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SUMMARY

We performed an extensive immunogenomic anal-
ysis of more than 10,000 tumors comprising 33
diverse cancer types by utilizing data compiled by
TCGA. Across cancer types, we identified six im-
mune subtypes—wound healing, IFN-g dominant,
inflammatory, lymphocyte depleted, immunologi-
cally quiet, and TGF-b dominant—characterized by
differences in macrophage or lymphocyte signa-
tures, Th1:Th2 cell ratio, extent of intratumoral het-
erogeneity, aneuploidy, extent of neoantigen load,
overall cell proliferation, expression of immunomod-
ulatory genes, and prognosis. Specific driver
mutations correlated with lower (CTNNB1, NRAS,
or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte
levels across all cancers. Multiple control modalities
of the intracellular and extracellular networks (tran-
812 Immunity 48, 812–830, April 17, 2018 ª 2018 The Authors. Publis
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scription, microRNAs, copy number, and epigenetic
processes) were involved in tumor-immune cell inter-
actions, both across and within immune subtypes.
Our immunogenomics pipeline to characterize these
heterogeneous tumors and the resulting data are
intended to serve as a resource for future targeted
studies to further advance the field.

INTRODUCTION

TheCancer GenomeAtlas (TCGA) has profoundly illuminated the

genomic landscape of human malignancy. Genomic and tran-

scriptomic data derived from bulk tumor samples have been

used to study the tumor microenvironment (TME), and measures

of immune infiltration define molecular subtypes of ovarian,

melanoma, and pancreatic cancer (Bailey et al., 2016; The Can-

cer Genome Atlas Network, 2015; The Cancer Genome Atlas
hed by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Research Network, 2011) and immune gene expression in other

tumors varies bymolecular subtype (Iglesia et al., 2016). Charac-

terization of the immune microenvironment using gene expres-

sion signatures, T cell receptor (TCR), and B cell receptor

(BCR) repertoire, and analyses to identify neo-antigenic immune

targets provide a wealth of information in many cancer types and

have prognostic value (Bindea et al., 2013; Brown et al., 2014,

2015; Charoentong et al., 2017; Gentles et al., 2015; Iglesia

et al., 2016; Li et al., 2016; Porta-Pardo and Godzik, 2016;

Rooney et al., 2015).

Contemporaneous with the work of TCGA, cancer immuno-

therapy has revolutionized cancer care. Antibodies against

CTLA-4, PD-1, and PD-L1 are effective in treating a variety of

malignancies. However, the biology of the immune microenvi-

ronment driving these responses is incompletely understood

(Hugo et al., 2016; McGranahan et al., 2016) but is critical to

the design of immunotherapy treatment strategies.

We integrated major immunogenomics methods to charac-

terize the immune tumormicroenvironment (TME) across 33 can-

cers analyzed by TCGA, applyingmethods for the assessment of

total lymphocytic infiltrate (from genomic and H&E image data),

immune cell fractions from deconvolution analysis of mRNA-

seq data, immune gene expression signatures, neoantigen pre-

diction, TCR andBCR repertoire inference, viral RNA expression,

and somaticDNAalterations (Table S1). Transcriptional regulato-

ry networks and extracellular communication networks that may

govern the TME were found, as were possible germline determi-

nants of TME features, and prognostic models were developed.

Through this approach, we identified and characterized six

immune subtypes spanning multiple tumor types, with potential

therapeutic and prognostic implications for cancer manage-

ment. All data and results are provided in Supplemental Tables,

at the NCI Genomic Data Commons (GDC, https://portal.gdc.

cancer.gov), and though the Cancer Research Institute iAtlas

portal for interactive exploration and visualization (http://www.

cri-iatlas.org), and are intended to serve as a resource for future

studies in the field of immunogenomics.
RESULTS

Analytic Pipeline
To characterize the immune response to cancer in all TCGA

tumor samples, identify common immune subtypes, and eval-

uate whether tumor-extrinsic features can predict outcomes,

we analyzed the TME across the landscape of all TCGA tumor

samples. First, source datasets from all 33 TCGA cancer types

and six molecular platforms (mRNA, microRNA, and exome

sequencing; DNA methylation-, copy number-, and reverse-

phase protein arrays) were harmonized by the PanCanAtlas

consortium for uniform quality control, batch effect correction,

normalization, mutation calling, and curation of survival data (Ell-

rott et al., 2018; Liu et al., 2018). We then performed a series of

analyses, which we summarize here and describe in detail in

the ensuing manuscript sections as noted within parentheses.

We first compiled published tumor immune expression signa-

tures and scored these across all non-hematologic TCGA cancer

types. Meta-analysis of subsequent cluster analysis identified

characteristic immunooncologic gene signatures, which were

then used to cluster TCGA tumor types into six groups, or

subtypes (described in Immune Subtypes in Cancer). Leukocyte

proportion and cell type were then defined from DNA

methylation, mRNA, and image analysis (see Composition of

the Tumor Immune Infiltrate). Survival modeling was performed

to assess how immune subtypes associate with patient prog-

nosis (see Prognostic Associations of Tumor Immune Response

Measures). Neoantigen prediction and viral RNA expression (see

Survey of Immunogenicity), TCR and BCR repertoire inference

(see The Adaptive Immune Receptor Repertoire in Cancer),

and immunomodulator (IM) expression and regulation (see

Regulation of Immunomodulators) were characterized in the

context of TCGA tumor types, TCGA-defined molecular

subtypes, and these six immune subtypes, so as to assess the

relationship between factors affecting immunogenicity and

immune infiltrate. In order to assess the degree to which

specific underlying somatic alterations (pathways, copy-number
Immunity 48, 812–830, April 17, 2018 813
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alterations, and driver mutations) may drive the composition of

the TME, we identified which alterations correlate with modified

immune infiltrate (see Immune Response Correlates of Somatic

Variation). We likewise asked whether gender and ancestry

predispose individuals to particular tumor immune responses

(see Immune Response Correlates of Demographic and Germ-

line Variation). Finally, we sought to identify the underlying intra-

cellular regulatory networks governing the immune response to

tumors, as well as the extracellular communication networks

involved in establishing the particular immune milieu of the

TME (see Networks Modulating Tumoral Immune Response).

Immune Subtypes in Cancer
To characterize intratumoral immune states, we scored 160 im-

mune expression signatures and used cluster analysis to identify

modules of immune signature sets (Figure 1A, top). Five immune

expression signatures—macrophages/monocytes (Beck et al.,

2009), overall lymphocyte infiltration (dominated by T andB cells)

(Calabro et al., 2009), TGF-b response (Teschendorff et al.,

2010), IFN-g response (Wolf et al., 2014), and wound healing

(Chang et al., 2004)—which robustly reproduced co-clustering

of these immune signature sets, were selected to perform cluster

analysis of all 30 non-hematologic cancer types (Figures 1A

middle, and S1A). The six resulting clusters ‘‘Immune Subtypes,’’

C1–C6 (with 2,416, 2,591, 2,397, 1,157, 385, and 180 cases,

respectively) were characterized by a distinct distribution of

scores over the five representative signatures (Figure 1A, bot-

tom) and showed distinct immune signatures based on the

dominant sample characteristics of their tumor samples (Figures

1B and 1C). Immune subtypes spanned anatomical location and

tumor type, while individual tumor types and TCGA subtypes

(Figures 1D and S1B–S1D) varied substantially in their proportion

of immune subtypes.

C1 (wound healing) had elevated expression of angiogenic

genes, a high proliferation rate (Figure 1C), and a Th2 cell bias

to the adaptive immune infiltrate. Colorectal cancer (COAD

[colon adenocarcinoma], READ [rectum adenocarcinoma]) and

lung squamous cell carcinoma (LUSC) were rich in C1, as were

breast invasive carcinoma (BRCA) luminal A (Figures S1C and

S1D), head and neck squamous cell carcinoma (HNSC) clas-

sical, and the chromosomally unstable (CIN) gastrointestinal

subtype.

C2 (IFN-g dominant) had the highest M1/M2 macrophage po-

larization (Figure S2A, mean ratio = 0.52, p < 10�149, Wilcoxon

test relative to next-highest), a strong CD8 signal and, together

with C6, the greatest TCR diversity. C2 also showed a high pro-

liferation rate, which may override an evolving type I immune

response, and was comprised of highly mutated BRCA, gastric,

ovarian (OV), HNSC, and cervical tumors (CESC).

C3 (inflammatory) was defined by elevated Th17 and Th1

genes (Figure 1C, both p < 10�23), low to moderate tumor cell

proliferation, and, along with C5, lower levels of aneuploidy

and overall somatic copy number alterations than the other

subtypes. C3 was enriched in most kidney, prostate adenocarci-

noma (PRAD), pancreatic adenocarcinoma (PAAD), and papillary

thyroid carcinomas (THCA).

C4 (lymphocyte depleted) was enriched in particular subtypes

of adrenocortical carcinoma (ACC), pheochromocytoma and

paraganglioma (PCPG), liver hepatocellular carcinoma (LIHC),
814 Immunity 48, 812–830, April 17, 2018
and gliomas, and displayed a more prominent macrophage

signature (Figure 2A), with Th1 suppressed and a high M2

response (Figure S2A).

C5 (immunologically quiet), consisted mostly of brain lower-

grade gliomas (LGG) (Figures 1D and S1B), exhibited the lowest

lymphocyte (p < 10�17) and highest macrophage (p < 10�7)

responses (Figure 2A), dominated by M2 macrophages (Fig-

ure S2A). Glioma subtypes (Ceccarelli et al., 2016) CpG island

methylator phenotype-high (CIMP-H), the 1p/19q codeletion

subtype and pilocytic astrocytoma-like (PA-like) were prevalent

in C5, with remaining subtypes enriched in C4. IDH mutations

were enriched in C5 over C4 (80% of IDH mutations, p < 2 3

10�16, Fisher’s exact test), suggesting an association of IDH

mutations with favorable immune composition. Indeed, IDH

mutations associate with TME composition (Venteicher et al.,

2017) and decrease leukocyte chemotaxis, leading to fewer

tumor-associated immune cells and better outcome (Amankulor

et al., 2017).

Finally, C6 (TGF-b dominant), which was a small group of

mixed tumors not dominant in any one TCGA subtype, displayed

the highest TGF-b signature (p < 10�34) and a high lymphocytic

infiltrate with an even distribution of type I and type II T cells.

These six categories represent features of the TME that largely

cut across traditional cancer classifications to create groupings

and suggest certain treatment approaches may be independent

of histologic type. For a complete list of the TCGA cancer type

abbreviations, please see https://gdc.cancer.gov/resources-

tcga-users/tcga-code-tables/tcga-study-abbreviations.

Composition of the Tumor Immune Infiltrate
Leukocyte fraction (LF) varied substantially across immune

subtypes (Figure 1C) and tumor types (Figure 2B). Tumors within

the top third LF included cancers most responsive to immune

checkpoint inhibitors, such as lung adenocarcinoma (LUAD),

LUSC, cutaneous melanoma (SKCM), HNSC, and kidney renal

clear cell carcinoma (KIRC), and in particular, the LUSC.secre-

tory, LUAD.6, bladder urothelial carcinoma (BLCA.4), kidney

renal papillary cell carcinoma (KIRP.C2a), and HNSCC mesen-

chymal subtypes. Uveal melanoma (UVM) and ACC had very

low LF. Glioma subtypes displayed a greater range in LF than

other tumors, which may reflect the presence or absence of

microglia.

The leukocyte proportion of tumor stromal fraction, r, varied

across tumor types and immune subtypes (Figures 2C and

S2B), ranging from >90% in SKCM to <10% in stroma-rich

tumors such as PAAD, PRAD, and LGG. Some tumors, e.g.,

BRCA, showed variation within annotated or immune subtypes.

In BRCA, C1 has the lowest r (rC1 = 0.44) while rC2 = 0.61 was

37% higher (p < 0.001) (Figure S2B), and there were likewise

differences between luminal A and basal BRCA (rLumA = 0.45

and rBasal = 0.67 [p < 0.001]). For LGG, rC5 = 0.28 (p < 0.001),

whereas rC3 = 0.48 and rC4 = 0.50 (p < 0.001) (Figure S2B),

and in READ, rCIN = 0.40 and rMSI = 0.78 (p < 0.001).

The spatial fraction of tumor regions with tumor-infiltrating

lymphocytes (TILs), estimated by analysis of digitized TCGA

H&E-stained slides (Saltz et al., 2018), varied by immune sub-

type, with C2 the highest (p < 10�16, Figure 2D). Image estimates

correlated modestly with molecular estimates of lymphocyte

proportion (Figures S2C and S2D), in part because the molecular

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Figure 1. Immune Subtypes in Cancer

(A) Expression signature modules and identification of immune subtypes. Top: Consensus clustering of the pairwise correlation of cancer immune gene

expression signature scores (rows and columns). Five modules of shared associations are indicated by boxes. Middle: Representative gene expression

signatures from eachmodule (columns), which robustly reproduced module clustering, were used to cluster TGCA tumor samples (rows), resulting in six immune

subtypes C1–C6 (colored circles). Bottom: Distributions of signature scores within the six subtypes (rows), with dashed line indicating the median.

(B) Key characteristics of immune subtypes.

(C) Values of key immune characteristics by immune subtype.

(D) Distribution of immune subtypes within TCGA tumors. The proportion of samples belonging to each immune subtype is shown, with colors as in (A). Bar width

reflects the number of tumor samples.

See also Figure S1 and Table S1.
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Figure 2. Composition of the Tumor Immune Infiltrate

(A) The proportion of major classes of immune cells (from CIBERSORT) within the leukocyte compartment for different immune subtypes. Error bars show the

standard error of the mean.

(B) Leukocyte fraction (LF) within TCGA tumor types, ordered by median.

(C) LF (y axis) versus non-tumor stromal cellular fraction in the TME (x axes) for two representative TCGA tumor types: PRAD, (low LF relative to stromal content)

and SKCM (high leukocyte fraction in the stroma). Dots represent individual tumor samples.

(D) The spatial fraction of lymphocyte regions in tissue was estimated using machine learning on digital pathology H&E images (see also Saltz et al., 2018).
estimate is more similar to cell count, while spatial TIL is a

fraction of the area. The relative similarity of the estimates of lym-

phocytic content between two radically different methodologies

reinforces the robustness of individual methods.

Prognostic Associations of Tumor Immune Response
Measures
Immune subtypes associated with overall survival (OS) and

progression-free interval (PFI) (Figures 3A and S3A). C3 had

the best prognosis (OS HR 0.628, p = 2.34 3 10�8 relative to
816 Immunity 48, 812–830, April 17, 2018
C1, adjusted for tumor type), while C2 and C1 had less favorable

outcomes despite having a substantial immune component. The

more mixed-signature subtypes, C4 and C6, had the least favor-

able outcome. Functional orientation of the TME for tumor and

immune subtypes was measured using the concordance index

(CI) (Pencina and D’Agostino, 2004) and found to have

context-dependent prognostic impact (Figures 3B, 3C and

S3B). Higher lymphocyte signature associated with improved

outcome in C1 and C2. An increased value of any of the five sig-

natures led to worse outcome in C3 (Figure 3B), perhaps
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Figure 3. Immune Response and Prognostics

(A) Overall survival (OS) by immune subtype.

(B) Concordance index (CI) for five characteristic

immune expression signature scores (Figure 1A) in

relation to OS, for immune subtypes and TCGA tu-

mor types. Red denotes higher and blue lower risk,

with an increase in the signature score.

(C) CI for T helper cell scores in relation to OS within

immune subtypes.

(D) Risk stratification from elastic net modeling of

immune features. Tumor samples were divided into

discovery and validation sets, and an elastic net

model was optimized on the discovery set using

immune gene signatures, TCR/BCR richness, and

neoantigen counts. Kaplan-Meier plot shows the

high (red) and low (blue) risk groups from this model

as applied to the validation set, p < 0.0001 (G-rho

family of tests, Harrington and Fleming).

(E) Prediction versus outcome from elastic net model

in validation set data (fromD). Top: Patient outcomes

for each sample (black, survival; red, death) plotted

with vertical jitter, along the sample’s model pre-

diction (x axis). Middle: Fractional density of the

outcomes plotted against their model predictions.

Confidence intervals were generated by boot-

strapping with replacement. Bottom: LOESS fit of

the actual outcomes against the model predictions;

narrow confidence bands confirm good prediction

accuracy.

(F) CoxPHmodels of stage and tumor type (‘‘Tissue’’)

with (full model) or without (reduced model) the

validation set predictions of the elastic net model

were compared; the full model significantly out-

performed the reduced model in all comparisons

(p < 0.001; false discovery rate (FDR) BH-corrected).

See also Figure S3.
reflecting a balanced immune response. While increased Th17

cells generally led to improved OS, Th1 associated with worse

OS across most immune subtypes, and Th2 orientation had

mixed effects (Figure 3C). Tumor types displayed two behaviors

relative to immune orientation (Figures 3B, OS; S3B, PFI). In the

first group including SKCM and CESC, activation of immune

pathways was generally associated with better outcome, while

in the other, the opposite was seen. The relative abundance of

individual immune cell types had complex associations that

differed between tumor types (Figures S3C and S3D). These an-

alyses extend beyond mere determination of lymphocyte pres-

ence to suggest testable properties that correlate with patient

outcome in different tumor types and immune contexts.

We obtained and validated a survival model using elastic-net

Cox proportional hazards (CoxPH) modeling with cross-valida-

tion. Low- and high-score tumors displayed significant survival

differences in the validation set (Figure 3D), with good prediction

accuracy (Figure 3E). Incorporating immune features into

Cox models fit with tumor type, stage, and tumor type + stage
(Figure 3F) improved predictive accuracy,

highlighting the importance of the immune

TME in determining survival. Lymphocyte

expression signature, high number of

unique TCR clonotypes, cytokines made

by activated Th1 and Th17 cells, and M1
macrophages most strongly associated with improved OS (Fig-

ure S3E), while wound healing, macrophage regulation, and

TGF-b associated with worse OS, recapitulating survival associ-

ations in immune subtypes. Within tumor types, the prognostic

implications of immune subtypes seen in univariate analyses

were largely maintained, with C3 correlating with better OS in

six tumor types and C4 with poor OS in three cancer types

(Figure S3F).

Immune Response Correlates of Somatic Variation
The immune infiltrate was related to measures of DNA damage,

including copy number variation (CNV) burden (both in terms of

number of segments and fraction of genome alterations),

aneuploidy, loss of heterozygosity (LOH), homologous recombi-

nation deficiency (HRD), and intratumor heterogeneity (ITH) (Fig-

ure 4A). LF correlated negatively with CNV segment burden, with

strongest correlation in C6 and C2, and positively with

aneuploidy, LOH, HRD, and mutation load, particularly in C3.

These results suggest a differential effect of multiple smaller,
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Figure 4. Immune Response and Genome State
(A) Correlation of DNA damage measures (rows) with LF. From left to right: all TCGA tumors; averaged over tumor type; grouped by immune subtype.

(B) LF association with copy number (CN) alterations. Left: Differences between observed and expected mean LF in tumors with amplifications, by genomic

region. Significant (FDR < 0.01) differences in mean LF are marked with black caps on the profiles. Right: Same, for deletions.

(legend continued on next page)
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focal copy number events versus larger events on immune infil-

tration in certain immune subtypes.

Specific SCNAs affected LF and immune composition (Figures

4B and S4A). Chromosome 1p (including TNFRS9 and VTCN1)

amplification associated with higher LF, while its deletion did

the opposite. 19q deletion (including TGFB1) also correlated

with lower LF, consistent with the role of TGF-b in immune cell

recruitment (Bierie and Moses, 2010). Amplification of chr2,

20q, and 22q (including CTLA4, CD40, and ADORA2, respec-

tively), and deletions of 5q, 9p, and chr19 (including IL13 and

IL4, IFNA1 and IFNA2, and ICAM1, respectively) associated

with changes in macrophage polarity (Figure S4A). IL-13 influ-

ences macrophage polarization (Mantovani et al., 2005),

implying a possible basis for our observation that IL-13 deletions

associated with altered M0 macrophage fractions.

Increased ITH associates with worse clinical outcomes

or lower efficacy of IM therapy in a number of cancer types

(McGranahan et al., 2016; Morris et al., 2016). ITH correlated

(Spearman, Benjamini-Hochberg [BH]-adjusted p < 0.05) with

total LF in nine tumor types (LUAD, BRCA, KIRC, HNSC, GBM

[glioblastoma multiforme], OV, BLCA, SKCM, and READ; data

not shown) and with individual relative immune cell fractions in

many tumor types (Figure S4B). ITH was highest in C1 and

C2 (p < 10�229 relative to all others) and lowest in C3 (p = 3 3

10�5, Figure 1C), possibly supporting the link between lower

ITH and improved survival.

We correlated mutations in 299 cancer driver genes with im-

mune subtypes and found 33 significant associations (q < 0.1)

(Figure 4C, Table S2). C1 was enriched in mutations in driver

genes, such as TP53, PIK3CA, PTEN, orKRAS. C2 was enriched

in many of these genes, as well as HLA-A and B and CASP8,

which could be immune-evading mechanisms (Rooney et al.,

2015). C3 was enriched in BRAF, CDH1, and PBRM1mutations,

a finding of note since patients with PBRM1 mutations respond

particularly well to IM therapy (Miao et al., 2018). C4was enriched

in CTNNB1, EGFR, and IDH1 mutations. C5 was enriched in

IDH1, ATRX, and CIC, consistent with its predominance of LGG

samples. C6 was only enriched in KRAS G12 mutations. Muta-

tions in 23 driver genes associated with increased LF either in

specific tumor types or across them, including TP53, HLA-B,

BRAF, PTEN, NF1, APC, and CASP8. Twelve other events were

associated with lower LF, including the IDH1 R132H mutation,

GATA3, KRAS, NRAS, CTNNB1, and NOTCH1 (Figure 4D).

Since driver mutations in the same pathway had opposing

correlations with LF (e.g., BRAF, KRAS, NRAS), we considered

the overall effect of somatic alterations (mutations and SCNAs)

on eight oncogenic signaling pathways. PI3K, NOTCH, and

RTK/RAS pathway disruptions showed variable, tumor type-

specific effects on immune factors, while TGF-b pathway disrup-
(C) Enrichment and depletion of mutations in driver genes and oncogenic mutati

was evaluated by the Cochran-Mantel-Haenszel c2 test, to account for cancer ty

(D) Volcano plot showing driver genes and OMs associated with changes in LF, ac

Multivariate correlation with LF (B-factor), taking into account tumor type and num

vice versa; y axis: �log10(p). Significant events (FDR < 0.1; p < 0.003) are in ora

(E) Left: Degree of association between gender for eight selected immune charact

in women than in men, and red the opposite. Right: Degree of association betw

ancestry in TCGA participants (PC1), reflecting degree of African ancestry. Blue

See also Figure S4 and Table S2.
tions more consistently associated with lower LF (most promi-

nently in C2 and C6; Figure S4C), higher eosinophils (C2), and

increased macrophages. However, in C3, TGF-b pathway

disruption associated with higher LF and M1 macrophages

and lower memory B cells, helper T cells, and M0 macrophages.

Thus, TGF-b pathway disruption has context-dependent effects

on LF but may promote increased macrophages, particularly

M1. Higher M1/M2 ratio, in turn, may reiterate the local pro-

inflammatory state in these patients.

Immune Response Correlates of Demographic and
Germline Variation
Immune cell content and expression of PD-L1 varied by gender

and genetic ancestry (Figures 4E and S4D). PD-L1 expression

was greater (p < 0.05, Kruskal-Wallis test, unadjusted) in women

than inmen inHNSC, KIRC, LUAD, THCA, andKIRP (Figure S4E),

while mesothelioma (MESO) showed an opposite trend. PD-L1

expression was lower in individuals of predicted African ancestry

(overall p = 5 3 10�6). This association was consistent across

most cancer types and was significant (p < 0.05, unadjusted) in

BRCA, COAD, HNSC (Figure S4F), and THCA. No single cis-

eQTL significantly correlated with PD-L1 expression, although

the SNP rs822337, approximately 1 kb upstream of CD274

transcription start, correlated weakly (p = 0.074; 1.3 3 10�4 un-

adjusted; Figure S4G). Lymphocyte fractions tended to be lower

in people of Asian ancestry, particularly in UCEC (uterine corpus

endometrial carcinoma) and BLCA (Figure S4H). The signifi-

cance of these demographic associations remains unclear but

provides hypotheses for the efficacy of checkpoint inhibitor

therapy based on genetic ancestry.

Survey of Immunogenicity
Peptides predicted to bind with MHC proteins (pMHCs) and

induce antitumor adaptive immunity were identified from SNV

and indel mutations. The number of pMHCs (neoantigen load)

varied between immune subtypes (Figure 1C), correlated posi-

tively with LF in most immune subtypes (Figure S4I), and trended

positive in most TCGA tumor subtypes, with some negative cor-

relation seen among GI subtypes, and differential trending seen

among individual LUAD, LUSC, OV, and KIRP subtypes (Fig-

ure S4J). Neoantigen load also associated with higher content

of CD8 T cells, M1 macrophages, and CD4 memory T cells,

and lower Treg, mast, dendritic, and memory B cells in multiple

tumor types (Figure S4K).

Most SNV-derived peptides which bind to MHC were each

found in the context of a single MHC allele (89.9%). Single

mutations generate 99.8% of unique pMHCs while 0.2% result

from distinct mutations in different genetic loci yielding identical

peptides (Figure 5A). The most frequently observed pMHCs
ons (OM) within immune subtypes, displayed as fold enrichment. Significance

pe (white, no significant association).

ross all tumors (‘‘Pancan’’) and within specific tumor types as indicated. x axis:

ber ofmissensemutations. Values > 0 represent positive correlationwith LF and

nge, others in gray.

eristics (rows) within TCGA tumor types (columns). Blue denotes a higher value

een the immune characteristics and the first principal component of genetic

reflects lower values in individuals of African descent.
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Figure 5. The Tumor-Immune Interface

(A) Distribution of the number of pMHCs associated with number of mutations; the 4 pMHCs derived from > 40 mutations are labeled.

(B) Numbers of tumors expressing shared pMHCs. The known cancer genes from which the most frequent pMHCs in the population are derived are indicated.

(C) BCR (top) and TCR (bottom) diversity measured by Shannon entropy and species richness, logarithmically transformed, and expressed as Z-scores, for

immune subtypes.

(D and E) Co-occurrence of CDR3a-CDR3b (D) and pMHC-CDR3 pairs (E) as a surrogate marker for shared T cell responses. Pairs found in at least two samples

and meeting statistical significance are plotted, with jitter. x and y axes indicate how exclusive the pair members are: pairs in the top right typically co-occur,

whereas along the axes each member is more often found separately. Size of the circle indicates how many samples that pair was found in.

See also Figure S5 and Tables S3, S4, and S5.
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were from recurrently mutated genes (BRAF, IDH1, KRAS, and

PIKC3A for SNVs, TP53 andRNF43 for indels) (Figure 5B, Tables

S3 and S4). In BRCA and LIHC, worse PFI was associated with

higher neoantigen load, while BLCA and UCEC showed the

opposite effect (Figure S5A). For most tumors, however, there

were no clear associations between predicted pMHC count

and survival. Within immune subtypes (Figure S5B), higher neo-

antigen load was associated with improved PFI in C1 and C2 and

worse PFI in C3, C4, and C5. These results suggest that

neoantigen load providesmore prognostic information within im-

mune subtypes than based on tissue of origin, emphasizing the

importance of overall immune signaling in responding to tumor

neoantigens.

Cancer testis antigens (CTA) overall expression, and that of in-

dividual CTAs, varied by immune subtype with C5 having the

highest (p < 10�13) and C3 the lowest (p = 10�4) expression

values (Figure 1C). CEP55, TTK, and PBK were broadly ex-

pressed across immune subtypes, with enrichment in C1 and

C2. C5 demonstrated high expression of multiple CTAs, illus-

trating that CTA expression alone is insufficient to elicit an

intratumoral immune response.

We found human papilloma virus (HPV) in 6.2% of cases,

mainly in CESC, GBM, HNSC, and KIRC, whereas hepatitis B

virus (HBV) and Epstein-Barr virus (EBV) were mainly found in

LIHC and STAD (stomach adenocarcinoma), respectively. In a

regressionmodel of all tumors, high load of each virus type asso-

ciated with immune features (Figure S5C, cancer-type adjusted).

High EBV content associated strongly with high CTLA4 and

CD274 expression and low B cell signatures. High HPV levels

associated with increased proliferation and Th2 cells but low

macrophage content. In contrast, high HBV levels associated

with Th17 signal and gd T cell content. These findings highlight

the diverse effect of different viruses on the immune response

in different cancer types.

Our findings suggest that pMHC burden and viral content

impact immune cell composition, while CTAs have inconsistent

effects on the immune response. Moreover, the effect of

pMHC load on prognosis is disease specific and influenced by

immune subtype.

The Adaptive Immune Receptor Repertoire in Cancer
Antigen-specific TCR and BCR repertoires are critical for recog-

nition of pathogens and malignant cells and may reflect a robust

anti-tumor response comprising a large number of antigen-

specific adaptive immune cells that have undergone clonal

expansion and effector differentiation.

We evaluated TCR a and b and immunoglobulin heavy and

light chain repertoires from RNA-seq. Mean TCR diversity values

differed by immune subtype, with the highest diversity in C6 and

C2 (p<10�183,Wilcoxon, relative to all other subtypes; Figure 5C)

and by tumor type (Figure S5D, lower panel). We saw recurrent

TCR sequences across multiple samples (Figure S5E, Table

S5), suggesting a common, but not necessarily cancer-related,

antigen (the top recurrent TCRs include known mucosal associ-

ated invariant T cell sequences). We assessed co-occurrence of

complementarity determining region 3 (CDR3) a and b chains, in

order to determine the frequency of patients with identical TCRs

(a surrogate marker for shared T cell responses). We identified

2,812 a-b pairs present in at least 2 tumors (p % 0.05, Fisher’s
exact test with Bonferroni correction; Figure 5D and Table S5).

Likewise, testing for co-occurrence of specific SNV pMHC-

CDR3 pairs across all patients identified 206 pMHC-CDR3 a

pairs and 196 pMHC-CDR3 b pairs (Figure 5E, Table S5). Thus,

a minority of these patients appear to share T cell responses,

possibly mediated by public antigens. That said, there is rela-

tively little pMHC and TCR sharing among tumors, highlighting

the large degree of diversity in TILs.

Higher TCR diversity only correlated with improved PFI in a

few tumor types (BLCA, COAD, LIHC, and UCEC) (Figure S5F).

Therefore, it may be more important for the immune system to

mount a robust response against only a few antigens, than a

diverse response against many different antigens.

The pattern of immunoglobulin heavy chain diversity was

similar to that of TCR diversity (Figures 5C and S5D), with tumors

showing significant variance in IgH repertoire diversity, suggest-

ing differential B cell recruitment and/or clonal expansion within

the tumor types.
Regulation of Immunomodulators
IMs are critical for cancer immunotherapy with numerous IM ag-

onists and antagonists being evaluated in clinical oncology (Tang

et al., 2018). To advance this research, understanding of their

expression and modes of control in different states of the TME

is needed. We examined IM gene expression, SCNAs, and

expression control via epigenetic and miRNA mechanisms.

Gene expression of IMs (Table S6, Figure 6A) varied across im-

mune subtypes, and IM expression largely segregated tumors by

immune subtypes (Figure S6A), perhaps indicative of their role in

shaping the TME. Genes with the greatest differences between

subtypes (Figures 6B and S6B) included CXCL10 (BH-adjusted

p < 10�5), most highly expressed in C2 (consistent with its known

interferon inducibility) and EDNRB (BH-adjusted p < 10�5), most

highly expressed in the immunologically quiet C5. DNA methyl-

ation of many IM genes, e.g., CD40 (Figure 6C), IL10, and

IDO1, inversely correlated with gene expression, suggesting

epigenetic silencing. 294 miRNAs were implicated as possible

regulators of IM gene expression; among these, several associ-

ated with IMs in multiple subtypes (Figure S6C) including

immune inhibitors (EDNRB, PD-L1, and VEGFA) and activators

(CD28 and TNFRSF9). The immune activator BTN3A1 was one

of the most commonly co-regulated IMs from the SYGNAL-

PanImmune network (below). Negative correlations between

miR-17 and BTN3A1, PDCD1LG2, and CD274 may relate to

the role of this miRNA in maturation and activation of cells into

effector or memory subsets (Liang et al., 2015).

Copy-number alterations affected multiple IMs and varied

across immune subtypes. C1 and C2 showed both frequent

amplification and deletion of IM genes, consistent with their

greater genomic instability, while subtypes C3 and C5 generally

showed fewer alterations in IM genes. In particular, IMsSLAMF7,

SELP, TNFSF4 (OX40L), IL10, and CD40 were amplified less

frequently in C5 relative to all samples, while TGFB1, KIR2DL1,

and KIR2DL3 deletions were enriched in C5 (Figure 6D), consis-

tent with our observation of lower immune infiltration with TGFB1

deletion (Figure S4A). CD40 was most frequently amplified in C1

(Figure 6D) (Fisher’s exact p < 10�10 for all comparisons

mentioned). Overall, these marked differences in IM copy
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Figure 6. Regulation of Immunomodulators
(A) From left to right: mRNA expression (median normalized expression levels); expression versusmethylation (gene expression correlation with DNA-methylation

beta-value); amplification frequency (the difference between the fraction of samples in which an IM is amplified in a particular subtype and the amplification

fraction in all samples); and the deletion frequency (as amplifications) for 75 IM genes by immune subtype.

(B) Distribution of log-transformed expression levels for IM genes with largest differences across subtypes (by Kruskal-Wallis test).

(C) CD40 expression is inversely correlated to methylation levels (Affymetrix 450K probe cg25239996, 125 bases upstream of CD40 TSS) in C3. Each point

represents a tumor sample, and color indicates point density.

(D) Proportion of samples in each immune subtype with copy number alterations in CD40 (top) and KIR2DL3 (bottom). The ‘‘All’’ column shows the overall

proportion (8,461 tumors).

See also Figure S6 and Table S6.
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Figure 7. Predicted Networks Modulating the Immune Response to Tumors

TME estimates and tumor cell characteristics were combined with available data on possible physical, signaling, and regulatory interactions to predict cellular

and molecular interactions involved in tumoral immune responses.

(legend continued on next page)
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number may be reflective of more direct modulation of the TME

by cancer cells.

Among IMs under investigation for cancer therapy, expression

of VISTA is relatively high in all tumor types and highest in

MESO; BTLA expression is high in C4 and C5; HAVCR2

(TIM-3) shows evidence of differential silencing among immune

subtypes; and IDO1 is amplified, mostly in C1. The observed

differences in regulation of IMs might have implications for ther-

apeutic development and combination immune therapies, and

the multiple mechanisms at play in evoking them further high-

lights their biological importance.

Networks Modulating Tumoral Immune Response
The immune response is determined by the collective states

of intracellular molecular networks in tumor, immune, and

other stromal cells and the extracellular network encompassing

direct interaction among cells and communication via soluble

proteins such as cytokines to mediate interactions among

those cells.

Beginning with a large network of extracellular interactions

known from other sources, we identified which of those met

a specified precondition for interaction, namely that both

interaction partners are consistently present within samples

in an immune subtype, according to our TME estimates. We

focused the network on IMs. Networks in C2 and C3 had

abundant CD8 T cells, while C3, C4, and C6 were enriched

in CD4 T cells.

A small sub-network (Figure 7A), focused around IFN-g, illus-

trates some subtype-specific associations. In both C2 and C3,

CD4 T cells, CD8 T cells, and NK cells correlated with expression

of IFNG and CCL5, a potent chemoattractant. A second sub-

network (Figure 7B), centered on TGF-b, was found in the C2,

C3, and C6 networks. Across subtypes, different cell types

were associated with abundant expression of TGFB1: CD4

T cells and mast cells in C3 and C6, macrophages in C6, neutro-

phils and eosinophils in C2 and C6, and B cells, NK cells, and
(A) Immune subtype-specific extracellular communication network involving IFN-g

cognate receptors IFNGR1 and IFNGR2 (bottom right and left, respectively), in C2

of association). NK cells (left), which are known to secrete IFN-g, could be produ

expression in both. CXCR3 is known to be expressed on NK cells and has conco

network constructed by similarly combining annotations of known interactions be

concordance of those components.

(B) TGF-b subnetwork. Magenta: C6.

(C) T cell subnetwork.

(D) Master Regulator (MR)-Pan-Immune Network. The network diagram shows

events (orange rings), along with proteins linking the two. The lineage factor VAV1

on gene expression, protein interactions, and somatic alterations. VAV1 activity co

in HRAS (center of network) are statistically associated with changes in LF. The

protein-protein interactions (not shown), as both can lead to activation of prote

associated (p < 0.05) with VAV1 activity, and their link through documented protein

the diagram, the size of MR nodes represents their ranked activity. Smaller no

statistically associated with one or more MR and LF, with the thickness of the bor

proteins.

(E) Regulators of immune subtypes from SYGNAL-PanImmune Network. Tumor

factors (TFs, red triangles) and miRNAs (orange diamonds) that actively regulate

(circles). The network describes predicted causal and mechanistic regulatory rel

which causally modulate the activity of TFs and/or miRNAs (purple edges), whic

immune subtype (red edges). For example, RB1 mutations in LIHC (5% of patie

which in turn regulates genes associated (causal model at least 3 times as likely as

are bolded.

824 Immunity 48, 812–830, April 17, 2018
CD8 T cells in C2 and C3. The receptors known to bind TGF-b

likewise were subtype specific and may help mediate the

TGF-b-driven infiltrates, with TGFBR1, 2, and 3 found only in

the C3 and C6 networks. These results largely echo findings

seen in our TGF-b pathway analysis (Figure S4C), which exam-

ined the effects of intracellular, rather than extracellular,

signaling disruption on immune TME composition across im-

mune subtypes. Finally, a third cytokine subnetwork illustrates

variation in T cell ligands and receptors across immune subtypes

(Figure 7C). CD4 and CD8 receptors fell into two groups, those

found in C2, C3, and C6 networks, such as PDCD1, and those

absent in C3, such as IL2RA and LAG3. Some T cell-associated

ligands were subtype specific, such as CD276 (C2, C6), IL1B

(C6), and VEGFB (C4).

The derived extracellular networks reflect the properties of

immune subtypes in terms of cellular propensities and immune

pathway activation noted earlier (Figures 1B, 1C, 2A, and S2A),

but also place those properties in the context of possible interac-

tions in the TME that may play a role in sculpting those same

properties. The particular associations observed among IMs

within distinct subtypes may be important for identifying direc-

tions for therapy.

We next used two complementary approaches, master regu-

lators (MRs) and SYGNAL, to synthesize a pan-cancer tran-

scriptional regulatory network describing the interactions

linking genomic events to transcriptional regulators to down-

stream target genes, and finally to immune infiltration and pa-

tient survival. In both approaches, somatic alterations were

used as anchors to infer regulatory relationships, in that they

can act as a root cause of the ‘‘downstream’’ transcriptional

changes mediated through transcription factors (TFs) and

miRNAs.

This resulted in two transcriptional networks. The first one,

MR-PanImmune, consisted of 26 MRs that acted as hubs asso-

ciated with observed gene expression and LF, connected with

15 putative upstream driver events (Figure 7D). The second
(IFNG, bottom of the diagram), whose expression is concordant with that of its

and C3 (yellow and green arrows, respectively; line thickness indicates strength

cing IFN-g in C2 and C3, as the NK cellular fraction is concordant with IFNG

rdant levels, but only in C3 (green arrow). This is a subnetwork within a larger

tween ligands, receptors, and particular immune cells types, with evidence for

26 MR ‘‘hubs’’ (filled orange) significantly associated with 15 upstream driver

(on left) is inferred to be a MR by combining predicted protein activity with data

rrelates with LF (degree of correlation depicted as degree of orange). Mutations

HRAS and VAV1 proteins are in close proximity on a large network of known

in MAP2K1, (as shown connecting with dotted lines). Mutations in HRAS are

interactions implies that HRAS could directly modulate the activity of VAV1. In

des with red borders represent mutated and/or copy-number altered genes

der representing the number of associated MRs; small gray nodes are ‘‘linker’’

types (octagons) linked through mutations (purple chevrons) to transcription

the expression of IMs in biclusters associated with a single immune subtype

ationships linking tumor types through their somatic mutations (yellow edges)

h in turn regulate genes (not shown) whose expression is associated with an

nts) have significant evidence for causally modulating the activity of PRDM1

alternativemodels and p value < 0.05) with C1 andC2. Interactions for this path



one, SYGNAL-Panimmune, comprised 171 biclusters enriched

in IMs and associated with LF.

Seven TFs were shared between the MR- and SYGNAL-Pan-

Immune networks, a significant overlap (p = 4.83 10�10, Fisher’s

exact test): PRDM1, SPI1, FLI1, IRF4, IRF8, STAT4, and

STAT5A. Additional MRs included the hematopoietic lineage

specific factor IKZF1, which may reflect variation in immune

cell content, and known IMs, such as IFNG, IL16, CD86, and

TNFRSF4. The regulators in SYGNAL-PanImmune were inferred

to regulate a total of 27 IM genes (Figure S7C). The top two most

commonly co-regulated IMs from SYGNAL-PanImmune,

BTN3A1 andBTN3A2, are of particular interest as they modulate

the activation of T cells (Cubillos-Ruiz et al., 2010) and have anti-

body-based immunotherapies (Benyamine et al., 2016; Legut

et al., 2015).

Somatic alterations in AKAP9, HRAS, KRAS, and PREX2

were inferred to modulate the activity of IMs according to

both the MR- and SYGNAL-PanImmune, a significant overlap

(p = 1.6 3 10�7, Fisher’s exact test). In MR-PanImmune,

MAML1 and HRAS had the highest number of statistical inter-

actions with 26 MRs. This analysis identified complex roles for

the RAS-signaling pathway (Figure 7D) specifically through

connections to lineage factor VAV1 (implicated in multiple hu-

man cancers), potentially mediated by MAP2K1. Similarly,

MAML1, hypothesized to mediate cross-talk across pathways

in cancer (McElhinny et al., 2008), was associated (p % 0.05)

with multiple MRs, including STAT1, STAT4, CIITA, SPI1,

TNFRSF4, CD86, VAV1, IKZF1, and IL16.

In SYGNAL-PanImmune, some regulators of IMs, but not up-

stream somatic mutations, were shared between tumor types,

including STAT4, which regulated BTN3A1 and BTN3A2 in

both LUSC and UCEC, secondary to implied causal mutations

TP53 and ARHGAP35, respectively. Conversely, causal muta-

tions shared across tumor types may associate with different

tumor-specific downstream regulators. TP53 was a causal

mutation in UCEC acting through IRF7 to regulate many of the

same IMs as was seen in LUSC. These differences in causal re-

lationships arise because the different cell types giving rise to

each tumor type affect oncogenic paths.

We identified the putative regulators of immune gene expres-

sion within immune subtypes (Figure 7E). In these predictions,

C1-associated biclusters were regulated by ERG, KLF8,

MAFB, STAT5A, and TEAD2. C1 and C2 shared regulation by

BCL5B, ETV7, IRF1, IRF2, IRF4, PRDM1, and SPIB, consistent

with IFN-g signaling predominance in these subtypes. C3 was

regulated by KLF15 and miR-141-3p. C6-associated biclusters

were regulated by NFKB2. C1, C2, and C6 shared regulation

by STAT2 and STAT4, implying shared regulation by important

immune TF families, such as STAT and IRF, but also differential

employment of subunits and family members by the immune

milieu.

In SYGNAL-PanImmune, the increased expression of

biclusters enriched with IMs from KIRC, LGG, LUSC, and

READ was associated with worse patient survival (CoxPH

BH adjusted p value % 0.05). Conversely, the increased

expression of biclusters enriched with IMs from SKCM, con-

taining CCL5, CXCL9, CXCL10, HAVCR2, PRF1, and MHC

class II genes, were associated with improved patient survival

(BH-adjusted p % 0.05).
DISCUSSION

We report an extensive evaluation of immunogenomic features in

more than 10,000 tumors from 33 cancer types. Data and results

are available as Supplemental Tables, at NCI GDC, and interac-

tively at the CRI iAtlas portal, which is being configured to accept

new immunogenomics datasets and feature calculations as they

come available, including those derived from immunotherapy

clinical trials, to develop as a ‘‘living resource’’ for the immunoge-

nomics community. Meta-analysis of consensus expression

clustering revealed immune subtypes spanning multiple tumor

types and characterized by a dominance of either macrophage

or lymphocyte signatures, T-helper phenotype, extent of intratu-

moral heterogeneity, and proliferative activity. All tumor samples

were assessed for immune content by multiple methods. These

include the estimation of immune cell fractions from deconvolu-

tion of gene expression and DNA methylation data, prediction of

neoantigen-MHC pairs from mutations and HLA-typing, and

evaluation of BCR and TCR repertoire from RNA-sequencing

data. Immune content was compared among immune and

cancer subtypes, and somatic alterations were identified that

correlate with changes in the TME. Finally, predictions were

made of regulatory networks that could influence the TME, and

intracellular communication networks in the TME, based on

integrating known interactions and observed associations. Im-

munogenomic features were predictive of outcome, with OS

and PFI differing between immune subtypes both within and

across cancer types.

C4 and C6 subtypes conferred the worst prognosis on their

constituent tumors and displayed composite signatures reflect-

ing a macrophage dominated, low lymphocytic infiltrate, with

high M2 macrophage content, consistent with an immunosup-

pressed TME for which a poor outcome would be expected. In

contrast, tumors included in the two subtypes displaying a

type I immune response, C2 and C3, had the most favorable

prognosis, consistent with studies suggesting a dominant

type I immune response is needed for cancer control (Galon

et al., 2013). In addition, C3 demonstrated the most pro-

nounced Th17 signature, in agreement with a recent systematic

review suggesting that Th17 expression is generally associated

with improved cancer survival (Punt et al., 2015). C2 was IFN-g

dominant and showed a less favorable survival despite having

the highest lymphocytic infiltrate, a CD8 T cell-associated

signature, and highest M1 content, suggesting a robust anti-tu-

mor immune response. One explanation for this discrepancy is

the aggressiveness of both the tumor types and specific cases

within C2 relative to C3. C2 showed the highest proliferation

signature and ITH while C3 was the lowest in both those cate-

gories. It may be that the immune response simply could not

control the rapid growth of tumors comprising C2. A second

hypothesis is that tumors in C2 are those that have already

been remodeled by the existing robust type I infiltrate and

have escaped immune recognition. While signatures biased

toward interferon-mediated viral sensing and antigen presenta-

tion genes were often associated with higher survival, interferon

signatures without increased antigen presentation showed an

opposite association. Loss of genes associated with antigen

processing and presentation is often found in tumors that

have been immune edited. In contrast to the potential immune
Immunity 48, 812–830, April 17, 2018 825



editing of C2, C3 may represent immunologic control of dis-

ease, that is, immune equilibrium.

Possible impact of somatic alterations on immune response

was seen. For example, KRAS mutations were enriched in C1

and but infrequent in C5, suggesting that mutations in driver

oncogenes alter pathways that affect immune cells. Driver muta-

tions such as TP53, by inducing genomic instability, may alter the

immune landscape via the generation of neoantigens. Our find-

ings confirmed previous work showing that mutations in BRAF

(Ilieva et al., 2014) enhance the immune infiltrate while those in

IDH1 diminish it (Amankulor et al., 2017). Further work is needed

to determine the functional aspects of these associations.

Tumor-specific neoantigens are thought to be key targets of

anti-tumor immunity and are associated with improved OS and

response to immune checkpoint inhibition in multiple tumor

types (Brown et al., 2014). We found OS correlated with pMHC

number in only a limited number of tumors, with no clear associ-

ation in most tumors, including several responsive to immune

checkpoint inhibitor therapy. There are some caveats to this

finding. The current predictors are highly sensitive but poorly

specific for neoantigen identification, and our approach did not

include neoantigens from introns or spliced variants. Moreover,

it is not possible to fully determine the ability to process and

present an epitope or the specific T cell repertoire in each tumor,

which impacts the ability to generate a neoantigen response. It is

also possible that the role of neoantigens may vary with tumor

type, as supported by our per-tumor results.

Integrative methods predicted tumor-intrinsic and tumor-

extrinsic regulation in, of, and by the TME and yielded informa-

tion on specific modes of intracellular and extracellular control,

the latter reflecting the network of cellular communication

among immune cells in the TME. The resulting network was

rich in structure, with mast cells, neutrophils, CD4 T cells, NK

cells, B cells, eosinophils, macrophages, and CD8 T cells

figuring prominently. The cellular communication network high-

lighted the role of key receptor and ligands such as TGFB1,

CXCL10, and CXCR3 and receptor-ligand pairs, such as the

CCL5-CCR5 axis, and illustrated how immune cell interactions

may differ depending on the immune system context, mani-

fested in the immune subtype.

Predicted intracellular networks implied that seven immune-

related TFs (including interferon and STAT-family transcription

factors) may play an active role in transcriptional events related

to leukocyte infiltration, and that mutations in six genes

(including Ras-family proteins) may influence immune infiltra-

tion. Across tumor types, the TFs and miRNAs regulating the

expression of IMs tended to be shared, while somatic

mutations modulating those regulatory factors tended to differ.

This suggests that therapies targeting regulatory factors up-

stream of IMs should be considered and that they may have

a broader impact across tumor types than therapies focusing

on somatic mutations. Of note, in these approaches, it is not

always possible to fully ascertain whether some particular

interaction acts in the tumor, immune, or stromal cell compart-

ments, but this could be improved on by incorporating

additional cell-type-specific knowledge. Shared elements of

intra- and extracellular network models should also be

explored, with particular regard to the IMs and cytokines

in both.
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There are important caveats to using TCGA data. First, sur-

vival event rates and follow-up durations differ across the tu-

mor types. Second, for most tumor types, samples with less

than 60% tumor cell nuclei by pathologist review were

excluded from study, thus potentially removing the most im-

mune-infiltrated tumors from analysis. The degree to which

this biases the results, relative to the general population of

cancer patients, is difficult to ascertain. Our analyses were

also limited by restriction to data from genome-wide molecular

assays, in the absence of targeted classical cellular immu-

nology assays for confirming cell phenotype distribution, as

those types of data have not been collected from TCGA

patients.

In summary, six stable and reproducible immune subtypes

were found to encompass nearly all human malignancies.

These subtypes were associated with prognosis, genetic, and

immune modulatory alterations that may shape the specific

types of immune environments we have observed. With our

increasing understanding that the tumor immune environment

plays an important role in prognosis as well as response to

therapy, the definition of the immune subtype of a tumor may

play a critical role in the predicting disease outcome as

opposed to relying solely on features specific to individual can-

cer types.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Primary tumor samples Multiple tissue source sites, processed

through the Biospecimen Core Resource

See Experimental Model and Subject Details

Deposited Data

Raw and processed clinical, array,

and sequence data

NCI Genomic Data Commons https://portal.gdc.cancer.gov/

Digital Pathology Images NCI Genomic Data Commons Cancer

Digital Slide Archive

https://portal.gdc.cancer.gov/ http://cancer.

digitalslidearchive.net/

TCGA molecular subtypes TCGA publications, Colaprico et al., 2016,

and this paper

http://bioconductor.org/packages/release/bioc/

html/TCGAbiolinks.html

Genecode GTF Harrow et al., 2012 RRID:SCR_014966 https://www.

gencodegenes.org

Haplotype Reference Consortium McCarthy et al., 2016 http://www.haplotype-reference-consortium.org/

PrePPI 1.2.0 database Zhang et al., 2012 https://bhapp.c2b2.columbia.edu/PrePPI/

PITA Kertesz et al., 2007 https://omictools.com/pita-tool

FANTOM5 Ramilowski et al., 2015 http://fantom.gsc.riken.jp/5/suppl/Ramilowski_

et_al_2015/

miRDB database n/a http://www.mirdb.org

Software and Algorithms

ABSOLUTE Carter et al., 2012 RRID:SCR_005198; http://www.broadinstitute.

org/cancer/cga/absolute

ARACNE Margolin et al., 2006 RRID:SCR_002180; http://califano.c2b2.columbia.

edu/software/

BioBloom Tools 2.0.12 Chu et al., 2014 http://www.bcgsc.ca/platform/bioinfo/software/

biobloomtools

Bioconductor n/a RRID:SCR_006442; http://www.bioconductor.org/

Bwa v0.7.12 Li and Durbin, 2009 RRID:SCR_010910; http://bio-bwa.

sourceforge.net/

CBC linear programming solver n/a https://projects.coin-or.org/Cbc

CIBERSORT Newman et al., 2015 https://cibersort.stanford.edu/

cMonkey2 Reiss et al., 2015 https://github.com/baliga-lab/cmonkey2

Clue (CLUster Ensembles) Hornik, 2005 https://cran.r-project.org/web/packages/clue/

index.html

DIGGIT Chen et al., 2014. www.bioconductor.org/packages/release/bioc/

html/diggit.html

domainXplorer Porta-Pardo and Godzik, 2016 https://github.com/eduardporta/domainXplorer

EIGENSOFT Price et al., 2006 RRID:SCR_004965; https://reich.hms.harvard.

edu/software

FIRM Plaisier et al., 2012 PMID:22845231

GISTIC 2.0 Mermel et al., 2011 RRID:SCR_000151; http://www.mmnt.net/db/0/0/

ftp-genome.wi.mit.edu/distribution/GISTIC2.0

glmnet Friedman et al., 2010 RRID: SCR_015505; https://cran.r-project.org/

web/packages/glmnet/index.html

GLPK (gnu linear programming kit) n/a https://www.gnu.org/software/glpk/

GSVA H€anzelmann et al., 2013 https://bioconductor.org/packages/release/bioc/

html/GSVA.html

iBBiG Gusenleitner et al., 2012 RRID: SCR_012882; http://www.bioconductor.

org/packages/release/bioc/html/iBBiG.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

ISAR (in silico admixture removal) Zack et al., 2013 PMID:24071852

Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/

mclust Scrucca et al., 2016 https://cran.r-project.org/web/packages/mclust/

index.html

MEME Bailey et al., 2009 RRID:SCR_001783; http://meme-suite.org/

MiTCR v1.0.3 Bolotin et al., 2013 RRID: SCR_004989; https://github.com/

milaboratory/mitcr/releases/download/1.0.3/

mitcr-1.0.3.jar

MSigDB Subramanian et al., 2005 http://software.broadinstitute.org/gsea/msigdb

NetMHCpan v3.0 Nielsen and Andreatta, 2016 http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?

netMHCpan

NEO Aten et al., 2008 https://labs.genetics.ucla.edu/horvath/aten/NEO/

OptiType v1.2 Szolek et al., 2014 https://github.com/FRED-2/OptiType

Picard n/a RRID:SCR_006525; http://broadinstitute.github.io/

picard/

Polysolver n/a https://github.com/researchapps/polysolver

pVAC-seq (Personalized Variant

Antigens by Cancer sequencing)

Hundal et al., 2016 https://github.com/griffithlab/pVACtools

RSEM v1.2.21 Li and Dewey, 2011 RRID:SCR_013027; http://deweylab.biostat.wisc.

edu/rsem/

ssGSEA Barbie et al., 2009 http://software.broadinstitute.org/cancer/

software/genepattern/modules/docs/

ssGSEAProjection/4

STAR v2.4.2a Dobin et al., 2013 RRID: SCR_015899; https://github.com/

alexdobin/STAR

SYGNAL Plaisier et al., 2016 PMID:27426982

TieDIE Paull et al., 2013 https://github.com/epaull/TieDIE

VDJer Tool Mose et al., 2016 https://github.com/mozack/vdjer

VEP (Ensembl Variant Effect

Predictor) v87

McLaren et al., 2016 RRID: SCR_007931; http://useast.ensembl.org/

info/docs/tools/vep/index.html

VIPER Alvarez et al., 2016 https://www.bioconductor.org/packages/release/

bioc/html/viper.html

WEEDER Pavesi and Pesole, 2006 https://omictools.com/weeder-tool

WGCNA Langfelder and Horvath, 2008 RRID: SCR_003302; https://labs.genetics.ucla.

edu/horvath/CoexpressionNetwork/

Yara Aligner v0.9.9 Siragusa et al., 2013 https://github.com/seqan/seqan/tree/master/

apps/yara

Other

iAtlas This paper http://www.cri-iatlas.org
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Vesteinn Thorsson

(Vesteinn.Thorsson@systemsbiology.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
A total of 11,180 participants were included in this study. This study contained both males and females, with inclusions of genders

dependent on tumor types. There were 5,621 females, 5,138males and 321withmissing information about gender. TCGA’s goal was

to characterize adult human tumors; therefore, the vast majority of participants were over the age of 18. However, 20 participants

under the age of 18 had tissue submitted prior to clinical data. Age was missing for 188 participants. The range of ages was

10–90 (maximum set to 90 for protection of human subjects) with a median age of diagnosis of 60 years of age. Institutional review
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boards at each tissue source site reviewed protocols and consent documentation and approved submission of cases to TCGA.

Detailed clinical, pathologic and molecular characterization of these participants, as well as inclusion criteria and quality control

procedures have been previously published for each of the individual TGCA cancer types.

Sample Inclusion Criteria
Surgical resection of biopsy biospecimens were collected from patients that had not received prior treatment for their disease (abla-

tion, chemotherapy, or radiotherapy). Cases were staged according to the American Joint Committee onCancer (AJCC). Each frozen

primary tumor specimen had a companion normal tissue specimen (blood or blood components, including DNA extracted at the

tissue source site). Adjacent tissue was submitted for some cases. Specimens were shipped overnight using a cryoport that main-

tained an average temperature of less than �180�C.
Pathology quality control was performed on each tumor and normal tissue (if available) specimen from either a frozen section slide

prepared by the TCGA Biospecimen Core Resource (BCR) or from a frozen section slide prepared by the Tissue Source Site (TSS).

Hematoxylin and eosin (H&E) stained sections from each sample were subjected to independent pathology review to confirm that the

tumor specimen was histologically consistent with the submitted diagnosis; as required, tumor reclassification and/or exclusion was

performed by expert pathology review. Pathology review also confirmed that the adjacent non-neoplastic ‘‘normal’’ tissue specimen

contained no tumor cells. For cases of LIHC, adjacent tissuewith cirrhotic changeswas not acceptable as a germline control, but was

characterized if accompanied by DNA from a patient-matched blood specimen. The percent tumor nuclei, percent necrosis, and

other pathology annotations were also assessed. Tumor samples with R 60% tumor nuclei and % 20% necrosis were submitted

for nucleic acid extraction.

METHOD DETAILS

Clinical and Molecular Data
The standardized, normalized, batch corrected and platform-corrected data matrices and mutation data generated by the

PanCancer Atlas consortium, available at the publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas),

were used in this study. Gene expression, protein, and miRNA expression, DNA methylation, copy number variation, and gene mu-

tationswere obtained for this study for 11,080 participants. TCGA aliquot barcodes flagged as ‘‘do not use’’ or excluded by pathology

review by the PanCancer Atlas Consortium, and annotated according to the Merged Sample Quality Annotation file were removed

from the study. For somatic mutations FILTER values were required to be one of PASS, wga, or native_wga_mix, and only protein

coding mutations retained (Variant_Classification one of Frame_Shift_Del, Frame_Shift_Ins,In_Frame_Del,In_Frame_Ins,Missense_

Mutation, Nonsense_Mutation,Nonstop_Mutation,Splice_Site, and Translation_Start_Site). Mutations calls were required to be

made by two or more mutations callers (NCALLERS > 1). Where both normal tissue and blood was available as reference, the blood

reference sample was used. The values of OS, OS.time, PFI, and PFI.time were used as obtained from (Liu et al., 2018).

Immune-related tumor sample characteristics and selected base data values such as demographic information, survival data and

expression of key immumodulators for the 11,080 participants were collected into a per participant summary matrix (Table S1). For

the molecular data matrices above, a single representative aliquot was selected per participant for cases where more than one

aliquot was available, as follows. When data on more than one tumor sample was available, a choice of primary tumor sample

was favored, and in remaining cases metastatic were selected over ‘‘additional metastatic.’’ For gene expression, a handful of cases

were not resolved by these rules and the following aliquots were adopted TCGA-23-1023: TCGA-23-1023-01A-02R-1564-13;

TCGA-06-0156-01:TCGA-06-0156-01A-02R-1849-01; TCGA-06-0211-01:TCGA-06-0211-01B-01R-1849-01; TCGA-21-1076-01:

TCGA-21-1076-01A-01R-0692-07 based on BCR annotations. Each primary data file was loaded into a Google BigQuery table on

the ISB Cancer Genomics Cloud, annotated with uniform TCGA barcode information, permitting integration of heterogeneous

sources into a single matrix through cloud queries.

Contributors: Vesteinn Thorsson, David L. Gibbs,Tai-Hsien Ou Yang, Dante Bortone, Katherine Hoadley

TCGA Molecular Subtypes

Previously published TCGAmolecular subtypes frommultiple tumor types were collected and compiled into a single matrix. A total of

7,734 TCGA samples were annotated with with molecular subtypes based on TCGA Research Network tumor-specific publications

for the following tumor types: ACC, AML, BLCA, BRCA, LGG/GBM, Pan-GI (ESCA/STAD/COAD/READ), HNSC, KICH, KIRC, KIRP,

LIHC, LUAD, LUSC, OVCA, PCPG, PRAD, SKCM, THCA, UCEC, and UCS, with publication sources detailed on http://

bioinformaticsfmrp.github.io/TCGAbiolinks/subtypes.html. The unified patient-centric matrix contains a comprehensive collection

of the subtypes by molecular platform. Each column contains subtype assignments of a particular molecular platform (e.g.,

mRNA, DNA methylation, protein). We selected the most prominent subtype classification of a particular tumor type based on the

corresponding paper recommendation and stored this information in column named ‘‘Subtype_Selected.’’The subtype collection

matrix and the bibliography associated with them are available within TCGAbiolinks on R/Bioconductor (http://bioconductor.org/

packages/release/bioc/html/TCGAbiolinks.html) (Colaprico et al., 2016) and using the TCGAbiolinksGUI (Silva et al., 2016). The func-

tion ‘‘PanCancerAtlas_subtypes()’’ provides full access to the curated matrix used for this study. The ‘‘Subtype_Selected’’ column

was used for molecular subtypes in this study.

Contributors: Tathiane Malta, Houtan Noushmehr, Antonio Colaprico.
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Immune Subtype Identification
Immune Signature Compilation

We undertook an extensive literature search and assembled a collection of 160 immune expression signatures utilizing diverse

resources which were considered to be reliable and comprehensive, based on the opinions of immuno-oncologist experts in the

group. Of these signatures, 83 were derived in the context of studies of the immune response in cancer and the remaining 77

are of general validity for immunity. The 83 signatures that are known to be associated with immune activity in tumor tissue consisted

of 68 gene sets collected from earlier studies (Wolf et al., 2014), 9 co-expression signatures derived from computational analysis of all

TCGA gene expression datasets (immune metagene attractors), (Cheng et al., 2013a, 2013b), 3 signatures representing the func-

tional orientation of the immune contexture (or Immunologic Constant of Rejection, ICR) (Bedognetti et al., 2016; Galon et al.,

2013; Hendrickx et al., 2017), and 3 signatures from a recent study characterizing the immune microenvironment of clear cell renal

cell carcinoma (Senbabaoglu et al., 2016). The 77more general signatures comprised scores of 45 signatures representing individual

cell types from two sources (20 from (Gentles et al., 2015) and 25 from (Bindea et al., 2013)) and 32 scores encompassing the

dominant modes of scores derived from the ImmuneSigDB (Godec et al., 2016; Subramanian et al., 2005) (Collection C7 of MSigDB,

Broad Institute). The modes were determined as the first 32 principal components of 1888 Immune C7 human gene sets, and were

used as the full set was intractably large and complex. Gene sets were scored using single-sample gene set enrichment (ssGSEA)

analysis (Barbie et al., 2009), as implemented in the GSVA R package (H€anzelmann et al., 2013).

Immune Signature Cluster Modeling

All available TCGA tumor samples (n = 9126) were scored for each of the 160 identified gene expression signatures. Prior to model-

based clustering, we began by identifying a limited set of distinct and representative gene signatures to use for the model-based

clustering analysis based on consensus clustering of all available gene signature scores over all available samples. Initial data explo-

ration using all 160 gene sets implied that including the 77 more general immune signatures did not affect the identified signature

clusters, and we performed the final analysis with the 83 signatures derived in the cancer immune response context. Representative

clusters were identified as follows: two independent analysts used weighted gene correlation network analysis (WGCNA) to produce

clusters of signatures (Langfelder and Horvath, 2008). First, using gene set scores (ssGSEA) (Barbie et al., 2009) over all samples,

Spearman correlations were computed between signatures creating a correlation matrix. Then, the correlation matrix was scaled

by taking each element to a specified power and clustered using the WGCNA R package. Various WGCNA parameters were

explored, but good results were found with TOMType = ’’signed,’’ power = 18, pamStage = F, minModuleSize = 3. Each identified

module contained an ‘eigen-signature’ which is used to identify possible ‘‘most representative’’ gene expression signatures from

those contained in the cluster module by computing a distance from each signature to the ‘eigen-signature’. Signatures having short

distances to the eigen-signature would be considered to be more representative of the signature-module.

Representative Gene Signature Identification

Results from the 2 independent WGCNA analyses yielded 9 potential signatures considered representative of identified module

eigen-signatures. We then evaluated each of the potential representative signatures using the strategy put forth in ‘‘cluster validation

by predictive strength’’ (Tibshirani and Walther, 2005). This strategy involves building cluster-models using random subsets of

samples, and making cluster predictions on the remaining unclustered samples. The predicted cluster labels are compared

across models built from random sample subsets. For sets of features that produce strong clustering models, the labels will be

consistent.

To do this work, model based clustering, performed with the mclust R package (Scrucca et al., 2016), which uses finite normal

mixture modeling, was in part selected as it can readily handle the large set of scores from the Pancancer Atlas (9,129 samples).

This approach identified 3 of the potential signatures as lacking robustness and they were excluded from further analysis.

Finally, the actual genes contained in each of the potential signatures were examined by an expert in the immuno-oncology field for

validity (Nora Disis), and one of two highly similar IFN signatures was excluded for redundancy. This left five final representative gene

signatures, each standing in for one of five signature-similarity modules (Figure 1A, top). The five identified representative signatures

are: ‘‘CSF1_response’’ for activation of macrophages/monocytes (Beck et al., 2009) (referred to throughout text and figures as

‘‘Macrophage,’’ ‘‘LIexpression_score’’ representing overall lymphocyte infiltration, and dominated by B and T cell signatures

(Calabro et al., 2009) (referred to throughout text and figures as ‘‘Lymphocyte’’), TGF-b response ‘‘TGFB_score_21050467’’

(Teschendorff et al., 2010)(‘‘ TGF-b’’ in text and figures), ‘‘Module3_IFN_score’’ representing IFN- g response (Wolf et al.,

2014)(‘‘IFN-g’’ in text and figures), and wound healing ‘‘CHANG_CORE_SERUM_RESPONSE_UP’’(Chang et al., 2004) (‘‘Wound

healing’’ in text and figures).

Using the final five signatures to cluster TCGA tumor samples, the number of clusters, K, was determined using scores that were

median centered and scaled bymedian-absolute-deviation (MAD). Possible values for K (the number of clusters) ranged from 2 to 32.

Then, 21 random subsets, each representing 50% of 9,129 TCGA aliquots, (from 9,126 participants) were selected and mclust

models were fit to each subset, resulting in 21 clustering models. In each model, the parameter K was selected that maximized

the Bayesian Information Criterion (BIC), and an average K was computed. Maximal BIC was found to occur with a six cluster

solution, thus 6 clusters were used for the remainder of analyses.

An ensemble approach was used to improve predictability and increase robustness. To produce the final clustering, 256 sub-

samples were taken (each representing a random 50% of 9,129 samples), and a model was fit to each sub-sample, setting K = 6.

Then, the ‘‘GV1’’ method in the R package ‘clue’ (CLUster Ensembles) was used to call the consensus clusters (Hornik, 2005).
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This method takes the list of 256 clusterings, each containing a subset of the samples, and produces a consensus cluster by

minimizing an objective function. The entire process was performed twice to ensure reproducibility.

Contributors: David L. Gibbs, Denise Wolf, Vesteinn Thorsson, Benjamin Vincent, Ilya Shmulevich

Validation of Model-based Clustering

To determine the robustness ofmodel-based clustering, we performed an analysis in which the samples were partitioned into training

and test sets in varying proportions that ranged from 0.5% to 30%. The training set was used to build the ensemble model, which in

turn is used to predict cluster labels on the test set (the held-out samples). The clustering of the training and test sets was compared

to results from the full model using all samples. 20 repetitions were performed. Cluster purity (CP, not to be confused with tumor

purity) and Normalized mutual information (NMI) were used to evaluate the training and test results. Cluster-purity describes the frac-

tion of the most common label within a cluster. So, if 9/10 members of a cluster (from the reported clustering) share a label, then the

purity is 90%. Second, the NMI describes the mutual information between our new clusters and reported clusters, normalizing by

average entropy which puts it on a scale of zero to one. Considering both the test set and training set, when the proportion of samples

removedwas less than 16%, the NMI averaged greater than 0.9, which indicates an excellent level of similarity to the full model.When

32% of samples were removed, the NMI was 0.81 and 0.82 respectively, still indicating very good concordance. In both above cases

(training and test) when 16% of samples were held-out, cluster purity (CP) levels were greater than 95%. Overall, there is very good

NMI and CP scores found when removing even up to 32% of samples (2,921samples held out).

Of note, using cluster purity (CP), the training set maintained levels above 89% even when 32% of the samples were missing. The

exception being C6, which is noisy and had a purity level of 72%when 32% of samples were removed. The test set prediction results

showed slightly better CP, with 32% missing samples, purity levels for all subtypes were greater than 90%, the exception being

C6 which had purity 71%. In addition, we explored the extent to which clustering results vary when different, but correlated, signa-

tures are used. In clustering, the results (the cluster labels assigned to samples) are always dependent on the inputs, or in this case,

the signatures. It is often the case that by using different signatures, the clustering structure will change. The question we aim to

answer with this is: if one uses related signatures, how different is the clustering structure? In each iteration, either one or two

signatures was randomly selected from the 5 main signatures. The selected signature was then replaced with a signature(s) that

was sampled with probability proportional to the correlation structure (as seen in the heatmap of gene set signatures). After the

replacement of a signature (one or two), the complete ensemble clustering model was constructed, and new clusters called. Again,

cluster purity and normalized mutual information were used to evaluate the clustering results.

In total, using the full set of available signatures, 363 new cluster models were constructed, and across clusters (C1-C6) we found

that as new replacement signatures have greater correlation with the original signatures, the NMI gradually increases. Starting

from �0.4 for single replacements and �0.35 for double replacements. As the replacement signature correlation increases past

0.95, we saw NMIs of 0.7 to 0.8 which indicate between 8%–15% of cluster labels changing. Using cluster purity we found a similar

effect where increasing levels of correlation with the replacement signatures produced higher levels of purity. There are several

exceptions. The C5 cluster is very robust regardless of the replacement signature with purity levels above 90%. The C6 cluster is

(as above) very noisy with purity levels around 50%–60%. Among the remainder of the clusters (C1-C4), the C3 cluster shows the

lowest levels of purity with an average of 0.80 when the signature correlation is greater than 0.95. When the correlation drops to

0.9, the purity level for C3 drops to 70%. Overall, while the purity levels gradual increase with signature correlation, the exception

is C3 where the variance in purity values was relatively strong, indicating that the cluster was splitting. As the field moves forward,

it is likely that we will see a more detailed classification of samples found in C3.

Contributor: David L. Gibbs

Biclustering of Immune-Expression Signatures

As another measure of the robustness of the above model based sample clustering, we applied an entirely different clustering

method, iterative binary biclustering using iBBiG (Gusenleitner et al., 2012). The iterative biclustering identifies similarity blocks within

the matrix of signature scores, but with tumor sample groups (clusters) that are to allowed to overlap, unlike the model-based

clustering. We analyzed the total 160 gene signature score sets using iBBiG, which yielded 15 biclusters. Model-based clustering

and biclustering have commonalities both in terms of shared tumor sample groupings and in the association of clusters to pheno-

types, as evidenced by 13 significant overlaps between the biclusters and the six immune subtypes according to a hypergeometric

test. Comparing functional annotations of these clusters, we found that overlap to be reflected in the concordant distribution of mean

scores of IFN- g, TGF-b, mutation load and overall leukocyte infiltrate among the overlapping clusters.

Contributors: Aedin Culhane, Azfar Basunia

Leukocyte and Stromal Fractions
Methylation Analysis

Overall leukocyte content in 10,817 TCGA tumor aliquots was assessed by identifying DNA methylation probes with the greatest

differences between pure leukocyte cells and normal tissue, then estimating leukocyte content using a mixture model. From Illumina

Infinium DNA methylation platform arrays HumanMethylation450, 2000 loci were identified (200 for HumanMethylation27) that were

themost differentially methylated between leukocyte and normal tissues, 1000 in each direction. For each locus i, assuming two pop-

ulations (j), for each sample we have
Immunity 48, 812–830.e1–e14, April 17, 2018 e5



bi =
X2

j = 1

bijpj

Using the tumor with the least evidence of leukocyte methylation as a surrogate for the beta value (b) for each locus in the pure

tumor, 2000 estimates were made, solving for p. We took the mode of 200 estimates to avoid loci that violate the assumptions. Using

the estimated p and themeasured b for tumor and leukocyte, with the same linearmodel, solved for b (deconvoluted value) extracting

the leukocyte fraction (LF). Estimates for DLBC (lymphoid neoplasm diffuse large B cell lymphoma), THYM (thymoma), LAML (acute

myeloid leukemia) were masked as their tissues of origin are expected to be related to leukocytes, and therefore there were not

enough tissue-specific DNA methylation loci to distinguish the two.

Stromal fraction (SF) was defined as the total non-tumor cellular component, obtained by subtracting tumor purity from unity, with

the leukocyte proportion of stromal content R = LF/SF. Tumor purity was generated using ABSOLUTE (Carter et al., 2012; Taylor

et al., 2018). R was estimated by the Pearson correlation coefficient between SF and LF, r, assessed for individual sample groups

(TCGA tumor types, subtypes, and immune subtypes).

Contributors: Hui Shen, Vesteinn Thorsson

Whole-Slide Image Analysis

Characterization of tumor-infiltrating lymphocytes (TILs) from TCGA H&E images was carried out using deep learning-based

lymphocyte classification with Convolutional Neural Networks (CNNs) (Saltz et al., 2018). TIL infiltrated regions are presented

as heatmaps overlaying H&E diagnostic images, allowing pathologists to curate those heatmaps to create final lymphocyte dis-

tribution maps. The tool was trained by experts to delineate lymphocyte-infiltrated tumor regions for each slide. In a whole slide

image, a given small region of 50x50 microns is considered lymphocyte infiltrated if and only if 1) the predicted probability of

lymphocyte infiltration is above a threshold and 2) the patch is not classified as necrotic tissue. The associated software pro-

vides a visual interface for threshold selection but due to the large number of whole slide images, we developed the following

semi-automatic method for setting thresholds. We select ten patches for each whole slide image stratified by predicted prob-

ability. The whole slide images are then grouped into a small number of categories (seven) based on the agreement between

predicted probabilities and pathologist labels. We sample eight slides per category and select thresholds visually based on

the heatmap overlaying images. The averaged threshold is used for all slides in the same category. TCGA tumor types analyzed

were LUAD, BRCA, PAAD, COAD, LUSC, PRAD, UCEC, READ, BLCA, STAD, CESC, SKCM and UVM. We began with gener-

ating 48K labeled patches to train our model for LUAD and incrementally added additional patches as necessary to train the

model for BRCA, PAAD, COAD, LUSC, PRAD, UCED, READ, BLCA, STAD, CESC (in that order). For each new cancer type,

we first applied the trained deep learning model. Pathologists then reviewed the results on a set of sample whole slide images.

If the pathologists judged that the lymphocyte classification was inadequate, we retrained the model with additional training

patches extracted from the new given cancer type, repeating this process until adequate accuracy was obtained. The deep

learning model for the two melanoma types – SKCM and UVM was trained separately. The TIL regional fraction was estimated

obtained as the number of TIL positive 50x50 micron regions over the total number of those 50x50 micron regions on the tis-

sue image.

Contributors: Joel Saltz, Arvind UK Rao, Alexander J. Lazar, Ashish Sharma

Immune Cellular Fraction Estimates
The relative fraction of 22 immune cell types within the leukocyte compartment were estimated using CIBERSORT (Newman et al.,

2015). These proportions were multiplied by LF to yield corresponding estimates in terms of overall fraction in tissue. Further, values

were aggregated in various combinations to yield abundance of more comprehensive cellular classes, such as lymphocytes, mac-

rophages andCD4 T cells. More specifically, we applied CIBERSORT to TCGARNASeq data. CIBERSORT (cell-type identification by

estimating relative subsets of RNA transcripts) uses a set of 22 immune cell reference profiles to derive a base (signature) matrix

which can be applied to mixed samples to determine relative proportions of immune cells. As several key immune genes used in

the signatures are absent from TCGA GAF (Generic Annotation File) Version 3.0, we applied CIBERSORT to a re-quantification of

the TCGA data using Kallisto (Bray et al., 2016) and the Gencode GTF (Harrow et al., 2012)(available from https://www.

gencodegenes.org/), which includes the missing genes. A version of the entire TCGA RNA-seq data normalized to Gencode with

Kallisto was computed on the ISBCancer GenomicsCloud by Steve Piccolo’s group at BYU (https://osf.io/gqrz9/wiki/home/) (Tatlow

and Piccolo, 2016).

In order to relate to results to other estimates in this study, three aggregation schemes were defined as follows

Aggregate 1

(6 classes; Used in Figure 2A, e.g.) Lymphocytes = B.cells.naive+B.cells.memory+T.cells.CD4.naive+T.cells.CD4.memory.

resting+T.cells.CD4.memory.activated+T.cells.follicular.helper+T.cells.regulatory..Tregs+T.cells.gamma.delta+T.cells.CD8+NK.

cells.resting+NK.cells.activated+Plasma.cells,

Macrophages = Monocytes + Macrophages.M0 + Macrophages.M1 + Macrophages.M2

Dendritic.cells = Dendritic.cells.resting + Dendritic.cells.activated,

Mast.cells = Mast.cells.resting + Mast.cells.activated,
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Neutrophils = Neutrophils,

Eosinophils = Eosinophils,

Aggregate 2

(9 classes; used for cytokine network, including Figure 7A,B,C)

T.cells.CD8 = T.cells.CD8,

T.cells.CD4 = T.cells.CD4.naive+T.cells.CD4.memory.resting+T.cells.CD4.memory.activated,

B.cells = B.cells.naive + B.cells.memory,

NK.cells = NK.cells.resting+NK.cells.activated,

Macrophage = Macrophages.M0 + Macrophages.M1 + Macrophages.M2,

Dendritic.cells = Dendritic.cells.resting + Dendritic.cells.activated,

Mast.cells = Mast.cells.resting + Mast.cells.activated,

Neutrophils = Neutrophils,

Eosinophils = Eosinophils

Aggregate 3

(11 classes)

T.cells.CD8 = T.cells.CD8,

T.cells.CD4 = T.cells.CD4.naive+T.cells.CD4.memory.resting+T.cells.CD4.memory.activated+T.cells.follicular.helper+T.cells.

regulatory..Tregs,

T.cells.gamma.delta = T.cells.gamma.delta,

B.cells = B.cells.naive + B.cells.memory,

NK.cells = NK.cells.resting+NK.cells.activated,

Plasma.cells = Plasma.cells,

Macrophage =Monocytes +Macrophages.M0 +Macrophages.M1 +Macrophages.M2, Dendritic.cells = Dendritic.cells.resting +

Dendritic.cells.activated,

Mast.cells = Mast.cells.resting + Mast.cells.activated,

Neutrophils = Neutrophils,

Eosinophils = Eosinophils

Contributors: Andrew Gentles, Vesteinn Thorsson, Alexander J. Lazar, David L. Gibbs

Prognostic Correlations of Immune Phenotypes
Univariate Analysis

We first estimated the prognostic impact of immune subtypes on OS and PFI using Kaplan-Meier analysis and computed hazard

ratios for each immune subtype relative to C1 in unadjusted models and in CoxPH models adjusted for tumor type.

To further dissect the prognostic impact of individual gene expression signatures or immune cell types within immune subtypes

and tumor types, we used the concordance index (CI) (Pencina and D’Agostino, 2004) to correlate the immune signatures and the

cellular fractions with the outcomes (OS and PFI). The concordance index is defined by the relative frequency of accurate pairwise

predictions of survival over all pairs of patients for which such a meaningful determination can be achieved. Samples with missing

values in the features of interest or the outcomes were excluded from the analysis. Heatmaps were generated in R using the

heatmap.2 function from the gplots package.

Contributors: Tai-Hsien Ou Yang, Dimitris Anastassiou

Multivariate Analysis

Elastic net regression was performed on primary tumor data to predict overall survival using glmnet in R (Friedman et al., 2010).

Features tested included subtype scores, CIBERSORT data, immune gene signatures, TCR/BCR richness, neoantigen counts (Indel

and SNV), lymphocyte fraction and average cancer testis antigen expression. Data were divided into discovery and validation sets

(2/3 and 1/3 of the samples, respectively), whichwere balanced for survival events. The discovery set was further divided into test and

training sets over 50 cross validation cycles across 20 alpha values to select optimal alpha and lambda values for the final model.

Optimal parameters (alpha = 0.0022, lambda = 0.0066) were selected on model performance by taking the combination that

produced the highest average C-Index. LOESS fit of the actual outcomes was plotted against the model predictions. The span

for the LOESS fit was optimized by k-fold cross validation, using randomized training sets to fit the LOESS and testing the root

mean square (RMS) of the residual in a test set. The LOESS span producing the smallest RMS was selected for the final fit. Confi-

dence intervals were generated using bootstrapping with replacement using the optimized span.

For each immune subtype, Cox Proportional Hazards (CoxPH)modeling was done to determine whether belonging to that subtype

predicts patient survival. These data were divided according to cancer tissue type. Barswere colored according towhether therewas

a negative or positive association with survival (blue or red outlines, respectively). A False Discovery Rate (FDR) correction using the
Immunity 48, 812–830.e1–e14, April 17, 2018 e7



BHmethodwas applied to p values for the addition of stars. If datawere significant after FDR correction red stars were added to show

significance with 1, 2 and 3 stars indicating FDR corrected values below 0.05, 0.01 and 0.001, respectively. Black stars indicate data

that were only significant prior to FDR correction.

Contributors: Dante Bortone, Benjamin Vincent

Copy Number and DNA Damage Scores
All purity, ploidy, LOH and CNV calls used to generate the DNA damage scores used in this study and summarized below were

generated by the TCGA Aneuploidy AWG using ABSOLUTE (Carter et al., 2012; Taylor et al., 2018). In brief, ABSOLUTE was run,

using default parameters, on segmentation data generated from Affymetrix genome-wide human SNP6.0 arrays by hapseg and

on SNV and indel calls from the MC3 variant file. All clonality calls for quantifying intratumoral heterogeneity (ITH) were also deter-

mined by ABSOLUTE, which models tumor copy number alterations and mutations as mixtures of subclonal and clonal components

of varying ploidy. Specifically, for these analyses, ITH score was defined as the subclonal genome fraction (which measures the frac-

tion of tumor genome that is not part of the ‘‘plurality’’ clone), as determined from ABSOLUTE.

Scores for copy number burden, aneuploidy, loss of heterozygosity, and homologous recombination deficiency (HRD) were

derived (Knijnenburg et al., 2018). Copy number burden scores frac_altered and n_segs (‘‘fraction altered,’’ and ‘‘number of seg-

ments,’’ respectively) represent the fraction of bases deviating from baseline ploidy (defined as above 0.1 or below �0.1 in log2

relative copy number (CN) space), and the total number of segments in each sample’s copy number profile, respectively. LOH_n_seg

and LOH_frac_altered are the number of segments with LOH events and fraction of bases with LOH events, respectively. HRD score

is a measure quantifying defects in homologous recombination that sums 3 separate metrics of genomic scarring: large (> 15 Mb)

non-arm-level regions with LOH, large-scale state transitions (breaks between adjacent segments of > 10 Mb), and subtelomeric re-

gions with allelic imbalance.

Aneuploidy scores were calculated as the sum total of amplified or deleted (collectively ‘‘altered’’) arms (Taylor et al., 2018). To call

arm alterations, sample chromosome arms were first stratified by sample tumor type, type of alteration being tested (amplification or

deletion), and chromosome arm (1p, 1q, etc.). The samples are then clustered using an n-component Gaussian Mixture Model fitted

on that particular arm’s start coordinate, end coordinate, and percentage length of longest joined segment in that arm for each

sample (segments were joined until the joined segment either encompassed the entire chromosome or achieved > 20% contamina-

tion by segments not of that alteration type) for each sample. For each clustering, number of clusters nwas chosen from 2-9 based on

lowest Bayesian Information Criterion. Arms were designated as as altered if they belonged to a cluster of arms with mean fraction

altered > = 80%. Each segment was designated amplified, deleted, or neutral based on its copy number relative to the sample’s

rounded ploidy.

Contributors: Galen F. Gao, Andrew Cherniack

Genomic Correlations with Immune Phenotypes
DNA Damage Scores

For each TCGA subtype containing at least 10 tumors, Spearman correlations were calculated between leukocyte fraction and

measures of DNA alteration. Cohort-averaged correlation between DNA damage scores and leukocyte fraction was computed as

the arithmetic mean of the Spearman correlation coefficients for each TCGA disease type considered individually.

Contributors: Galen F. Gao, Vesteinn Thorsson

Copy Number Variation

Amplification and deletion were defined as follows using a PanCan GISTIC2.0 run on the samples after performing In silico

Admixture Removal (ISAR) (Zack et al., 2013) on the relative copy number values using the ABSOLUTE-estimated purity and

ploidy values of each sample (Mermel et al., 2011). For each tumor sample, the median copy-ratio for each chromosome arm is

calculated. For each locus, a sample is called deep amplification if the value is +2 (i.e., higher than themaximum of these arm values),

while a�2 (deep deletion) is a value less than the minimum of these values. Shallow (+/� 1) amplifications and deletions correspond

to alterations between 0.1 relative copy number and the thresholds for deep alterations.

To determine correlations between gene amplification (GISTIC2.0 CN = 1 or CN = 2 as described above) and LF, expected mean

leukocyte fraction for each genewas computed as the average of themean leukocyte fractions for each individual TCGA disease type

weighted by the number of ‘‘amplified’’ samples present in each disease type. One-sample t tests were then used with BH multiple

hypothesis correction to assess the significance of the difference between the observed mean LF among ‘‘amplified’’ samples and

this expected mean LF. We report both this difference and its significance. This analysis was then repeated for ‘‘deleted’’ genes

(GISTIC2.0 CN =�1 or CN =�2 as described above). Furthermore, for each gene, we similarly computed significances of differences

of CIBERSORT-estimated relative immune cell subtype levels from their expected levels first in ‘‘amplified’’ and then in ‘‘deleted’’

samples in order to identify the effects of copy number amplification and deletion respectively on immune infiltrate composition

while controlling for cancer disease type. Genes localized on the X chromosome were disregarded for all analyses.

Contributors: Galen F. Gao, Andrew Cherniack

Driver Gene Mutations

We focused our analysis on genes identified as drivers by the TCGA PanCancer Atlas Driver Mutation Working Group (the CGAT

list; TCGA Research Network, ‘‘Comprehensive Discovery and Characterization of Driver Genes and Mutations in Human Cancers,’’

unpublished data) that were identified as 1) having 10 or moremutations overall and 2) mutated in two or more tissues. For each gene
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that fit these criteria, we created a three-dimensional matrix contingency table using the mutation status of each sample, its immune

subtype and its cancer type. We next used the Cochran-Mantel-Haenszel Chi-square test function from the R statistical package to

test whether the immune subtype and the genotype are independent. We kept all the associations that had a FDR below 0.1 after BH

correction. Finally, we used Fisher’s test to findwhich pairs of drivermutations and immune subtypeswere statistically significant and

their associated odds ratio. We repeated the analysis using only the subset of mutations in each driver gene that are predicted to be

oncogenic according to the above source to ensure that we would not miss associations that might be weaker due to the presence of

passenger mutations in driver genes.

We used domainXplorer to identify driver genes and mutations that correlate with the leukocyte fraction of the tumor sample. The

algorithm uses a linear model that takes into account potential biases caused by differences in the immune responses between the

tissues of origin of the tumors, the gender of the patient, the total number of missense mutations in the sample or the patient’s age as

covariates. The model is:

LF = b0 + b1T + b2N+ b3D

where LF is the leukocyte fraction of each sample, T is the tissue of origin, N the total number of immunogenic mutations in the

sample and D is a binary variable showing whether the sample has a mutation in the driver gene. To correct for multiple testing,

the BH method is applied to p values of the D factor from the ANOVA test of each driver event. We repeated the analysis using

only the subset of mutations in each driver gene that are predicted to be oncogenic according to the TCGA Driver Genes Analysis

Working Group to ensure that we would not miss associations that might be weaker due to the presence of passenger mutations

in driver genes.

Contributors: Eduard Porta-Pardo and Adam Godzik

Genomic Alterations in Signaling Pathways

To study correlation of pathway aberrations with the leukocyte fraction and other immune composition scores, we usedmembership

of the eight signaling pathways curated by the TCGA PanCancer Atlas Pathway subgroup (Sanchez-Vega et al., 2018). The eight

pathways are PI3K signaling, RTK/RAS signaling, WNT signaling, TGF-b signaling, NOTCH signaling, HIPPO signaling, MYC

signaling, and Mismatch Repair machinery (MMR). For each pathway, samples from each of 30 tumor types were divided into

two groups of altered and intact cases based on acquisition of non-silent or frameshift mutations, heterozygous or homozygous

deletions, or amplifications, in at least one member of the pathway. The association of the genomically-altered pathways in each

tumor type or patients subgroup with each CIBERSORT immune estimated score was calculated by a two-sided Student t-Test,

assuming unequal variances (Welch’s t test). Associations were assumed significant if their BH p-value, adjusted for multiple com-

parisons, were below 0.05. Tumor types with less than 5 samples in each of the comparison arms were excluded from association

studies. To ascertain whether the observed associations are derived by specific molecular subtypes, we repeated this analysis using

the molecular subtypes previously identified by the TCGA tumor-specific studies instead of tumor tissue of origin. The same

approach was used to discover the association of tumor types or immune subgroups with 6 aggregated CIBERSORT estimates

(using Aggregate 1 above).

Contributor: Farshad Farshidfar

Genetic Ancestry
Principal Components Analysis

We evaluated the relationship between genetic ancestry and immune signatures in 9003 samples from which genome wide array

genotype data from normal blood and immune phenotypes were available. To infer genetic ancestry, we used the germline genetic

data (Affymetrix 6.0 normal). We downloaded the cel files from the TCGA datasets and used Affymetrix software to make genotype

calls. Genotype calls were made to human genome Build37, forward strand. We used EIGENSOFT (Price et al., 2006) to perform

principal components analysis on the genotype data. We inferred how the principal components related to continental ancestry

by comparing self report of race/ethnicity to the principal components. High values of principal component 1 (PC1) were found

among African Americans, high values of PC2were found among Asians, high values of PC3were found among Hispanics andNative

Americans, and low values for PC1, PC2 and PC3 were found amongWhites. We clustered genetic ancestry into 4 ancestry clusters

(AC1-AC4) by performing K means clustering on genotype principal components PC1, PC2 and PC3.

Correlation with Immune Phenotypes

We then tested the association between PC1, PC2 and PC3 and phenotypes: Leukocyte Fraction, log transformed PD-L1

expression, and CIBERSORT immune cell proportions by combined using Aggregate1 (see ‘‘Immune cellular fraction estimates’’

above) using linear regression models. In models which included all cancers, we adjusted for cancer type as a categorical model

in the regression model.

Correlation with SNPs

To perform association analyses with single nucleotide polymorphisms (SNPs) at the PDL1 locus, we imputed the genotype data

using the Haplotype Reference Consortium as a reference (McCarthy et al., 2016). We defined the region in cis as 1 megabase

(500 kilobases upstream and 500 kilobases downstream) around the transcriptional start side of PDL1. We tested the association

of all SNPs that had imputation quality R2>0.5 and allele frequency > 0.01 using linear regression. Each SNP was tested using an

additive model and we adjusted for genetic ancestry using PC1-PC10 and also adjusted for cancer subtype as a categorical variable
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in the model. To determine significance level for SNP associations we used a method which calculated the effective number of in-

dependent SNPs at the locus (Li et al., 2012) and derived a threshold of 9.3x10�5.

Contributors: Elad Ziv, Donglei Hu, Karen Wong

Identification of Neoantigens
HLA typing with OptiType

HLA class I typing of samples (raw RNA-Seq from 8872 samples and aligned reads from 715 samples) was performed on the Seven

Bridges Cancer Genomics Cloud using a Common Workflow Language (CWL) description of the OptiType tool (version 1.2) (Szolek

et al., 2014). The aligned RNA-Seq sampleswere first converted to raw sequences using aCWLdescription of the Picard SamtoFastq

tool (version 1.140). The reads from each rawRNA-Seq sample were first aligned to the HLA class I database using a CWLdescription

of the yara aligner (version 0.9.9) (Siragusa et al., 2013) with its error rate parameter set to 3%. Next, the CWL description of OptiType

was used to compute the HLA class I types for the sample. OptiType was run under its default parameters for RNA sequencing data

using the GLPK linear programming solver and the CBC linear programming solver in samples where the GLPK solver failed. In order

to validate the typing results from OptiType, we compared the HLA class I four-digit types obtained from the software PolySolver on

TCGA Whole Exome Sequencing data samples (Shukla et al., 2015). For the 5222 patient cases shared by the two studies,

approximately 90% of the typing calls were completely concordant for all HLA-A, HLA-B or HLA-C alleles, whereas completely

discordant calls were found in less than 1.5% of cases for each of the genes. The HLA typing results are available at https://

portal.gdc.cancer.gov/.

Contributors: Raunaq Malhotra, Alexander Krasnitz

Neoantigen Prediction from SNVs

Potential neoantigenic peptides were identified using NetMHCpan v3.0 (Nielsen and Andreatta, 2016), based on HLA types derived

from RNA-seq using OptiType as above. In brief, using the HLA calls from OptiType, for each sample, all pairs of MHC and minimal

mutant peptide were input into NetMHCpan v3.0 using default settings. NetMHCpan will automatically extract all 8-11-mer peptides

from aminimal peptide sequence and predict binding for each peptide-MHC pair. After computation, the results were parsed to only

retain peptides which included the mutated position. Peptides containing amino acid mutations were identified as potential antigens

on the basis of a predicted binding to autologous MHC (IC50 < 500 nM) and detectable gene expression meeting an empirically

determined threshold of 1.6 transcripts-per-million (TPM). This threshold was selected in order to divide the bimodal distribution

in the expression data.

Specifically, somatic nonsynonymous coding single nucleotide variants were extracted from the MC3 variant file

(mc3.v0.2.8.CONTROLLED.maf) with the following filters: FILTER in ‘‘PASS,’’ ‘‘wga,’’ ‘‘native_wga_mix’’; NCALLERS > 1; barcode

in whitelist where do_not_use = False; Variant_Classification = ‘‘Missense_Mutation’’; and Variant_Type = ‘‘SNP.’’ For each SNV,

the Ensembl protein reference sequencewas obtained, and theminimal peptide encompassing themutation site plus 10 amino acids

up and downstreamof themutation site was extracted (21 aa long peptide). If themutation occurredwithin 10 amino acids of theN- or

C-terminal end of the protein, all available sequence between the mutation and start/end of the protein was taken, resulting in a

minimal peptide shorter than 21 aa. The variant position within the minimal peptide was recorded, and the mutation was applied

to the minimal peptide, resulting in a mutant minimal peptide. Variation in sequencing coverage and tumor purity require careful

consideration in order to mitigate the risk of impacting mutation calls and on pMHC, and prior to pMHC calling, sequencing data

was subjected to rigorous harmonization efforts, performed by the PanCancer MC3 Consortium(Ellrott et al., 2018).

Contributors: Scott D. Brown, Robert A. Holt

Neoantigen Prediction from Indels

Somatic indel variants were extracted from the MC3 variant file (mc3.v0.2.8.CONTROLLED.maf) with the following filters: FILTER

in ‘‘PASS,’’ ‘‘wga,’’ ‘‘native_wga_mix’’ (with no combination with other tags); NCALLERS > 1; barcode inwhitelist where do_not_use =

False; Variant_Classification = ‘‘Frame_Shift_Ins,’’ ‘‘Frame_Shift_Del,’’ ‘‘In_Frame_Ins,’’ ‘‘In_Frame_Del,’’ ‘‘Missense_Mutation,’’

‘‘Nonsense_Mutation’’; and Variant_Type = ‘‘INS,’’ ‘‘DEL.’’ For each Indel, the downstream protein sequence was obtained using

VEP v87 (Ensembl Variant Effect Predictor) (McLaren et al., 2016) using default settings.

Using 9-mer peptides extracted from VEP downstream protein sequences and the HLA calls from OptiType, for each sample,

binding for each pair of mutant peptide-MHC were predicted using pVAC-Seq v4.0.8 pipeline (Hundal et al., 2016) with NetMHCpan

v3.0 using default settings, of which an IC50 binding score threshold 500 nM was used to report the predicted binding epitopes as

neoantigens.

Contributors: Nam Sy Vo, Ken Chen

Prognostic Associations

Cox models with predicted neoantigen number (including SNV and indel neoantigens) binned into high and low groups across all

possible neoantigen count thresholds and including as covariates patient age, gender, leukocyte fraction, and tumor type (if

applicable) were used to evaluate PFI for each tumor type or immune subtype, and HR for each predicted neoantigen count threshold

calculated.

Contributor: Scott D. Brown
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Genomic Viral Content Analysis
Viral Read Counts

Viral sequence libraries (filter sets) were constructed for known tumor viruses EBV, HBV, and HPV. Scans were performed using

BioBloom Tools (Chu et al., 2014) on the ISB Cancer Genomics Cloud, reporting the number of hits and misses per filter set as

well as shared and unique reads. For each virus and each sample, a score of normalized reads per million (NRPM) was defined

as 106 times the number of hits over the total reads in the sample. NRPM Thresholds HPV: 10, EBV: 5, HBV; 5. The NRPM values

are provided in Table S1.

Correlation with Immune Response

Viral read counts were correlated with expression signatures see (‘‘Immune-Expression Signatures’’),CIBERSORT fractions (both

original and aggregated), expression of key immunotherapy targets (PD-L1,CTLA4,PD-1), Th1/Th2/Th17 signatures, DNA damage

scores (AS,LOH), ITH, TCR/BCR diversity, stromal fraction and LF. Regression of read counts with these immune characterizations

was performed, using immune subtype as a covariate, and resulting p values were corrected for multiple testing using the BH

method. For HPV, tumor types STAD, ESCA, LAML, and OV were excluded, due to evidence of possible false positives.

Contributors: Sheila M. Reynolds, Varsha Dhankani, Margaret Gulley, Reanne Bowlby, Yusanne Ma, Payal Sipahimalani, Karen

Mungall, Chandra Sekhar Pedamallu, Susan Bullman, Akinyemi I. Ojesina, Denise Wolf, Vesteinn Thorsson

T- and B- Cell Receptor Analysis
TCR Inference from Tumor RNA-Seq Data

Identification of TCR CDR3 sequences from T cells present in the sequenced tumor sections was performed using MiTCR v1.0.3

(Bolotin et al., 2013), and previously described parameters to optimize extraction fromRNA-seq datasets (Brown et al., 2015). Briefly,

paired-end fastq files were concatenated into a single file and run through MiTCR using the appropriate parameter set for the

sequence read length as described in Brown et al. Runs were performed on the ISB Cancer Genomics Cloud. TCR diversity scores

(Shannon Entropy, Evenness, and Richness) are provided in Table S1.

Contributors: Scott D. Brown, Sheila M. Reynolds

Prognostic Impact of TCR Diversity Scores

Cox models for TCR diversity within each TCGA tumor type were generated with Shannon entropy scores binned into high and low

groups across all possible thresholds and including as covariates patient age, gender, leukocyte fraction, and used to evaluate PFI for

each tumor type, and HR for each predicted neoantigen count threshold calculated. Due to the effect of read length on TCR

extraction, 76 bp datasets were used for each TCGA tumor type or immune subtype if available, otherwise 50 bp datasets were used.

Contributor: Scott D. Brown

BCR Inference from Tumor RNA-Seq Data

We used the VDJer tool (Mose et al., 2016), running on the ISB Cancer Genomics Cloud, to reconstruct the immunoglobulin heavy

chain for all tumor samples. Paired end mRNASeq FASTQ data were aligned to human reference genome hg38 using STAR version

2.4.2a (Dobin et al., 2013). FASTQ files containing more than one read length were truncated to the shorter length. STAR was config-

ured to emit unmapped reads within the output BAM files and samtools was used to generate BAM indices. An estimated insert size

for each sample was calculated by using bwa version 0.7.12 (Li and Durbin, 2009) to align the first 1,000,000 read pairs of each

sample to a reference human transcriptome and identifying the median bwa computed insert length. BCR heavy chain contigs

and read alignments were generated using V’DJer version 0.12 run in standard mode. RSEM version 1.2.21 (Li and Dewey, 2011)

was then used to quantify the BCR contigs. The RSEM reference was generated by running rsem-prepare-reference against the

BCR contig fasta file and quantification was performed using rsem-calculate-expression. Expression counts were normalized to

the total mRNASeq count for each sample. Isotypes for each contig were identified by mapping the trailing 48 bases to the hg38

reference and using the resultant alignment coordinates to call the isotype. IMGT/HighV-Quest (Lefranc et al., 2009) (http://www.

imgt.org/IMGTindex/IMGTHighV-QUEST.php)was used to identify V and J gene segments, CDR3 sequence and V region identity

for each contig. IgH diversity scores (Shannon Entropy, Evenness, and Richness) are provided in Table S1.

Contributors: Joel Parker, Lisle E. Mose, Sheila M. Reynolds, Benjamin Vincent

Immunomodulator Identification and Analysis
Immunomodulator Compilation

A list of immunomodulatory genes (Table S6) was curated from a literature review performed by immuno-oncology experts within the

TCGA immune response working group, who reviewed each entry and confirmed the immunomodulatory function of each gene,

resulting in a list of 78 immunomodulators (IMs).

IM Gene Expression

Corresponding mRNA expression was unavailable for 3 of these IMs (HLA-DRB3, HLA-DRB4, KIR2DL2), which were excluded from

subsequent analysis. Median expression levels (used to summarize expression in each subtype) were computed only using samples

with non-missing values.

Prior to differential expression and miRNA correlation analysis for IMs, any genes with missing expression values in at least one

sample were removed; any samples for which LF or subtype designation were unavailable were also excluded. The resulting

expression data included 67 genes and 9,058 samples. PCA of all normalized expression values (log10(expression + 1)) was per-

formed to check for batch or confounding effects.
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To examine differences in IM expression across subtypes, we performed a Kruskal-Wallis test for each gene expression level with

respect to subtype; p values were adjusted for for multiple testing based on the BHmethod. Based on the observation from PCA that

IM gene expression is correlated with LF within subtypes, we controlled for differences in LF by calculating residuals for expression

with respect to LF. We recomputed Kruskal-Wallis results for expression residuals and found all genes to remain significant.

Expression Correlation with DNA Methylation

To study the relationship between gene expression and DNA methylation of immunomodulators, we mapped DNA

methylation probes to genes using bioconductor packages IlluminaHumanMethylation450kanno.ilmn12.hg19 and IlluminaHuman

Methylation27kanno.ilmn12.hg19, containing manifests and annotation for Illumina’s 450k and 27k arrays. For a given IM

gene, Spearman correlation between gene expression and each corresponding gene-associated probe was evaluated, within

each immune subtype. Results were then filtered to retain sets of probes with similarly signed correlations, to reduce noise and in-

crease robustness of signal. The filter produces probe-clusters, where probes are uniquely assigned a cluster, are within 10KB and

have the same correlation sign. Single correlation values per probe-cluster were found by averaging probes. In cases where multiple

probe clusters were associated with a single gene, the corresponding correlation value were averaged to yield the single correlation

value reported in Figure 6A.

IM Copy Number

Using output from a PanCan GISTIC2.0 run on ISAR-corrected Affymetrix genome-wide human SNP6.0 array data, deep

amplifications, shallow amplifications, non-alterations, shallow deletions, and deep deletions of each immunomodulator gene

were called as described in ‘‘Genomic Correlations with Immune Phenotype’’ above for 8461 tumors that both were immune sub-

typed and had ABSOLUTE purity and ploidy calls. Proportions of samples with each type of copy number alteration were then

compared across immune subtypes. We also report the difference between observed and expected frequencies of amplification

for each immunomodulator gene in each immune subtype, where the expected frequency is the overall frequency of amplification

among all 8461 tumors. This difference calculation was then repeated for immunomodulator deletions.

IM Gene Expression Correlation with miRNA

We examined the association of microRNA (miRNA) expression with immune populations and signatures across all immune sub-

types. The normalized, batch corrected expression levels of 743 miRNA genes were tested for significant correlation (Spearman,

BH corrected p value < 0.05) within each subtype against mRNA expression of IM genes. Predicted binding targets for miRNA genes

were obtained from version 5.0 of the miRDB database (http://www.mirdb.org/) and mapped to IMs based on HGNC gene symbol.

Immune Phenotype Correlation with miRNA & IMs

We examined the association of microRNA (miRNA) expression with immune populations and signatures across all tumor types. The

normalized, batch corrected expression levels of 743 miRNA genes were tested for significant correlation (Spearman, BH corrected

p value < 0.05) within each tumor group against 95 different features from several other working group datasets and observations:

total leukocyte fraction (based on DNA methylation assays); immune infiltrate subpopulations estimated by CIBERSORT (9 adaptive

immune cell types, 13 innate immune cell types); and mRNA expression of immune-related genes (22 checkpoint stimulator genes,

34 checkpoint inhibitor genes, 5 MHC class I genes, 9 MHC class II genes, and 2 cytolytic markers). Hematologic (LAML, THYM) and

lymphatic (LAML) cancers were excluded from all correlations.

Contributors: Christopher Plaisier, Benjamin Vincent, Galen F. Gao, David L. Gibbs, Vesteinn Thorsson, James A. Eddy

The Cell-to-Cell Communication Network
A network of documented ligand-receptor, cell-receptor, and cell-ligand pairs (Ramilowski et al., 2015) was retrieved from the

FANTOM5 resource at (http://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/).

CIBERSORT cell types are more granular than the immune cells in FANTOM5 and were therefore summed to yield estimates for

FANTOM5 immune cell abundances, as defined above in ‘‘Immune cellular fraction estimates’’ Aggregate 2. For example, FANTOM5

CD19 B cell estimates are the combination of CIBERSORT naive and memory B cells. This network was augmented with additional

known interactions of immumodulators, and only ligand-receptor edges that contained at least one cell or one immune modulator

were retained, yielding a ‘scaffold’ of possible interactions.

From the scaffold of possible interactions, interactions were identified that could be playing a role within the TME in each subtype

as follows. Cellular fractions were binned into tertiles (low, medium, high), as were gene expression values for ligands and receptors,

yielding ternary values for all ‘nodes’ in the network. The binning was performed over all TCGA samples. In subsequent processing,

nodes and edges were treated uniformly in processing, without regard to type (cell,ligand,receptor). From the scaffold, interactions

predicted to take place in the TME were identified first by a criterion for the nodes to be included (‘present’ in the network), then by a

criterion for inclusion of edges, potential interactions. For nodes, if at least 66% of samples within a subtypemap to mid or high value

bins, the node is entered into the subtype-network. An edge present in the scaffold network between any two nodes is then evaluated

for inclusion. A contingency table is populated for the ternary values of the two nodes, over all samples in the subtype, and a

concordance versus discordance ratio (‘‘concordance score’’) is calculated for the edge in terms of the values of ((high,high)+

(low,low))/((low,high)+(high,low)). Edges were retained with concordance score > 2.9, set based on evaluation of quantile

distributions.

Contributors: David L. Gibbs, Vesteinn Thorsson, Ilya Shmulevich
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Master Regulators of Immune Genes
TheMaster Regulators (MRs) are identified by first inferring protein activity of candidateMRs as transcriptional influence on groups of

co-expressed genes using the VIPER algorithm (Alvarez et al., 2016), then using the DIGGIT algorithm (Chen et al., 2014) to find

somatically altered proteins significantly associated with the MRs, and finally linking the two through a method called TieDIE (Drake

et al., 2016; Paull et al., 2013), which finds connecting ‘‘paths’’ through a network of known and predicted interactions. MRs that

correlate with leukocyte fraction (LF) are prioritized, as are somatic alterations seen by domainXplorer.

We applied the VIPER algorithm (Alvarez et al., 2016) across all samples, using tissue-matched ARACNE (Margolin et al., 2006)

interactomes, to infer protein-activity for 2506 potential transcription factor and co-factor candidate ‘‘master regulators’’ (cMRs)

from the expression of their downstream targets. Pearson correlation of the inferred protein activity with LF was calculated. Samples

were clustered into an optimal number of 67 clusters based on inferred cMR activity, using a modified silhouette score based on the

native distance metric defined by VIPER. We then integrated the p-values of the mean activity in each cluster to rank overall cMR

activity across the PanCancer dataset.

Similarly, we used the DIGGIT algorithm (Chen et al., 2014) to find mutation and copy-number events significantly associated with

each cMR. Briefly: for each tumor type, we computed the aREA (Alvarez et al., 2016) enrichment of the sample set with non-silent

codingmutations in a given gene, against the ranked protein-activity signature inferred by VIPER for a givenMR. This was performed

for each cMR / mutated gene pair with at least 4 samples with a non-silent alteration. Similarly SNP6 copy number profiles were

downloaded from the Broad Institute and thresholded at a value of 0.5. We then ranked the cMRs by combining the p values of

all significant DIGGIT interactions (p < 0.05; uncorrected) across all tumor types using Stouffer’s method. Similarly, we overlapped

predicted protein-protein interactions taken from the PrePPI 1.2.0 database (Zhang et al., 2012)(https://bhapp.c2b2.columbia.edu/

PrePPI/) with DIGGIT interactions generated in the previous step to generate a second ranking of cMRs based on structural data.

These (2) separate rankings were integrated in a Bayesian context with the ranks derived from VIPER clustering to produce a single

PanCancer ranking of cMR activity. In the top decile, we found 32 candidate MRs that also had a positive correlation of 0.5 or greater

with LF.

Mutation or copy-number events identified by the domainXplorer algorithmwere tested for statistical association with the 32 cMRs

identified, using the DIGGIT algorithm (above), and retained if associated with one or more of the 32 cMRs in at least one tumor-

specific context. In addition we considered genomic events with broad statistical association with leukocyte fraction across the

PanCancer dataset that were not identified by domainXplorer (< 0.15 FDR; BH correction), resulting in 44 total genomic events

significantly associated with both the phenotype and the cMRs identified in the first step.

To elucidate functional and molecular relationships between these genomic events and the 32 cMRs, we applied the TieDIE

algorithm (Drake et al., 2016; Paull et al., 2013) with a database consisting of literature-based regulatory and signaling interactions

as well as high-confidence predicted protein-protein interactions (Khurana et al., 2013). TieDIE found the 44 genomic events

were significantly ‘‘close’’ to the 32 MRs in pathway space (p value < 0.021) and identified a network MR-PanImmune connecting

15 of these altered genes to 26 MRs across 222 database interaction containing 60 transcriptional regulatory, 8 signaling, 3 phos-

phorylation and 151 protein-protein interactions.

Contributors: Evan O. Paull, Mariano Alvarez, Federico Giorgi, Jing He and Andrea Califano

SYstems Genetics Network AnaLysis
The SYstemsGenetics Network AnaLysis (SYGNAL) pipeline is composed of 4 steps (Plaisier et al., 2016). Command line parameters

for all programs in SYGNAL pipeline can be found in Plaisier et al., 2016 (Plaisier et al., 2016). Each tumor type was run separately

through the pipeline to reduce the confounding from tissue of origin differences. Highly expressed genes were discovered for each

tumor type by requiring that genes have greater than or equal to the median expression of all genes across all conditions inR 50%of

patients (Plaisier et al., 2016). These gene sets were then used as input to SYGNAL.

Mechanistic Regulatory Network Inference

In the first step, the cMonkey2 biclustering algorithm (Reiss et al., 2015) was used to reduce the genes expression profiles from each

tumor type into co-regulated biclusters. The number of biclusters was determined using two times the number of genes divided by

the expectation of 30 genes on average per cluster. The training configuration for cMonkey2 included co-expression, GeneMania

gene-gene interaction network, and enrichment of either TF or miRNA target genes using the set-enrichment module (Reiss et al.,

2015). In total, cMonkey2 was run three times for each tumor type and we discovered 43,000 biclusters. The first run used the TF-tar-

get gene interaction database as input to the set-enrichment module to discover TF mediated regulation. The second and third

runs used PITA (Kertesz et al., 2007) and TargetScan (Agarwal et al., 2015) as input to the set-enrichment module to discover miRNA

mediated regulation.

Post-Processing and Filtering of Biclusters

Biclusters were considered significantly co-expressed if the variance explained by first principal component was greater than

or equal to 0.3 and was significantly larger than random samples (empirical p-value % 0.05). Each of the 43,000 cMonkey2
biclusters were then post-processed to discover: (i) co-expression quality via variance explained by first principal component

(empirical p-value < 0.05 and variance explainedR 0.3), (ii) putative TF regulators via de novomotif detection withMEMEorWEEDER

(Bailey et al., 2009; Pavesi and Pesole, 2006) and comparison of motif to known DNA recognition motifs (TOMTOM q-value% 0.05),

and enrichment of TF target genes (Bonferroni corrected p-value% 0.05 and percent target genesR 10%); (iii) TF family expansion

using the TFClass database (Wingender et al., 2013); (iv) putative miRNA regulators via the FIRM pipeline (Plaisier et al., 2012),
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(v) correlation of TF and miRNA regulators with bicluster eigengenes (Langfelder and Horvath, 2007)(TFs: R R 0.3 or % �0.3 and

p-value % 0.05; miRNAs: R % �0.3 and p-value % 0.05); (vi) enrichment of IM genes (p-value % 0.05); (vii) association of total

leukocyte fraction bicluster eigengenes (p-value% 0.05); (viii) functional enrichment with GO biological process terms (BH-corrected

p-value% 0.05) (Plaisier et al., 2012); and (ix) association with hallmarks of cancer (Jiang-Conrath Semantic Similarity ScoreR 0.8,

permuted p-value % 5.1 3 10�4) (Hanahan and Weinberg, 2011; Plaisier et al., 2012). The biclusters were filtered by validating

co-expression and ensuring disease relevance. A bicluster was considered significantly co-expressed if the variance explained

by first principal component was greater than or equal to 0.3 and was significantly larger than random samples (empirical p-value%

0.05). A bicluster was considered immune-related if the genes were significantly enriched with immunomodulators (p-value% 0.05)

and conditional elevated and decreased regulation was significantly associated with total leukocyte fraction (p-value % 0.05) or

associated with either evading immune detection or tumor promoting inflammation (the two immune hallmarks of cancer (Plaisier

et al., 2016).

In all 6,667 biclusters were significantly associated with total leukocyte fraction (p-value% 0.05). Additionally, 197 biclusters were

significantly enriched with a curated set of immunomodulatory genes (Bonferroni corrected p value % 0.05) There was a significant

overlap of 171 biclusters (87%) that were enriched with immunomodulators and associated with total leukocyte infiltration (p value =

1.4 3 10�110).

Causal regulatory network inference

In the third step of the SYGNAL pipeline, the single.marker.analysis function from the network edge orienting (NEO) package in R

(Aten et al., 2008; Plaisier et al., 2009; Plaisier et al., 2016) was applied to infer causal flows of information anchored on a somatically

mutated gene or pathway to expression of a TF or miRNA to a bicluster eigengenes. The single.marker.analysis function compares

five different causal graphical models to test for significant evidence of causal flow across the variables tested. The model of interest

for these studies was the causal graph anchored on a somatically mutated gene or pathway (M) which affects the expression of a TF

or miRNA (R) that in turn alters the expression of a bicluster eigengene (B), i.e., the causal graph M/R/B. The fit of this model was

assessed using the local structural equation modeling (SEM) based, edge orienting, next best single marker (LEO.NB.SingleMarker)

score, which is the log10 probability of this model divided by the log10 probability of the next best fitting alternative model (Aten et al.,

2008). A causal flow was inferred when the LEO.NB.SingleMarker score was positive and three times more likely than the next

best alternative model (LEO.NB.SingleMarker score R 0.5)(Plaisier et al., 2009). For miRNAs, we imposed the additional

requirement that the regulation of the miRNA on the bicluster eigengene must be repressive (ZPathAB < 0). Thus any LEO.NB.

SingleMarker score greater than or equal to 0.5 was considered sufficient evidence to infer causal flow through the causal graph

M/R/B. To reduce the overall number of tests, only TFs and miRNAs that were significantly associated with a somatic mutation

were evaluated (Student’s t test p-value % 0.05 and FC R 1.25).

Integration of Mechanistic & Causal Networks

In the fourth and final step of the SYGNAL pipeline we integrate the regulatory influences by either taking the intersection for

transcription factors and union for miRNAs. For the intersection of TF mediated regulation it was also required that the causal and

mechanistic predictions must be for regulation of the same bicluster.

Contributor: Christopher Plaisier

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of all experiments are reported in the text, figure legends and figures, including statistical analysis performed,

statistical significance and counts.

SOFTWARE AND DATA AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/legacy-

archive/search/f) and the Pancancer Atlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas). The

mutation data can be found at https://gdc.cancer.gov/about-data/publications/mc3-2017. Details for software availability are in

the Key Resources Table. Additional data resources for this manuscript are at https://gdc.cancer.gov/about-data/publications/

panimmune. Interactive exploration and visualization of data and results in this manuscript is available at the CRI iAtlas portal

(http://www.cri-iatlas.org).

Software used for the analyses for each of the data platforms and integrated analyses are described and referenced in the

individual Method Details subsections and are listed in the Key Resources Table.
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