use of many lower dimensional sub-
models rather than (very) high dimensional ones; see the warn-
ings about using copulas in high dimensions given in Mikosch
(2006) and Mai and Scherer (2013). Following this viewpoint,
valid alternatives are offered by vines (Brechmann et al., 2012)
and hierarchical models (Arbenz et al., 2012).

Concluding, if all marginal distributions in a risk portfolio
have a finite mean, for a large enough value of α, the smallest
VaR estimate is produced by the assumption of complete inde-
pendence, whereas the largest by complete comonotonicity.

The full independence assumption is more realistic at the
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bank-level rather than at the portfolio-level, since it is common
to assume that some risks such as catastrophic risk and opera-
tional risk are independent from market-driven risks (e.g. mar-
ket risk, credit risk).

To this latter respect, a typical example is given by the al-
ready mentioned DNB portfolio. This portfolio has been stud-
ied in Aas and Puccetti (2014) where the ICAAP economic cap-
ital has been computed under a variety of assumptions. The
DNB portfolio consists of six (d = 6) risks with a finite mean
(Table 1 in Aas and Puccetti, 2014) and therefore, at the 99.97%
confidence level at which (T)VaR estimates are computed, the
independence and comonotonicity cases are to be considered
the best and worst possible partitions, respectively. One can see
from Tables 5-6 in Aas and Puccetti (2014) how both these sce-
narios deliver a reduction of the (T)VaR dependence range as
computed by the RA.

7. Conclusions

An appropriate risk aggregation framework is fundamental
for adequate firm-wide risk management, but poses a number
of significant statistical and mathematical challenges. In partic-
ular, when computing the total economic capital associated to
a joint risk portfolio, a financial institution faces a considerable
model uncertainty related to the modeling of interdependence
amongst the risks held.

This paper contributes to the literature of easily computable
and practical bounds on (T)VaR which has been initiated in Big-
nozzi et al. (2015) and further extended in Puccetti et al. (2016)
and Puccetti et al. (2017). In particular, we propose to apply
a clustering procedure in order to partition a risk portfolio into
independent subgroups of positively dependent risks. Based on
available data, the portfolio partition so obtained allows for a
great reduction of total economic capital and model uncertainty,
under a statistically viable and mathematically sound environ-
ment. The proposed rule of thumb might serve as a guideline to
avoid time consuming simulations and facilitate the choice of
the aggregation model used for economic capital computation.

We conclude the paper with a mathematical appendix for-
malizing some of the results described in the text and a brief de-
scription of how the estimates throughout the paper have been
obtained.

Appendix A. A mathematical appendix

Recall the mathematical framework described at the end
of Section 2. For each different partition I of {1, . . . , d}, Ta-
bles A.7-A.8 give (T)VaR estimates for the homogeneous port-
folios P1 and P2 introduced in Section 4, at the quantile level
α = 0.975.

α = 0.975

partition VaRIα(X+
d ) CI TVaRIα(X+

d ) CI

{1, 2, 3, 4, 5} 12.1003 [12.0295, 12.1720] 20.6481 [20.4390, 20.8634]
{1, 2, 3, 4}, {5} 10.4506 [10.3944, 10.5060] 17.3080 [17.1385, 17.4831]
{1, 2, 3}, {4, 5} 9.6377 [9.5908, 9.6863] 15.3021 [15.1624, 15.4423]
{1, 2, 3}, {4}, {5} 8.9734 [8.9298, 9.0176] 14.2156 [14.0870, 14.3485]
{1, 2}, {3, 4}, {5} 8.4992 [8.4611, 8.5380] 12.9841 [12.8763, 13.0957]
{1, 2}, {3}, {4}, {5} 7.7798 [7.7472, 7.8122] 11.6279 [11.5354, 11.7255]
{1}, {2}, {3}, {4}, {5} 7.0264 [7.0008, 7.0526] 10.0471 [9.9753, 10.1196]

Table A.7: Estimates of VaRIα (X+
d ) and TVaRIα (X+

d ) at the quantile level α =

0.975 for the sum of d = 5 Pareto(3) random variables.

α = 0.975

partition VaRIα(X+
d ) CI

{1, 2, 3, 4, 5} 210.6203 [207.9323, 213.3341]
{1, 2, 3, 4}, {5} 220.3223 [217.6049, 223.0579]
{1, 2, 3}, {4, 5} 224.1656 [221.3665, 226.9672]
{1, 2, 3}, {4}, {5} 228.5470 [225.7553, 231.3990]
{1, 2}, {3, 4}, {5} 230.7306 [227.9037, 233.5825]
{1, 2}, {3}, {4}, {5} 235.0663 [232.2665, 237.9174]
{1}, {2}, {3}, {4}, {5} 239.4450 [236.5916, 242.2609]

Table A.8: Estimates of VaRIα (X+
d ) at the quantile level α = 0.975 for the sum

of d = 5 Pareto(0.98) random variables.

The ordering of partitions illustrated in the above tables has
been shown in Theorems 4.1-4.2 of Ibragimov (2009) for con-
volutions of stable distributions. Using a classical result on
subexponential distributions, we prove the analogous asymp-
totic result for Pareto-like marginals.

To a given partition I = {I1, . . . , Ik} of {1, . . . , d}, asso-
ciate a vector w = (w1, . . . ,wd) ∈ Rd defined by w j = #I j,
for 1 ≤ j ≤ k, and w j = 0 for k + 1 ≤ j ≤ d. Notice that∑d

j=1 wi = d holds for any choice of the partition I. In our
mathematical framework, the vector w can be seen as a mea-
sure of the portfolio diversification implied by I. For instance,
w = (1, 1, . . . , 1) corresponds to the assumption of independent
risks, while v = (d, 0, . . . , 0) corresponds to a full comonotonic
model. A formal way to compare the portfolio diversification
implied by two different partitions is offered by the notion of
majorization.

Denote by w[i] the i-largest component of w (w[1] is the max-
imal, w[d] is the minimal). A vector w ∈ Rd is majorized by a
vector v ∈ Rd, w ≺ v, if

∑ j
r=1 w[r] ≤

∑ j
r=1 v[r], 1 ≤ j ≤ d − 1,

and
∑d

r=1 w[r] =
∑d

r=1 v[r]. In our context, for example we have
that

(1, 1, . . . , 1) ≺ (d, 0, . . . , 0).

Hence w ≺ v means that v describes a portfolio which is less
diversified than that of w. If one considers the two partitions
I1 = {{1, 2}, {3, 4}, {5}} and I2 = {{1, 2, 3}, {4}, {5}}, for the cor-
responding weights w1 and w2 one has

w1 = (2, 2, 1, 0, 0) ≺ (3, 1, 1, 0, 0) = w2.

A function h : Rd → R which preserves the ordering ≺ of
majorization is called Schur-convex. Formally, h is said to be
Schur-convex if w ≺ v implies h(w) ≤ h(v). If the last inequality
is strict whenever w ≺ v but v is not a permutation of w, h is
said to be strictly Schur-convex. The function h is said to be
(strictly) Schur-concave if −h is (strictly) Schur-convex. For

10



W
M

T
V

Z
U

N
H

JN
J

M
R

K
P

F
E

H
D

N
K

E
A

A
P

L
M

C
D

D
IS

D
D

P
G

K
O

C
V

X
X

O
M

T
R

V
B

A
M

M
M

U
T

X
G

E
C

AT
A

X
P

G
S

JP
M

IB
M

IN
T

C
C

S
C

O
V

M
S

F
T

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

W
M

T
V

Z
M

C
D

P
G

K
O

D
IS

A
X

P
G

S
JP

M
D

D
C

V
X

X
O

M
M

M
M

U
T

X
G

E
B

A
C

AT
JN

J
M

R
K

P
F

E
U

N
H

T
R

V
H

D
N

K
E

A
A

P
L

V
M

S
F

T
IB

M
IN

T
C

C
S

C
O

0.
6

0.
8

1.
0

1.
2

M
C

D
T

R
V

P
G

K
O

W
M

T
V

Z
U

N
H

JN
J

M
R

K
P

F
E

H
D

N
K

E
A

A
P

L
D

D
D

IS
V

M
S

F
T

IB
M

IN
T

C
C

S
C

O
C

V
X

X
O

M
A

X
P

G
S

JP
M

M
M

M
U

T
X

G
E

B
A

C
AT

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Figure 3: Hierarchical clustering results for the Market Risk dataset described in Section 6 based on the dissimilarity measure (3.1) and by varying linkage rule.
From left to right: single, complete and average method.

example, the function h(w) =
∑d

j=1 wθ
j is strictly Schur-convex

for θ > 1 and strictly Schur-concave for θ < 1. For this and
many more results on Schur-convexity, we refer to Marshall
et al. (2011, Ch. 3).

For a given I, denote by X+
d,I the sum of the risks X1, . . . , Xd

under the assumption that the risk subvectors XI1 , . . . , XIk are
independent while the risks (X j, j ∈ Ii) inside each subgroup are
comonotonic. If the risks X j are also assumed to be identically
distributed, one immediately has that

P
(
X+

d,I > x
)

= P

 k∑
j=1

w jY j > x

 , (A.1)

where Y1, . . . ,Yk are iid random variables with Y1 ∼ X1. Equa-
tion (A.1) holds because identically distributed risks belonging
the same subgroup will be (under the assumption of comono-
tonicity inside the subgroup) equal with probability one.

Assume now that the distribution of each X j (hence of each
Y j) is regularly varying with a common tail index θ > 0, written
R(−θ), that is

lim
x→∞

P(X j > tx)
P(X j > x)

= t−θ, for all t > 0, and 1 ≤ j ≤ d.

Notice that a Pareto(θ) distribution is R(−θ), with the tail index
θ separating distributions with finite mean (θ > 1) from those
with infinite mean (θ ≤ 1).

As regularly varying distributions are subexponential (see
for instance Appendix A3 in Embrechts et al. (1997) or Cooke

et al. (2014, Cor. 4.1)), one can use the very well-known ap-
proximation result on subexponential distribution (Tang and Tsit-
siashvili, 2003) that

P

 k∑
j=1

w jY j > x

 x→∞
∼

k∑
j=1

P
(
w jY j > x

) x→∞
∼

k∑
j=1

wθ
jP(X1 > x).

(A.2)
In the comparison of two partitions I and I′ with correspond-
ing weights w and v one obtains from (A.1) and (A.2) that

lim
x→∞

P(X+
d,I > x)

P(X+
d,I′ > x)

=

∑d
j=1 wθ

j∑d
j=1 vθj

. (A.3)

As the function h : Rd → R, h(w) =
∑d

j=1 wθ
j is strictly Schur-

convex when θ > 1 and strictly Schur-concave when θ < 1, the
following proposition immediately follows from (A.3).

Proposition A.1. Let I and I′ two partitions of {1, . . . , d} with
corresponding weights w and v such that w ≺ v and w is not
a permutation of v. If the common distribution of the random
variables X1, . . . , Xd is R(−θ), and under the set-up introduced
above, we have that

lim
x→∞

P(X+
d,I > x)

P(X+
d,I′ > x)

=

< 1, if θ > 1;
> 1, if θ < 1.

Translated into the language of VaR, this means that

lim
α→1−

VaRIα(X+
d )

VaRI′α (X+
d )

=

< 1, if θ > 1;
> 1, if θ < 1.
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Market Risk d = 30

k VaRα α = 0.975 CI α = 0.99 CI

VaRα(X+
d ) 0.49122 0.66399

comonotonic value 0.32431 0.45049
2 {1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 27, 28, 29, 30}, {7, 10, 16, 21, 25, 26} 0.27652 [0.27518, 0.27781] 0.38355 [0.38094, 0.38605]
3 {1, 2, 3, 5, 6, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 24, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 21, 25, 26} 0.24148 [0.24033, 0.24254] 0.33395 [0.33165, 0.33613]
3 t-copula + marginals 0.23364 [0.23233, 0.23488] 0.34063 [0.33789, 0.34320]
4 {1, 2, 3, 6, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 21, 25, 26}, {5, 24} 0.22049 [0.21945, 0.22152] 0.30561 [0.30361, 0.30760]
- multivariate t-distribution 0.21417 −− 0.29073 −−

5 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 21, 25, 26}, {5, 24}, {8} 0.20862 [0.20763, 0.20954] 0.28807 [0.28619, 0.28995]
6 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 26}, {5, 24}, {21, 25}, {8} 0.20555 [0.20459, 0.20647] 0.28521 [0.28327, 0.28703]
7 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 26}, {5, 24}, {3 singletons} 0.20517 [0.20426, 0.20608] 0.28485 [0.28290, 0.28673]
8 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 26}, {5, 24}, {4 singletons} 0.19327 [0.19244, 0.19418] 0.26855 [0.26671, 0.27028]
9 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {10, 16, 26}, {5, 24}, {5 singletons} 0.19226 [0.19138, 0.19320] 0.26768 [0.26581, 0.26945]

10 {1, 2, 3, 6, 11, 12, 13, 15, 17, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {10, 16, 26}, {5, 24}, {6 singletons} 0.18343 [0.18258, 0.18429] 0.25499 [0.25327, 0.25672]
11 {1, 2, 3, 6, 11, 12, 13, 15, 17, 19, 20, 22, 27, 29, 30}, {9, 23, 28}, {10, 16, 26}, {5, 24}, {7 singletons} 0.18185 [0.18096, 0.18272] 0.25352 [0.25172, 0.25526]
12 {1, 2, 3, 11, 12, 13, 17, 19, 20, 30}, {9, 23, 28}, {6, 15, 22, 27, 29}, {10, 16, 26}, {5, 24}, {7 singletons} 0.13974 [0.13915, 0.14039] 0.18934 [0.18818, 0.19056]
13 {1, 2, 3, 11, 12, 17, 19, 30}, {13, 20}, {9, 23, 28}, {6, 15, 22, 27, 29}, {10, 16, 26}, {5, 24}, {7 singletons} 0.12291 [0.12241, 0.12345] 0.16421 [0.16335, 0.16519]
14 {1, 2, 3, 11, 12, 17, 19, 30}, {13, 20}, {9, 23, 28}, {6, 15, 22, 27, 29}, {16, 26}, {5, 24}, {8 singletons} 0.12172 [0.12121, 0.12222] 0.16297 [0.16203, 0.16396]
15 {1, 17, 19}, {13, 20}, {9, 23, 28}, {6, 15, 22, 27, 29}, {16, 26}, {2, 3, 11, 12, 30}, {5, 24}, {8 singletons} 0.10297 [0.10259, 0.10338] 0.13393 [0.13319, 0.13462]
16 {1, 17, 19}, {13, 20}, {9, 23, 28}, {6, 15, 22, 27, 29}, {16, 26}, {2, 3, 11, 12, 30}, {4}, {10 singletons} 0.10179 [0.10138, 0.10217] 0.13270 [0.13197, 0.13342]
17 {1, 17, 19}, {13, 20}, {23, 28}, {6, 15, 22, 27, 29}, {16, 26}, {2, 3, 11, 12, 30}, {11 singletons} 0.10023 [0.09984, 0.10062] 0.13091 [0.13016, 0.13158]
18 {1, 17, 19}, {13, 20}, {23, 28}, {6, 27, 29}, {16, 26}, {2, 3, 11, 12, 30}, {15, 22}, {11 singletons} 0.09163 [0.09130, 0.09196] 0.11895 [0.11832, 0.11956]
19 {1, 17, 19}, {13, 20}, {23, 28}, {6, 27, 29}, {16, 26}, {2, 11, 30}, {15, 22}, {3, 12}, {11 singletons} 0.08317 [0.08287, 0.08346] 0.10668 [0.10618, 0.10720]
20 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {2, 11, 30}, {15, 22}, {3, 12}, {12 singletons} 0.08008 [0.07980, 0.08038] 0.10262 [0.10216, 0.10309]
21 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {2, 11, 30}, {15, 22}, {14 singletons} 0.07763 [0.07737, 0.07790] 0.09959 [0.09911, 0.10007]
22 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {2, 11, 30}, {16 singletons} 0.07571 [0.07546, 0.07600] 0.09724 [0.09679, 0.09773]
23 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {11, 30}, {17 singletons} 0.07355 [0.07330, 0.07383] 0.09426 [0.09384, 0.09474]
24 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {19 singletons} 0.07220 [0.07196, 0.07248] 0.09247 [0.09205, 0.09293]
25 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {21 singletons} 0.07136 [0.07111, 0.07161] 0.09154 [0.09110, 0.09203]
26 {1, 17, 19}, {13, 20}, {23, 28}, {23 singletons} 0.06933 [0.06909, 0.06959] 0.08889 [0.08848, 0.08936]
27 {1, 17}, {13, 20}, {23, 28}, {24 singletons} 0.06462 [0.06441, 0.06486] 0.08171 [0.08134, 0.08208]
28 {1, 17}, {13, 20}, {26 singletons} 0.06299 [0.06278, 0.06323] 0.07972 [0.07934, 0.08011]
29 {1, 17}, {28 singletons} 0.06074 [0.06053, 0.06096] 0.07672 [0.07638, 0.07709]

VaRα(X+
d ) −0.01813 −0.01216

k TVaRα α = 0.975 CI α = 0.99 CI

TVaRα(X+
d ) 0.49108 0.66417

2 {1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 27, 28, 29, 30}, {7, 10, 16, 21, 25, 26} 0.41891 [0.41566, 0.42213] 0.56711 [0.56054, 0.57422]
- t-copula + marginals 0.38311 [0.37906, 0.38674] 0.54315 [0.53521, 0.55146]
3 {1, 2, 3, 5, 6, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 24, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 21, 25, 26} 0.36522 [0.36242, 0.36807] 0.49438 [0.48853, 0.50058]
4 {1, 2, 3, 6, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 21, 25, 26}, {5, 24} 0.33536 [0.33276, 0.33807] 0.45574 [0.45020, 0.46177]
5 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 21, 25, 26}, {5, 24}, {8} 0.31573 [0.31332, 0.31830] 0.42795 [0.42270, 0.43353]
6 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 26}, {5, 24}, {21, 25}, {8} 0.31289 [0.31044, 0.31540] 0.42534 [0.42017, 0.43084]
7 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 26}, {5, 24}, {3 singletons} 0.31258 [0.31013, 0.31509] 0.42509 [0.41989, 0.43062]
- multivariate t-distribution 0.30972 −− 0.40577 −−

8 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {7, 10, 16, 26}, {5, 24}, {4 singletons} 0.29530 [0.29294, 0.29769] 0.40249 [0.39744, 0.40773]
9 {1, 2, 3, 6, 11, 12, 13, 14, 15, 17, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {10, 16, 26}, {5, 24}, {5 singletons} 0.29445 [0.29206, 0.29686] 0.40176 [0.39670, 0.40709]

10 {1, 2, 3, 6, 11, 12, 13, 15, 17, 19, 20, 22, 27, 29, 30}, {4, 9, 23, 28}, {10, 16, 26}, {5, 24}, {6 singletons} 0.28049 [0.27824, 0.28281] 0.38248 [0.37765, 0.38757]
11 {1, 2, 3, 6, 11, 12, 13, 15, 17, 19, 20, 22, 27, 29, 30}, {9, 23, 28}, {10, 16, 26}, {5, 24}, {7 singletons} 0.27905 [0.27683, 0.28138] 0.38124 [0.37646, 0.38637]
12 {1, 2, 3, 11, 12, 13, 17, 19, 20, 30}, {9, 23, 28}, {6, 15, 22, 27, 29}, {10, 16, 26}, {5, 24}, {7 singletons} 0.20744 [0.20589, 0.20922] 0.27867 [0.27538, 0.28249]
13 {1, 2, 3, 11, 12, 17, 19, 30}, {13, 20}, {9, 23, 28}, {6, 15, 22, 27, 29}, {10, 16, 26}, {5, 24}, {8 singletons} 0.17930 [0.17792, 0.18085] 0.23852 [0.23559, 0.24191]
14 {1, 2, 3, 11, 12, 17, 19, 30}, {13, 20}, {9, 23, 28}, {6, 15, 22, 27, 29}, {16, 26}, {5, 24}, {8 singletons} 0.17808 [0.17673, 0.17966] 0.23735 [0.23437, 0.24078]
15 {1, 17, 19}, {13, 20}, {9, 23, 28}, {6, 15, 22, 27, 29}, {16, 26}, {2, 3, 11, 12, 30}, {5, 24}, {8 singletons} 0.14357 [0.14262, 0.14467] 0.18526 [0.18318, 0.18762]
16 {1, 17, 19}, {13, 20}, {9, 23, 28}, {6, 15, 22, 27, 29}, {16, 26}, {2, 3, 11, 12, 30}, {10 singletons} 0.14244 [0.14147, 0.14354] 0.18423 [0.18218, 0.18659]
17 {1, 17, 19}, {13, 20}, {23, 28}, {6, 15, 22, 27, 29}, {16, 26}, {2, 3, 11, 12, 30}, {11 singletons} 0.14070 [0.13972, 0.14176] 0.18234 [0.18031, 0.18476]
18 {1, 17, 19}, {13, 20}, {23, 28}, {6, 27, 29}, {16, 26}, {2, 3, 11, 12, 30}, {15, 22}, {11 singletons} 0.12791 [0.12706, 0.12890] 0.16536 [0.16355, 0.16748]
19 {1, 17, 19}, {13, 20}, {23, 28}, {6, 27, 29}, {16, 26}, {2, 11, 30}, {15, 22}, {3, 12}, {11 singletons} 0.11424 [0.11349, 0.11512] 0.14615 [0.14448, 0.14807]
20 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {2, 11, 30}, {15, 22}, {3, 12}, {12 singletons} 0.11002 [0.10926, 0.11084] 0.14081 [0.13916, 0.14264]
21 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {2, 11, 30}, {15, 22}, {14 singletons} 0.10702 [0.10624, 0.10784] 0.13736 [0.13566, 0.13920]
22 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {2, 11, 30}, {16 singletons} 0.10468 [0.10393, 0.10554] 0.13470 [0.13304, 0.13653]
23 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {11, 30}, {17 singletons} 0.10141 [0.10065, 0.10222] 0.13026 [0.12862, 0.13208]
24 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {16, 26}, {19 singletons} 0.09950 [0.09877, 0.10030] 0.12777 [0.12618, 0.12956]
25 {1, 17, 19}, {13, 20}, {23, 28}, {27, 29}, {21 singletons} 0.09861 [0.09789, 0.09940] 0.12689 [0.12532, 0.12879]
26 {1, 17, 19}, {13, 20}, {23, 28}, {23 singletons} 0.09586 [0.09517, 0.09668] 0.12343 [0.12194, 0.12521]
27 {1, 17}, {13, 20}, {23, 28}, {24 singletons} 0.08669 [0.08615, 0.08733] 0.10902 [0.10781, 0.11050]
28 {1, 17}, {13, 20}, {26 singletons} 0.08475 [0.08420, 0.08544] 0.10682 [0.10563, 0.10838]
29 {1, 17}, {28 singletons} 0.08160 [0.08107, 0.08221] 0.10278 [0.10160, 0.10422]

Table 6: Estimates of VaRIα (X+
d ) and TVaRIα (X+

d ) at different probability levels for the sum of d = 30 random variables following the distributions in Table 5. We
also provide the portfolio (T)VaR when a multivariate t-distribution is fitted to the data (multivariate t-distribution, in this case one can provide analytical estimates),
and when a t-copula is estimated from data pseudo-samples and then applied to the marginal distributions (t-copula+marginals).
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Appendix B. Computational details

The figures reported in the tables throughout the paper are
median estimates evaluated over 104 (103 for Table 6) repeti-
tions of 106 (107 for Table 4 and 5 · 106 for Table 1(P4)) Monte
Carlo simulations under each prescribed model. Simulations
for Table 1 (P1, P2) and Tables A.7–A.8 have been obtained
using MATLAB (2017a) on a Asus K501UX (Intel i7-6500U,
2 cores, 2.5GHz, 12 GB RAM); simulations for all remaining
tables have been obtained on INDACO Cluster (16 nodes each
with CPU Intel Xeon E5-22683V4 2.1GHz, 16 cores, 256GB
RAM) using MATLAB (2017b). For each figure, empirical
Confidence Intervals (CI) at the 95% confidence level are also
reported. Estimates of VaRα(X+

d ) and VaRα(X+
d ) are obtained

via the RA function of the R package qrmtools with 2 ·106 (4 ·
106 for Table 4) discretization points; estimates of TVaRα(X+

d )
are obtained via the RA using the numerical methodology de-
scribed in Jakobsons and Vanduffel (2015) with 2 · 106 dis-
cretization points.
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Embrechts, P., C. Klüppelberg, and T. Mikosch (1997). Modelling Extremal
Events for Insurance and Finance. Springer, Berlin.

Embrechts, P., A. J. McNeil, and D. Straumann (2002). Correlation and de-
pendence in risk management: properties and pitfalls. In Risk management:
Value at Risk and Beyond, pp. 176–223. Cambridge Univ. Press.

Embrechts, P. and G. Puccetti (2008). Aggregating operational risk across ma-
trix structured loss data. J. Operational Risk 3(2), 29–44.
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