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: Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder that is characterized by a progressive
. degeneration of motor neurons (MNs). The pathomechanism underlying the disease is largely unknown,
even though increasing evidence suggests that RNA metabolism, including microRNAs (miRNAs) may

play an important role. In this study, human ALS induced pluripotent stem cells were differentiated
into MN progenitors and their miRNA expression profiles were compared to those of healthy control
cells. We identified 15 downregulated miRNAs in patients’ cells. Gene ontology and molecular pathway
enrichment analysis indicated that the predicted target genes of the differentially expressed miRNAs

. were involved in neurodegeneration-related pathways. Among the 15 examined miRNAs, miR-34a

. and miR504 appeared particularly relevant due to their involvement in the p53 pathway, synaptic

. vesicle regulation and general involvement in neurodegenerative diseases. Taken together our results

. demonstrate that the neurodegenerative phenotype in ALS can be associated with a dysregulation of
miRNAs involved in the control of disease-relevant genetic pathways, suggesting that targeting entire
gene networks can be a potential strategy to treat complex diseases such as ALS.

. Amyotrophic lateral sclerosis (ALS) is the most common and severe form of motor neuron disease (MND) in
. adults'. It is a fatal neurodegenerative disorder that affects motor neurons (MNs) leading to progressive mus-

cle weakness and atrophy. Death usually occurs within 3-5 years after diagnosis due to respiratory failure®
© Currently, due to the complexity of its etiopathogenesis and poor knowledge, there is no effective treatment and
. patients can rely only on supportive care and on Riluzole and Edaravone, the only two drugs approved for ALS
. treatment, which modestly prolong patient survival®.

The pathomechanisms underlying the disease are multifactorial and due to a complex interplay between
genetics and environmental components, such as toxic exposure, diet and circulating inflammatory cytokines*.
Patients without a familial history are generally recognized as sporadic (sALS) and account for the majority of
cases, while familial forms of the disease (fALS) represent only 10% of clinical records®. To date, the most relevant
genes associated with the disease are COORF72, SOD1, TARDBP and FUS, though several mutations in other
genes have been reported to be involved in ALS pathogenesis®”.

: Currently, RNA pathway dysregulation appears to be a major contributor to ALS etiopathogenesis. Indeed,
© mutations in C9ORF72, which is the most common gene associated with ALS, lead to a toxic mRNA gain of func-
: tion through RNA foci formation, and the subsequent sequestration and altered activity of RNA-binding proteins
- (RBPs)8. TDP-43 and FUS are also deeply involved in RNA metabolism. In a pathological context, such as cellular
stress, the association between TDP-43, FUS and the mRNA can lead to aberrant phosphorylation, ubiquitination
and the aggregation of proteins, as well as formation of stress granules (SGs)°. Aggregated RBPs are sequestered
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in SGs, leading to the formation of cytoplasmic inclusions and to the disruption of RNA processing!®. Moreover,
both TDP-43 and FUS have been implicated in microRNA (miRNA) processing'!.

miRNAs are short evolutionarily conserved noncoding single-stranded RNA molecules that regulate gene
expression via RNA-dependent post-transcriptional silencing mechanisms'2. They target the mRNA 3’-UTR,
causing the mRNA downregulation either through its destabilization or protein translation inhibition®. Indeed,
the degree of miRNA-mRNA target complementarity determines the fate of the target mRNA: a perfect anneal-
ing leads to transcript degradation, while an incomplete base-pairing is associated with translational repression,
mRNA degradation or sequestration into cytoplasmic structures named P-bodies?.

Since a single miRNA can target multiple genes and a group of miRNAs may regulate the same target gene,
these short sequences appear to be involved in almost all biological processes!*-1°. Indeed, miRNAs are crucial
in determining cell homeostasis and biological fate, and they are usually subject to modification during dis-
ease pathogenesis'’. Particularly, the control of gene expression by miRNAs is important for the maintenance of
neuron survival and physiological functions, so that dysfunctions in miRNA biogenesis can have severe conse-
quences in neurological disease!®-2.

miRNA biogenesis is a stepwise process strictly regulated by specific enzymatic complexes’. A surprising
number of proteins associated with ALS are involved in miRNA processing?*2. For example, TDP-43 and FUS
promote miRNA biogenesis by interacting with Drosha and Dicer, two key enzymes for processing miRNAs from
precursors into mature molecules®2%. Moreover, mutations in TDP-43, FUS, and SOD1 activate a stress response
pathway that leads to general decreased miRNA levels, which most likely contributes to MN degeneration®.
Indeed, several studies describe miRNA dysregulation in ALS pathology’.

Due to the important roles of miRNAs in the fine-tuning of crucial cellular functions, they could represent an
important tool for promoting modulations in biological pathways, which could explain, at least partially, complex
diseases such as ALS. In fact, addressing the biological consequences of aberrant miRNA levels could contribute
to the elucidation of the molecular mechanisms that lead to MN degeneration, thereby expanding our under-
standing of ALS pathogenesis.

In this study, we used induced pluripotent stem cells (iPSCs) to investigate miRNA-mediated pathogenic
mechanisms in ALS. Patient-specific stem cells represent a promising in vitro disease model for ALS research,
since they can be differentiated to different cell types harbouring the same patients’ genomic backgrounds. We
studied miRNA dysregulation in MN progenitors differentiated from fALS and sALS patient iPSCs and we iden-
tified a subset of 15 differentially expressed miRNAs in patient-derived cells compared to healthy ones.

Gene Ontology enrichment and Reactome pathway analyses highlighted that the most involved deregulated
pathways are associated with disease-relevant mechanisms, including synaptic vesicle synthesis, release, reuptake
and degradation, apoptosis and epigenetic regulation of gene expression. Among the identified miRNAs, miR-34a
and miR504 were further analyzed due to their implication in cell cycle regulation via the p53 pathway and their
already described downregulation in neurological disorders**=*. Overall, our results confirmed the crucial role
for miRNA deregulation in neurodegeneration and ALS. The identification of common downstream genetic path-
ways controlled by candidate miRNAs can lead to the discovery of pathological mechanisms and the development
of therapeutic strategies that target multiple gene networks, increasing the chances of modifying a multifactorial
disease such as ALS.

Results

Generation of iPSCs lines and MN progenitors as an in vitro model of ALS. We reprogrammed
fibroblasts from two sporadic ALS patients (SALS n=2), two familial ALS cases with SOD1 mutations (fALS
n=2) and two healthy subjects as controls (CTRL n=2) into iPSCs (Supplementary Table S1) using a non-in-
tegrating reprogramming protocol based on Sendai virus technology®!*2. The obtained iPSCs expressed typical
stem cell markers including OCT4, SOX2, SSEA4 (Supplementary Fig. S1).

We differentiated ALS and CTRL-iPSCs using a specific dual SMAD inhibition protocol based on neural
induction and exposure to a combination of small molecules that leads to the formation >90% MN progenitors
in a 14-day time frame™. These cells were positive for lineage-specific markers including Olig2 and 31II Tubulin
(TuJ1) (Fig. 1a). Quantitative PCR showed that expression levels of Olig2 and TuJ1 were comparable among
control, sALS, and fALS cell lines, suggesting there is no difference in the proportion of MN progenitors among
these lines (Fig. 1b).

miRNA expression profiles of MN progenitors show a miRNAs downregulation in ALS cells
compared to controls. We next profiled the miRNA transcriptome of MN progenitors using the TaqgMan®
Low Density Array, which enabled the accurate quantitation of 754 human miRNAs.

The analysis was performed on ALS-MNs progenitors (n =4, enclosing sSALS and fALS samples in a unique
biological group) versus CTRL-MNs (n=2). We observed a decreased expression of 15 miRNAs in ALS-MN
progenitors (Fig. 2a,b). We confirmed the results obtained with the Human Array MicroRNA cards using specific
qPCR assays performed on a random subset of identified miRNAs (Fig. 2c, Supplementary Fig. S2). In particu-
lar, we tested miR-504 (P < 0.05), miR-429 (P < 0.05), miR-34a (P < 0.0001), miR-133a (P < 0.0001), miR-7-2*
(P<0.0001) and miR-1225-3p (P < 0.0001) (Fig. 2¢).

Bioinformatics analysis on dysregulated miRNAs identifies deregulated pathways in ALS-MN
progenitors. To identify target genes associated with the identified miRNAs we interrogated miRTarBase,
one of the most comprehensively annotated and experimentally validated miRNA-target interactions databases,
and Mirgate, which contains novel computationally predicted miRNA-mRNA interactions. We identified 2923
validated target genes in MiRTarBase and 1018 putative targets in Mirgate.
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Figure 1. Immunocytochemistry (ICC) and qPCR performed on MN progenitors. (a) MN progenitors
differentiated from fALS, sALS and control iPSCs (CTRL) expressed typical neuronal markers (Olig2, green;
TuJ1, green). Nuclei are counterstained with DAPI (blue signal). Scale bars: Olig270 um and TuJ1 50 um.

(b) Quantification of Olig2 and TuJI by qPCR performed on fALS, sALS and control (CTRL) MN progenitors
(student t-test, values represent means + SEM).

Then, to obtain a more reliable target dataset, we intersected the lists generated by both databases. Of the common
368 genes, 278 genes were targeted by the same miRNAs thus representing the most stringent and reliable dataset.

In order to comprehensively describe the properties of these 278 target genes, we first performed Gene
Ontology Enrichment analysis (GO). The analysis of biological processes revealed that the selected miRNAs were
mainly involved in stem cell-related processes, such as regulation of epithelial to mesenchymal transition, mesen-
chyme development, regulation of stem cells differentiation and stem cell population (Fig. 3a).

Next, we analyzed our group of candidate genes with Reactome pathway over-representation to investigate the
associated molecular pathways. Interestingly, the analysis showed that the putative targets of the selected miRNAs
were associated with several pathways including chromatin modifying enzymes; oxidative stress; induced senes-
cence; GABA synthesis, release, reuptake and degradation (Fig. 3b).

Overall, these results suggest a potential role for miRNA reduction and particularly among those involved in
neuronal processes and cell response injuries in ALS.

Gene expression analysis showed a deregulation of selected target genes. To experimentally
characterize the involvement of the molecular pathways that had emerged from the Reactome analysis (Fig. 3b),
we selected specific genes based on their expression in the central nervous system and their likely involvement
in disease pathogenesis. We thus assayed, for quantitative Real Time PCR analysis (QRT-PCR) in ALS and
CTRL-MN progenitors, Tumor protein p53 (TP53), MDM2 proto-oncogene (MDM?2), and X-linked inhibitor of
apoptosis (XIAP), associated with oxidative stress-induced senescence and apoptosis; Syntaxin 1A (STXI1A) and
Synaptotagmin 1 (SYT1), which are involved in synaptic vesicle trafficking; Sirtuin 1 (SIRT1), a specific is target
of miR-34a?® (Supplementary Table S2). As shown in Fig. 4, QRT-PCR analysis revealed increased expression of
TP53 (P < 0.001) and MDM2, while the transcript levels of XIAP did not change in the pathological samples. We
further detected a significant reduction in STXIA transcript levels (P < 0.01), while we observed an increase in
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Figure 2. MiRNA expression profile in ALS patients versus healthy controls. (a) Volcano plot data from
TaqMan® Assays on microfluidics cards; data presented include sALS and fALS subjects in a unique
biological group (ALS). (b) List of downregulated miRNAs in ALS-MN progenitors from the volcano plot
analysis. (¢) Validation of data derived from the microfluidics cards with specific qPCR assays confirmed

the downregulation of miR-34a, miR-504, miR-429, miR-133a, miR-1225-3p, and miR-7-2* in ALS-MN
progenitors (ALS) (***P < 0.0001 and *P < 0.05, student t-test, values represent means + SEM) compared to
the controls (CTRL).

SYT1I albeit not statistically significant. Notably, all these genes are regulated by miR-34a and/or miR-504 suggest-
ing that these miRNAs may have a key role in ALS pathology. Finally, consistent with the downregulation of miR-
34a that we observed in our ALS-MN progenitors, we identified a significant upregulation of SIRT1 (P < 0.001).

Opverall, these results further support the potential role of these genes as downstream targets of miR-34a and
miR-504 in ALS pathogenesis.

Enoxacin treatment rescues miR-34a levels in ALS-iPSCs.  According to previous reports”? we
observed a preferential downregulation of miRNAs in ALS patients-derived cell lines. Because this reduction
of miRNA levels may contribute to MN degeneration'®?*, we examined the effect of enoxacin, a drug that was
previously shown to increase miRNA levels?**>4. Enoxacin is a fluoroquinolone antibiotic able to enhance the
binding affinity of TRBP to pre-miRNAs, thereby increasing the activity of the pre-miRNA processing factor
Dicer?>*>3, Importantly, enoxacin received an orphan designation for ALS treatment by the European Medicine
Agency (EU/3/15/1459) because of its ability to improve miRNA biogenesis**. Among the identified miRNAs,
we specifically focused on miR-34a and miR-504 due to their involvement in neurodegenerative pathways. As an
internal control, we used miR-302 and miR-367, which are described in the literature as expressed in iPSCs under
basal conditions. We analyzed the expression of the miRNAs in ALS-iPSCs versus control iPSCs either in the
absence or in the presence of enoxacin. Consistent with the described effect of enoxacin, we detected an increased
expression of all tested miRNAs, which was statistically significant for miR-34a and miR-504 (P < 0.01, Fig. 5a).
Finally, we investigated whether enoxacin treatment could affect the levels of some of the proteins involved in
miRNA biogenesis, such as Drosha, Dicer and Ago2. In general, we found that this drug did not appear to exert
any effects on their protein levels (data not shown), confirming, as has already been reported in literature®, that
enoxacin acts on Dicer activity and not on its protein level. We also demonstrated in our ALS-MN progenitors a
downregulation of activating transcription factor 3 (ATF3, P<0.01), already demonstrated as implicated in ALS
pathology™. This decrease resulted mitigated after enoxacin treatment (Fig. 5b). The same trend was observed by
western blot analysis (data not shown).

Discussion

The pathomechanisms underlying ALS are almost unknown, even though the role of alterations in RNA metab-
olism, including miRNA processing, has been increasingly recognized. miRNAs are tissue-specific small RNA
molecules that can individually regulate several hundred targets. Since miRNAs are linked to gene regulatory
networks implicated in neural induction, neuronal differentiation, and fate specification®, they can likely be
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Figure 3. GO and Molecular Pathway analysis performed on the 278 genes identified by bioinformatics.

(a) GO enrichment analysis showed the most significant biological processes enriched in ALS-MN progenitors
(P <0.05) and the list of genes associated with the 4 most enriched processes. (b) Table of selected pathways
with the related genes emerging from the Reactome analysis (P < 0.05).

implicated in MN development and in the etiology or progression of neurodegenerative diseases. Therefore, due
to their role in controlling fundamental physiological functions in neurons**, the identification of deregulated
miRNAs in pathological conditions could represent a strategy to understand disease mechanisms as well as to
select novel therapeutic targets.

Growing evidence, such as recent data obtained for spinocerebellar ataxia type 1, suggests that adult-onset
neurodegenerative diseases, including ALS, may also be rooted in development*’. iPSC-based models allow the
aetiopathology of ALS to be studied, including in the developmental stages that are otherwise inaccessible. For
this reason, in this study, we derived MN progenitors®® directly from patient fibroblasts exploiting the iPSCs tech-
nology. Moreover, MN progenitors allowed us to characterize some molecular events related to ALS during the
early stages of differentiation that can be important for the subsequent manifestation of ALS.

We performed miRNA profiling on MN progenitors through micro fluidic cards technology. Consistent with
previous reports that observed a general downregulation of miRNAs in ALS’, we identified 15 significantly down-
regulated miRNAs in our ALS lines enclosing sALS and fALS samples as a unique biological group. Indeed, even
if fALS and sALS can have different pathological mechanisms, we think that finding a common target dereg-
ulated in both sporadic and familiar patients can be useful either to understand the pathogenesis or to find a
common therapeutic strategy. Bioinformatics analysis allowed the identification of 278 genes that are targeted by
a common set of dysregulated miRNAs. Gene Ontology and Reactome pathway analysis showed that the main
significantly enriched biological processes were specifically related to several pathways including programmed
cell death, oxidative stress-induced senescence, synaptic vesicles synthesis, release, reuptake and degradation,
apoptosis and epigenetic regulation of gene expression. Among the 15 miRNAs identified in our study, miR-34a
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Figure 4. Gene expression analysis of selected target genes identified. Specific qPCR gene expression analysis
for SIRT1, STX1A, SYT1, XIAP, MDM?2 and TP53 (***P < 0.001 and **P < 0.01, student t-test, values represent
means + SEM) in ALS cells (ALS) compared to the control cells (CTRL).

and miR-504 were relevant candidates to be further investigated for target validation. We focused on genes that
are involved in the main pathways that are consistent with degeneration processes occurring in ALS, namely in
apoptosis, epigenetic regulation, and in synaptic vescicles metabolism.

Based on the Reactome analysis, miR-34a was associated with almost all the affected pathways and related
genes. Literature evidence shows that this miRNA is involved in cell cycle regulation, induction of apoptosis
after cell damage, and autophagy?**#2, Intriguingly, miR-34a and miR-504 share many molecular pathways
related to apoptosis*>*%. miR-34a has already been found to be downregulated in the spinal cord and brain stem
of SOD1G93A transgenic mice, at different stages of the disease and has been considered an apoptotic-related
miRNA?, while miR-504 deregulation has not yet been described in the context of ALS. miR-34a is a direct tran-
scriptional target of TP53* gene while miR-504 is a direct upstream negative regulator of TP53 protein expres-
sion*>*4, Moreover, the activation of TP53 can result in transcription of miR-34, which in turn promotes TP53
expression*. Finally, the promoter region of the miR-34 gene is regulated by epigenetic mechanisms and pro-
moter demethylation can induce miR-34a expression, TP53 transcription and the subsequent regulation of genes
involved in cell cycle control*. Interestingly, TP53 and related proteins have already been associated with neu-
rodegenerative diseases and motor neuronal cell death both in patients and in ALS murine models*®*’. For these
reasons, we further investigated the mRNA level of TP53 and of MDM?2 and XIAP, two other apoptosis-related
genes that were identified as miR-34a and miR-504 targets in our bioinformatics analysis. We found increased
TP53 and MDM2 transcript levels in ALS-MN progenitors. MDM2 binds p53 and controls its transcriptional
activity and stability through an autoregolatory feedback mechanism*®. However, the simultaneous upregulation
of TP53 and MDM2 has been already described in mouse skeletal muscles in ALS mice*’. With regards to XIAP,
we did not observe any significant differences in terms of gene expression in ALS cells compared to controls. It
has been reported that XIAP is decreased in the disease and its overexpression in spinal cord neurons in ALS mice
displayed beneficial effects on survival®.

Epigenetic processes can alter the genetic information as a result of environmental signals, and these mecha-
nisms are particularly important in the neurodegenerative field, which makes the epigenome an attractive ther-
apeutic target’!. In ALS, it has been reported that several environmental insults can trigger the release of free
radicals leading to oxidative stress, epigenetic modifications and finally changes in gene expression®2. In this con-
text, it is worth mentioning that the promoter region of the miR-34 gene is regulated by epigenetic mechanisms
and promoter demethylation can induce miR-34a expression, TP53 activation and the regulation of various genes
involved in the cell cycle**.

In yeast sirtuin proteins are known to regulate epigenetic gene silencing. The human SIRT1 gene is a direct
target of miR-34a%. We assayed the level of SIRT1, and observed a statistically significant upregulation consist-
ent with the downregulation of miR-34a in ALS-MN progenitors. Interestingly, SIRT1 was shown to protect
cells from oxidative stress® and apoptosis®. Thus, increased expression of SIRT1 may represent a pro-survival
response for ALS MN progenitors.

Based on the known role of synaptic vesicles at neuromuscular junctions, we investigated the expression of
STX1A and SYT1, two genes identified in the Reactome analysis, targeted by miR-34, and involved in synaptic

SCIENTIFICREPORTS| (2018) 8:10105 | DOI:10.1038/s41598-018-28366-1 6



www.nature.com/scientificreports/

a
hsa-miR-34a-5p hsa-miR-504-5p
2.5- 3+
20 5
S s 52
g . % *x
g 1.04 g "
E 0.5 g
e 4
0.0 T T 0 T T
&v > v;: & é@, °\¢ '}? éo
d '@@" &@' &jp -@f
g o v
& v & w
hsa-miR-367-3p hsa-miR-302b-3p
1.5 1.5
& &
2 ©
S 1.0 5 1.04
3 z
e e
o [
2 0.5 2 0.
Z £ 0.5+
& &
0.0 : T 0.0 . T
N & d & g & - &
& & Ly & ¢ Ll 4
< < <& <
& ¥ & ¥
b ATF3
2.5+ i
[
g 2.04
S
3 1.54
e
£ 1.0-
5
0.0 T
& & v
& v
O @(‘
X$ 68
NG
& Lol

Figure 5. miRNA expression analysis in control and ALS iPSCs and ATF3 quantification after enoxacin
treatment. (a) qQPCR experiments performed on miR-34a, miR-504, miR-367 and miR-302b in control (CTRL)
and ALS iPSCs (ALS) treated or not treated with 100 uM enoxacin for 48 hours. Enoxacin treatment increased
the amount of miRNAs in both control and ALS iPSCs (***P < 0.0001 and **P < 0.01, student t-test, values
represent means + SEM). The experiment was repeated three times. (b) qQPCR experiments performed on ATF3
in control (CTRL) and ALS-MN progenitors (ALS) treated or not treated with 100 uM enoxacin for 48 hours.
ALS displayed significant low levels of ATF3 (**P < 0.01, student t-test, values represent means + SEM).

functions. In fact, synapses are basic structural and functional units of the central nervous system-muscles con-
nection that are highly vulnerable to pathological conditions, particularly in neurodegenerative diseases. In ALS,
mutations of SOD1, TDP43 and FUS have already been linked to synaptic dysfunctions®. Particularly, presyn-
aptic alterations appear to be early symptoms of neuronal disorders. Interestingly, our gene expression analysis
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confirmed the dysregulated expression of STX1A, a member of the syntaxin superfamily that is involved in
neurotransmitter release at the presynaptic membrane. We found a significant decrease of STXIA levels in our
ALS cells, which confirmed data already published about syntaxin family members in the spinal cord from ALS
patients®”. We also assayed SYT1 levels since this protein acts as a key regulator for synaptic vesicle exocytosis
and endocytosis, regulating their docking in response to the presence of calcium® and because it has already
been associated with synaptic transmission defects in another murine model of a MN disease, Spinal Muscular
Atrophy (SMA)*. Moreover, SYT1 downregulation has been reported in nerve terminals from highly affected
muscles, which seems to be associated with SMA mouse muscle vulnerability®. However, in the spinal cords
of SOD1 mice, higher SYT1 expression was observed and was linked to the altered calcium concentrations and
ALS-linked excitotoxicity®'. Of note, we confirmed an upregulation of SYT1 transcript levels in our ALS-MN pro-
genitors. Thus, our gene expression results for STX1A and SYT1 support a key role for these proteins in synaptic
vesicle trafficking changes in ALS that requires further investigations.

Finally, we investigated the potential therapeutic effect of enoxacin on miRNA levels in ALS. Enoxacin is an
antibiotic that recently received an orphan designation for ALS treatment by the EMA (EU/3/15/1459) thanks
to its ability to increase Dicer activity. Indeed, this compound enhances the binding affinity of TAR RNA bind-
ing protein to pre-miRNAs, thereby increasing pre-miRNA processing by Dicer®>*°. Since Dicer is known to be
crucial in miRNA biogenesis, enoxacin is expected to revert the general miRNA downregulation related to ALS
disease. Therefore, we treated ALS and control iPSCs with enoxacin observing a slight increase in miRNAs levels
in the treated cells compared to untreated cells. We have already shown that fully differentiated MNs in ALS had
decreased survival that correlated with variations in the activation of the apoptotic pathway after long term cul-
ture®?. Even if in the present study, we did not observe a difference among control, sALS, and fALS MN progen-
itors obtainment, we found decreased expression of activating transcription factor 3 (ATF3). Expression of ATF3
prevents cell death and promotes neurite formation and elongation that induces the expression of survival and
growth-associated genes. Moreover, it has already been demonstrated that overexpression of ATF3 in the MN of
SOD1G93A mice supports their survival and axonal integrity maintenance®. Here, we demonstrated that enoxa-
cin treatment may slightly enhance ATF3 levels in ALS, suggesting that the general upregulation of miRNA levels
can be beneficial by regulating key genes that modulate pathological phenotypes. Overall, our results highlight
the crucial role of miRNAs in ALS physiopathology, providing insights into pathogenic mechanisms. In particu-
lar, we identified two miRNAs, miR-34a and miR504, as well as their downstream pathways, in particular apop-
tosis and synaptic vesicle regulation, that can account for ALS pathological mechanisms and represent potential
therapeutic targets. The identification of common pathways associated with different deregulated miRNAs in
ALS could be crucial for identifying therapeutic target. ALS is a complex disease that involves several biological
pathways, and a suitable innovative and effective therapy likely has to rely on a multi-faceted approach.

These analyses should be further examined in additional cell lines obtained from patients carrying different
mutations to detect shared pathogenic mechanisms. Moreover, miRNA-based therapies should be tested to con-
firm the relevance of the identified pathways.

Material and Methods

iPSCs generation. The studies involving human samples were conducted in accordance with the Code
of Ethics of the World Medical Association (Declaration of Helsinki) and with national legislation and institu-
tional guidelines. After obtaining informed consent, we reprogrammed fibroblasts derived from skin biopsies
(Eurobiobank, ethical committee approval at the IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico)
from ALS (n=2 sALS and n =2 fALS subjects harbouring mutations in SODI) and healthy subjects (n=2) into
iPSCs using the CytoTune®-iPS 2.0 Sendai Reprogramming Kit (Life Technologies, Carlsbad, CA, USA) accord-
ing to manufacturer’s instructions. The kit contains 3 vectors derived from a modified and non-integrating form
of Sendai virus (SeV) which carries the 4 Yamanaka’s factors Oct4, Sox2, Kl1f4 and c-Myc®.

Fibroblasts derived from subject’ biopsies were cultured in DMEM high glucose (Life Technologies, Carlsbad,
CA, USA), with 15% fetal bovine serum (FBS) (Euroclone, Milan, Italy) and infected with Sendai viruses. After
two weeks the first iPSC colonies were obtained, mechanically picked and maintained in Essential 8 Medium
(Life Technologies, Carlsbad, CA, USA) on plates covered with a thin cultrex layer (Cultrex® Stem Cell Qualified
Reduced Growth Factor Basement Membrane Extract PathClear®; Thema Ricerca, Castenaso, Italy). Information
about the patients from whom the iPSC lines were derived is provided in Supplementary Table S1.

We performed Enoxacin treatment in iPSC lines by adding 100 uM Enoxacin to cell media (RNAi Enhancer
Enoxacin Sodium Salt; Millipore, Burlington, MA, USA). We collected samples 48 hours after treatment and we
stored cell pellets at —80°C.

iPSC differentiation into MN progenitors. iPSCs were differentiated into MN progenitors using a 14
days multistep protocol. We slightly modified a previously published protocol®. Specifically, iPSCs were plated
in neural induction medium (DMEM/F12, 1x Glutamax, 0.5x MEAA, and 1x penicillin/streptomycin) (Life
Technologies, Carlsbad, CA, USA) supplemented with 10 uM SB (Sigma Aldrich, Saint Louis, MO, USA) and
0,2uM LDN (Stemgent, Cambridge, MA, USA) for 7 days. We subsequently promoted MN progenitors’ forma-
tion by using a combination of small molecules that address specific caudal differentiation: 1 uM Retinoic Acid
(RA; Sigma Aldrich, Saint Louis, MO, USA) and 200 ng/mL of Sonic Hedgehog (Shh; Sigma Aldrich, Saint Louis,
MO, USA) were added for additional 7 days. Cells were collected and stored at —80 °C for the analysis.

Immunocytochemistry analysis. Cells were fixed with 4% paraformaldehyde for 10 minutes, permeabi-
lized with 0,25% TritonX-100 and subsequently blocked with 10% BSA and 0,3% Triton X-100 in 1x PBS solution,
for 1h at room temperature (RT). Slides were incubated overnight at 4 °C with specific primary antibodies and
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incubated with the appropriate secondary antibodies conjugated with Alexa-Fluor 488 or 568 (anti-mouse, rabbit
or goat, 1:1000 Life Technologies, Carlsbad, CA, USA) for 1 hour and 30 minutes at RT. Image acquisition was
performed with a LEICA LCS2 microscope.

The following antibodies and dilutions were used for iPSC staining: SSEA-4 (mouse 1:500, Chemicon
International, Temecula, CA, USA), OCT4 (mouse 1:500, Chemicon, International, Temecula, CA, USA), and
SOX2 (mouse 1:500, Chemicon, International, Temecula, CA, USA). For MN progenitor staining, we employed
TuJ1 (anti-rabbit 1:400, Millipore, Burlington, MA, USA) and Olig2 (anti-mouse 1:100, Sigma Aldrich, Saint
Louis, MO, USA) antibodies.

Total RNA and miRNA isolation.  For each sample, both total RNA and miRNA were extracted using mir-
Vana™ miRNA Isolation Kit (Life Technologies, Carlsbad, CA, USA). Total RNA was eluted in 70 uL of pre-heated
(95°C) Elution Solution. To separate large RNA species from the enriched small RNAs, we sequentially immobi-
lized the large RNAs on two filter cartridges and finally collected the flow-through containing mostly the small
RNA fraction. The purified small RNA fraction was eluted in 30 uL of pre-heated Elution Solution. To identify the
RNA profile and obtain information about RNA integrity the miRNA samples were analyzed by 2100 Bioanalyzer
(Agilent Tecnologies, Santa Clara, CA), using Agilent RNA 6000 Nano Kit. After miRNA isolation samples were
stored at —80 °C until further steps.

Profiling by TagMan® Array Micro Fluidic Cards. We used the TaqMan® MicroRNA Reverse
Transcription Kit and related Megaplex™ RT Primers to synthesize single-stranded cDNA from the small RNA
samples. For a full miRNA profile, we performed two separate reverse transcription reactions for each sample
using pool A or pool B Megaplex™ RT primers and 250 ng of RNA as template. The DNA polymerase from the
TaqMan® Universal PCR Master Mix amplifies the target cDNA using sequence-specific primers and probes on
the TagMan® Low Density Array (TLDA-, Life Technologies, Carlsbad, CA, USA) by 7900HT Fast Real Time
PCR System (Applied Biosystem, Foster City, CA, USA). We assayed two, TLDA, pre-loaded 384-well microflu-
idic cards with 754 spotted assays specific to human miRNAs, for each sample with respect to the Megaplex™ RT
product A and B. Each card contains four control assays; 3 selected candidate endogenous control assays (RNUS6,
RNU44 and RNU4S8, the first being in quadruplicate) and 1 negative control assay. We performed relative quan-
tification (AACt) using the Gene Expression Suite Software (Life Technologies, Carlsbad, CA, USA) to process
the miRNA expression data, using RNU6 as control endogenous assay, automatic baseline settings and a thresh-
old of 0.2. miRNAs with Ct *35 were considered as undetermined. Gene Expression Suite Software included the
student’s t-test for sample group comparisons and built Volcano Plot comparing the size of the fold change (bio-
logical significance) to the statistical significance (p-value). miRNAs identified as dysregulated were examined
with two different miRNA databases aiming to identify validated and predicted target genes and related pathways
(http://miRTarBase.mbc.nctu.edu.tw/ and http://mirgate.bioinfo.cnio.es/miRGate/).

Gene Ontology enrichment and Reactome pathway analysis. Gene Ontology enrichment analysis
was performed with the PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification system
(http://www.pantherdb.org), using the identified 278 miRNA target genes as queries for the statistical overrep-
resentation test and the most updated (at the time of analysis) Homo sapiens genes annotations as reference set; only
the over-represented biological process terms with a p-value < 0.05 have been chosen to be reported in the graphs.

Reactome pathway analysis was performed with the “Analysis tool” available on https://reactome.org website
and using the same genes as queries and Homo sapiens genes as reference set; selected overrepresented pathways,
with p-value < 0.05, have been selected for further analysis.

Validation by Tagman® MicroRNA Assays. For the 15 candidate miRNAs we performed reverse tran-
scription using the TagMan® MicroRNA Reverse Transcription Kit (Life Technologies, Foster City, CA) and
specific 5x RT primers to synthesize single-stranded cDNA from 10 ng of total RNA samples. Each RT product
was amplified using the TagMan® Universal Master Mix Il No AmpErase® UNG (Life Technologies, Carlsbad,
CA, USA) and the appropriate 20x TagMan® MicroRNA Assays (probe ID available upon request) to evaluate
miRNA expression on the 7500 Real Time PCR System (Software 2.01, Applied Biosystems, Foster City, CA,
USA). miRNA expression levels were normalized to the average levels of the endogenous small RNA control U6
snRNA and referred to the relevant control samples.

mMRNA expression by g- PCR.  First-strand cDNA was synthesized from 1 pg of total RNA with random
hexamer primers using the First-Strand cDNA Synthesis kit (GE Healthcare, Little Chalfont, UK).

The expression of markers of MN progenitors OLIG2 (Hs00300164_s1) and TUBB3 (Hs00801390_s1) was
evaluated by quantitative real-time PCR analysis by means of the AACt method on a 7500 Real Time PCR
System (Software 2.01, Applied Biosystems, Foster City, CA, USA).

We assayed the gene expression of STX1A (Hs00270282_m1), SIRT1 (Hs01009006_m1), TP53 (Hs01034249_
ml), SYTI (Hs00194572_m1), XIAP (Hs00745222_s1), MDM2 (Hs00540450_s1) and ATF3 (Hs00231069_m1)
by quantitative real-time PCR analysis by means of the AACt method. The expression levels of each gene were
normalized to the average levels of the housekeeping gene 18S (Hs99999901_s1) and referred to the relevant
control samples.

Statistical analysis. Statistical analyses were performed in the GraphPad Prism 5 software. All g-PCR
counting data were expressed as mean the with SEM. The two-tailed, unpaired Student’s t test was utilized to
compare two groups. The null hypothesis was rejected at a level of 0.05.
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