

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI CHIMICA

MolSimEng 2018

Ab-initio and force field molecular dynamics applied to vibrational spectroscopy: the case of Deoxyguanosine and Ac-Phe-Met-NH₂

Fabio Gabas, Riccardo Conte, Michele Ceotto

Semiclassical Methods

Semiclassical Methods

Power spectrum
$$I_{\chi}(E) = \frac{1}{2\pi\hbar} \int dt \, e^{iEt/\hbar} \langle \chi | \chi(t) \rangle \equiv \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} \langle \chi \left| e^{-i\hat{H}t/\hbar} \right| \chi \rangle e^{iEt/\hbar} dt$$

$$\mathbf{MC-SCIVR} \qquad I_{\chi}(E) = \left(\frac{1}{2\pi\hbar}\right)^{F} \sum_{k=1}^{N_{traj}} \frac{1}{2\pi\hbar T} \left| \int_{0}^{T} \mathrm{d}t \left\langle \chi | \mathbf{p}_{t}, \mathbf{q}_{t} \right\rangle e^{\left\{ \frac{i}{\hbar} [S_{t} + Et + \phi_{t}] \right\}} \right|^{2}$$

$$\chi \rangle = \sum_{k=1}^{N_{states}} \prod_{j=1}^{F} \varepsilon_{k}(j) \left| p_{eq,j}^{k}, q_{eq,j}^{k} \right\rangle$$

 $\mathbf{q}_{_{eq}}$ at equilibrium geometry Harmonic sampling for $\mathbf{p}_{_{eq}}$

1) Ceotto, M.; Atahan, S.; Shim, S.; Tantardini, G. F.; Aspuru-Guzik, A., *Phys. Chem. Chem. Phys.* 2009, 11, 3861–3867. 2) Ceotto, M.; Atahan, S.; Tantardini, G. F.; Aspuru-Guzik, A. , *J.Chem. Phys.*, 2009, 130, 234113.

. 2

Semiclassical Methods

Power spectrum
$$I_{\chi}(E) = \frac{1}{2\pi\hbar} \int dt \, e^{iEt/\hbar} \langle \chi | \chi(t) \rangle \equiv \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} \langle \chi \left| e^{-i\hat{H}t/\hbar} \right| \chi \rangle e^{iEt/\hbar} dt$$

$$\mathbf{MC-SCIVR} \qquad I_{\chi}(E) = \left(\frac{1}{2\pi\hbar}\right)^{F} \sum_{k=1}^{N_{traj}} \frac{1}{2\pi\hbar T} \left| \int_{0}^{T} \mathrm{d}t \left\langle \chi | \mathbf{p}_{t}, \mathbf{q}_{t} \right\rangle e^{\left\{\frac{i}{\hbar} [S_{t} + Et + \phi_{t}]\right\}} \right|^{2}$$

1) Ceotto, M.; Atahan, S.; Shim, S.; Tantardini, G. F.; Aspuru-Guzik, A., *Phys. Chem. Chem. Phys.* 2009, 11, 3861–3867. 2) Ceotto, M.; Atahan, S.; Tantardini, G. F.; Aspuru-Guzik, A. , *J.Chem. Phys.*, 2009, 130, 234113.

- 3) Ceotto M., Tantardini G.F., Aspuru-Guzik A., J. Chem. Phys. 135 (21), 214108 (2011)
- 4) Gabas F., Conte R., and Ceotto M., JCTC, 2378-2388 (2017)

Semiclassical Methods: the Divide-and-Conquer idea

Semiclassical Methods: the Divide-and-Conquer idea

Semiclassical Methods: the Divide-and-Conquer idea

The semiclassical partial spectra are obtained from subspace projected quantities, while the classical dynamics is **full dimensional**

Potential Energy Surface

Theoreti	cal Bac	kground

Results

Conclusions

Potential Energy Surface

7) Gabas F., Di Liberto G., Conte R., Ceotto M. (2018), Chemical Science (just accepted)

7) Gabas F., Di Liberto G., Conte R., Ceotto M. (2018), Chemical Science (just accepted)

AIMD vs Force Field

Ab-initio Molecular Dynamics

Computationally demanding

Accurate electronic potential energy calculations

Molecular Mechanics / Force Field

Computationally cheap

AIMD vs Force Field

Ab-initio Molecular Dynamics

Computationally demanding

Accurate electronic potential energy calculations

Molecular Mechanics / Force Field

Computationally cheap

How accurate is it in the semiclassical framework?

AIMD vs Force Field

8) Choi, M. Y., & Miller, R. E. (2006), *Journal of the American Chemical Society*, 128(22), 7320-7328. 9) Biswal, H. S., Gloaguen, E., Loquais, Y., Tardivel, B., & Mons, M. (2012). *JPCL*, 3(6), 755-759.

Ab-initio Molecular Dynamics

DFT B3LYP/ 6-31g*

t = **25000** a.u. (**0.6** ps)

dt = **10** a.u (**0.24** fs)

• DC-SCIVR

Molecular Mechanics / Force Field

Results: Geometry Optimization

Deoxyguanosine

Ac-Phe-Met-NH₂

Results: Geometry Optimization

Results

Results: Spectra

Results: Frequencies

mode	Ехр	DC-SCIVR
3OH		3640
aNH ₂	3545	3560
NH	3438	3460
sNH ₂	3445	3460
5OH		3270
	MAE	17

mode	Ехр	DC-SCIVR	Harm.
30H		3580	3678
aNH2	3545	3400	3425
NH	3438	3370	3441
sNH2	3445	3190	3288
50H		3360	3395
	MAE	156	93

mode	Ехр	DC-SCIVR
aNH2	3520	3490
NH(I)	3452	3480
NH(II)	3363	3380
sNH2	3388	3360
	MAE	26

mode	Ехр	DC- SCIVR	Harm.
aNH2	3520	3310	3385
NH(I)	3452	3305	3346
NH(II)	3363	3270	3324
sNH2	3388	3190	3251
	MAE	162	104

PES Considerations

Amber94 PES presents **broader** wells

Conclusions

- Semiclassical ab-initio results are in agreement with the experiment with the typical accuracy of the method (20-30 cm-1)
- Amber94 is able to accurately predict minimum geometries

- The best Amber94 results come from harmonic analysis, while the worst set derives from the semiclassical approach
- Amber seems to perform well only in describing free, uncoupled motion, like for example some simple NH stretchings

Future Developments

Amber94 semiclassical analysis in condensed phase systems

Other more accurate Force Fields

Acknowledgments

Computational Support

Funding

European Research Council Established by the European Commission European Commission

Acknowledgments

Computational Support

Funding

European Research Council

Established by the European Commission

European Commission

Thank you for your kind attention