1 Invited Review - LABORATORY TESTS FOR DIAGNOSING AND MONITORING CANINE

2 LEISHMANIASIS

3	<u>۸</u>	Formattato: Inglese (Stati Uniti)
4		
5	Running header: laboratory diagnosis of leishmaniasis	
6		
7	Authors: Saverio Paltrinieri ¹ , Luigi Gradoni ² , Xavier Roura ³ , Andrea Zatelli ⁴ , Eric Zini ⁵	
8		
9	Affiliations: ¹ Department of Veterinary Medicine – University of Milan, Italy; ² Unit of Vector-	Formattato: Inglese (Stati Uniti)
10	borne Diseases & International Health, Department of Infectious Diseases, Istituto Superiore di	
11	Sanità, Rome, Italy, ³ Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra,	
12	Spain; ⁴ Medical Consultancy Services, TàXbiex, Malta, ⁵ Clinic for Small Animal Internal	
13	Medicine, University of Zurich, Switzerland; 6Department of Animal Medicine, Production and	
14	Health, University of Padova, Italy; Istituto Veterinario di Novara, Granozzo con Monticello (NO),	
15	Italy.	
16		
17		
18		
19		
20		
21	Correspondence:	
22	Prof. Saverio Paltrinieri	
23	Dipartimento di Medicina Veterinaria, Università di Milano	
24	Via Celoria 10, 20133, Milano, Italy.	
25	e-mail: <u>saverio.paltrinieri@unimi.it</u>	
26	۸	Formattato: Inglese (Stati Uniti)

27 Abstract

28 Although several reviews on canine leishmaniasis have been published, none thoroughly described 29 clinico-pathologic abnormalities and their clinical usefulness. The aim of this review is to provide 30 information concerning current diagnostic tests relevant for clinical pathologists and from a 31 practical perspective. Specifically, in canine leishmaniasis non-regenerative normocytic 32 normochromic anemia, thrombocytopenia or leukogram changes may be present. Clinical chemistry and urinalysis may indicate renal dysfunction (azotemia, decreased urine specific gravity, 33 34 proteinuria) and inflammatory/immune response (increased acute phase proteins or a2- and/or y-35 globulins). Although a potential gammopathy by mechanism is usually polyclonal it may also 36 appear oligo- or monoclonal, especially in dogs co-infected by other vector-borne pathogens. When 37 lesions are accessible to fine needle aspiration (lymhpoadenomegaly, nodular lesions, joint 38 swelling), cytology is strongly advised, as the presence of *Leishmania* amastigotes in a pattern of 39 pyogranulmatous inflammation or lymphoplasmocytic hyperplasia is diagnostic. If the cytologic 40 image is inconclusive, the parasite should be identified by histology/immunohistochemistry or PCR 41 on surgical biopsies. Alternatively, cytology and PCR may be performed on bone marrow smears, 42 where amastigotes, along with erythroid hypoplasia/myeloid hyperplasia, plasmocytosis, or 43 secondary dysmyelopoiesis can be observed. Dogs with overt Leishmaniaisis generally have high antibody titers, while low titers predominate in immunologically resistant infected dogs, or in 44 45 exposed dogs with no parasite confirmation. Quantitative serology is recommended in clinically 46 suspect dogs as high-titer antibodies titers are conclusive. In confirmed and treated dogs, renal 47 function and inflammatory/immune response variables should be periodically monitored. 48

- 49 Keywords: Dog; Leishmania infantum; clinical usefulness; diagnosis; follow-up
- 50

51 **1. Introduction**

- Leishmaniasis is a frequent infectious disease of dogs living in endemic areas, associated with important morbidity and, despite appropriate treatment, potential lethal outcome Although several reviews have been published so far, none has fully described the diagnostic role of available laboratory tests that may be diagnostic or of values for monitoring dogs with leishmaniasis. Therefore, the aim of the present review is to provide information concerning typical laboratory abnormalities and current diagnostic tests that may be relevant for clinical pathologists, from a practical perspective.
- 59

2. Etiology and pathogenesis of canine leishmaniasis 60 61 Canine leishmaniasis is caused by the protozoan parasite Leishmania infantum or its New World synonym Leishmania chagasi.¹ Although non-vectorial transmission has been reported (e.g. 62 transplacental, transfusional or venereal)²⁻⁴, the parasite is usually transmitted by infected 63 phlebotomine sand flies. Therefore, the geographic distribution and prevalence of the disease 64 65 depends on the presence and abundance of competent vectors..5 Blood-sucking females ingest the non-flagellated form (amastigote) during the bloodmeal on infected hosts. After multiplication, 66 67 flagellated forms (promastigotes) transform into infectious metacyclic promastigotes that are 68 inoculated into the host at the next blood meal. Parasites are phagocytosed by macrophages,⁶ but the amastigotes interfere with the oxidative activity of these cells^{7,8} and survive and replicate in 69 70 macrophages, leading to cell destruction and infecting progressively more and more phagocytes. 71 In longitudinal field studies on naïve dogs, *Leishmania* can be detected by PCR in bone marrow 72 starting about 6 months from natural exposure to vectors.⁹ Once bone marrow has been colonized it 73 is generally accepted that the dog is persistently infected. However, a fraction of dogs with positive PCR in bone marrow may become negative in the following months without any treatment; it is 74

75 unknown whether in these dogs the parasite density falls below the threshold limit of the test, the

76	infection persists in organs other than bone marrow, or the host defenses eradicate the infection. ⁹
77	Despite dogs can mount antibody responses shortly after the first contact with the parasites,
78	resistance or susceptibility to progressive infection depends on the balance between Th1 (cell-
79	mediated) and Th2 (humoral) immune responses <mark>: dogs</mark> with prevailing Th2 responses are <mark>likely</mark>
80	prone to have parasite dissemination to all tissues and overt clinical signs. ¹⁰⁻¹³ Hence, the simple
81	detection of circulating antibodies does not necessarily imply that the dog is actually clinically
82	affected. Similarly, parasite detection in tissues does not mean that the infected dog is actually sick.
83	Therefore, the guidelines for diagnosis and staging of canine leishmaniasis, released by the Canine
84	Leishmaniasis Working Group (CLWG), ¹⁴ classify dogs as exposed, infected or sick based on a
85	combination of <mark>clinical and laboratory findings, as follows:</mark>
86	- Infected dogs: dogs clinically unremarkable, without laboratory abnormalities, that test
87	positive to PCR or cytology in bone marrow, lymph node, spleen, skin or peripheral blood;
88	- Sick dogs: infected dogs with typical clinical or clinicopathological changes.
89	The CLWG classification ¹⁴ includes 2 additional categories of dogs at the extremes of the spectrum:
90	- Exposed dogs: dogs clinically unremarkable with low-titer positive serology, in which PCR
91	or cytology fail to demonstrate the presence of the parasite
92	- Severely sick dogs: sick dogs with a severe clinical condition (e.g. proteinuric nephropathy,
93	chronic renal failure), with concurrent problems, related or not to leishmaniasis, (e.g. ocular
94	disease causing functional loss, severe joint disease impairing motility, which require
95	immunosuppressive treatment, with concomitant conditions such as coinfections or
96	neoplastic, endocrine, or metabolic diseases, or that are unresponsive to repeated courses of
97	anti- <i>Leishmania</i> drugs.
98	Conversely, the Leishvet guidelines classifies sick dogs in four stages according to the severity of
99	clinical signs, clinicopathological findings and serological status. ¹⁵
100	

Clinical signs of canine leishmaniasis

102	The interpretation of clinicopathological, serological and molecular tests should be done in light of
103	history (e.g. exposure to phlebotomine vectors), signalment (male dogs older than 2 years are at
104	high risk) and clinical presentation: the spectrum of clinical presentations is wide and ranges from
105	infections characterized by the absence of obvious clinical findings but detectable laboratory
106	abnormalities, to overt clinical infections characterized by the presence of clinical and laboratory
107	abnormalities that require or not hospitalization especially in the case of very severe life threatening
108	disease. ^{14-16, 24-33.}
109	
110	Laboratory abnormalities that may support or confirm leishmaniasis
111	In addition to clinical findings, laboratory abnormalities detectable by routine hematology, clinical
112	chemistry or urinalysis may further increase the clinical suspicion of canine leishmaniasis.
113	Moreover, especially in the early phases of the disease, laboratory changes may occur in the
114	absence of obvious abnormalities at physical examination. Thus, a basic panel of tests is mandatory
115	when canine leishmaniasis is clinically suspected, or when a dog with positive result of tests for
116	etiological diagnosis needs to be classified as "exposed", "infected" or "sick". Table 1 summarizes
117	the clinicopathological changes that may be found in dogs with leishmaniasis (i.e. "sick" dogs).
118	
119	1) Hematolog <mark>ic abnormalities</mark>
120	Hematological changes in canine leishmaniasis are non specific. ³⁴ Neutrophilia <mark>, due to</mark> the systemic
121	inflammatory response may be present and particularly prominent if ulcerative cutaneous lesions
122	with secondary bacterial infection may occur, are present. ^{34,35} Conversely, numerical or
123	morphological changes in the other leukocyte populations are less common, although lymphopenia,
124	lymphocytosis or eosinophilia are occasionally described ³⁵⁻³⁷ Amastigotes may be rarely
125	documented in circulating leukocytes of infected dogs (less than 0.5% of cases) within neutrophils
126	but also in lymphocytes and monocytes. ^{36,38} The percentage of infected cells is so low that their

127	search is generally not rewarding. When a systemic disease and blood dissemination is suspected,	
128	more sensitive tests such as PCR or quantitative PCR should be preferred (see below).	
129	The most common hematological changes in leishmaniotic dogs is anemia, ^{84,35,44} that is usually	
130	mild to moderate and has the normocytic normochromic non regenerative pattern typical of the	
131	anemia of inflammatory disease. ^{35,39} However the pathogenesis of anemia in leishmaniotic dogs	
132	include additional mechanisms such as renal failure leading to reduced erythropoietin synthesis.	
133	Moreover, it is very likely that anemia also has a hemolytic component as suggested by positive	
134	Coomb's test in a minority of cases. ¹⁷ This positivity may be associated with a "lupus-like"	
135	reaction along with other clinical or laboratory changes, such as positive ANA-test ⁴⁰ or perinuclear	
136	antineutrophil cytoplasmic autoantibodies. ⁴¹	
137	Thrombocytopenia is fairly frequent in leishmaniotic dogs withouth concurrent infections. It is	
138	usually mild to moderate. If severe, co-infections with other vector-borne pathogens (e.g. Ehrlichia	
139	canis, Anaplasma phagocytophilum or A. platys) or other possible causes of reduced platelet	
140	concentration should be suspected. The most likely mechanism responsible for thrombocytopenia in	
141	leishmaniasis is a peripheral consumption of circulating platelets, possibly due to an immune-	
142	mediated mechanism, since anti-Plt antibodies has been demonstrated in leishmaniotic dogs.42-44	
142 143	mediated mechanism, since anti-Plt antibodies has been demonstrated in leishmaniotic dogs. ⁴²⁻⁴⁴ Moreover, platelet loss may be associated to hypercoagulability caused by a decreased	
143	Moreover, platelet loss may be associated to hypercoagulability caused by a decreased	
143 144	Moreover, platelet loss may be associated to hypercoagulability caused by a decreased concentration of anti-thrombin III as in any other protein losing nephropathy ⁴⁵ (see below) or to	
143 144 145	Moreover, platelet loss may be associated to hypercoagulability caused by a decreased concentration of anti-thrombin III as in any other protein losing nephropathy ⁴⁵ (see below) or to disseminated intravascular coagulation (DIC) that has been occasionally reported in leishmaniotic	
143 144 145 146	Moreover, platelet loss may be associated to hypercoagulability caused by a decreased concentration of anti-thrombin III as in any other protein losing nephropathy ⁴⁵ (see below) or to disseminated intravascular coagulation (DIC) that has been occasionally reported in leishmaniotic dogs. ⁴⁶ However, the mechanism of thrombocytopenia in leishmaniotic dogs includes also a	
143 144 145 146 147	Moreover, platelet loss may be associated to hypercoagulability caused by a decreased concentration of anti-thrombin III as in any other protein losing nephropathy ⁴⁵ (see below) or to disseminated intravascular coagulation (DIC) that has been occasionally reported in leishmaniotic dogs. ⁴⁶ However, the mechanism of thrombocytopenia in leishmaniotic dogs includes also a decreased production due to the depressed bone marrow activity cited above. Even in the absence of	
143 144 145 146 147 148	Moreover, platelet loss may be associated to hypercoagulability caused by a decreased concentration of anti-thrombin III as in any other protein losing nephropathy ⁴⁵ (see below) or to disseminated intravascular coagulation (DIC) that has been occasionally reported in leishmaniotic dogs. ⁴⁶ However, the mechanism of thrombocytopenia in leishmaniotic dogs includes also a decreased production due to the depressed bone marrow activity cited above. Even in the absence of reduced platelet concentrations, however, platelets may be hypofunctional in dogs with	
143 144 145 146 147 148 149	Moreover, platelet loss may be associated to hypercoagulability caused by a decreased concentration of anti-thrombin III as in any other protein losing nephropathy ⁴⁵ (see below) or to disseminated intravascular coagulation (DIC) that has been occasionally reported in leishmaniotic dogs. ⁴⁶ However, the mechanism of thrombocytopenia in leishmaniotic dogs includes also a decreased production due to the depressed bone marrow activity cited above. Even in the absence of reduced platelet concentrations, however, platelets may be hypofunctional in dogs with leishmaniasis ⁴⁷ although this reduced function is rarely responsible for hemostatic abnormalities.	

153	disease, the number of CD4+ lymphocytes decreases causing reduction of the CD4/CD8 ratio,48-49
154	Therefore, a seropositive or PCR-positive dog with a low CD4/CD8 ratio is more predisposed to
155	develop clinical signs than a similar dog with normal CD4/CD8 ratio. The practical applicability of
156	this test, however, is limited by the high individual variability and by the difficulty to determine a
157	cut-off for staging the disease Hence, this test may be used to monitor the post- treatment follow-up
158	but not to stage a dog at first diagnosis of leishmaniasis. The authors do not recommend the use of
159	this test for diagnostic purposes in dogs suspected to have leishmaniasis.
160	Finally, the hematological profile of leishmaniotic dogs may be completed by bone marrow
161	cytology. ^{24.37,39,50} This analysis may be useful to confirm the infection through the detection of
162	infected macrophages, as better specified below, but it may be also used to differentiate a simple
163	infection from systemic disease (i.e. "infected" vs. "sick" dog). ¹⁴ Although some histological
164	studies demonstrated that parasite density can be high despite few clinical signs, ⁵¹ generally the
165	parasite load and the magnitude of cytological alterations increases as soon as the dogs show
166	clinical sings. ⁵² Therefore, rare infected macrophages may be occasionally seen in the absence of
167	other pathological findings in dogs that are simply infected, whereas "sick" dogs are characterized
168	by a higher number of parasites detected cytologically and by a series of morphological changes. In
169	the latter case cytology of the bone marrow usually reveals an erythroid hypoplasia, ³⁵ without
170	abnormalities in the ratio between maturative and proliferative pools of erythroid precursors,
171	occasionally associated with myeloid hyperplasia (and thus with an increased M:E ratio). Moreover,
172	bone marrow inflammation, generically defined by Stockham and Scott as "myelitis", ⁵³ are usually
173	found (figure 1). These include a proliferation of either infected or non-infected macrophages often
174	with signs of erythrophagia or cytophagia, an increase of neutrophils, and a moderate to severe
175	plasmocytosis characterized by a higher number of plasma cells, mott cells and lymphocytes. ^{35,39,54}
176	Megakaryocyte hyperplasia may also be present, especially when peripheral consumption of
177	platelets occurs.

178	Secondary dismyelopoiesis may be found, although less frequently (figure 2). This condition is
179	characterized by multiple peripheral cytopenias (e.g. the anemia and thrombocytopenia cited above)
180	associated with hypercellular bone marrow on which one or more cell lineages show dysplastic
181	features. In canine leishmaniasis, these mostly include dyserythropoiesis (abnormal mitoses,
182	asynchronous nucleo-cytoplasmic maturation, nuclear fragmentation, and/or late stage maturation
183	arrest) and dysmegakariopoiesis (dwarf megakaryocytes emperipolesis), while dismyelopoiesis
184	(abnormal maturation of granulocytes and ring forms) is only occasionally found. ^{35,54} The detection
185	of secondary dysmyelopoiesis however, is not per se diagnostic for leishmaniasis, unless
186	amastigotes are found. Therefore, the cause-effect association between secondary dysmyelopoiesis
187	and seropositivity or PCR-positivity should be carefully considered. Ultimately, in this case the
188	diagnosis of leishmaniasis should be based on the exclusion of other causes of secondary
189	dysmyelopoiesis or of primary myelodysplastic syndromes.
190	In brief, bone marrow cytology may be useful for diagnostic purposes in some dogs, by detecting
191	amastigotes and compatible cytological abnormalities, or to differentiate between infected dogs
192	from those that are sick due to leishmaniasis.
193	
194	2) Hemostatic abnormalities
195	Hemostatic abnormalities are uncommon in leishmaniotic dogs. Activated partial thromboplastin

- 195
- 196 time (aPTT) and prothrombin time (PT) may be increased. In most cases, however, this is due to
- 197 preanalytical factors since their prolongation may occur when the concentration of total globulin
- increases, which is frequent in dogs with leishmaniasis. Alternatively, prolonged coagulation times 198
- 199 may result from DIC, although this complication is uncommon in leishmaniotic dogs.⁴⁶
- 200 Conversely, hypercoagulability may be common in leishmaniotic dogs if affected by severe protein
- 201 losing nephropathy. This is mostly due to glomerular loss of antithrombin III (ATIII), a protease
- 202 inhibitor involved in the regulation of blood coagulation that prevents the conversion of fibrinogen
- 203 into fibrin. The lack of this physiologic anticoagulant may induce hypercoagulability that in turn

204	promotes thrombosis and subsequent consumption coagulopathy. ⁵⁵ Hypercoagulability is also
205	favored by the hyperviscosity syndrome due to the increased circulating globulins.
206	Hypercoagulability of leishmaniotic dogs was also demonstrated through a decreased clot formation
207	time and an increased global clot strength using thromboelastography (TEG). ⁵⁵ Differently, in
208	another study the coagulation profile of leishmaniotic dogs assessed by thromboelastometry (TEM,
209	a technique similar to TEG), was within normal limits. ⁵⁶ However, it is worth noting that TEM and
210	TEG are affected by the RBC mass, ^{57,58} possibly explaining the different results obtained by TEM
211	and TEG.
212	In brief, to assess hypercoagulability in dogs with protein losing nephropathy associated with
213	leishmaniasis the authors currently suggest including only ATIII measurement.
214	
215	3) Biochemical abnormalities
216	Because the clinical presentation of dogs with leishmaniasis is variable, also the type of
217	biochemical abnormalities varies accordingly Renal dysfunction and inflammation/immune
218	reactions frequently observed and their presence should be evaluated in each dog with suspected or
219	confirmed leishmaniasis. Biomarkers of hepatobiliary or pancreatic damage may be altered in case
220	of pyogranulomatous infiltrates affecting these organs. ^{14,16} Muscular enzymes (LDH and CK), may
221	increase in dogs with musculoskeletal lesion. ⁵⁹ Nevertheless, increased CK may also be due to the
221 222	increase in dogs with musculoskeletal lesion. ⁵⁹ Nevertheless, increased CK may also be due to the increased CK-BB when neurological signs are present, ⁶⁰ since <i>Leishmania</i> has been found in the
222	increased CK-BB when neurological signs are present, ⁶⁰ since <i>Leishmania</i> has been found in the
222 223	increased CK-BB when neurological signs are present, ⁶⁰ since <i>Leishmania</i> has been found in the brain of some affected dogs with cerebrovascular alterations, ^{61,62} or to CK-MB in cardiopathic dogs
222 223 224	increased CK-BB when neurological signs are present, ⁶⁰ since <i>Leishmania</i> has been found in the brain of some affected dogs with cerebrovascular alterations, ^{61,62} or to CK-MB in cardiopathic dogs (increased tropoinin I and cardiopulmonary lesions have been reported). ^{63,34} Biochemical

228 Assessment of renal function

229	The deposition of circulating immune complexes at the glomerular level induces inflammatory
230	changes detectable histologically and ultramicroscopically, ^{33,67-69} leading to a proteinuric
231	nephropathy. ⁶⁹ The evolution of this condition is the development of a chronic kidney disease
232	(CKD) characterized by glomerulosclerosis, renal hypertension and tubulointerstitial nephritis ^{68,69}
233	In turn, advanced stages of CKD are characterized by hyperazotemia and may be associated with
234	systemic hypertension, both factors contributing to comorbidity in dogs with leishmaniasis. ^{69,70}
235	Therefore, the clinical and laboratory approach to leishmaniotic dogs with proteinuric nephropathy
236	is the same recommended by the International Renal Interest Society (IRIS) ⁷¹ for any type of CKD.
237	This approach is based on a thorough clinical evaluation, on the measurement of arterial pressure
238	and on the quantification of urinary proteins (described in the section of this article regarding
239	urinalysis) and of markers of renal function such as the urine specific gravity and the serum
240	concentration of creatinine. ⁷¹ This latter increases frequently in leishmaniotic dogs. ^{14-17,72} . However,
241	creatinine is not enough sensitive to detect the earliest stages of renal insufficiency. ⁷³ Therefore, a
242	huge research activity is currently running to identify earlier markers of decreased glomerular
243	filtration rate (GFR), either in leishmaniotic dogs or in dogs affected by other types of CKD. The
244	direct measurement of GFR trough clearance tests would be the best method to assess in real time
245	the functionality of the kidneys. ⁷⁴ Despite there is no evidence that serum Cystatin C (Cys C) is
246	more sensitive than creatinine in detecting early CKD, ⁷⁴ the serum concentration of Cys C has been
247	assessed also in dogs with leishmaniasis. ⁷⁵ Urinary Cys C seems to be a good marker of CKD ⁷⁶ but
248	not in canine leishmaniasis. ⁷⁷ Recently, <mark>symmetric dymethilarginine (SDMA) has been proposed as</mark>
249	an early biomarker for early diagnosis of CKD. ^{78.79} No studies on the use of SDMA in canine
250	leishmaniasis exists, but it is very likely that it will be used to assess renal function in leishmaniotic
251	dogs that are proteinuric but still have normal creatinine concentration.
252	Other blood markers may provide additional information in leishmaniotic patients with CKD. For
253	example in people the increased serum concentration of homocysteine (Hcy), endothelin-1 (ET-1)
254	or C-reactive protein (CRP) may predict, hypertension and/or inflammation associated with CKD. ⁸⁰⁻

255	⁸³ Increases of Hey and ET-1 have been reported in dogs with CKD, some of which affected by
256	leishmaniasis. ^{84,85} However, further studies are needed before to recommend these markers as
257	ancillary tests for the management of leishmaniotic dogs with CKD. Conversely, inflammatory
258	markers such as CRP, ferritin and adiponectin may increase in the urine of leishmaniotic dogs,
259	sometime in the absence of elevated serum creatinine. ^{77,86,87} Howeever, their increase depends on
260	<mark>their high </mark> serum concentration d <mark>ue to</mark> the <mark>systemic</mark> inflammatory state, rather than <mark>to</mark> CKD.
261	Finally, in leishmaniotic dogs, tubulointerstitial lesions may occur secondarily to proteinuria caused
262	by glomerular damages. The presence of these lesions may be investigated using markers of tubular
263	injury in urine and are described in the section on urinalysis.
264	It is also worth mentioning that some dogs with CKD may have acute deterioration of their renal
265	dynsfunction due to factors related or not to leishmaniasis (e.g. vomiting, diarrhea).
266	
267	Assessment of inflammatory/immune reactions
268	Based on the pathophysiology above described, it is clear that leishmaniotic dogs with overt disease
269	have an intense inflammatory reaction and produces high amount of molecules involved in the
270	immune response, including antibodies. Both these phenomena may be investigated using tests such
271	as serum protein electrophoresis or measurement of acute phase proteins (APPs).
272	
273	Protein analysis and serum protein electrophoresis may reveal abnormalities very early during the
274	course of the disease. ²⁴ Total proteins and total globulin are frequently increased. ^{14,15} , ^{18,72,88} The
275	increase of total protein has been shown to correlate with the severity of the clinical score. ⁸⁹
276	Albumin decreases both because it is a negative APPs (see below) and due to the renal loss
277	associated with proteinuric nephropathy, leading to decreased albumin:globulin (A/G) ratio.72.88 The
278	decrease of the A/G ratio is so frequent that it has been considered by some authors to be one of the
279	more sensitive tests for canine leishmaniasis ⁸⁸ and hypoalbuminemia is considered a negative
280	prognostic factor in leishmaniotic dogs. ⁹⁰ The typical electrophoretogram of leishmaniotic dogs

281	with overt clinical signs (figure $\frac{3}{2}$) displays hypoalbuminemia, an increase of α_2 -globulin, where
282	most of the positive APPs migrate, and a strong increase of γ -globulins, due to the huge amount of
283	circulating antibodies, immunecomplexes, and other molecules with γ motility. Occasionally, peaks
284	due to circulating antibodies are found in the β region, where IgM and some APPs migrates. The
285	gammopaty is typically polyclonal but sometime the peak may be narrower (oligoclonal), biclonal ⁹¹
286	or definitely monoclonal, ⁹² especially using capillary zone electrophoresis. ⁹³ (figure 4). However,
287	although monoclonal peaks associated exclusively with leishmaniasis have been described, the
288	detection of monoclonal peaks should suggest considering the possible presence of concurrent
289	diseases (e.g. other vector-borne diseases or multiple myeloma).94.95

291 Acute phase proteins are powerful indicators of inflammation: the pro-inflammatory cytokines 292 produced in inflammatory sites induce the so called "acute phase response", characterized by the 293 release of neutrophils from storage pools, by an activation of myelopoiesis (see above), and by a modulation of protein synthesis in the liver.⁸² This latter phenomenon leads to a decreased serum 294 295 concentration of the "negative APPs", and to an increased concentration of the "positive APPs" that 296 includes a series of immunomodulators, scavenger or transport proteins, antiproteases, and other 297 proteins involved in host defenses. Therefore it is not surprising that the serum concentration of 298 positive APPs in dogs with overt canine leishmaniasis is high. The list of APPs whose 299 concentration increases in serum of leishmaniotic dogs is long and includes CRP, Haptoglobin (Hp), Ceruloplasmin (Cp) Serum Amyloid A (SAA) and ferritin.⁹⁶⁻¹⁰¹ Similarly, a decrease of 300 301 negative APPs other than albumin has also been reported; these are transferrin (total iron binding 302 capacity or TIBC), that induces also a reduction in the concentration of iron, and a decreased activity of the enzyme paraoxonase (PON-1).^{98,102,103} PON-1 is a negative APP that is bound to high 303 304 density lipoproteins (HDL) and represents a link between inflammation and oxidative stress. 305 Therefore its decrease is not constantly seen in leishmaniotic dogs but it may become evident when

306	oxidative stress is particularly severe. ¹⁰² Interestingly, in these cases also the concentration of HDL,
307	that is converted into low density lipoprotein (LDL) after detachment of PON-1, decreases ¹⁰³ and
308	may be a cheap marker of inflammation and oxidative stress associated with leishmaniasis.
309	Recently a reduced serum activity of adenosine deaminase (ADA) and butyrylcholinesterase
310	(BChE), two enzymes involved in modulating immune responses, has also been reported in dogs
311	with leishmaniasis. ¹⁰⁴
312	The APP changes summarized above are not diagnostic per se since mild increases of positive
313	APPs have been reported also in infected dogs without clinical signs ⁹⁹ and severely increased
314	elevels may occur in diseases other than leishmaniasis.82 In a dog in which leishmaniasis has been
315	diagnosed by other clinical or laboratory findings, however, the magnitude of these changes may
316	reflect the magnitude of inflammation and thus provide prognostic information. In particular, the
317	decrease of PON-1 is evident in severe diseases and may therefore be a negative prognostic marker.
318	
319	4) <i>Abnormalities at urinalysis</i>
320	As for any suspected proteinuric nephropathy, it is necessary to confirm the presence of CKD, of
	As for any suspected proteinuric nephropathy, it is necessary to confirm the presence of CKD, of proteinuria, which is frequent in leishmaniotic dogs, ¹⁴⁻¹⁸ and of tubular damage, through the
320	
320 321	proteinuria, which is frequent in leishmaniotic dogs, ¹⁴⁻¹⁸ and of tubular damage, through the
320 321 322	proteinuria, which is frequent in leishmaniotic dogs, ¹⁴⁻¹⁸ and of tubular damage, through the
320321322323	proteinuria, which is frequent in leishmaniotic dogs, ¹⁴⁻¹⁸ and of tubular damage, through the following steps:
 320 321 322 323 324 	proteinuria, which is frequent in leishmaniotic dogs, ¹⁴⁻¹⁸ and of tubular damage, through the following steps:
 320 321 322 323 324 325 	proteinuria, which is frequent in leishmaniotic dogs, ¹⁴⁻¹⁸ and of tubular damage, through the following steps: <i>Physico-chemical analysis</i> With a refractometer, the urine specific gravity (USG), that tends to decrease in dogs with tubulo-
 320 321 322 323 324 325 326 	proteinuria, which is frequent in leishmaniotic dogs, ¹⁴⁻¹⁸ and of tubular damage, through the following steps: <i>Physico-chemical analysis</i> With a refractometer, the urine specific gravity (USG), that tends to decrease in dogs with tubulo- interstitial damage, should be assessed. ⁷³ The supernatant should be tested with a dipstick, to assess:
 320 321 322 323 324 325 326 327 	 proteinuria, which is frequent in leishmaniotic dogs,¹⁴⁻¹⁸ and of tubular damage, through the following steps: <i>Physico-chemical analysis</i> With a refractometer, the urine specific gravity (USG), that tends to decrease in dogs with tubulo-interstitial damage, should be assessed.⁷³ The supernatant should be tested with a dipstick, to assess: the pH that may be useful to correctly interpret other dipstick results: for example dipstick

Sediment analysis is another important step in leishmaniotic dogs: an active sediment (e.g. a
sediment with high numbers of leukocytes, erythrocytes or bacteria) indicates a lower urinary tract
infection superimposed on the primary disease (leishmaniasis) and may overestimate proteinuria;¹⁰⁵
conversely granular or cellular casts may be consistent with tubular damage.⁷³

335

336 Evaluation of proteinuria

337 The evaluation of proteinuria is mandatory, since proteinuria is a risk factor for the progression of 338 nephropathy.¹⁰⁶ According to the ACVIM guidelines,¹⁰⁷ proteinuria should be assessed in any dog 339 with predisposing diseases, such as leishmaniasis. The ACVIM guidelines recommend to collect 340 urines by cystocentesis, to avoid contamination from the lower urinary tract. However, a first 341 evaluation may be done on voided samples, since results recorded with the two methods of collection overlap when the sediment is inactive.¹⁰⁸ Proteinuria may be first investigated using a 342 343 dipstick, if the dipstick is negative the dogs is likely non proteinuric according to the IRIS 344 classification⁷¹ and any additional evaluation of proteinuria is not necessary.¹⁰⁹ Conversely, if the 345 dipstick is weakly positive in dogs with low USG or strongly positive the dog is likely proteinuric 346 and the protein to creatinine (UPC) ratio must be run to classify the dog as proteinuric (UPC > 0.5), borderline proteinuric (UPC= 0.2-0.5) or non proteinuric (UPC < 0.2) according to the IRIS 347 classification, recently revised for the diagnosis of glomerular disease.^{71,110} In the interpretation of 348 data, particular attention should be paid to results close to these thresholds, that may be affected by 349 several analytical factors.¹¹¹⁻¹¹³ Quantification of proteinuria must be repeatedly assessed (3 times in 350 351 2 weeks¹⁰⁷ or once on pooled urine¹¹⁴) because additional investigations or treatments should be performed only if proteinuria is persistent.¹⁰⁷⁻¹¹⁰ Finally, the origin of urinary protein should be 352 assessed through a renal biopsy.¹⁰⁷ However, according to the recent IRIS guidelines¹¹⁰ renal biopsy 353 354 is recommended only in the case of rapid progression of CKD or in dogs not responding to 355 conventional treatments. Alternatively, the origin of proteinuria can be argued on the basis of 356 surrogate methods such as qualitative analysis of urinary proteins (see below).

358 Markers of tubular injury

359	In order to differentiate the dogs with a tubular component of proteinuria, that are in a more
360	advanced stage of renal disease, urinary markers may be used. ¹¹⁵ Some rough markers such as
361	granular or cellular casts and glycosuria in normoglycemic dogs are very specific indicators of
362	tubular damage, but are not enough sensitive, do not detect dogs with early tubular damage and are
363	rarely observed in leishmaniotic dogs. Early information about the presence of tubular damage may
364	be achieved using sodium dodecylsulphate (SDS) electrophoresis of urinary proteins or using
365	urinary markers of tubular damage. The SDS denaturates and charges negatively the urinary
366	proteins. Therefore, after migration on polyacrylamide gel (SDS-PAGE) or agarose gel (SDS-
367	AGE), proteins migrate according to their molecular mass. ¹¹⁶ This differentiates large proteins of
368	glomerular origin, from small proteins of tubular origin. Results of SDS-PAGE or SDS-AGE well
369	correlate with results of renal biopsies, especially for the identification of glomerular damage or of
370	severe tubulo-interstitial damages. ^{117,118} However SDS-AGE may be not accurate in very
371	concentrated or in diluted urine. ¹¹⁹ Using SDS-AGE it has been shown that leishmaniotic dogs have
372	a mixed (glomerular and tubular) pattern. Only a minority of dogs, likely those with early CKD,
373	have a pure glomerular proteinuria. ^{67,120} Occasionally, low molecular weight proteinuria with no
374	signs of glomerular disease may be seen, possibly due to a free light chain proteinuria (pre-renal
375	proteinuria associated with the intense antibody production) rather than to a tubular damage. ¹²¹
376	Enzymuria is considered a good marker of tubular damage: the enzymes of interest are located in
377	the cytoplasms of tubular cells and may be found in urine when tubular cells are damaged. The two
378	most popular urinary enzymes are γ -glutamyl transferase (GGT) and N-acetyl- β -N-glucosaminidase
379	(NAG) that must be measured just after sampling since their activity decreases with storage. ¹²²
380	Increases of these and other enzymes (e.g. alkaline phosphatase or β -glucuronidase), have been
381	reported in dog with leishmaniasis ¹²³ and the increase of GGT correlates with the presence of
382	tubular bands in SDS. ¹²⁰ On the contrary, no information is available on the utility in leishmaniotic

383	dogs of the measurement of other urinary analytes used to detect tubular damage in dogs with CKD
384	non associated with leishmaniasis. ^{115,124,125}
385	
386	Tests for etiological diagnosis that may support or confirm the diagnosis of leishmaniasis
387	Tests for etiological diagnosis are used to identify the presence of the parasite or its components
388	(direct tests) or of the host's response to the parasite (indirect tests). As previously mentioned,
389	positive indirect tests (i.e. serology) may or may not indicate a current infection. Conversely,
390	positive direct tests (cytology, histology, immunohistochemistry, PCR, culture and xenodiagnosis)
391	demonstrate that the dog is actually harboring Leishmania and it is therefore infected. However, as
392	stated above, the relationship between infection and disease should be based on the evaluation of
393	clinical findings and clinicopathologic tests. The most common tests for etiological diagnosis are
394	described below.
395	
396	Serology
397	Methods
398	Apart from some techniques such as Western blotting, that is highly accurate but not available in
399	routine practice, or other methods that have been proposed but are not extensively used, such as
400	latex agglutination test or detection of antibodies through immunosensors or flow cytometry, ¹²⁶⁻¹²⁹
401	the most common techniques used to detect antileishmanial antibodies are based on three analytical

402 principles: immunofluorescent antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA) and immunochromatographic test (ICT). ICT is the basis of all-rapid "in clinic" assays, which have 403 404 a major limitation being that they provide results in a qualitative manner (i.e. presence/absence of 405 specific reactive bands).¹³⁰ Several commercial ICT kits are available, which employ single or 406 multiple recombinant Leishmania antigens to be used on serum, plasma, whole blood or blood spots dried onto filter paper.¹³¹ The specificity of these tests is quite acceptable, but sensitivity is usually 407 low (in the approximate range of 30-70%) and largely depending on leishmaniasis stage.¹³² Lowest 408 16

409	sensitivities are found in infected dogs without clinical signs, the highest ones in dogs with overt
410	disease. ¹³³ Therefore, ICT may be used as a first "in clinic" test to complete the laboratory
411	evaluation of clinically suspected dogs and, in case of positivity, serology should be repeated by
412	ELISA or IFAT, which provide quantitative results. However, due to its low sensitivity, a negative
413	ICT result may be false and therefore, if the clinical suspicion persists, tests with higher sensitivity
414	(IFAT or ELISA) should be performed. Recently, an ICT kit claiming detection of antibodies
415	developed after natural infection but not those elicited by vaccination with the LiESP-based
416	vaccine, has been proposed as a tool to differentiate vaccinated from infected dogs. ¹³⁴ The principle
417	of the test is sound, and the first studies reported a high sensitivity of this ICT format; ¹³⁵ but other
418	studies reported a low sensitivity also for this test. ¹³⁶
419	IFAT is recognized as the reference method to perform anti-Leishmania serology in dogs, 132-137 as it
420	is very sensitive and also highly specific except in areas endemic for the New World parasite
421	Trypanosoma cruzi, that may give false positive results; values approach 100% for both the
422	parameters. ELISA is also very sensitive and specific when a combination of immunodominant,
423	recombinant proteins are used as antigen, whereas it has slightly lower specificity when crude
424	parasite lysates are employed instead. ^{130,136-138} Compared to IFAT, that is based on the evaluation of
425	promastigote fluorescence at UV microscope and is therefore operator-dependent, ELISA is easier
426	to standardize since results are read by an automated spectrophotometer. Both IFAT and ELISA
427	have the advantage to provide quantitative results that are based on the final antibody titer (the last
428	two-fold serial dilution of sample providing positive result) or, for ELISA only, on optical density
429	values compared with reference titred samples. Owing to the unavoidable variability due to
430	operator-dependent or analytical (antigen stability, antiserum or equipment performances) factors,
431	reference sera with precise anti-Leishmania antibody titers are not universally available. Hence, a
432	titer is considered "high" if it is 4 fold higher than the threshold value of the laboratory. ¹⁴ Similarly,
433	4 fold variations in titers of sequential samples of the same dog should be expected in

• . •

41

1 . 1

seroconversions, or in the outcome of therapy. Hence, sequential samples must be analyzed by thesame method in the same laboratory.

- 436
- 437 Interpretation

438 Serological tests detect and quantify the presence of antibodies in serum or plasma. It should be 439 noted that not every dogs will seroconvert after infection, and that it is difficult to measure precise 440 times of seroconverion in naturally infected dogs. Antibodies can be found in blood as soon as 1 441 month after exposure to infected phlebotomines; the median time for seroconversion was estimated 442 to be about 5 months in natural conditions and 3 months in experimental studies using artificial 443 infection.¹³⁹ Therefore dogs living in highly endemic regions may seroconvert during the sand fly 444 activity period (from late spring to early autumn in temperate zones, all over the year in tropical 445 ones).⁹ If the vector-transmitted parasites are efficiently controlled by the host's immune responses, 446 the antibody titers, when present, tend to remain low and therefore these clinically-healthy dogs can 447 be classified as exposed (when the infection is not confirmed by direct tests), or infected.¹⁴ 448 Conversely, the uncontrolled parasite dissemination is associated with an exaggerated humoral 449 response and therefore antibody titers are high when the disease is evident. This condition is classified as "sick dog" or "severely sick dog" by CLWG classification,¹⁴ and stage II, III or IV 450 451 (mild, severe or very severe disease) by Leishvet classification.¹⁵ Furthermore, a direct relationship 452 between the clinical score and antibody titers exists.^{89,140} However, low-medium antibody titers may 453 also be detected in dogs with clinical signs. These have been classified as stage I or II (mild or 454 moderate disease) according to the Leishvet classification.¹⁵ 455 Therefore, quantitative serology should be always be performed when, despite strong clinical 456 suspicion of leishmaniasis, lesions approachable by fine needle aspiration are not present or when 457 cytological analysis of lesions, lymphoid organs and bone marrow fails to reveal the typical pattern 458 associated with leishmaniasis, despite a possible PCR positivity. In this case a high antibody titer is

459 often consistent with the disease, while, if the antibody titer is low, leishmaniasis should be

460	considered only if other	diseases potentially responsible	of the clinical presentation are ruled
-----	--------------------------	----------------------------------	--

- 461 out.14,15
- 462 The increasing use in southern Europe of LiESP vaccination, known to elicit longstanding low-mid
 463 levels of antileishmanial antibodies, may complicate further the interpretation of serology in
 464 vaccinated dogs. Practical laboratory protocols aiming to discriminate between humoral responses
 465 in *Leishmania* infected and LiESP-vaccinated dogs, are not yet available.
- 466
- 467 *1) PCR*
- 468 Methods

469 Several methods have been proposed to detect the presence of the parasite DNA in various 470 biological samples. Some of these methods are not commonly used or recently validated, such as 471 those based on the use of probes labelled with gold nanoparticles¹⁴¹ or the loop-mediated isothermal 472 amplification (LAMP).¹⁴² Conversely, conventional PCR, nested PCR and quantitative (real time) 473 PCR are widely used in routine practice.^{14,15,132,137} PCR sensitivity and specificity varies according 474 to the method and to the target DNA sequence. Most of the PCR tests currently used are targeting 475 multicopy DNA sequences, such as the small subunit ribosomal RNA genes or the kinetoplast DNA minicircles, thus increasing the sensitivity of the test.¹⁴³ Compared with conventional and nested 476 477 PCR, the quantitative PCR techniques offer two main advantages:¹⁴⁴ they may be run in close 478 systems and are therefore less prone to contamination, and provide information about the copies of 479 DNA that are present in the sample. This latter aspect may be relevant during the follow up to 480 monitor the efficacy of leishmanicidal treatments and therefore it may advisable to use quantitative 481 PCR at first diagnosis (before any treatment), in order to have a baseline value for further analyses during the follow up.^{144,145} However, it does not seem that quantitative PCR techniques are more 482 483 sensitive than conventional or nested PCR to diagnose leishmaniasis in dogs.¹⁴⁶One additional 484 limitation of quantitative PCR is that standardized methods to accurately quantify the DNA copies 485 may not be offered by some laboratories.

487	Samples
488	PCR techniques may be applied virtually on any tissue or biological fluids. Theoretically, it may be
489	superfluous to use molecular tests in affected tissues in which Leishmania amastigotes have been
490	visualized by cytology or histology. However, these latter methods are less sensitive than PCR and
491	therefore, a negative cytological result does not exclude that a low number of amastigotes is indeed
492	present. Hence, when a fine needle aspirate or a tissue biopsy is performed, it may be advisable to
493	prepare cytological or histological specimens and to store the remaining sample in the preservatives
494	recommended by the laboratory to run PCR in case amastigotes are not visualized despite the
495	cytological or histological pattern is highly consistent with leishmaniasis. If needed, PCR may also
496	be performed on cytological material already fixed on glass slides ¹⁴⁷ or on formalin fixed and
497	paraffin embedded material. ^{148,149}
498	In routine practice PCR is rarely run on injured tissues, for which cytology and histology are
499	preferred, but it may be done when cytology and histology do not demonstrate the parasite. When
499 500	preferred, but it may be done when cytology and histology do not demonstrate the parasite. When lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for
500	lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for
500 501	lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for example when the prevalent clinical presentation is anemia or proteinuric nephropathy), bone
500 501 502	lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for example when the prevalent clinical presentation is anemia or proteinuric nephropathy), bone marrow and/or lymph nodes and spleen provide the highest sensitivity in detecting <i>Leishmania</i> by
500 501 502 503	lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for example when the prevalent clinical presentation is anemia or proteinuric nephropathy), bone marrow and/or lymph nodes and spleen provide the highest sensitivity in detecting <i>Leishmania</i> by PCR, especially in sick dogs, ^{15,150-154} pending that the quality of the sample is adequate. Recent
500 501 502 503 504	lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for example when the prevalent clinical presentation is anemia or proteinuric nephropathy), bone marrow and/or lymph nodes and spleen provide the highest sensitivity in detecting <i>Leishmania</i> by PCR, especially in sick dogs, ^{15,150-154} pending that the quality of the sample is adequate. Recent studies demonstrated that conjunctival and, to a lesser extent, oral and nasal swabs are very
500 501 502 503 504 505	lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for example when the prevalent clinical presentation is anemia or proteinuric nephropathy), bone marrow and/or lymph nodes and spleen provide the highest sensitivity in detecting <i>Leishmania</i> by PCR, especially in sick dogs, ^{15,150-154} pending that the quality of the sample is adequate. Recent studies demonstrated that conjunctival and, to a lesser extent, oral and nasal swabs are very sensitive for the detection of <i>Leishmania</i> DNA and, in addition, can provide positive results earlier
 500 501 502 503 504 505 506 	lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for example when the prevalent clinical presentation is anemia or proteinuric nephropathy), bone marrow and/or lymph nodes and spleen provide the highest sensitivity in detecting <i>Leishmania</i> by PCR, especially in sick dogs, ^{15,150-154} pending that the quality of the sample is adequate. Recent studies demonstrated that conjunctival and, to a lesser extent, oral and nasal swabs are very sensitive for the detection of <i>Leishmania</i> DNA and, in addition, can provide positive results earlier than other tissues, ^{150,152,155-158} Buffy coat or whole blood may also be used for conventional or
 500 501 502 503 504 505 506 507 	lesions are not present, or they are not approachable by fine needle aspiration or biopsy (for example when the prevalent clinical presentation is anemia or proteinuric nephropathy), bone marrow and/or lymph nodes and spleen provide the highest sensitivity in detecting <i>Leishmania</i> by PCR, especially in sick dogs, ^{15,150-154} pending that the quality of the sample is adequate. Recent studies demonstrated that conjunctival and, to a lesser extent, oral and nasal swabs are very sensitive for the detection of <i>Leishmania</i> DNA and, in addition, can provide positive results earlier than other tissues, ^{150,152,155-158} Buffy coat or whole blood may also be used for conventional or quantitative PCR analysis. Their sensitivity is lower than that the above tissues, but on the other

- 511 Interpretation

512	When interpreting PCR results it must be kept in mind the difference between infected and sick
513	dogs. Ultimately, the detection of the parasite's DNA indicates that the dog is infected. The
514	correlation between infection and disease should be based on the presence of clinical and laboratory
515	abnormalities. From this perspective, the detection of Leishmania DNA in lesions with cytological
516	or histological patterns highly consistent with leishmaniasis, or in blood or bone marrow of a dog
517	with systemic signs of leishmaniasis supports the diagnosis of disease. Conversely, positive PCR
518	results in dogs without signs clearly referable to leishmaniasis do not support the hypothesis that the
519	infected dog is also affected by clinical leishmaniasis, unless any other possible disease is excluded.
520	For example, a transient PCR-positivity in bone marrow may be found a few months since the
521	natural exposure to sand fly bites, without necessarily meaning that the dogs is definitively infected,
522	or even sick.9 Similarly, PCR positivity in intact skin of dogs frequently exposed to vectors does not
523	necessarily mean that dermal "contamination" by infectious bites will be followed by parasite
524	dissemination throughout other body tissues. ¹⁰⁻¹³ Skin positive PCR results may in fact depend on
525	the presence of recently-inoculated promastigotes, or of amastigotes phagocytosed by resident
526	macrophages that, in resistant dogs, may efficiently control (or even eliminate) the agent at local
527	level. 150, 154, 159
528	
529	2) Cytology
530	Samples and methods
531	Fine needle aspiration should be performed in all cases showing cutaneous papular or nodular
532	lesions and/or lymph node enlargement. ¹⁴ Ulcerative cutaneous lesions can be sampled by scraping
533	the lesion or using less invasive methods such as imprint smears. Additionally reports describing
534	the presence of amastigotes and associated lesions in nodular masses with atypical localization,
535	such as the tongue, ^{26,30} the testis, ^{160,161} and oral or nasal masses ¹⁶² have been reported and therefore
536	any nodular lesion in dogs with clinical or laboratory signs potentially consistent with leishmaniasis
537	(e.g. anemia, CKD, alterations of the electrophoretograms, positive serology) should be sampled by 21

538	fine needle aspiration. Nasal lesions may also be sampled using brush cytology ¹⁶³ Similarly, when
539	clinical or clinicopathological patterns are consistent with leishmaniasis, the possible presence of
540	Leishmania should be investigated also in pathological body fluids such as joint fluids, ^{22,23}
541	effusions, ³⁶ or cerebrospinal fluid although in this latter sample, cellularity is usually so low that
542	PCR may detect the parasite better than cytology. ⁶¹ When cutaneous lesions or nodular lesions in
543	other organs, lymph node enlargement, abnormal accumulation of fluids are absent but the clinical
544	suspicion of leishmaniasis is high, the presence of parasites should be investigated in organs rich of
545	cells of the monocyte-macrophage system, such as bone marrow, lymph nodes or spleen ^{14,15,50}
546	

547 Interpretation

548	Cytology aims to demonstrate the presence of Leishmania amastigotes within the macrophages or,
549	when the parasite burden is high and cell lysis occurs, also on the background (figure $\frac{5}{2}$). The
550	detection of amastigotes may be difficult in cutaneous ulcerative lesions, where necrosis and
551	cellular debris or contaminating bacteria may mask the presence of amastigotes. Attention should be
552	paid to misinterpret as amastigotes cellular or granular debris that may be present in these lesions.
553	Additionally, cytology may allow to detect the typical inflammatory patterns associated with
554	leishmaniasis, that are usually characterized by granulocytic-macrophagic (pyogranulomatous)
555	inflammation associated with a moderate to severe lymphoplasmocytic infiltration in skin or
556	nodular lesions with atypical localization (figure 4) and, in lymph nodes, by a reactive hyperplasia
557	of variable severity, characterized by lymphoplasmocytic and macrophagic infiltration, usually
558	associated with numerous neutrophils. ^{50,164,165} Similarly, cytologic patterns typically associated with
559	leishmaniasis may be found in the bone marrow, as described above. Neutrophils, lymphocytes and
560	macrophages can be found also in body fluids of dogs affected by leishmaniasis.
561	The diagnosis of leishmaniasis is easy when amastigotes are detected in samples that show the
562	cytologic patterns described above. However, when cytologic patterns consistent with leishmaniasis
563	but no amastigotes are seen, leishmaniasis should not be ruled out, since it is known that the

564	diagnostic sensitivity of cytology is low. ^{132,137} In these cases, tests that have higher analytical and
565	diagnostic sensitivity, such as PCR, must be run. Alternatively, affected tissues can be biopsied to
566	perform histology and immunohistochemistry, as described below. Conversely, when amastigotes
567	are seen in the absence of cytological abnormalities, or cytology is done on bone marrow, lymph
568	node or spleen, positive results must be interpreted carefully, as systemic signs may be due to
569	diseases other than leishmaniasis. ¹⁴ Similarly, a diagnostic workup to differentiate "sick" from
570	"infected" dogs should be run when Leishmania is incidentally found in lesions that clearly have a
571	different origin. For example, several reports describe the association between the presence of
572	amastigotes and tumors such as lymphoma, transmissible veneral tumors and other types of
573	neoplasia. ¹⁶⁶⁻¹⁷¹ On a practical standpoint in these cases it is important to understand if the dog is
574	affected by both diseases or affected by a neoplastic disease and simply infected with Leishmania.
575	

576 3) Histology

577 Histology can demonstrate the presence of Leishmania in routinely hematoxylin and eosin stained 578 sections when cytology provides parasite-negative results in tissues having a cytological pattern 579 highly consistent with leishmaniasis. Compared with PCR, histology has two main disadvantages: it 580 is more laborious and time consuming, and the identification of amastigotes may be more difficult 581 than in cytological samples. As for the latter, amastigote presence can be confirmed by immunohistochemistry (figure 6),^{33,172} in situ hybridization^{173,174} or PCR on formalin-fixed and 582 583 paraffin embedded samples.^{148,149} On the other hand, histology has the advantage to provide 584 additional information on the cytoarchitectural pattern of the lesions. This is a great advantage since 585 it may allow to discriminate dogs in which the parasite is associated with typical lesions from those 586 in which the infection does not seem to be associated with the disease. Therefore, according to some 587 guidelines,¹⁹ histology should always be performed. The interpretation of histological results is 588 facilitated by the elevated number of papers describing the distribution of parasites and the lesions 589 associated with active disease, mostly characterized by lymphoplasmacytic or granulomatous-

590	pyogranulomatous inflammations and/or by vasculitis either in organs usually affected by
591	Leishmania (bone marrow, spleen, skin, lymph nodes, kidney, etc) but also in unusual sites such as
592	heart, lung, adrenal gland, genital tract, central nervous system, skeletal muscle, gastrointestinal
593	tract, nails, lacrimal glands and ocular muscles. ^{20,21,26-28,30,33,56,61,62,64,65,67,68,121,164,175-181}

595 4) Parasite culture and biological test for infectiousness (xenodiagnosis)

Conclusive diagnosis of active infection should be based on tissue cultures, which not only confirm
whether dogs harbor parasites, but also demonstrate that the protozoa are viable. A diagnostic *Leishmania* culture requires biphasic blood-agar media that need fresh components.¹³² A conclusive
test for infectiousness (xenodiagnosis) requires that naive (laboratory-reared) sand flies are induced
to feed on infected dogs and are examined thereafter for the presence of promastigotes in the gut.¹⁸²
However both tests are unpractical and restricted to specialized reference centers. Therefore these
tests are mainly intended for research and cannot be recommended for routine practice.

603

604 Future perspectives

605 Several studies investigated the diagnostic potential of innovative markers in leishmaniotic dogs: 606 for example, iron superoxide dismutase (Fe-SODe) secreted by the parasite has been evaluated as a possible marker of infection;¹⁸³ proteomic analysis revealed a series of proteins that are over- or 607 608 under-represented in leishmaniotic dogs;¹⁸⁴ the expression level of cytokines or molecules such as leptin or inducible nitric oxide synthetase in blood or tissues is different in leishmaniotic dogs 609 compared to controls^{11,13,185-187} high levels of matrix metalloprotieinases have been reported in 610 serum or CSF of leishmaniotic dogs.^{188,189} Recently, the attention of researchers has been focused 611 612 on markers of oxidative stress; inflammation is characterized by the release of reactive oxygen 613 metabolites from phagocytes recruited in inflammatory sites and this leads to a consumption of 614 antioxidant compounds.¹⁹⁰ Increases of oxidants or oxidized molecules (e.g. reactive oxygen 615 metabolites, malonyldialdeide, lipoperoxides, thiobarbituric acid reacting substances) and decreases

617	reported in leishmaniotic dogs ^{99,102,103,191-194}
618	However, none of the studies cited above provided, to date, exhaustive information on the possible
619	utility in practice of these markers. Nevertheless, preliminary results from these investigations are
620	encouraging and useful to design future research to explore their potential clinical application.
621	
622	Tests for monitoring the post-treatment follow up
623	Laboratory tests during the follow up should be focused in monitoring possible toxic effect of
624	treatment as well as the clinical and the parasitological status of the patient following administration
625	of drugs according to conventional treatments protocols. These mainly include the administration of
626	antimonials or miltefosine, both in combination with allopurinol. Alternative drugs should be
627	carefully considered only when conventional treatments are not effective. ¹⁹⁵
628	
629	Monitoring the possible toxic effect of treatment
630	Theoretically, the possible toxic effects of treatment should be monitored. However, despite some
631	studies reported possible nephrotoxicity of antimonials, ^{68,196} others did not confirm this finding, ¹⁹⁷
632	and recent investigations demonstrated that no toxic effects on heart or pancreas are induced by
633	these drug classes in dogs, differently from what is observed in humans. ^{198,199} Therefore, toxic
634	effects should be monitored only in selected dogs, particularly when peculiar clinical findings are
635	present or history might lead to hypothesize any drug adversity. The only possible adverse effect of
636	allopurinol is the formation of xanthine crystals, and possibly urolithes, in urine. ²⁰⁰ These occur
637	very frequently ²⁰¹ and may be sometime abundant although associated clinical signs and urolith
638	formation are not common and suspension of treatment is unusual. Therefore, the analysis of urine
639	sediment should be always included in the laboratory workup when allopurinol is administered for
640	a long time or when urine appears macroscopically turbid or forms an evident pellet after
641	

616 of antioxidant compounds (total antioxidant capacity, trace elements, paraoxonase) have been

641 centrifugation (figure 7).

643 *Monitoring the clinical status*

- 644 Since the clinical presentation of leishmaniasis in dogs can be extremely variable, it is not possible
 645 to define, *a priori*, a common and standardized laboratory procedure to be used during the follow
 646 up. However, two main aspects must always be monitored, namely the presence of renal disease and
 647 inflammation.
- 648 Renal function should be evaluated through the analysis of serum concentrations of creatinine and, 649 especially, through sequential quantification of proteinuria, due to its role as a risk factor for the 650 progression of CKD.¹⁰⁶ Proteinuria has been recently shown to be a negative prognostic factor in leishmaniotic dogs.⁹⁰ After conventional leishmanicidal treatment, the degree of proteinuria 651 652 decreases in 4-8 weeks,²⁰² thus, additional pharmacological treatments for proteinuria should be 653 decided thereafter. The possibility to restore normal renal function depends on the severity of renal 654 damage at the time of first diagnosis. Therefore, creatinine and proteinuria should be repeatedly 655 assessed during the follow up. The frequency of testing depends on the severity of CKD: dogs in 656 IRIS stages 3 or 4^{71} should be frequently tested also during the treatment period. Conversely, dogs in IRIS stages 1 or 2^{71} should be tested at the end of the first treatment cycle and then after 12 657 658 months in stage 1 dogs, every 6 months in dogs in stage 2, every 3 months in dogs in stage 3 and every 6 weeks in dogs in stage 4.203,204 659 660 The inflammatory status may be monitored through sequential analysis of electrophoretograms and 661 of acute phase proteins, whereas the simple evaluation of total protein, albumin or A/G ratio, may 662 not be helpful because it is very likely that, despite treatment decreases globulin concentrations, 663 albumin concentrations remain low in dogs with persistent glomerular damage and proteinuria, in 664 turn leading to only minor changes in the A/G ratio. Differently, serum protein electrophoresis 665 allow to detect a progressive decrease of α -and γ -globulins. These decreases start to become evident after 2-3 weeks and 4-6 weeks, respectively, following treatment with antimonials.²⁰⁵ Therefore, the 666 667 first useful electrophoretogram to monitor the efficiency of treatment should be run not earlier than 26

668	one month after treatment begin. ²⁰³ The complete normalization of electrophoretograms, however,
669	requires at least 90-120 days. ²⁰⁰ If after 2-3 months the electrophoretograms still show abnormal
670	profiles, the possible presence of concurrent diseases such as other vector-borne diseases should be
671	considered, especially if the gammopathy tends to be characterized by narrower peaks (see figure
672	$\frac{3}{2}$). Treatments with miltefosine or with other drugs may require longer times to be beneficial (more
673	than 2 months to observe a decrease in γ -globulins) and are also characterized by more frequent
674	relapses after transient normalization of laboratory profiles. ^{206,207} Compared with serum protein
675	electrophoresis, monitoring the concentration of APPs provides earlier information regarding the
676	success of treatments with antimonials. CRP and SAA start to decrease in two weeks after treatment
677	and may return within the reference intervals in about one month. ^{100,101,205} The normalization of
678	PON-1 and HDL is even more rapid: significant increases may be observed 3-7 days after treatment
679	and values return within the reference intervals in two weeks. ^{82,205} Therefore, to assess the efficacy
680	of treatment, it may be advisable to measure the serum activity of PON-1 or the concentration of
681	HDLs or APPs 1-2 weeks after the first administration of drugs, when other clinical or
682	clinicopathological changes are likely still abnormal.
683	
684	Monitoring the parasitological status
685	As at first diagnosis, the parasitological status can be monitored indirectly, through the assessment
686	of antibody titers, or by direct evaluation of the parasite presence.
687	In case of successful treatment, a decrease in antibody titers may be expected over time; hence,
688	serology should be repeated during the follow up. ²⁰³ Significant reduction in titers can be detected
689	already at 30 days post-treatment in sick or severely sick dogs with good clinical response to
690	therapy. ^{208,209} However, most of responders will show an evident decrease of titers around 6 months

- 691 from initiation of treatment,²⁰⁰ With regard to serological results, it should be kept in mind that a
- 692 complete negativization of antileishmanial antibodies is unlikely, especially for dogs living in
- 693 endemic areas that may be repeatedly exposed to the parasite, boosting the antibody response.

Therefore, sequential serological tests during the follow up should aim to assess whether antibody
titers decrease to values consistent with the simple exposure (i.e. to less than 4 folds the threshold
value of the laboratory).¹⁴

697 In order to assess whether treatment completely eradicates the infection, ideally the presence of 698 parasites should be assessed in the tissues in which the parasite may establish a latent infection and 699 using very sensitive techniques. For this purpose the residual parasites burden should be evaluated 700 with repeated quantitative PCR analyses on bone marrow, spleen or lymph nodes, if still palpable.¹⁴ 701 However this procedure is invasive and it is difficult that owners will accept the analysis, especially 702 if treatment has been successful and the dog looks clinically healthy. Therefore, in routine practice 703 the evaluation of treatment efficacy is usually assessed by serology or quantitative PCR analysis in 704 blood. If treatment has been successful, the latter test should show a clear decrease of the 705 Leishmania DNA copies after 3 to 6 months of therapy, with complete negativization between 6 and

706 12 months.¹⁴⁴

707

708 Conclusive remarks and recommended protocols

709 Diagnosing leishmaniasis in dogs may be difficult due to the complex pathogenesis and broad

- 710 spectrum of clinical and clinico-pathological findings. Hence, tests that need to be included in the
- 711 diagnostic protocol may vary according to case presentation or epidemiological scenario.²¹⁰
- 712 In dogs with strong clinical suspicion of leishmaniasis, the use of quantitative serology is advisable,
- 713 as it can be conclusive for diagnosis when high-titer antibodies are detected. In clinically healthy
- 714 dogs living in or having travelled to an endemic area, again serology may be the test of choice to
- assess any possible exposure to parasites. Based on the median time to achieve seroconversion,¹³⁹
- serology should be performed at least 6 months after exposure (e.g. in February-March where
- 717 transmission is seasonal, every 6-12 months where transmission is throughout the year). If serology
- 718 is positive, it is important to quantify the antibody response: a low antibody titer may be consistent
- 719 with exposure or an early phase of infection, while a high antibody titer can be suggestive of

- 720 infection or disease.^{14,15} Therefore, the subsequent diagnostic steps should confirm the suspected
- 721 infection through cytological and PCR analysis of sensitive tissues, and/or on identification of
- 722 possible clinical or laboratory alterations, especially in dogs with high antibody titers. If serology or
- 723 PCR is positive and samplings have been performed during a non-transmission period, the
- 124 laboratory workup should aim to identify the most common abnormalities of dogs with
- 725 leishmaniasis in the absence of overt clinical signs (e.g. anemia, abnormal serum protein
- relectrophoresis, proteinuria). If changes are detected, additional clinical or laboratory tests must be
- 727 performed in order to stage the disease (e.g. tests recommended by the IRIS guidelines for CKD,⁷¹
- tests to quantify the acute phase response or inflammation).
- 729 If the dog is examined because of clinical abnormalities, the veterinarian should try to sample any
- 730 accessible lesion to obtain cytological smears or biopsies.¹⁵ If *Leishmania* amastigotes are
- 731 documented and the cytological or histological pattern is consistent with leishmaniasis the dog
- 732 should be considered sick. Thus, next diagnostic steps should clarify whether a systemic
- 733 involvement is also present (e.g. hematological disorders, inflammation, nephropathy) and the
- antileishmanial antibodies and/or the parasite burden should be quantified with quantitative PCR to
- 735 obtain baseline values useful to treatment follow-up. Conversely, if amastigotes are not observed
- 736 but cytological patterns are consistent with leishmaniasis, the lesion can be further analyzed by
- 737 histology combined with immunohistochemistry, in situ hybridization or PCR.^{14,15} A positive result
- 738 with one of these additional tests should lead to investigate the general health status of the sick dog.
- 739 Conversely, if these tests are negative, the presence of infection should be assessed in the bone
- 740 marrow through cytology and/or PCR and, in case of positive results, further clinco-pathological
- tests should be performed as above.^{14,15}
- 742
- 743 Conflict of interest statement

744	The authors are members of the Canine Leishmaniasis Working Group (CLWG). None of
745	the authors of this paper has a financial or personal relationship with other people or organisations
746	that could inappropriately influence or bias the content of the paper.
747	
748	Acknowledgements:
749	The authors are grateful to Dr. Alessia Giordano for the collaboration in revising the
750	manuscript
751	
752	References
753	1. Kuhls K, Alam MZ, Cupolillo E, Ferreira GE, et al. Comparative microsatellite typing of
754	New World Leishmania infantum reveals low heterogeneity among populations and its
755	recent Old World origin. PLoS Negl Trop Dis. 2011;5:e1155.
756	2. Rosypal AC, Troy GC, Zajac AM, Frank G, Lindsay DS. Transplacental transmission of a
757	North American isolate of $Leishmania$ infantum in an experimentally infected beagle. J
758	Parasitol. 200;91:970-972.
759	3. De Freitas E, Melo MN, da Costa-Val AP, Michalick MSM. Transmission of Leishmania
760	infantum via blood transfusion in dogs: potential for infection and importance of clinical
761	factors. Vet Parasitol. 2006;137:159-167.
762	4. Silva FL, Oliveira RG, Silva TM, Xavier MN, Nascimento EF, Santos RL. Venereal
763	transmission of canine visceral leishmaniasis. Vet Parasitol. 2009;160:55-59.
764	5. Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and
765	the spreading of leishmaniases and other diseases of public health concern. Med Vet
766	Entomol. 2013;27:123-147.
767	6. Bates PA. Transmission of <i>Leishmania</i> metacyclic promastigotes by phlebotomine sand
768	flies. Int J Parasitol. 2007:37:1097-1106.

769	7. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to <i>Leishmania</i>
770	<i>major</i> in mice. <i>Nat Rev Immunol</i> . 2002;2:845–858;
771	8. Engwerda CR, Ato M, Kaye PM. Macrophages, pathology and parasite persistence in
772	experimental visceral leishmaniasis. Trends Parasitol. 2004;20:524-530.
773	9. Oliva G, Scalone A, Foglia Manzillo V, et al. Incidence and time course of <i>Leishmania</i>
774	infantum infections examined by parasitological, serologic, and nested-PCR techniques in a
775	cohort of naive dogs exposed to three consecutive transmission seasons. J Clin Microbiol.
776	2006;44:1318-1322.
777	10. Pinelli E, Killick-Kendrick R, Wagenaar J, Bernadina W, del Real G, Ruitenberg J. Cellular
778	and humoral immune responses in dogs experimentally and naturally infected with
779	Leishmania infantum. Infect Immun. 1994;62:229-235.
780	11. Santos-Gomes GM, Rosa R, Leandro C, Cortes S, Romão P, Silveira H. Cytokine
781	expression during the outcome of canine experimental infection by Leishmania infantum.
782	Vet Immunol Immunopathol. 2002;88:21-30.
783	12. Brachelente C, Muller N, Doherr MG, Sattler U, Welle M. Cutaneous leishmaniasis in
784	naturally infected dogs is associated with a T helper-2-biased immune response. Vet Pathol.
785	200;42:166-175.
786	13. Chamizo C, Moreno J, Alvar J. Semi-quantitative analysis of cytokine expression in
787	asymptomatic canine leishmaniasis. Vet Immunol Immunopathol. 2005;103:67-75.
788	14. Paltrinieri S, Solano-Gallego L, Fondati A, et al. Guidelines for diagnosis and clinical
789	classification of leishmaniasis in dogs. J Am Vet Med Assoc. 2010;236:1184-1191.
790	15. Solano-Gallego L, Koutinas A, Miró G, et al. Directions for the diagnosis, clinical staging,
791	treatment and prevention of canine leishmaniosis. Vet Parasitol. 2009;165:1-18.
792	16. Slappendel RJ: Canine leishmaniasis. A review based on 95 cases in The Netherlands. Vet
793	<i>Q</i> . 1988;10:1-16.

794	17. Ciaramella P, Oliva G, Luna RD, et al. A retrospective clinical study of canine leishmaniasis
795	in 150 dogs naturally infected by Leishmania infantum. Vet Rec. 1997;141:539-543.
796	18. Koutinas AF, Polizopoulou ZS, Saridomichelakis MN, Argyriadis D, Fytianou A, Plevraki
797	KG. Clinical consideration on canine leishmaniasis in Greece: a retrospective study of 158
798	cases (1989-1996). J Am Anim Hosp Assoc. 1999;35:376-383.
799	19. Noli C, Saridomichelakis MN. An update on the diagnosis and treatment of canine
800	leishmaniosis caused by Leishmania infantum (syn. L. chagasi). Vet J. 2014;202:425-435.
801	20. Naranjo C, Fondevila D, Leiva M, Roura X, Peña T. Detection of Leishmania spp. and
802	associated inflammation in ocular-associated smooth and striated muscles in dogs with
803	patent leishmaniosis. Vet Ophthalmol. 2010;13:139-143.
804	21. Peña MT, Naranjo C, Klauss G, et al. Histopathological features of ocular leishmaniosis in
805	the dog. J Comp Pathol. 2008;138:32-39.
806	22. Sbrana S, Marchetti V, Mancianti F, Guidi G, Bennett D. Retrospective study of 14 cases of
807	canine arthritis secondary to Leishmania infection. J Small Anim Pract. 2014;55:309-13.
808	23. Santos M, Marcos R, Assuncao M, Matos AJ. Polyarthritis associated with visceral
809	leishmaniasis in a juvenile dog, Vet Parasitol. 2006;141:340-344.
810	24. Foglia Manzillo V, Di Muccio T, Cappiello S, et al. Prospective study on the incidence and
811	progression of clinical signs in naïve dogs naturally infected by Leishmania infantum. PLoS
812	Negl Trop Dis. 2013;;7:e2225.
813	25. Adamama-Moraitou KK, Rallis TS, Koytinas AF, Tontis D, Plevraki K, Kritsepi M.
814	Asymptomatic colitis in naturally infected dogs with Leishmania infantum: a prospective
815	study. Am J Trop Med Hyg. 2007;76:53-57.
816	26. Parpaglia ML, Vercelli A, Cocco R, Zobba R, Manunta ML. Nodular lesions of the tongue
817	in canine leishmaniosis. J Vet Med A Physiol Pathol Clin Med. 2007;54:414-417.
818	27. Silva FL, Rodrigues AA, Rego IO, et al. Genital lesions and distribution of amastigotes in
819	bitches naturally infected with Leishmania chagasi. Vet Parasitol. 2008;151:86-90.

820	28. Silva JF, Guimarães LB, Ribeiro LR, Moreira MV, Serakides R, Ocarino NM. Acute
821	oesophageal necrosis concurrent with Leishmania chagasi infection in a dog. J Comp
822	Pathol. 2014;;150:148-150.
823	29. Blavier A, Keroack S, Denerolle P, et al. Atypical forms of canine leishmaniosis. Vet J.
824	2001;162:108-120.
825	30. Viegas C, Requicha J, Albuquerque C, et al. Tongue nodules in canine leishmaniosisa case
826	report. Parasit Vectors. 2012;5:120.
827	31. Mir F, Fontaine E, Reyes-Gomez E, Carlus M, Fontbonne A. Subclinical leishmaniasis
828	associated with infertility and chronic prostatitis in a dog. J Small Anim Pract. 2012;53:419-
829	422.
830	32. Ruiz G, Laloy E, Benchekroun G. Chronic gastritis and enterocolitis associated with
831	Leishmania infection in an 18-month-old, intact female dog. Vet Q. 2015; June 8:1-4 [Epub
832	ahead of print].
833	33. dos Santos JP, Alves LC, Ramos RA, et al. Histological changes and immunolabeling of
834	Leishmania infantum in kidneys and urinary bladder of dogs. Rev Bras Parasitol Vet.
835	2013;22:420-423.
836	34. Kiral, FK , Seyrek, K, Pasa, S, Ertabaklar, H, Unsal, C. Some haematological, biochemical
837	and electrophoretic findings in dogs with visceral leishmaniasis. Revue Med Vet.
838	2004;155:226-229.
839	35. Nicolato R de C, de Abreu RT, Roatt MB et al. Clinical forms of canine visceral
840	Leishmaniasis in naturally Leishmania infantum-infected dogs and related myelogram and
841	hemogram changes. PLoS One. 2013;8:e82947.
842	36. Ruiz de Gopegui, R, Espada Y. Peripheral Blood and Abdominal Fluid from a Dog with
843	Abdominal Distention. Vet Clin Pathol. 1998;27:64-67.
844	37. De Tommasi AS, Otranto D, Furlanello T, et al. Evaluation of blood and bone marrow in
845	selected canine vector-borne diseases. <i>Parasit Vectors</i> . 2014;7:534 33

846	38. Giudice E, Passantino A Detection of <i>Leishmania</i> amastigotes in peripheral blood from four
847	dogs. Acta Vet Hung. 2011;59:205-13.

- 39. Gavazza A , Lubas G , Gugliucci B , Pasquini A, Mancianti F. Hemogram and bone marrow
 patterns in canine leishmaniasis. *Vet Clin Pathol.* 2002;31:198.
- 40. Smith BE, Tompkins MB, Breitschwerdt EB. Antinuclear antibodies can be detected in dog
 sera reactive to *Bartonella vinsonii subsp. berkhoffii, Ehrlichia canis*, or *Leishmania infantum* antigens. *J Vet Intern Med.* 2004;18:47-51.
- 41. Karagianni AE, Solano-Gallego L, Breitschwerdt EB, et al. Perinuclear antineutrophil
 cytoplasmic autoantibodies in dogs infected with various vector-borne pathogens and in
- dogs with immune-mediated hemolytic anemia. *Am J Vet Res.* 2012;73:1403-1409.
- 42. Terrazzano G, Cortese L, Piantedosi D, et al. Presence of anti platelet IgM and IgG
 antibodies in dogs naturally infected by *Leishmania infantum. Vet Immunol Immunopathol.*2006;110:331-337.
- 43. Cortese L, Sica M, Piantedosi D, et al.: Secondary immune-mediated thrombocytopenia in
 dogs naturally infected by *Leishmania infantum. Vet Rec.* 2009;164:778-782.
- 44. Cortese L, Terrazzano G, Piantedosi D, et al. Prevalence of anti-platelet antibodies in dogs
 naturally co-infected by *Leishmania infantum* and *Ehrlichia canis. Vet J.* 2011;188:118-21.
- 45. Green RA, Kabal AL. Hypercoagulable state in three dogs with nephrotic syndrome: role of
 acquired antithrombin III deficiency. *J Am Vet Med Assoc.* 1982;181:914-917.
- 46. Honse CO, Figueiredo FB, de Alencar NX, Madeira M de F, Gremião ID, Schubach TM.
- 866 Disseminated intravascular coagulation in a dog naturally infected by *Leishmania*
- 867 (Leishmania) chagasi from Rio de Janeiro Brazil. BMC Vet Res. 2013;9:43.
- 47. Abid M, Kalbantner K, Mischke R. Platelet function in dogs with bacterial infections and
- 869 leishmaniasis. Berl Munch Tierarztl Wochenschr. 2015;128:289-296.

870	48. Papadogiannakis E, Andritsos G, Kontos V, Spanakos G, Koutis C, Velonakis E.
871	Determination of CD4+ and CD8+ T cells in the peripheral blood of dogs with
872	leishmaniosis before and after prolonged allopurinol monotherapy. Vet J. 2010;186:262-263.
873	49. Rosypal AC, Gogal RM Jr, Zajac AM, Troy GC, Lindsay DS. Flow cytometric analysis of
874	cellular immune responses in dogs experimentally infected with a North American isolate of
875	Leishmania infantum. Vet Parasitol. 2005;131:45-51.
876	50. Saridomichelakis MN, Mylonakis ME, Leontides LS, Koutinas AF, Billinis C, Kontos VI.
877	Evaluation of lymph node and bone marrow cytology in the diagnosis of canine
878	leishmaniasis (Leishmania infantum) in symptomatic and asymptomatic dogs. Am J Trop
879	<i>Med Hyg.</i> 2005;73:82-86.
880	51. Momo C, Jacintho AP, Moreira PR, Munari DP, Machado GF, Vasconcelos Rde O.
881	Morphological changes in the bone marrow of the dogs with visceral leishmaniasis. Vet Med
882	Int. 2014;2014:150582.
883	52. Trópia de Abreu R, Carvalho Md, Carneiro CM, et al. Influence of clinical status and
884	parasite load on erythropoiesis and leucopoiesis in dogs naturally infected with leishmania
885	(Leishmania) chagasi. PLoS One. 2011;6:e18873.
886	53. Stockham SL, Scott MA. Bone marrow and lymph node. In: Stockham SL, Scott MA, eds.
887	Fundamentals of veterinary clinical pathologyy, 2 nd ed. Ames, IA: Blackwell Publishing;
888	2008:323-368.
889	54. Foglia Manzillo V, Restucci B, Pagano A, Gradoni L, Oliva G. Pathological changes in
890	the bone marrow of dogs with leishmaniasis. Vet Rec. 2006;158:690-694.
891	55. Lennon EM, Hanel RM, Walker JM, Vaden SL. Hypercoagulability in dogs with protein-
892	losing nephropathy as assessed by thromboelastography. J Vet Intern Med. 2013;27:462-
893	468.
894	56. Bruno B, Maurella C, Falco S, et al. Thromboelastometric evaluation of hemostasis in dogs
895	infected with Leishmania infantum. J Vet Emerg Crit Care (San Antonio). 2015;25:502-511. 35

896	57. Brooks AC, Guillaumin J, Cooper ES, Couto CG. Effects of hematocrit and red blood cell-
897	independent viscosity on canine thromboelastographic tracings. Transfusion. 2014;54:727-
898	734.
899	58. McMichael MA, Smith SA, Galligan A, Swanson KS. In vitro hypercoagulability on whole
900	blood thromboelastometry associated with in vivo reduction of circulating red cell mass in
901	dogs. Vet Clin Pathol. 2014;43:154-163.
902	59. Vamvakidis CD1, Koutinas AF, Kanakoudis G, Georgiadis G, Saridomichelakis M.
903	Masticatory and skeletal muscle myositis in canine leishmaniasis (Leishmania infantum).
904	Vet Rec. 2000;146:698-703.
905	60. Paltrinieri S., Cazzaniga S., Pinto da Cunha N., Giordano A. Electrophoretic fractionation of
906	creatine kinase isoenzymes and macroenzymes in clinically healthy dogs and cats and
907	preliminary evaluation in central neurologic diseases. Vet Clin Pathol. 2010;39:329-333.
908	61. Márquez M1, Pedregosa JR, López J, Marco-Salazar P, Fondevila D, Pumarola M.
909	Leishmania amastigotes in the central nervous system of a naturally infected dog. J Vet
910	Diagn Invest. 2013;25:142-146.
911	62. José-López R1, la Fuente CD, Añor S. Presumed brain infarctions in two dogs with systemic
912	leishmaniasis. J Small Anim Pract. 2012;53:554-557.
913	63. Silvestrini P, Piviani M, Alberola J, et al. Serum cardiac troponin I concentrations in dogs
914	with leishmaniasis: correlation with age and clinicopathologic abnormalities. Vet Clin
915	Pathol. 2012;41:568–574.
916	64. Rosa FA1, Leite JH, Braga ET, et al. Cardiac lesions in 30 dogs naturally infected with
917	Leishmania infantum chagasi. Vet Pathol. 2014;51:603-606.
918	65. Momo C, Rocha NA, Moreira PR, et al. Morphological changes and parasite load of the
919	adrenal from dogs with visceral leishmaniasis. Rev Bras Parasitol Vet. 2014;23:30-35.

920	66. Saridomichelakis MN, Xenoulis PG, Chatzis MK, et al. Thyroid function in 36 dogs with
921	leishmaniosis due to Leishmania infantum before and during treatment with allopurinol with
922	or without meglumine antimonate. Vet Parasitol. 2013;197:22-28.
923	67. Zatelli A, Borgarelli M, Santilli R, et al. Glomerular lesions in dogs infected with
924	Leishmania organisms. Am J Vet Res. 2003;64:558-561.
925	68. Aresu L, Benali S, Ferro S, et al. Light and electron microscopic analysis of consecutive
926	renal biopsy specimens from leishmania-seropositive dogs. Vet Pathol. 2013;50:753-760.
927	69. Koutinas AF, Koutinas CK. Pathologic mechanisms underlying the clinical findings in
928	canine leishmaniasis due to Leishmania infantum/chagasi. Vet Pathol. 2014;51:527-538.
929	70. Braga ET, Leite JH, Rosa FA, et al. Hypertension and its correlation with renal lesions in
930	dogs with leishmaniosis. Rev Bras Parasitol Vet. 2015;24:45-51.
931	71. International renal Interest Society (IRIS): Guidelines for staging chronic kidney disease
932	(CKD). Available at: www.iris-kidney.com. Accessed, October 20, 2015
933	72. Ribeiro RR, da Silva SM, Fulgêncio Gde O, Michalick MS, Frézard FJ. Relationship
934	between clinical and pathological signs and severity of canine leishmaniasis. Rev Bras
935	Parasitol Vet. 2013;22:373-378.
936	73. Stockham SL, Scott MA. Urinary system. In: Stockham SL, Scott MA, eds. Fundamentals
937	of veterinary clinical pathologyy, 2nd ed. Ames, IA: Blackwell Publishing; 2008:415-494.
938	74. Von Hendy-Willson VE, Pressler BM. An overview of glomerular filtration rate testing in
939	dogs and cats. Vet J. 2011;188:156-165.
940	75. Pasa S, Bayramli G, Atasoy A, Karul A, Ertug S, Ozensoy Toz S. Evaluation of serum
941	cystatin-C in dogs with visceral leishmaniasis. Vet Res Commun. 2009;33:529-534.

- 942 76. Monti P, Benchekroun G, Berlato D, Archer J. Initial evaluation of canine urinary cystatin C
- 943 as a marker of renal tubular function. *J Small Anim Pract.* 2012;53:254-259.

944	77. García-Martínez JD, Martinez-Subiela S, Tvarijonaviciute A, Caldin M, Ceron JJ. Urinary
945	ferritin and cystatin C concentrations at different stages of kidney disease in leishmaniotic
946	dogs. Res Vet Sci. 2015;99:204-207.
947	78. Jepson RE, Syme HM, Vallance C, Elliott J., Plasma asymmetric dimethylarginine,
948	symmetric dimethylarginine, l-arginine, and nitrite/nitrate concentrations in cats with
949	chronic kidney disease and hypertension. J Vet Intern Med. 2008;22:317-324.
950	79. Nabity MB, Lees GE, Boggess MM, et al. Symmetric Dimethylarginine Assay Validation,
951	Stability, and Evaluation as a Marker for the Early Detection of Chronic Kidney Disease in
952	Dogs. J Vet Intern Med. 2015;29:1036-1044.
953	80. Stanger, O., Herrmann, W., Pietrzik, K., et al. DACH-LIGA Homocystein (German,
954	Austrian and Swiss Homocysteine Society): Consensus paper on the rational clinical use of
955	homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases:
956	Guidelines and recommendations. Clin Chem Lab Med. 2003;41:1392-1403.
957	81. Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Can J Physiol
958	Pharmacol. 2008;86:485-498.
959	82. Ceron JJ, Eckersall PD, Martinez-Subiela S. Acute phase proteins in dogs and cats: Current
960	knowledge and future perspectives. Vet Clin Pathol. 2005;34:85-99.
961	83. Raila J, Schweigert FJ, Kohn B. C-reactive protein concentrations in serum of dogs with
962	naturally occurring renal disease. J Vet Diagn Invest. 2011;23:710-715.
963	84. Rossi S, Rossi G, Giordano A, Paltrinieri S. Homocysteine measurement by an enzymatic
964	method and potential role of homocysteine as a biomarker in dogs. J Vet Diagn Invest.
965	2008;20:644-649.
966	85. Rossi G, Giordano A, Breda S, et al. Big-endothelin 1 (Big ET-1) and homocysteine in the
967	serum of dogs with chronic kidney disease. Vet J. 2013;198:109-115.

968	86. Martínez-Subiela S, García-Martínez JD, Tvarijonaviciute A, et al. Urinary C reactive
969	protein levels in dogs with leishmaniasis at different stages of renal damage. Res Vet Sci.
970	2013;95:924-929.
971	87. Tvarijonaviciute A, Ceron JJ, Martinez-Subiela S, García-Martinez JD. Serum and urinary
972	adiponectin in dogs with renal disease from leishmaniasis. Vet Rec. 2012;171:297.
973	88. Almeida MA, Jesus EE, Sousa-Atta ML, Alves LC, Berne ME, Atta AM. Clinical and
974	serological aspects of visceral leishmaniasis in northeast Brazilian dogs naturally infected
975	with Leishmania chagasi. Vet Parasitol. 2005;127:227-232.
976	89. Proverbio D, Spada E, Bagnagatti de Giorgi G, Perego R, Valena E. Relationship between
977	Leishmania IFAT titer and clinicopathological manifestations (clinical score) in dogs.
978	Biomed Res Int. 2014;2014:412808.
979	90. Geisweid K, Mueller R, Sauter-Louis C, Hartmann K. Prognostic analytes in dogs with
980	Leishmania infantum infection living in a non-endemic area. Vet Rec. 2012;171:399.
981	91. Vailati Facchini R, Bertazzolo W, Zuliani D, et al. Detection of biclonal gammopathy by
982	capillary zone electrophoresis in a cat and a dog with plasma cell neoplasia. Vet Clin Pathol.
983	2010;39:440-446.
984	92. Font A, Closa JM, Mascort J. Monoclonal gammopathy in a dog with visceral
985	leishmaniasis. J Vet Int Med. 1994;8:233-235.
986	93. Giordano A, Paltrinieri S. Interpretation of capillary zone electrophoresis compared with
987	cellulose acetate and agarose gel electrophoresis: reference intervals and diagnostic
988	efficiency in dogs and cats. Vet Clin Pathol. 2010;39:464-473.
989	94. Antognoni MT, Birettoni F, Miglio A, Lalli P, Porciello F, Mangili Pecci V. Monoclonal
990	gammopathy associated with multiple myeloma and visceral leishmaniasis in the dog: a
991	comparison of two cases. Vet Res Commun. 2010;34 Suppl 1:S97-101.

992	95. Geigy C, Riond B, Bley CR, Grest P, Kircher P, Lutz H. Multiple myeloma in a dog with
993	multiple concurrent infectious diseases and persistent polyclonal gammopathy. Vet Clin
994	Pathol. 2013;42:47-54.
995	96. Martínez-Subiela S, Tecles F, Eckersall PD, Cerón JJ. Serum concentrations of acute phase
996	proteins in dogs with leishmaniasis. Vet Rec. 2002;150:241-244.
997	97. Martinez-Subiela S, Strauss-Ayali D, Cerón JJ, Baneth G. Acute phase protein response in
998	experimental canine leishmaniasis. Vet Parasitol. 2011;180:197-202.
999	98. Silvestrini P, Zoia A, Planellas M, et al. Iron status and C-reactive protein in canine
1000	leishmaniasis. J Small Anim Pract. 2014;55:95-101.
1001	99. Martinez-Subiela S, Cerón JJ, Strauss-Ayali D, et al. Serum ferritin and paraoxonase-1 in
1002	canine leishmaniosis. Comp Immunol Microbiol Infect Dis. 2014;37:23-29.
1003	100. Martínez-Subiela S, Bernal LJ, Cerón JJ. Serum concentrations of acute-phase
1004	proteins in dogs with leishmaniosis during short-term treatment. Am J Vet Res.
1005	2003;64:1021-1026.
1006	101. Sasanelli M, Paradies P, de Caprariis D, et al. Acute-phase proteins in dogs naturally
1007	infected with Leishmania infantum during and after long-term therapy with allopurinol. Vet
1008	Res Commun. 2007;31 Suppl 1:335-338.
1009	102. Rossi G, Giordano A, Pezzia F, Kjelgaard-Hansen M, Paltrinieri S. Serum
1010	paraoxonase activity (PON1) in dogs: preanalytical and analytical factors and correlation
1011	with C-reactive protein and alpha-2-globulin. Vet Clin Pathol. 2013;42:329-341.
1012	103. Ibba F, Rossi G, Meazzi S, Giordano A, Paltrinieri S. Serum concentration of high
1013	density lipoproteins (HDLs) in leishmaniotic dogs. Res Vet Sci. 2015;98:89-91.
1014	104. Tonin AA, Calado AM, Bottari NB, et al. Novel markers of inflammatory response
1015	and hepatic dysfunction in canine leishmaniasis. Comp Immunol Microbiol Infect Dis. 2015
1016	pii: S0147-9571(15)00064-8. doi: 10.1016/j.cimid.2015.09.004. [Epub ahead of print]

1017	105.	Vaden SL, Pressler BM, Lappin MR, Jensen WA. Effects of urinary tract
1018	infla	mmation and sample blood contamination on urine albumin and total protein
1019	conc	entrations in canine urine samples. Vet Clin Pathol. 2004;33:14-19.
1020	106.	Jacob F, Polzin DJ, Osborne CA, et al. Evaluation of the association between initial
1021	prote	inuria and morbidity rate or death in dogs with naturally occurring chronic renal
1022	failu	re. J Am Vet Med Assoc. 2005;226:393-400.
1023	107.	Lees GE, Brown SA, Elliott J, Grauer GE, Vaden SL; American College of
1024	Vete	rinary Internal Medicine. Assessment and management of proteinuria in dogs and cats:
1025	2004	ACVIM Forum Consensus Statement (small animal). J Vet Intern Med. 2005;19:377-
1026	385.	
1027	108.	Beatrice L, Nizi F, Callegari D, et al. Comparison of urine protein-to-creatinine ratio
1028	in ur	ine samples collected by cystocentesis versus free catch in dogs. J Am Vet Med Assoc.
1029	2010	;236:1221-1224.
1030	109.	Zatelli A, Paltrineiri S, Nizi F, Roura X, Zini E. Evaluation of a urine dipstick test for
1031	confi	rmation or exclusion of proteinuria in dogs. Am J Vet Res. 2010;71:235-240.
1032	110.	IRIS Canine GN Study Group Diagnosis Subgroup, Littman MP, Daminet S, Grauer
1033	GF, I	Lees GE, van Dongen AM. Consensus recommendations for the diagnostic
1034	inves	stigation of dogs with suspected glomerular disease. J Vet Intern Med. 2013;;27 Suppl
1035	1:S1	9-526.
1036	111.	Rossi G, Giori L, Campagnola S, Zatelli A, Zini E, Paltrinieri S. Evaluation of
1037	facto	rs that affect analytic variability of urine protein-to-creatinine ratio determination in
1038	dogs	. Am J Vet Res. 2012;73:779-788.
1039	112.	Rossi G, Bertazzolo W, Dondi F, et al. Inter-laboratory variability in

1040 protein:creatinine (UPC) ratio on canine urine. *Vet J.* 2015;204:66-72.

1041	113.	Rossi G, Bertazzolo W, Binnella M, Scarpa P, Paltrinieri S. Measurement of
1042	prote	einuria in dogs: analytical and diagnostic differences using two laboratory methods Vet
1043	Clin	Pathol. In press
1044	114.	LeVine DN, Zhang D, Harris T, Vaden SL. The use of pooled vs serial urine samples
1045	to m	easure urine protein:creatinine ratios. Vet Clin Pathol. 2010;39:53-56.
1046	115.	Smets PM, Meyer E, Maddens BE, Duchateau L, Daminet S. Urinary markers in
1047	healt	hy young and aged dogs and dogs with chronic kidney disease. J Vet Intern Med.
1048	2010	;24:65-72.
1049	116.	Schultze,AE, Jensen RK. Sodium dodecyl sulfate polyacrylamide gel electrophoresis
1050	of ca	nine urinary proteins for the analysis and differentiation of tubular and glomerular
1051	disea	ases. Vet Clin Pathol. 1998;18:93-97.
1052	117.	Brown JS, Nabity MB, Brock R, Cianciolo R, Lees GE. Comparison of urine sodium
1053	dode	cyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) with renal histological
1054	findi	ngs and clinicopathologic data in dogs with renal diseases. Vet Clin Pathol.
1055	2010	;39:556.
1056	118.	Zini E, Bonfanti U, Zatelli A. Diagnostic relevance of qualitative proteinuria
1057	evalı	ated by use of sodium dodecyl sulfate-agarose renal histologic findings in dogs. Am J
1058	Vet I	Res. 2004;65:964–971.
1059	119.	Giori L, Tricomi FM, Zatelli A, Roura X, Paltrinieri S. High-resolution gel
1060	elect	rophoresis and sodium dodecyl sulphate-agarose gel electrophoresis on urine samples
1061	for q	ualitative analysis of proteinuria in dogs. J Vet Diagn Invest. 2011;23:682-690.
1062	120.	Ibba F, Mangiagalli G, Paltrinieri S. Urinary gamma-glutamyl transferase (GGT) as a
1063	mark	ter of tubular damage in dogs with canine leishmaniasis, using sodium dodecylsulphate
1064	(SDS	S) electrophoresis as a reference method. <i>Vet J.</i> 2016;210:88-91.

1065	121	. Bonfanti U, Zini E, Minetti E, Zatelli A. Free light-chain proteinuria and normal
1066		renal histopathology and function in 11 dogs exposed to Leishmania infantum, Ehrlichia
1067		canis, and Babesia canis. J Vet Intern Med. 2004;18:618-624.
1068	122	. Brunker JD, Ponzio NM, Payton ME. Indices of urine N-acetyl-beta-D-
1069		glucosaminidase and gamma-glutamyl transpeptidase activities in clinically normal adult
1070		dogs. Am J Vet Res. 2009;70:297-301.
1071	123	. Palacio J, Liste F, Gascón M. Enzymuria as an index of renal damage in canine
1072		leishmaniasis. Vet Rec. 1997;140:477-480.
1073	124	. García-Martínez JD, Tvarijonaviciute A, Cerón JJ, Caldin M, Martínez-Subiela S.
1074		Urinary clusterin as a renal marker in dogs. J Vet Diagn Invest. 2012;24:301-306.
1075	125	. Nabity MB, Lees GE, Cianciolo R, Boggess MM, Steiner JM, Suchodolski JS.
1076		Urinary biomarkers of renal disease in dogs with X-linked hereditary nephropathy. J Vet
1077		Intern Med. 2012;26:282-293.
1078	126	. Sousa S, Cardoso L, Reed SG, et al. Development of a fluorescent based
1079		immunosensor for the serodiagnosis of canine leishmaniasis combining immunomagnetic
1080		separation and flow cytometry. PLoS Negl Trop Dis. 2013;7:e2371.
1081	127	. Ker HG, Coura-Vital W, Aguiar-Soares RD, et al. Evaluation of a prototype flow
1082		cytometry test for serodiagnosis of canine visceral leishmaniasis. Clin Vaccine Immunol.
1083		2013;20:1792-1798.
1084	128	. Ramos-Jesus J, Carvalho KA, Fonseca RA, et al. A piezoelectric immunosensor for
1085		Leishmania chagasi antibodies in canine serum. Anal Bioanal Chem. 2011;401:917-925.
1086	129	. Akhoundi B, Mohebali M, Shojaee S, et al. Rapid detection of human and canine
1087		visceral leishmaniasis: assessment of a latex agglutination test based on the A2 antigen from
1088	i	amastigote forms of Leishmania infantum. Exp Parasitol. 2013;133:307-313.
1089	130	. Maia C, Campino L. Methods for diagnosis of canine leishmaniasis and immune
1090		response to infection. <i>Vet Parasitol.</i> 2008;158:274-287. 43

1091	131.	Rosypal AC, Pick LD, Hernandez JO, Lindsay DS. Evaluation of a novel dried blood
1092	spot c	collection device (HemaSpot TM) to test blood samples collected from dogs for
1093	antibo	odies to Leishmania infantum. Vet Parasitol. 2014;205:338-342.
1094	132.	EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), 2015. Scientific
1095	Opini	on on canine leishmaniosis. EFSA Journal 2015;13:4075, 77 pp.
1096	doi:10	0.2903/j.efsa.2015.4075
1097	133.	Grimaldi G Jr, Teva A, Ferreira AL, et al. Evaluation of a novel chromatographic
1098	immu	moassay based on Dual-Path Platform technology (DPP® CVL rapid test) for the
1099	serod	iagnosis of canine visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2012;106:54-59.
1100	134.	Sagols E, Martin V, Claret E, McGahie D, Ciusinier AM, Gueguen S. Evaluation of
1101	the hu	imoral immune response after vaccination with LiESP/QA21 (CaniLeish): interest of
1102	Leish	mania specific anti-kinesin antibodies detection. Proceedings of the 2012 BSAVA
1103	Cong	ress, Birmingham, United Kingdom, April 12th-15th, 2012
1104	135.	Ferroglio E, Zanet S, Mignone W, Poggi M, Trisciuoglio A, Bianciardi P. Evaluation
1105	of a r	apid device for serological diagnosis of Leishmania infantum infection in dogs as an
1106	altern	ative to immunofluorescence assay and Western blotting. Clin Vaccine Immunol.
1107	2013;	20:657-659.
1108	136.	Solano-Gallego L, Villanueva-Saz S, Carbonell M, Trotta M, Furlanello T, Natale
1109	Aserc	logical diagnosis of canine leishmaniosis: comparison of three commercial ELISA
1110	tests ((Leiscan, ID Screen and Leishmania 96), a rapid test (Speed Leish K) and an in-house
1111	IFAT	Parasit Vectors. 2014;7:111.
1112	137.	Gradoni L, Gramiccia M. Leishmaniosis. In Manual of diagnostic tests and vaccines
1113	for te	rrestrial animals. World Organisation for Animal Health (OIE); 2008:240-250. (2014
1114	updat	e available at:
1115	<u>http://</u>	/www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.08_LEISHMANIOSIS.
1116	pdf; a	ccessed, October 20, 2015)

1118Leishmania infection: laboratory diagnosing in the absence of a "gold standard". Am J Trop1119Med Hyg. 2010;82:251-256.1120139.Moreno J, Alvar J. Canine leishmaniasis: epidemiological risk and the experimental1121model. Trends Parasitol. 2002;18:399-405.1122140.dos-Santos WL, Jesus EE, Paranhos-Silva M, et al. Associations among1123immunological, parasitological and clinical parameters in canine visceral leishmaniasis:	
1120 139. Moreno J, Alvar J. Canine leishmaniasis: epidemiological risk and the experimental 1121 model. <i>Trends Parasitol.</i> 2002;18:399-405. 1122 140. dos-Santos WL, Jesus EE, Paranhos-Silva M, et al. Associations among	
1121 model. Trends Parasitol. 2002;18:399-405. 1122 140. dos-Santos WL, Jesus EE, Paranhos-Silva M, et al. Associations among	
1122 140. dos-Santos WL, Jesus EE, Paranhos-Silva M, et al. Associations among	
1123 immunological, parasitological and clinical parameters in canine visceral leishmaniasis:	
1124 emaciation, spleen parasitism, specific antibodies and leishmanin skin test reaction. <i>Vet</i>	
1125 Immunol Immunopathol. 2008;5:3-4.	
1126 141. Andreadou M, Liandris E, Gazouli M, et al. A novel non-amplification assay for the	
1127 detection of Leishmania spp. in clinical samples using gold nanoparticles. J Microbiol	
1128 Methods. 2014;96:56-61.	
1129 142. Chaouch M, Mhadhbi M, Adams ER, et al. Development and evaluation of a loop-	
1130 mediated isothermal amplification assay for rapid detection of <i>Leishmania infantum</i> in	
1131 canine leishmaniasis based on cysteine protease B genes. Vet Parasitol. 2013;198:78-84.	
1132 143. Cortes S, Rolao N, Ramada J, Campino L. PCR as a rapid and sensitive tool in the Formattato: Inglese (Stati Uniti)	
1133 diagnosis of human and canine leishmaniasis using Leishmania donovani s.lspecific	
kinetoplastid primers. <i>Trans R Soc Trop Med Hyg</i> . 2004;98:12-17.	
1135 144. Francino O, Altet L, Sanchez-Robert E, et al.: Advantages of real-time PCR assay for Formattato: Inglese (Stati Uniti)	
diagnosis and monitoring of canine leishmaniosis. <i>Vet Parasitol.</i> 2006;137:214-221.	
1137 145. Martínez V, Quilez J, Sanchez A, Roura X, Francino O, Altet L. Canine Formattato: Inglese (Stati Uniti)	
1138 leishmaniasis: the key points for qPCR result interpretation. Parasit Vectors. 2011;4:57.	
1139 146. Solcà Mda S, Guedes CE, Nascimento EG, et al. Qualitative and quantitative Formattato: Inglese (Stati Uniti)	
1 140 polymerase chain reaction (PCR) for detection of <i>Leishmania</i> in spleen samples from	
1 141 naturally infected dogs. <i>Vet Parasitol.</i> 2012;184:133-140.	

1142	147.	Santos TR, Carreira VS, Ferrari HF, Moreira MA, Luvizotto MC. Comparison of	Formattato: Inglese (Stati Uniti)
1143	PCF	t with stained slides of bone marrow and lymph nodes aspirates with suspect diagnosis	
1144	for l	eishmaniasis. Acta Trop. 2014;140:137-140.	
1145	148.	Roura X, Fondevila D, Sanchez A, Ferrer L. Detection of Leishmania infection in	Formattato: Inglese (Stati Uniti)
1146	para	ffin-embedded skin biopsies of dogs using polymerase chain reaction. J Vet Diagn	
1147	Inve	st. 1999;11:385-387.	
1148	149.	Muller N, Zimmermann V, Forster U, Bienz M, Gottstein B, Welle M. PCR-based	Formattato: Inglese (Stati Uniti)
1149	dete	ction of canine Leishmania infections in formalin-fixed and paraffinembedded skin	
1150	biop	sies: elaboration of a protocol for quality assessment of the diagnostic amplification	
1151	reac	tion. Vet Parasitol. 2003;114:223-229.	
1152	150.	Gradoni, L. The diagnosis of canine leishmaniasis. In: Killick-Kendrick R, ed.	Formattato: Inglese (Stati Uniti)
1153	Can	ine leishmaniasis: moving towards a solution. Proceedings of the 2 nd International	
1154	leisl	maniasis Forum, Sevilla, Spain. Boxmeer, NL. Intervet International. 2002:7-14.	
1155	151.	Ramos RA, Ramos CA, Santos EM, et al. Quantification of Leishmania infantum	Formattato: Inglese (Stati Uniti)
1156	DN	A in the bone marrow, lymph node and spleen of dogs. Rev Bras Parasitol Vet.	
1157	201	3;22:346-350.	
1158	152.	Carvalho Ferreira AL, Carregal VM, de Almeida Ferreira S, Leite RS, de Andrade	Formattato: Inglese (Stati Uniti)
1159	AS.	Detection of Leishmania infantum in 4 different dog samples by real-time PCR and	
1160	ITS	-1 nested PCR. Diagn Microbiol Infect Dis. 2014;78:418-421.	
1161	153.	Almeida AB, Sousa VR, Gasparetto ND, et al. Canine visceral leishmaniasis:	Formattato: Inglese (Stati Uniti)
1162	diag	nostic approaches based on polymerase chain reaction employing different biological	
1163	sam	ples. Diagn Microbiol Infect Dis. 2013;76:321-324.	
1164	154.	Reis LE, Coura-Vital W, Roatt BM, et al. Molecular diagnosis of canine visceral	Formattato: Inglese (Stati Uniti)
1165	leisł	maniasis: a comparative study of three methods using skin and spleen from dogs with	
1166	natu	ral Leishmania infantum infection. Vet Parasitol. 2013;197:498-503.	
I			

1167	155.	Ferreira Sde A, Ituassu LT, de Melo MN, de Andrade AS: Evaluation of the	Formattato: Inglese (Stati Uniti)
1168	con	junctival swab for canine visceral leishmaniasis diagnosis by PCR-hybridization in	
1169	Min	nas Gerais State, Brazil. Vet Parasitol. 2008;152:257-263.	
1170	156.	Gramiccia M, Di Muccio T, Fiorentino E, et al.: Longitudinal study on the detection	Formattato: Inglese (Stati Uniti)
1171	of c	canine Leishmania infections by conjunctival swab analysis and correlation with	
1172	entc	omological parameters. Vet Parasitol. 2010;171:223-228.	
1173	157.	Di Muccio T, Veronesi F, Antognoni MT, Onofri A, Piergili Fioretti D, Gramiccia	
1174	M. !	Diagnostic value of conjunctival swab sampling associated with nested PCR for different	
1175	cate	egories of dogs naturally exposed to Leishmania infantum infection. J Clin Microbiol.	
1176	201′	2;50:2651-2659.	
1177	158.	Ferreira Sde A, Almeida GG, Silva Sde O, et al. Nasal, oral and ear swabs for canine	Formattato: Inglese (Stati Uniti)
1178	visc	ceral leishmaniasis diagnosis: new practical approaches for detection of Leishmania	
1179	infa	antum DNA. PLoS Negl Trop Dis. 2013;7:e2150.	
1180	159.	Madeira MF, Figueiredo FB, Pinto AG, et al.: Parasitological diagnosis of canine	Formattato: Inglese (Stati Uniti)
1181	visc	ceral leishmaniasis: is intact skin a good target? Res Vet Sci. 2009;87:260-262.	
1182	160.	Diniz SA, Melo MS, Borges AM, et al. Genital lesions associated with visceral	Formattato: Inglese (Stati Uniti)
1183	leisł	hmaniasis and shedding of Leishmania sp. in the semen of naturally infected dogs. Vet	
1184	Patl	hol. 2005;42:650-658	
1185	161.	Manna L, Paciello O, Morte RD, Gravino AE. Detection of Leishmania parasites in	Formattato: Inglese (Stati Uniti)
1186	the t	testis of a dog affected by orchitis: case report. Parasit Vectors. 2012;5:216.	
1187	162.	Levy E, Mylonakis ME, Saridomichelakis MN, Polizopoulou ZS, Psychogios V,	
1188	Kov	utinas AF. Nasal and oral masses in a dog. Vet Clin Pathol. 2006;35:115-118	Formattato: Inglese (Stati Uniti)
1189	163.	Caniatti M, da Cunha NP, Avallone G, et al. Diagnostic accuracy of brush cytology	Formattato: Inglese (Stati Uniti)
1190	in c	canine chronic intranasal disease. Vet Clin Pathol. 2012;41:133-140.	
1191	164.	Costa MM, Lima WG, Figueiredo MM, Michalick MS, Tafuri WL, Tafuri WL.	
1192	Cerv	vical, mandibular, and parotid lymph nodes of dogs naturally infected with <i>Leishmania</i> 47	Formattato: Inglese (Stati Uniti)

1193	infant	um: a histopathologic and immunohistochemistry study and its correlation with facial	
1194	skin l	esions. Vet Pathol. 2008;45:613-616.	
1195	165.	Mylonakis ME, Papaioannou N, Saridomichelakis MN, Koutinas AF, Billinis C,	Formattato: Inglese (Stati Uniti)
1196	Konto	os VI. Cytologic patterns of lymphadenopathy in dogs infected with Leishmania	
1197	infant	um. Vet Clin Pathol. 2005;34:243-247.	
1198	166.	Ferro S, Palmieri C, Cavicchioli L, De Zan G, Aresu L, Benali SL. Leishmania	Formattato: Inglese (Stati Uniti)
1199	amast	igotes in neoplastic cells of 3 nonhistiocytic canine tumors. Vet Pathol. 2013;50:749-	
1200	752.		
1201	167.	Kegler K, Habierski A, Hahn K, Amarilla SP, Seehusen F, Baumgärtner W. Vaginal	Formattato: Inglese (Stati Uniti)
1202	canin	e transmissible venereal tumour associated with intra-tumoural Leishmania spp.	
1203	amast	igotes in an asymptomatic female dog. J Comp Pathol. 2013;149:156-161.	
1204	168.	Marino G, Gaglio G, Zanghì A. Clinicopathological study of canine transmissible	Formattato: Inglese (Stati Uniti)
1205	vener	eal tumour in leishmaniotic dogs. J Small Anim Pract. 2012;53:323-327.	
1206	169.	Foglia Manzillo V, Pagano A, Guglielmino R, Gradoni L, Restucci B, Oliva G.	
1207	Extra	nodal gammadelta-T-cell lymphoma in a dog with leishmaniasis. Vet Clin Pathol.	
1208	2008;	37:298-301.	
1209	170.	Catone G, Marino G, Poglayen G, Gramiccia M, Ludovisi A, Zanghì A. Canine	
1210	transr	nissible venereal tumour parasitized by Leishmania infantum. Vet Res Commun.	
1211	2003;	27:549-553.	
1212	171.	Albanese F, Poli A, Millanta F, Abramo F. Primary cutaneous extragenital canine	Formattato: Inglese (Stati Uniti)
1213	transr	nissible venereal tumour with Leishmania-laden neoplastic cells: a further suggestion	
1214	of his	tiocytic origin? Vet Dermatol. 2002;13:243-246.	
1215	172.	Toplu N, Aydogan A. An immunohistochemical study in cases with usual and	Formattato: Inglese (Stati Uniti)
1216	unusu	al clinicopathological findings of canine visceral leishmaniosis. Parasitol Res.	
1217	2011;	109:1051-1057.	

1218	173. Menezes RC, Figueiredo FB, Wise AG, et al. Sensitivity and specificity of in situ Formattato: Inglese (Stati Uniti)
1219	hybridization for diagnosis of cutaneous infection by Leishmania infantum in dogs. J Clin
1220	Microbiol. 2013;51:206-211.
1221	174. Dinhopl N, Mostegl MM, Richter B, et al. In situ hybridisation for the detection of Formattato: Inglese (Stati Uniti)
1222	Leishmania species in paraffin wax-embedded canine tissues using a digoxigenin-labelled
1223	oligonucleotide probe. Vet Rec. 2011;169:525.
1 1224	175. Nieto CG, Navarrete I, Habela MA, Serrano F, Redondo E. Pathological changes in
1225	kidneys of dogs with natural Leishmania infection. Vet Parasitol. 1992;45:33-47.
1226	176. Koutinas AF, Carlotti DN, Koutinas C, Papadogiannakis EI, Spanakos GK,
1227	Saridomichelakis MN. Claw histopathology and parasitic load in natural cases of canine Formattato: Inglese (Stati Uniti)
1228	leishmaniosis associated with Leishmania infantum. Vet Dermatol. 2010;21:572-577
1229	177. Naranjo C, Fondevila D, Altet L, et al. Evaluation of the presence of <i>Leishmania spp.</i> Formattato: Inglese (Stati Uniti)
1230	by real-time PCR in the lacrimal glands of dogs with leishmaniosis. Vet J. 2012;193:168-
1231	173.
1232	178. Figueiredo MM, Moura EP, Costa MM, et al. Histopathological and parasitological Formattato: Inglese (Stati Uniti)
1233	investigations of ear healthy skin of dogs naturally and experimentally infected with
1234	Leishmania (Leishmania) chagasi. Histol Histopathol. 2010;25:877-887.
1235	179. Moreira PR, Vieira LM, de Andrade MM, et al. Immune response pattern of the Formattato: Inglese (Stati Uniti)
1236	popliteal lymph nodes of dogs with visceral leishmaniasis. Parasitol Res. 2010;107:605-
1237	613.
1238	180. Pinto AJ, Figueiredo MM, Silva FL, et al. Histopathological and parasitological Formattato: Inglese (Stati Uniti)
1239	study of the gastrointestinal tract of dogs naturally infected with Leishmania infantum. Acta
1240	Vet Scand. 2011;53:67.
1241	181. Bardagí M, Fondevila D, Zanna G, Ferrer L. Histopathological differences between Formattato: Inglese (Stati Uniti)
1242	canine idiopathic sebaceous adenitis and canine leishmaniosis with sebaceous adenitis. Vet
1243	Dermatol. 2010;21:159-165.
	49

1244	182.	Bongiorno G, Paparcone R, Foglia Manzillo V, Oliva G, Cuisinier AM, Gradoni L.	Formattato: Inglese (Stati Uniti)
1245	Vac	cination with LiESP/QA-21 (CaniLeish®) reduces the intensity of infection in	
1246	Phle	botomus perniciosus fed on Leishmania infantum infected dogsa preliminary	
1247	xeno	bdiagnosis study. Vet Parasitol. 2013;197:691-695.	
1248	183.	Longoni SS, Sánchez-Moreno M, López JE, Marín C. Leishmania infantum secreted	Formattato: Inglese (Stati Uniti)
1249	iron	superoxide dismutase purification and its application to the diagnosis of canine	
1250	Leis	hmaniasis. Comp Immunol Microbiol Infect Dis. 2013;36:499-506.	
1251	184.	Britti D, Gaspari M, Massimini G, Casalinuovo F, Morittu VM, Cuda G. Proteomic	
1252	anal	ysis in canine leishmaniasis. Vet Res Commun. 2010;34 Suppl 1:S91-596.	
1253	185.	Menezes-Souza D, Corrêa-Oliveira R, Guerra-Sá R, et al. Cytokine and transcription	Formattato: Inglese (Stati Uniti)
1254	facto	or profiles in the skin of dogs naturally infected by Leishmania (Leishmania) chagasi	
1255	pres	enting distinct cutaneous parasite density and clinical status. Vet Parasitol.	
1256	201	1;177:39-49.	
1257	186.	Di Loria A, Squillacioti C, De Luca A, et al. Increased leptin mRNA expression in	Formattato: Inglese (Stati Uniti)
1258	the l	blood of dogs naturally infected by Leishmania infantum. Vet J. 2014;202:634-636.	
1259	187.	dos Santos FR, Vieira PM, Correa-Oliveira R, et al. Qualitative and quantitative	Formattato: Inglese (Stati Uniti)
1260	imm	unohistochemical evaluation of iNOS expression in the spleen of dogs naturally	
1261	infe	cted with Leishmania chagasi. Parasitol Res. 2011;108:1397-1403.	
1262	188.	Melo GD, Marangoni NR, Marcondes M, Lima VM, Machado GF. High levels of	Formattato: Inglese (Stati Uniti)
1263	seru	m matrix metalloproteinases in dogs with natural visceral leishmaniosis: a preliminary	
1264	repo	rt. Vet J. 2011;188:243-245.	
1265	189.	Marangoni NR, Melo GD, Moraes OC, Souza MS, Perri SH, Machado GF. Levels of	Formattato: Inglese (Stati Uniti)
1266	mati	rix metalloproteinase-2 and metalloproteinase-9 in the cerebrospinal fluid of dogs with	
1267	visc	eral leishmaniasis. Parasite Immunol. 2011;33:330-334.	
1268	190.	Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress	Formattato: Inglese (Stati Uniti)
1269	duri	ng inflammatory processes. <i>Biol Chem.</i> 2014;395:203-230. 50	

1270	191.	Heidarpour M, Soltani S, Mohri M, Khoshnegah J. Canine visceral leishmaniasis:	F	Formattato: Inglese (Stati Uniti)
1271	relat	ionships between oxidative stress, liver and kidney variables, trace elements, and		
1272	clini	cal status. Parasitol Res. 2012;111:1491-1496.		
1273	192.	Almeida BF, Narciso LG, Melo LM, et al. Leishmaniasis causes oxidative stress and	F	Formattato: Inglese (Stati Uniti)
1274	alter	ration of oxidative metabolism and viability of neutrophils in dogs. Vet J. 2013;198:599-		
1275	605.			
1276	193.	Souza CC, Barreto Tde O, da Silva SM, et al. A potential link among antioxidant	F	Formattato: Inglese (Stati Uniti)
1277	enzy	mes, histopathology and trace elements in canine visceral leishmaniasis. Int J Exp		
1278	Path	<i>nol.</i> 2014;95:260-270.		
1279	194.	Paltrinieri S, Ravicini S, Rossi G, Roura X Serum concentration of the derivative of	F	Formattato: Inglese (Stati Uniti)
1280	reac	tive oxygen metabolites (d-ROMs) in dogs with leishmaniosis. Vet J. 2010;186:393-		
1281	395.			
1282	195.	Oliva G, Roura X, Crotti A, et al. Guidelines for treatment of leishmaniasis in dogs. J	F	Formattato: Inglese (Stati Uniti)
1283	Am	Vet Med Assoc. 2010;236:1192-1199.		
1284	196.	Bianciardi P, Brovida C, Valente M, et al. Administration of miltefosine and	F	Formattato: Inglese (Stati Uniti)
1285	meg	lumine antimoniate in healthy dogs: clinicopathological evaluation of the impact on the		
1286	kidn	eys. Toxicol Pathol. 2009;37:770-775.		
1287	197.	Miró G, Oliva G, Cruz I, et al. Multicentric, controlled clinical study to evaluate	F	Formattato: Inglese (Stati Uniti)
1288	effec	ctiveness and safety of miltefosine and allopurinol for canine leishmaniosis. Vet		
1289	Deri	natol. 2009;20:397-404.		
1290	198.	Xenoulis PG, Saridomichelakis MN, Chatzis MK, et al. Prospective evaluation of	F	Formattato: Inglese (Stati Uniti)
1291	seru	m pancreatic lipase immunoreactivity and troponin I concentrations in Leishmania		
1292	infar	ntum-infected dogs treated with meglumine antimonate. Vet Parasitol. 2014;203:326-		
1293	330.			

1294	199.	Luciani A, Sconza S, Civitella C, Guglielmini C. Evaluation of the cardiac toxicity of	Formattato: Inglese (Stati Uniti)
1295	N-m	ethyl-glucamine antimoniate in dogs with naturally occurring leishmaniasis. Vet J.	
1296	2013	3;196:119-121.	
1297	200.	Torres M, Bardagí M, Roura X, Zanna G, Ravera I, Ferrer L. Long term follow-up of	Formattato: Inglese (Stati Uniti)
1298	dogs	diagnosed with leishmaniosis (clinical stage II) and treated with meglumine	
1299	antir	noniate and allopurinol. Vet J. 2011;188:346-351.	
1300	<mark>201</mark> .	Torres M, Pastor J, Roura X, et al. Adverse urinary effects of allopurinol in dogs	Formattato: Inglese (Stati Uniti)
1301	with	leishmaniasis. J Small Anim Pract. 2016 Apr 26. doi: 10.1111/jsap.12484. [Epub ahead	
1302	<mark>of pı</mark>	int]	
1303	202.	Pierantozzi M, Roura X, Paltrinieri S, Poggi M, Zatelli A. Variation of proteinuria in	
1304	dogs	with leishmaniasis treated with meglumine antimoniate and allopurinol: 53 cases	
1305	(200	6-2010). J Am Anim Hosp Assoc. 2013;49:231-236.	
1306	203.	Roura X, Fondati A, Lubas G, et al. Prognosis and monitoring of leishmaniasis in	Formattato: Inglese (Stati Uniti)
1307	dogs	: A working group report. Vet J. 2013;198:43-47.	
1308	204.	Goldstein RE, Brovida C, Fernández-Del Palacio MJ, et al, Consensus	Formattato: Inglese (Stati Uniti)
1309	reco	mmendations for treatment for dogs with serology positive glomerular disease. J Vet	
1310	Inter	m Med. 2013;27 Suppl 1:S60-6.	
1311	205.	Rossi G, Ibba F, Meazzi S, Giordano A, Paltrinieri S. Paraoxonase activity as a tool	Formattato: Inglese (Stati Uniti)
1312	for c	linical monitoring of dogs treated for canine leishmanias. Vet J. 2014:199:143-149.	
1313	206.	Rougier S, Hasseine L, Delaunay P, Michel G, Marty P. One-year clinical and	Formattato: Inglese (Stati Uniti)
1314	para	sitological follow-up of dogs treated with marbofloxacin for canine leishmaniosis. Vet	
1315	Parc	asitol. 2012;186:245-253.	
1316	207.	Manna L, Corso R, Galiero G, Cerrone A, Muzj P, Gravino AE. Long-term follow-	Formattato: Inglese (Stati Uniti)
1317	up o	f dogs with leishmaniosis treated with meglumine antimoniate plus allopurinol versus	
1318	milte	efosine plus allopurinol. Parasit Vectors. 2015;8:289.	

1319	208. Oliva G, Gradoni L, Cortese L, et al., Comparative efficacy of meglumine	
1320	antimoniate and aminosidine sulphate, alone or in combination, in canine leishmaniasis. Ann	
1321	Trop Med Parasitol. 1998;92:165-171.	
1322	209. Solano-Gallego L, Di Filippo L, Ordeix L, et al. Early reduction of <i>Leishmania</i>	Formattato: Inglese (Stati Uniti)
1323	infantum-specific antibodies and blood parasitemia during treatment in dogs with moderate	
1324	or severe disease. Parasit Vectors 2016;9:235.	
1325	210. Morales-Yuste M, Morillas-Márquez F, Díaz-Sáez V, Barón-López S, Acedo-	Formattato: Inglese (Stati Uniti)
1326	Sánchez C, Martín-Sánchez J. Epidemiological implications of the use of various methods	
1327	for the diagnosis of canine leishmaniasis in dogs with different characteristics and in	
1328	differing prevalence scenarios Parasitol Res 2012:111:155-164	

1329 Table 1: summary of the laboratory findings detectable in canine leishmaniasis.

^	Typical abnormalities	Frequent abnormalities	Occasional abnormalities	Formattato: Inglese (Stati Uniti)
Routine CBC -		Neutrophilia ^{34,35}	Lymphopenia; Lymphocytosis;	
leukogram			Eosinophilia ³⁵⁻³⁷	
Routine CBC –	Normocytic normochromic non regenerative		Positive Coombs test or	Formattato: Inglese (Stati Uniti)
erythrogram	anemia		anti.RBC antibodies ¹⁷	
Routine CBC –			Thrombocytopenia (check for	Formattato: Inglese (Stati Uniti)
thrombogram			co-infections) ^{42,43}	
Bone Marrow	Erythroid hypoplasia; Myeloid hyperplasia;	Megakaryocyte hyperplasia; Secondary	! 	Formattato: Inglese (Stati Uniti)
cytology	Macrophage proliferation-hyperplasia;	dysmyelopoiesis (dyserythropoiesis or		
	Presence of intracytoplasmic amastigotes;	dysegakaryopoiesis, occasionally		
	Plasmocytosis ^{24,35,37,39,50,51,52,53,54}	dysgranulopoiesis) ^{35,54}	 	Formattato: Inglese (Stati Uniti)
Hemostasis		Decreased ATIII	Increased PT and aPTT ⁴⁶	Formattato: Inglese (Stati Uniti)
			Hypercoagulability detected by	
			thromboelastography or	
			thromboelastometry ⁵⁵	

Routine clinical	Increase of creatinine and/or urea; 14-17,24,72,74-		Abnormalities in other	
chemistry	77,87,85		biochemical analytes (depending	
	Hyperproteinemia with hypoalbuminemia		on the localization of	_
	and inverted A:G ratio ^{14,15,18,72,88,89,90}		lesions) ^{16,34,59-64}	_
Serum protein	Polyclonal gammopathy ^{14,15,18,72,88,89,90}	Oligoclonal gammopathy ⁹³	Mono- or bi-clonal	-
electrophoresis			gammopathy ^{91,92,94,95}	
Acute phase proteins	Increase of CRP, SAA, Hp, Cp, Ferritin;	Decreased of PON1 and HDL ¹⁰²⁻¹⁰⁴		
and other markers of	decreases of TIBC96-101			
inflammation				
Urinalysis	Proteinuria; decreased USG; ¹⁴⁻¹⁸ mixed	Increase of marker of tubular damage		
	proteinuria at SDS-electrophoresis ¹¹⁷⁻¹²⁰	(GGT, NAG) ^{120,123}		

Formattato: Inglese (Stati Uniti)

Formattato: Inglese (Stati Uniti)

Formattato: Inglese (Stati Uniti)

1331 Figure captions

1332 1333 Figure 1: Dog, bone marrow aspirates summarizing the main findings in canine leishmaniasis: A) 1334 several amastigotes are seen in the cytoplasms of infected macrophages; B) free amastigotes in the 1335 background; C) infected macrophage with signs of erytrhophagia; D) infected macrophage with 1336 signs of cytophagia. E) myeloid hyperplasia and erythroid hypoplasia in a microscopic field on 1337 which infected macrophages are also detectable; F) severe plasmocytosis, myeloid hyperplasia and 1338 a Mott cell. In D and F, free amastigotes are also visible in the background (arrows). May 1339 Grünwald-Giemsa stain. Bar: 15 µm in A, B, C, 20 µm in D, F, 70 µm in E 1340 1341 Figure 2: Dog, bone marrow smears, examples of secondary dysmyelopoiesis associated with 1342 leishmaniasis. A) atypical mitosis in a specimen with an infected macrophage; B) myeloid 1343 hyperplasia and plasmocytosis, and atypical mitosis of an erythroid precursor (arrowhead) with 1344 evident signs of asynchronous maturation; C) dwarf megacaryocytes; D) emeperiploesis in a 1345 megakaryocytes. In A and C free amastigotes are visible on the background (arrows). May 1346 Grünwald-Giemsa stain. Bar: 20 µm in A and B, 60 µm in C and D. 1347 1348 Figure 3: examples of electrophoretograms obtained from dogs with leishmaniasis using agarose gel 1349 electrophoresis: A) normal canine electrophoretogram for comparison (a = albumin; α_1 , α_2 , β_1 , β_2 , γ 1350 = globulin fractions); B) Severe increase of α_2 - and γ -globulin, with polyclonal gammopathy; C) 1351 mild increase of α_2 -globulin (detectable only in the early phase of the disease); D) Severe 1352 hypoalbuminemia and polyclonal gammopathy. Also β_2 - globulins are likely increased in this case; 1353 E) Severe increase of α_2 -globulins and polyclonal gammopathy with a prominent peak in the β_2 -1354 region and a less evident polyclonal peak in the γ - region; F) Very severe hypoalbuminemia and 1355 severe oligoclonal gammopathy. This dog was co-infected with E. canis.

1356

1357 Figure 4: comparison of electrophoretograms obtained with agarose gel electrophoresis (AGE, A 1358 and C) or with capillary zone electrophoresis (CZE, B and D). The electrophoretograms in A and B 1359 are from the same sample of a dog with leishmaniasis. The electrophoretic profile is similar but in 1360 CZE hypoalbuminemia is more evident and the γ -globulin peak is narrower, possibly generating a 1361 false diagnosis of oligo- or monoclonal gammopathy. The electrophoretograms in C and D are from 1362 the same sample of a dog with leishmaniasis. In this case, the γ -globulin peak is higher in CZE than 1363 in AGE and evidences a biclonal origin, with a very narrow subpeak on the right side of the γ -1364 globulin fraction, possibly indicating a monoclonal component. 1365 1366 Figure 5: A) imprint of an ulcerated skin lesion from a dog with leishmaniasis The cytological 1367 pattern is consistent with pyogranulomatous inflammation (degenerated and non degenerated 1368 neutrophils, macrophages, lymphocytes and plasma cells). Variably sized pigmented material, likely 1369 depending on cytophagia may be found in the macrophage and on the background. This material 1370 may also be confused with amastigotes; B) cytocentrifuged synovial fluid from a dog with 1371 leishmaniasis presenting joint swelling. Amastigotes are visible in a large mononuclear cells with 1372 signs of nuclear degeneration. Neutrophils and lymphocytes, indicating an inflammatory process, 1373 and erythrocytes are also visible, C) fine needle aspirate of a spleen on which intracytoplasmic 1374 amastigotes are visible, along with plasma cells and neutrophils; D: fine needle aspirate of a lymph 1375 node from a dog with leishmaniasis. No amastigotes are visible but in this case the diagnosis is 1376 supported by the presence of reactive hyperplasia, characterized by variably sized lymphocytes, 1377 neutrophils and plasma cells. May Grünwald-Giemsa; Bars: 20µm in A, C, D, 15 µm in B. 1378 1379 Figure 6: Dog, dermis, immunohistochemical detection of amastigotes (brown dots) within the

1380 cytoplasm of macrophages. Immunohistochemistry, avidin-biotin peroxidase (ABC) method;

1381	chromogen: diaminobenzidine; counterstain: Mayer's hematoxylin. Bar = $20\mu m$. (Courtesy of Prof.
1382	Eugenio Scanziani, MAPLab, Fondazione Filarete, Milan, and Dr. Raffaella Bergottini – Helab –
1383	Milan).
1384	
1385	Figure 7: Urine from a dog with leishmaniasis treated with allopurinol. Xanthine crystals appear as

- 1386 roundish brown-yellow crystals of different size, single or forming small to medium clusters.
- 1387 Unstained sediment. Bar: 15 µm. (Courtesy of Dr. Tiziana Vitiello, DiMeVet, University of Milan).