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General introduction 
 

In the last decades, anticancer therapy has raised as one of the most studied topics on 

pharmaceutical and medicinal science. However, despite the efforts made on this field, 

it is widely known that the main limitation of traditional chemotherapeutics is the lack of 

selectivity of the cytotoxic agents. Anticancer drugs act by interfering with different cell 

growth and replication mechanisms but, unfortunately, this occurs non-exclusively in 

tumor cells, but also on the healthy cells. 

To overcome this limitation, different drug-delivery technologies have been developed 

so far, including nanoparticles, liposomes, Antibody-Drug Conjugates (ADCs), etc. 

Among them, the so called Small Molecule-Drug Conjugates (SMDCs) are based on the 

covalent conjugation of cytotoxic agents to different ligands (able to bind to a protein or 

other receptors overexpressed on tumor cells), by means of a variety of linkers. 

This PhD thesis describes the synthesis, characterization and biological evaluation of 

several new SMDCs targeting the αVβ3 integrin receptor, a transmembrane receptor that 

recognizes the Arg-Gly-Asp (RGD) tripeptide sequence and it is overexpressed in many 

human cancers (such as breast cancer, glioblastoma, pancreatic tumor and prostate 

carcinoma). The conjugates described in this work are based on three fundamental parts 

(i.e., ligand, linker and cytotoxic payload), which have been manipulated in order to 

improve the potency and in vitro selectivity of the resulting construct towards αVβ3–

expressing cancer cells) 

The present work is structured as follows: Chapter 1 describes the traditional and most 

recent targeting technologies for drug delivery and introduces the targeted integrin 

receptor. Chapter 2 shows the synthesis and biological evaluation of the conjugates 

containing peptide linkers prone to cleavage in intracellular vesicles, such as the 

lysosomes. The second part of this Chapter (“Synthesis and biological evaluation of 

cyclo[DKP-RGD]-α-amanitin conjugates”) was carried out in collaboration with the 

German company Heidelberg Pharma (HDP), within the frame of the Marie Sklodowska–

Curie Innovative Training Network (ITN-ETN) “Peptide Drug Conjugates for Targeted 

Delivery in Tumor Therapy” (MAGICBULLET). In view of the in vitro results obtained with 

these first set of compounds, the research moved towards the study of peptide linkers 

susceptible to proteolysis in the extracellular environment, which was carried out in 

Eötvös Loránd University (ELTE) of Budapest (Hungary), under the supervision of Prof. 

Gábor Mező between October 2016 - March 2017 and is discussed in Chapter 3. As last, 
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Chapter 4 describes two new conjugates that may be activated both in intracellular 

compartments and in extracellular milieu, by means of ubiquitous tumor-associated 

enzymes. This part of the thesis was carried out in Heidelberg Pharma (Germany) under 

the supervision of Dr. Müller, between January and March 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Tumor targeting prodrugs 
 

1.1. Introduction 

Chemotherapy still represents the predominant strategy for cancer treatment, either 

alone or in combination with surgery and/or radiotherapy.[1] Most of traditional anticancer 

drugs are able to prominently kill fast-dividing cancer cells, and to induce apoptosis, 

either by targeting  important proteins involved on the division of cells or by interacting 

with the DNA replication and transcription machinery.[2]  A historical family of cytotoxic 

agents (used since as early as 1940s) are nitrogen mustards (including 

cyclophosphamide and chlorambucil), which provoke cell death by alkylation of DNA 

bases. During the same period, S. Farber and coworkers discovered that folic acid 

prompted the proliferation of some leukemia cells and, in collaboration with Y. Subbarao, 

they developed methotrexate (an antifolate agent), capable of blocking folic acid 

receptors and thus avoiding the formation of abnormal bone marrow. Later on, with the 

advances on the elucidation of DNA structure, thioguanine, 5-fluorouracil and cytosine 

arabinoside (ara-C) emerged as anticancer drugs, which compete with natural 

nucleosides, interfering with DNA synthesis. These compounds, together with 

methotrexate, represent early examples of “rational drug design”, being developed 

considering the target, as opposed to serendipitous discovery.[3] Another example of 

DNA-interacting  compound is cisplatin, which is known to crosslink the purine bases of 

DNA and interfere with the repair mechanisms.[4] Furthermore, there are some antitumor 

agents inhibiting either topoisomerase I and II, which are enzymes involved in different 

arrangements of DNA structure. Some examples are camptothecin (inhibitor of 

topoisomerase I) and anthracyclines (doxorubicin and daunorubicin) and etoposide for 

topoisomerase II. 

Besides the development of drugs capable of interacting with folate receptors and the 

DNA machinery, another important target for cancer therapy is tubulin, a protein playing 

major role in different cellular processes, such as mitosis. For instance, the Vinca 

alkaloids family (among them, vincristine and vinblastine) bind to the monomeric tubulin 

and inteferes in the polymerization of the microtubules avoiding the formation of the 

mitotic spindle. Instead, taxanes (such as paclitaxel and docetaxel) produce the 

microtubule stabilization preventing the depolymerization.[5] 
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Figure 1. Molecular structures and mechanism of action of some antitumor agents. 

 

Despite the variety of anticancer drugs that have been developed, these pharmaceutical 

products are characterized by a small therapeutic window, which means that the dose 

required to display therapeutic benefits (i.e., Minimum Effective Dose, MED), is not 

significantly lower than doses associated to side-effects (i.e. Maximum Tolerable Dose, 

MTD).  

In order to improve the clinical effect of cancer therapy, multidrug treatment was 

introduced combining cytotoxic agents with different mechanisms of action and different 

toxicity profiles. However, a high systemic toxicity was observed with this approach, 

making clear the necessity of finding more potent anticancer compounds that decrease 

the Minimum Effective Dose (MED). For this reason, researchers have focused on the 

discovery of new natural products, since plants and other living organisms have been 

usually the main source of antitumor agents. This led to the discovery of new inhibitors 

of tubulin polymerization, with cell antiproliferative activity in the picomolar range. 

Maytansine, the dolastatins family (among them dolastatin 10 and 15) and cryptophycins 

form part of these newly discovered compounds. However, the increase of potency of 

the cytotoxic agents did not lead to better clinical performances, and the clinical 

evaluations of these new class of ultrapotent cytotoxic agents had to be discontinued at 

early stages.[2a] A successful exception is eribulin mesylate (an analogue of halichondrin) 

that shows easier to handle side effects and has been approved by the U.S. Food and 

Drug Administration in 2010, for the treatment of metastatic breast cancer refractory to 

anthracyclines and taxanes.[6]  
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Alternatively to traditional cytotoxic agents, inhibitors of tyrosine kinase enzymes have 

also found widespread applications in oncology. It has been demonstrated that the 

activity of a variety of tyrosine kinases is upregulated in tumor cells, causing altered 

phosphorylation cascades and abnormal activation of target proteins. Furthermore, the 

overexpression of tyrosine kinases in cancer cells or the presence of aberrant forms of 

these enzymes prompts the tumor cell growth. For these reasons, various inhibitors 

aiming to compete with ATP for binding to the catalytic site of protein kinases have been 

developed. Among this class of compounds, Imanitib mesylate has been approved by 

the FDA in 2001 for the treatment of chronic myelogenous leukemia (CML). Furthermore, 

Sunitinib has been approved for the treatment of metastatic renal cell carcinoma (RCC) 

and gastrointestinal stromal tumour (GIST)[7]  and Sorafenib for hepatocellular carcinoma 

and for clear-cell renal-cell carcinoma (CCRCC).[8] 

Although tyrosine kinase inhibitors have often grouped as “targeted” therapeutics, they 

show the same pharmacokinetic limitations as traditional chemotherapeutics. In 

particular, these small molecules do not accumulate efficiently in the mass of solid 

tumors, which are normally characterized by a high interstitial fluid pressure. Moreover, 

due to their low molecular weight and the high lipophilicity, these compounds are cleared 

rapidly from systemic circulation and they accumulate preferentially into healthy organs 

(mainly liver and kidneys) and excreted. 

Overall, the limitations of cytotoxic agents emerged and these findings strongly 

suggested the necessity to develop more effective drugs, which could target cancer cells 

selectively and overcome the side-toxicity issues. 
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1.2. Targeted Cytotoxic Agents 

The improvement of the selectivity of anticancer drugs (which leads to the increase of 

the Maximum Tolerated Dose, MTD) without affecting the potency of these agents (i.e. 

same Minimum Effective Dose, MED) could ideally lead to the increase of the therapeutic 

window and the decrease of the undesired side effects generally observed in cancer 

patients (Figure 2).[2a] 

 

 

 

 

 

Figure 2. Increase of the Therapeutic index when the MTD is improved (due to the improvement 
of the selectivity). 

 

Following this unmet medical need, many drug delivery systems have been developed 

for the selective release of antitumor drugs: antibodies, liposomes, polymers, micelles, 

iron oxide, gold or dendrimer nanoparticles (NPs), carbon nanotubes, etc.[9] All these 

drug delivery systems are based on one of the following targeting approaches: 

- Passive targeting: it is based on the Enhanced Permeability and Retention (EPR) 

effect. Tumors are often characterized by leaky, tortuous and poorly differentiated 

vasculature that allows the extravasation of molecules with larger sizes (up to 

hundreds of nanometers). At the same time, the lymphatic system is normally 

affected in the tumor mass, decreasing the clearance of extravasated 

nanomaterials from the diseased site. Nanoparticles such as liposomes, 

polymers and micelles rely on this type of targeting approach. 

 

- Triggered drug delivery: these systems are able to release their drug content 

upon exposure to different external stimuli (such as light, heat, ultrasound and 

magnetic field). 
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- Active targeting to cancer cells: this strategy relies on the binding of ligands to 

specific proteins (i.e. receptors or antigens) that are expressed in larger amounts 

by cancer cells, compared to normal tissues The so-called antibody-drug 

conjugates (ADCs) and small molecule-drug conjugates (SMDCs) belong to this 

class of therapeutic agents, and they will be described in more details in the 

following chapters.  

 

- Active targeting to endothelial cells: delivery systems based on interacting with 

the endothelial cells (blood vessels cells) have been developed and they kill by 

depriving the tumor mass from oxygen and nutrients.  

 

The development of targeted chemotherapies has been a field of increasingly interest 

during the last years and many efforts have been made to produce delivery systems able 

to improve the clinical efficacy of cancer treatment. Nowadays some of these 

technologies have reached the market, while many others are being investigated. 

 

1.3. Antibody-Drug Conjugates (ADCs)  

1.3.1. Monoclonal antibodies 

Monoclonal antibodies (mAbs) can be considered as the most exploited 

biopharmaceutical tools for the treatment of cancer and many other indications. High-

affinity mAbs selective for any kind of antigen can be now generated and, in the oncology 

field, they are normally exploited to target antigens that are present in cancer cells in 

mutated forms or that are overexpressed on tumor cells (in comparison with healthy 

tissues).[2a,10] The advent of monoclonal antibodies and their widespread application 

derives from the development of the hybridoma technology in 1975 by Köhler and 

Milstein, which allowed to produce single purified antibodies able to target a specific 

epitope of the antigen of interest.[11]  In some cases, mAbs are pharmaceutically used to 

bind with high affinity proteins that may be fundamental for the disease progress, thus 

blocking their pathologic activity. Moreover, specific types of mAbs are able to induce 

cell death by different mechanisms, such as antibody-dependent cellular cytotoxicity 

(ADCC), antibody-dependent phagocytosis, receptor blockage which leads to apoptosis 

or interferes with other cell pathways, etc. 
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In 1980, the first human clinical trial with a murine monoclonal antibody was conducted 

in a patient with lymphoma using AB 89 antibody.[12] After this, many other murine mAbs 

were tested and, in many of these trials, an immune response to the antibody was 

observed, resulting in the detection of human anti-mouse antibodies (HAMA) in patients. 

In order to overcome the limitations of this first generation of monoclonal antibodies, 

chimeric and humanized mAbs were prepared by means of the recombinant DNA 

technology (see Figure 3). In both cases, the murine constant sequences are replaced 

by the human analogues. However, the chimeric mAbs retain the murine sequences in 

both the Variable domains (Fv) and the Complementary determining regions (CDR), 

while in the humanized mAbs the Fv are replaced with human sequences, maintaining 

the mouse CDR, which are the essential antigen recognition residues.  

 

Figure 3. Representation of mouse, human, chimeric and humanized monoclonal antibodies; 
CDR= complementary determining regions; Fv= Variable domains.[13] 

 

The increasing presence of human sequences in the mAb structure were found to 

significantly reduce or even eliminate the immune response observed with the murine 

mAbs, and to extend the half-life in circulation. Rituximab (RituxanTM) was the first mAb 

brought on the market in 1997 for the treatment of non-Hodgkin’s lymphoma. After that, 

many others have gained marketing authorization, such as bevacizumab (AvastatinTM) 

and trastuzumab (HerceptinTM). Nowadays, mAbs have become the most studied 
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approach for the treatment of cancer and RituxanTM and AvastatinTM are still the best-

selling anticancer drug in the current year 2018.[14] 

Unfortunately, most of these anticancer mAbs often fail to cure patients when used as 

single agents and they are often combined with chemotherapeutic drugs. However, given 

the outstanding binding specificity of monoclonal antibodies and the lack of selectivity of 

the antitumor medicines, mAbs started to be considered as possible vehicles for 

selective tumor-targeted release of anticancer drugs.[15] 

 

1.3.2. Antibody-Drug Conjugates (ADCs) 

ADCs are based on the conjugation of a monoclonal antibody with a cytotoxic agent 

through a smart linker, which should be ideally stable in circulation (to avoid systemic 

toxicity) and, at the same time, it should release the drug selectively at the tumor site. 

According to an ideal mechanism of action, the Antibody-Drug conjugate, upon binding 

to cell antigen, is internalized by a receptor-mediated endocytosis and, once inside the 

cell, the linker is cleaved through different mode of action, releasing the cytotoxic 

payload. Following this mechanism, first-generation ADC products relied on intracellular 

cleavable linkers, such as acid-labile linkers (which release the drug at the tumor acidic 

pH) or specific peptide sequences (which are preferentially cleaved by lysosomal 

enzymes, such as peptidases or esterases).[2a] However, in the last years, it has become 

clear that non-internalizing ADCs relying on extracellular drug release mechanisms could 

also be an efficient pharmacological approach.[15]  

              

Figure 4. A) General structure of an Antibody-Drug Conjugate. B) Different mechanisms of ADC 

drug delivery: external drug release and receptor-mediated endocytosis.[16] 

B. A. 
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With this strategy, ADCs would release their anticancer payload in the tumor interstitium 

(through, for instance extracellular proteins, such as matrix metalloproteinases) and then 

the free drug would be free to diffuse through the tumor mass, and enter cancer cells by 

passive diffusion through the cell membrane. (Figure 4B).[15] The choice of the correct 

payload was found to be crucial since the birth of the ADC technology. First-generation 

ADCs were equipped with traditional chemotherapeutic drugs, such as methotrexate, 

doxorubicin or vinblastine. From the in vitro evaluation of most part of these conjugates 

emerged that the drug release from the targeting vehicle was not efficient, and the ADCs 

proved less potent than the free drug. Also, despite the significant ADC accumulation at 

the tumor site, the low therapeutic activity in vitro of these products suggested that 

different drug and linker modules should be considered.  

The second generation of ADCs focused on the use of more potent anticancer drugs  

such as calicheamicins, maytansinoids (emtansine, mertansine), auristatins 

(monomethyl auristatin E – MMAE - and monomethyl auristatin F - MMAF) or SN38 (a 

derivative of camptothecin). These modifications led to the market authorization of the 

first ADC products. In particular, MylotargTM (gemtuzumab-ozogamycin) targeting CD33 

(receptor expressed of myeloid cells) reached the market in 2000. While initial toxicity 

issues led to the ADC withdrawal in 2010, this product was reintroduced in 2017 after 

revising the dosage. This product is currently being used for the treatment of acute 

myeloid leukemia (AML).[10] Later on, AdcetrisTM (brentuximab vedotin, approved in 2011 

for the treatment of Hodgkin lymphoma and anaplasic large cell lymphoma), KadcylaTM 

(ado-trastuzumab emtansine, approved in 2013 for the treatment of metastatic breast 

cancer expressing receptor HER2) also found FDA approval, together with the recently 

introduced BesponsaTM (inotuzumab ozogamicin, approved in 2017 for the treatment of 

CD22-positive acute lymphoblastic leukemia).[17] 

 



Chapter 1: Tumor targeting prodrugs     11 

 

 

Figure 5. Structures of the ADCs available in the market. 

 

Considering the high antigen affinity and the exquisite selectivity displayed by antibodies, 

ADCs represent the most promising platform for the targeted delivery of cytotoxic agents. 

However, it became increasingly clear that the success of ADC product may be limited 

by a number of factors: [2a,18] 

- Suboptimal Pharmacokinetic: the slow extravasation of large-size 

macromolecules (such as antibodies) has been extensively described, and it 

limits the ADC accumulation in the tumor mass. Furthermore, upon extravasation, 

antibodies are often trapped by antigens situated on the perivascular tumor cells, 

preventing the binding to tumor cells that may not be adjacent to the blood 

vessels.  

 

- Possible immune system induce alterations: the development of undesired 

immunogenicity caused by ADCs (even those bearing chimeric or humanized 

antibodies) may limit the efficiency of the ADC treatment.[19] 

 

- High manufacturing costs: the production of large-scale ADCs is an expensive 

process, requiring the clinical-grade production of three components (i.e. mAb, 

toxin and final conjugate) as single entities. 
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Nowadays, many efforts are being made to improve the therapeutic performances of 

ADCs. The current approaches are based on the development of new antibody 

structures,such as miniantibodies, small immune proteins –SIP-, single-chain 

variable fragment –scFv-, etc.[2a,20] 

 

1.4. Small Molecule-Drug Conjugates (SMDCs) 

1.4.1. General structure and background 

An alternative to overcome some of the limitations associated with ADCs is the use of 

smaller devices to target tumors, which could also bind to tumor-associated antigens, 

while exhibiting a better pharmacokinetic profile. These new class of compounds 

consists in the so called Small Molecule-Drug Conjugates (SMDCs) and they should 

ideally display better pharmacokinetic properties than ADCs (e.g., easier extravasation 

and deeper penetration of the tumor tissue, and little or no antigenicity) as well as  

reduced manufacturing costs.  

The general structure of SMDCs (Figure 6) is reminiscent of ADCs and it is based on a 

small targeting moiety (such as a small ligand, a peptide or a peptidomimetic) linked to 

a cytotoxic agent via a smart linker, able to selectively release the cargo in the tumor 

mass. Similarly to ADCs, the choice of the correct combination of ligand-linker and drug 

is an important issue for the design of successful SMDCs, and they will be further 

discussed in the following sections (sections 1.4.2, 1.4.3 and 1.4.4). 

 

 

    

  
Figure 6. General structure of the SMDCs.[21] 

 

In addition to the Ligand, Linker and Drug moieties, SMDCs (but also ADCs) are normally 

equipped with spacers between the Ligand and the Linker, or between the Linker and 

the Drug portions. These moieties feature suitable functional groups for the chemical 

conjugation of each individual fragment of the drug delivery system.  Furthermore, a 

Ligand Linker Drug Spacer 1 Spacer 2 
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chemical structure between Ligand and Linker (i.e., Spacer 1 in Figure 6) is often added 

to improve the pharmacokinetic properties of the conjugate. For example, polyethylene 

glycol (PEG) chains or short peptide sequences bearing hydrophilic residues are often 

included to improve water solubility.[22] Also, PEG spacers increase the size of the 

prodrug (which may impact on the circulation half-life) and provide a better flexibility, with 

a potential effect on the binding affinity.[23] Another type of spacer (i.e. Spacer 2 in Figure 

6) is included between the Linker and the cytotoxic agent to improve the kinetics of drug 

release. These linkers are often referred to as “self-immolative” and, upon cleavage of 

the linker, they undergo a series of elimination and/or cyclization processes that lead to 

the delivery of the free drug (Scheme 1).[24] The self-immolation process of electronic 

cascade spacers is known to proceed more quickly than the cyclization spacers. 

 

 

Scheme 1. Some of the most common self-immolative linkers. 
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1.4.2. The selection of the ligand 

While up-to-date biotechnological methods allow the fast isolation of high-affinity 

antibodies against any type of protein antigen, the development of small organic 

molecules as ligands for a given tumor antigen is more problematic. The most used 

ligands are the natural-occurring ones, such as vitamins or hormones, whose receptors 

are often up-regulated by fast-growing tumors. However, it is conceivable that new 

technologies for hit identification (e.g. high-throughput screening, phage display and 

DNA-encoded chemical libraries) will be increasingly exploited to raise new ligands for 

SMDC applications.[18,25] As far as the receptor is concerned, it is possible to claim that 

some tumor antigens may represent more promising receptors for SMDCs than other 

proteins, and some important biological features (e.g. levels of expression, rate and 

pathway of internalization, tissue and cellular localization, etc.) must be taken into 

account during the SMDC design. 

The most common examples of “druggable” antigen that have been investigated for 

SMDC development are the Folate Receptor (FR), the Hormone receptors (somatostatin 

and gonadotropin receptors), the prostate specific membrane antigen (PSMA) and the 

carbonic anhydrase IX (CAIX) enzyme. 

Folic acid is a vitamin associated to different metabolic pathways (such as nucleotide 

biosynthesis), showing a high affinity for its receptor and that can be easily coupled to 

cytotoxic drugs. FR (an endocytic glycopolypeptide membrane protein) is upregulated in 

cancer cells and activated macrophages, but it has a limited distribution on normal cells. 

Indeed, this receptor is overexpressed in ovary, breast, lung, colon, kidney and brain 

tumors and on the hematopoietic cells of myelogenous origin.[15,26] Folic acid is 

considered the first small molecule to be used as ligand in SMDCs and the research in 

the field of folate-drug conjugates is a milestone in the development of tumor-targeting 

cytotoxic agents. The combination of this vitamin with the microtubule-interferring 

desacetylvinblastine hydrazide through a disulfide linker was the first folate-based SMDC 

to enter clinical investigation. This conjugate, known as Vintafolide or EC145 (Figure 7), 

showed some potential when administered in combination with other approved 

anticancer agents. Indeed, the combination of this folate-vinblastine conjugate with 

pegylated lysosomal doxorubicin (PDL) showed a 2 months extension of the 

progression-free survival in platinum-resistant ovarian cancer.[15,27] 
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Figure 7. Structure of Vintafolide (12). 

 

These first results prompted the development of other FR-targeted conjugates (with the 

folic acid combined to different cytotoxic agents such as paclitaxel, protein kinase 

inhibitors, tubulysin, etc.)[28] and also other vitamin-conjugates using biotin or vitamin B12 

as ligands.[29] 

Furthermore, Hormone Receptors have also been widely studied and, among them, the 

Somatostatin (SSTRs) and Gonadotropin-releasing hormone (GnRHR) Receptors. 

The first ones (especially subtypes 2, 3 and 5) are widely expressed in cancer cells, in 

particular neuroendocrine tumors[30] and SSTR-2 also in Renal cell carcinoma (RCC) and 

the corresponding metastases in thyroid, adrenal, and pancreatic glands.[31] Instead, 

GnRH receptors are known to be expressed on urogenital tumors, such as bladder, 

prostate, ovary and endometrium cancers, but also in breast and pancreatic tumors and 

glioblastomas.[32] Both somatostatin analogues and GnRH-targeting peptides have been 

conjugated to different cytotoxic agents such as paclitaxel[33] or camptothecin.[34] In the 

case of GnRHR binding peptides, they have also been coupled to daunorubicin[35] and 

doxorubicin. Indeed, it is worth to mention one of the examples involving this last 

cytotoxic agent, since this [D-Lys6]GnRH analogue-doxorubicin (known as Zoptarelin 

Doxorubicin, AEZS-108 or AN-152) has shown low toxicity and good effectivity in phase 

II trials in women with GnRH receptor-positive endometrial cancer and with platinum 

refractory or resistant ovarian cancers. Currently, phase III clinical trials are being 

performed on patients with ovarian and endometrial cancer.[36] Furthermore, 

somatostatin has been used in nuclear medicine for diagnosis purposes. Analogues of 

this hormone have been conjugated to contrast agents, such as the chelator DOTA[37] or 

radiolabeled with 111In.[38] This latter, in conjugation with octreotide ([111In-diethylene-
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triaminepentaacetic acid0]octreotide) is now available on the market for imaging of 

somatostatin receptor-positive tumors. 

As mentioned previously, enzymes are also usual targets for the treatment of tumors. 

Prostate-specific membrane antigen (PSMA) is a well-known marker for prostate 

cancer, in which it is highly overexpressed, while it is not detectable in other tissues such 

as kidneys, small intestine or salivary gland. PSMA is a transmembrane glycoprotein that 

possess important functions in the prostate carcinogenesis and progression. It also 

displays folate hydrolase activity at the small intestine and N-acetylaspartylglutamate 

peptidase activity in the nervous system.[39] A variety of analogues of N-

acetylaspartylglutamate have been prepared[40] and the ligand 2-[3-(1,3-

dicarboxypropyl)ureido]pentanedioic acid (DUPA) is the most well-known PSMA ligand, 

due to its high binding affinity, synthetic accessibility and the presence of a free 

carboxylic acid which does not interfere with the binding event and it is therefore a 

suitable anchoring point for derivatization with different payloads. [41] Indeed,  DUPA  was 

conjugated to different imaging agents such as 99mTc, FITC (fluorescein isothiocyanate) 

and Rhodamine B isothiocyanate (Figure 8). The DUPA-99mTc was tested in vivo, in 

preclinical models, where the conjugate was found to target tumor cells selectively, albeit 

with a significant accumulation in the kidneys (due to the high expression of PSMA in 

murine kidneys).[41a] Interestingly, DUPA conjugates with Rhodamine B isothiocyanate  

were proved to bind selectively malignant cells in fresh peripherial blood samples from 

patients with prostate carcinoma, while no fluorescence was detected in the blood of 

healthy patients.[41a] This good results suggest that this imaging-conjugates could be 

applied for the detection and localization of tumors during surgery.  

Due to the great selectivity showed by DUPA, also many cytotoxic agents were 

conjugated to this ligands, like tubulysin hydrazide (TubH),[41a] paclitaxel[42] or 

indenoisoquindoline (a topoisomerase I inhibitor).[43] In all cases, a cessation of the tumor 

growth in xenografted mice was observed, with no obvious toxicity and/or loss of body 

weight. 
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Figure 8. Up: Structure of DUPA conjugates containing different imaging agents (13, 14 and 15). 
Left image: body radioimages of mice bearing LNCaP, A549 (PSMA negative) and KB (PSMA 
negative) tumors after 4h after administration of DUPA-99mTc conjugates. (K= kidney; red arrows= 
tumors).[41a] Right image: confocal images and confocal differential interference contrast (DIC) 
images of DUPA-fluorescent conjugates (with FITC and rhodamine B) in LNCaP (prostate 
adenocarcinoma cells, PSMA positive) in the presence and absence of PMPA (PSMA inhibitor) 

 

Besides PSMA, another enzyme investigated for SMDC applications is the carbonic 

anhydrase IX (CAIX). Human carbonic anhydrases are zinc-containing enzymes that 

catalyzes the reversible hydration of CO2 to hydrogen carbonate and H+ (CO2 + H2O ⇆ 

HCO3
-+ H+). Among the known 15 isoforms of this enzyme, the CAIX (a transmembrane 

protein) has gained much interest due to its overexpression in many solid tumors (e.g. 

glioblastoma, colorectal, breast cancer), being considered as a tumor-associated antigen 

and a marker of hypoxia.[44] Highly selective inhibitors belonging to the sulfonamide, 

sulfamate, coumarin and sulfocoumarin classes were developed as CAIX ligands. The 

sulfonamide SLC-0111 (for the treatment of advanced tumors) and the monoclonal 

antibody RENCAREX® (for the treatment of renal carcinoma) have already reached 

clinical trials (Phase I and phase III respectively).[45] In 2014, Neri et al.[46] developed the 

first SMDCs targeting the CAIX enzyme reporting therapeutic effects in preclinical 

models of human cancer. The conjugation of a high-affinity acetazolamide derivative with 

the maytansinoid DM1 via disulfide linkers showed a strong reduction of tumor volume 

in vivo (compounds 16 and 17, Figure 9). Later on, CAIX inhibitors have been conjugated 

to a large number of payloads, such as tubulysin and MMAE.[47] 
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Figure 9. Tumor growth of in mice xenografted with SKRC52 (renal carcinoma). Treatment: 7 
times on 7 consecutive days with 70 nmol of 16 (name 9a in the graphic), 17 (named 9b in the 
graphic), or vehicle (5% DMSO in PBS pH 7.4). Untargeted conjugate 17 was administered with 
equimolar amounts of acetazolamide. 

 

1.4.3. The importance of the linker in the design of SMDCs 

According to the physiological features of the targeted receptors, a variety of linkers have 

been used to promote drug release from SMDCs. They can be classified as follows: 

- Uncleavable linkers: functional groups that are degradated neither in circulation 

nor at the tumor site (e.g. amides, triazoles, carbamates). These linkers are often 

used for imaging purposes by conjugation of the desired ligand with fluorescent 

probes or contrast agents.[37,38,48] Furthemore, uncleavable linkers have been 

often used in internalizing ADCs where they were proven to release efficiently the 

cytotoxic payloads. It is now widely accepted that, in these ADC products, the 

entire mAb structure is proteolytically degraded inside the targeted cell, 

eventually releasing the cytotoxic agent. On the other hand, no significant 

anticancer activities have been reported so far using non-cleavable SMDC 

products.  
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- Hydrolytically labile linkers: functional groups prone to hydrolysis, such as N-

Mannich base-linker, esters or hydrazones. This class of functional groups has 

been used as linkers for drug release under the acidic conditions of lysosomes 

(pH 4.5 – 5.5), endosomes (pH 6.0 - 6.8) and in the extracellular environment of 

tumor masses. 

 

- Enzimatically-cleavable linkers: these are short peptide sequences or 

carbohydrate moieties (like the β-glucuronide linker)[49] that are cleaved by 

proteases or glycoside hydrolases. Different sequences have been reported in 

the literature to target both intracellular and extracellular enzymes. For example, 

many dipeptide (Val-Cit, Phe-Lys, Val-Ala, etc)[50] and tetrapeptide squences 

(Gly-Phe-Leu-Gly)[51] have been used to target intracellular proteasese, such as 

Cathepsin B. Furthermore, the tripeptide sequence Ala-Ala-Asn has been used 

to target the lysosomally cleavable legumain enzyme (asparaginyl 

endopeptidase)[52] and longer sequences, such as as Gly-Pro-Leu-Gly-Ile-Ala-

Gly-Gln[53] or Pro-Val-Gly-Leu-Ile-Gly[54] were used to target certain matrix 

metalloproteinase (MMP) isoforms, such as MMP2 and MMP9. Generally, these 

peptide sequences show high stability in circulation 

 

- Reducible linkers: this group is formed by disulfides and metal complexes (that 

are cleaved as a result of the highly reducing environment of the intracellular 

compartment, which is due to the increased presence of antioxidants in cancer 

cells (like cysteine, reduced glutathione, peroxiredoxins, etc.). 

 

1.4.4. The cytotoxic agent 

Finally, since the therapeutic effect is given only by the biological activity of the cytotoxic 

payload, the drug impacts substantially on the activity and toxicity profile of the resulting 

SMDC. Moreover, it has been often reported that highly lipophilic payloads (e.g. MMAE, 

taxanes, maytansinoids, etc.) can elicit therapeutic effects also when incorporated in 

non- or poorly internalizing ADCs and SMDCs, as a result of the so-called “bystander 

effect”. This means that these devices are able to kill not only the antigen-positive tumor 

cells, but also the adjacent antigen-negative cancer cells.[55] On the other hand, highly 

hydrophilic payloads (e.g. MMAF, amanitin, etc.) do not efficiently diffuse through the cell 

membrane, while they show high anticancer activity when incorporated into internalizing 

therapeutics.  
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1.5. αVβ3 integrin targeting ligands for the delivery of 

chemotherapeutics. 

1.5.1. Integrins 

Integrins are a family of transmembrane receptors that are expressed in all cell types, 

with the exception of red blood cells (erythrocites). They are heterodimeric glycoproteins 

formed by two subunits non-covanlently associated, namely α and β. In total, 24 different 

heterodimers can be formed in vertebrates by combining the 18 α and the 8 β existing 

subunits and the resulting structure determines the substrate specificity, signaling 

properties and tissue expression.[56] 

Integrins constitute a physical anchor for the cell and they are the principal adhesion 

receptors for the extracellular matrix (ECM) proteins, growth factors, inmunoglobulins, 

matrix-degrading proteases and cytokines. Receptor-ligand interaction promotes 

different intracellular signaling cascades that can include tyrosine phosphorylation of 

focal adhesion kinases (FAK).[57]  

 

Figure 10. Schematic representation of the vertebrate integrin family.[58] 

 

This kinase plays an essential role in cell motility, survival, and proliferation. Furthermore, 

integrins collaborate with other receptors (such as the growth factor receptors –GFRs) 

for the regulation of many cellular events, such as cell migration, invasion and 

cytokinesis.[59] Besides their physiological role, integrins are involved in different 

processes of tumor development, such as invasion, angiogenesis and metastasis. In 
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particular, the β3 subunit is associated with the capacity of cancer to metastasize and the 

αVβ3 receptor is strongly associated with the regulation of angiogenesis.[55b] For these 

reasons, this particular integrin heterodimer has been widely investigated as tumor 

antigen and several pharmaceutical activities focused on αVβ3-targeted therapies. 

 

Figure 11. Schematic representation of the function of integrins in cancer cells and representation 
of the two subunits.[59] 

 

1.5.2. αVβ3 as tumor-targeting receptor 

αVβ3 has been widely investigated for drug delivery purposes, due to its high expression 

on several human cancers but not in the healthy tissues. [56,58] αVβ3 is involved in ECM 

remodeling and degradation, which are the key processes for tumor invasion and 

metastasis. The overexpression of αVβ3 in prostate carcinoma and breast cancer has 

been associated with bone metastasis while, in glioblastoma, the increased levels of the 

receptor are associated with enhanced cell motility and resistance to apoptosis.[60] 

The complex “cross-talk” networks involving αVβ3 and different growth factor receptors 

seem to regulate the angiogenesis on tumors. For example, the coordination between 

the integrin receptor and the fibroblast growth factor (FGF) has been reported to inhibit 

pro-angiogenic signaling, while the interaction between αVβ3 and VEGFR (vascular 

endothelial growth factor receptor) triggers angiogenesis. This process has been 

described to proceed through the activation of enzyme matrix metalloproteinase-2 

(MMP-2), that degrades the collagen matrix, therefore enabling the ECM 

rearrangement.[57] 

In 1984, Ruoslahti and coworkers discovered that many integrin receptors recognize the 

Arg-Gly-Asp (RGD) sequence, which is present in fibronectin and many other ECM 

proteins[61] and this tripeptide was identified as specific binding motif.  
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Figure 12. Structure of the RGD (Arg-Gly-Asp) sequence. 

 

This discovery led to the development of many RGD-bearing compounds which showed 

low nanomolar affinity for αVβ3, especially those constrained into cyclic structures.[62] A 

well-known example of this series of compounds is the integrin ligand cilengitide 

(compound 18, Fig. 13), which was developed by Kessler and coworkers.[63] The 

understanding of the X-ray analysis of the co-crystals obtained from αvβ3 and cilengitide 

was an important milestone in the development of this research area. In this crystal 

structure, an extended conformation of the RGD sequence in the integrin binding pocket 

was observed, with a 9-Å distance between C-β atoms of the Arg and Asp residues: this 

arrangement allows the interaction of the arginine side chain with two anionic aspartic 

acid residues in the α-subunit, whereas the aspartic acid binds to divalent metal cation 

in the metal ion-dependent adhesion site (MIDAS) region of the β-subunit.[64] 

The deep understanding of the structural features of the αvβ3-cilengitide complex 

prompted the development of many peptides and peptidomimetics targeting the αvβ3 

integrin.[65] One interesting example is MK-0429 (19), which have been evaluated in 

clinical trials as anticancer drugs.[66] 

 

 

Figure 13. Structures of cilengitide and MK-0429. 
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Both cilengitide and MK-0429 were demonstrated to be non-toxic and well-tolerated, the 

compounds did not display significant therapeutic benefits. Moreover, it has been 

described that cilengitide, under specific experimental conditions, may possess pro-

angiogenic activity.[67] After this clinical failure, the clinical evaluation of cilengitide was 

discontinued. However, although the efficacy of αVβ3 integrin ligands as anti-angiogenic 

agents may be controversial, their use as tumor targeting agents still represents a 

promising strategy. 

 

1.5.3. RGD ligands for tumor imaging and therapy 

Many of the RGD-peptides and peptidomimetics developed in the recent years have 

been conjugated to imaging agents. [18F]Galacto-RGD was the first example of 

radiotracer bearing the RGD sequence used for the study and visualization of αVβ3 

expression in cancer. In this conjugate, the cyclo[RGDfK] was used as ligand for tumor 

targeting.[68] Another example using this ligand is the DOTA-cyclo[RGDfK] labelled with 

111In or 90Y, which has been subjected to biodistribution studies in mice with SKOV-3 

human ovarian carcinoma.[69] Furthermore, the 99mTc-NC100692 (NC100692: RGD 

bearing cyclic peptide) has been evaluated in clinical trials as probe for single photon 

emission computed tomography (SPECT). Besides showing good tolerability, these 

experiments showed that 99mTc-NC100692 can be used to detect persistent 

angiogenesis in patients with remote myocardial infarction.[70] 

In addition to their use on the field of imaging, the RGD peptides and peptidomimetics 

have  been also investigated as possible vehicles for the selective delivery of cytotoxic 

agents to tumors, not only when incorporated into SMDC products, but also when 

coupled to lyposomes, nanoparticles, etc. Integrins are commonly considered as 

internalizing receptors[71] and specific proteins (i.e. caveolin and clathrin) are known to 

interact with the intracellular domain of αvβ3 integrin and promote the receptor folding into 

membrane vesicles that travel to early endosomes. Later on, αvβ3 integrin can be either 

driven to intracellular compartments responsible for protein degradation (e.g. 

endosomes and lysosomes), or recycled to the plasma membrane.[72]  

Doxorubicin was the first cytotoxic agent to be coupled with an integrin ligand. It was 

coupled to RGD-4C (20, Figure 14) and tested in mice bearing the MDA-MB-435 human 

breast cancer, which is known to express αV integrins. The results showed an increased 

volume tumor growth inhibition and lower toxicity compared to the free drug.[73]  
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Figure 14. Structure of RGD-4C. 

 

Later on, a variety of cytotoxic agents have been conjugated to RGD-bearing ligands 

using different release mechanisms. For example, Manzoni et al. have designed nine 

paclitaxel-containing conjugates bearing either Azabicycloalkane-RGD or Aminoproline-

RGD as ligand. All of them showed good in vitro growth inhibition in different cell lines 

[U2-OS (human osteosarcoma), IGROV-1(human ovarian carcinoma), IGROV-1/Pt1 

(cisplatin-resistant human ovarian carcinoma) and H460 (human large cell lung 

carcinoma)]. Among these conjugates, compound 21 bearing a triazole linker was tested 

in mice xenografted with an ovarian carcinoma and a better tumor volume inhibition was 

observed when compared with the free drug.[74] 

 

 
 

 

Compound TVI %a BWLb TOXc 

21 98 7 0/5 

PTX 81 5 0/5 

a) Tumor volume inhibition % in treated over control mice assessed 

7 days after last treatment; b) body weight loss % induce by 

treatment; the highest change is reported; c) dead/treated mice. 

Figure 15. Structure of the Azabicycloalkane-RGD conjugate (21) tested in vivo and table with 
the efficacy of i.v. of 21 and Paclitaxel (PTX) (36 mg/kg q4dx4) on IGROV-1/Pt1 xenografted 
mice. 
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Moreover, more potent drugs were used in conjugation with RGD-bearing compounds. 

For example, MMAE has been conjugated to a non-peptidic αVβ3 ligand through the 

peptide linker Ala-Ala-Asn. This sequence acts as specific substrate of legumain, an 

intracellular protease. 

 

 

 

Figure 16. Structure of conjugate 22 and results of in vivo experiments. Left graphic: in vivo effect 

of conjugate 22. When the experiment started, the diameter was around 5 mm. Control= saline 

alone. Dose of conjugate 22= 3 mg/kg. Right graphic: Survival based on the primary tumor 

diameter (>1.5 cm) and natural death. 

 

Due to its targeting properties, the resulting SMDC (compound 22, Fig. 16) was 

administered to MDA-MB-435 tumor-bearing mice at 30-fold higher molar dose than the 

maximum tolerated dose of free MMAE. This resulted in improved antitumor response 

and much lower toxicity compared to the free MMAE.[75] 
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1.5.4. Previous work of our group 

In 2009, the Gennari and Piarulli group developed a series of new integrin ligands in 

which the RGD sequence is constrained into a cycle by the bifunctional 2,5-

diketopiperazine (DKP) scaffold. The DKP ring constrains the nitrogen atom of an α-

amino amide: this modification of the two peptide bonds is known to reduce the 

susceptibility of peptide bonds to metabolic cleavage and it confers conformational 

rigidity. 

These changes in structural and physical properties, as well as the presence of functional 

groups that can act as donors (amide proton) and acceptors (carbonyl groups) of 

hydrogen bonds were found to be sources of favorable interactions with the biological 

target.  

Eight different diketopiperazines were prepared starting from combination of L- and D-

amino acids, bearing carboxy (derived from aspartic and glutamic acids) or amino groups 

(derived from an amino-serine residue) in their side chains. Furthermore, the amide 

nitrogen atoms of the DKP ring were differently functionalized with benzylic moieties. The 

DKPs were used to join N and C termini of the Arg-Gly-Asp sequence, resulting in a 

library of 8 peptidomimetics (Figure 17).[65 d-e] 

Figure 17. Structure of the 8 peptidomimetic RGD ligands developed by Gennari and Piarulli 

group. 

The library members were tested in vitro for their ability to compete with fibronectin for 

the binding to the purified αvβ3 and αvβ5 receptors: IC50 values in the 10−10-10−6
 molar 

range demonstrated that the DKP ring strongly influences the ligand affinity for the 

receptor. NMR and in silico conformational studies completed the panel of SAR studies, 

providing the structural basis of the affinity observed in vitro. Due to its low-nanomolar 

affinity for the αvβ3 receptor and to its synthetic accessibility, the cyclo[DKP- 3-RGD] (that 

will be named  “cyclo[DKP-RGD]” in the following Chapters) was selected among the 
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library members as hit compound for further biological evaluations. While this compound 

was found to inhibit the capillary network formation in human umbilical vein endothelial 

cells (HUVEC), it did not interfere with the production of mRNA for the αv, β3, and β5 

subunits.[76]
 Moreover, due to its inhibitory effect on integrin-mediated FAK/Akt 

transduction pathways and cell infiltration processes, ligand 25 has been recently 

classified as a pure αvβ3 antagonist.[65f] These results highlighted the differences between 

the cyclo[DKP-RGD] ligand and the well-known cilengitide (18), whose controversial 

agonist-like activity has been mentioned in Paragraph 1.5.1. 

Cyclo[DKP-3-RGD] was functionalized with an amino-methyl group (-CH2NH2) as a 

conjugation site to cytotoxic drugs [77] and it was used for the synthesis of conjugates 

with different cytotoxic agents  (such as paclitaxel and camptothecin)[50, 78]  

 

Figure 18. Structure of both the cyclo[DKP-3-RGD] (31) and the amino-methyl functionalized 
cyclo[DKP-3-RGD] (32). 

 

In particular, the ligand cyclo[DKP-3-RGD]-CH2NH2 (32) was conjugated to paclitaxel 

through the Phe-Lys and Val-Ala linkers (Figure 19, 33 and 34) and the tumor-targeting 

ability of the resulting SMDC compounds was evaluated in cell viability assays, against 

isogenic cell lines expressing αVβ3 at different levels. Similarly to other several targeted 

prodrugs, the conjugates showed lower cytotoxicity than the free drug. However, the use 

of cell lines with different target expression was useful to determine the selectivity 

displayed by theses conjugates towards αVβ3-positive cells. As reported in Table 1, 

compound 33 showed a more selective anticancer activity, which was compared to the 

potency displayed by the free PTX and quantified in terms of selectivity (S) and Targeting 

Index (TI). 

 



28   Chapter 1: Tumor targeting prodrugs 

 

 

 

Furthermore, our group has recently conjugated the functionalized ligand 32 with 

camptothecin through a disulfide linker (35, Figure 20).[79] Unfortunately, this compound 

was found to be poorly stable in the cell culture medium, resulting in a fast extracellular 

release of the camptothecin (CPT) payload and hampering the selectivity.  

 

 

Figure 20. Structure of cyclo[DKP-RGD]-Naph-SS-CPT. 

Figure 19. Structures of cyclo[DKP-RGD]-Val-Ala-PTX (33) and cyclo[DKP-RGD]-Phe-Lys-

PTX (34). 

 

 

Table 1. Antiproliferative activity of conjugates 33 and 34 on the isogenic cell lines CCRF-CEM 

after 6 hours of treatment followed by compound washout and 138 h of growth in fresh medium. 
Compound IC50 (nM) Sa TIb 

 
CCRF-CEM 

(αVβ3 -) 

CCRF-CEM 

(αVβ3 +)   

Paclitaxel 155 ± 55 21 ± 2 7.4 1 

33 5153 ± 977 77 ± 20 66.9 9.0 

34 535 ± 70 34 ± 2 15.7 2.1 

[a] Selectivity (S): IC50(αvβ3 −) / IC50(αvβ3 +). [b] Targeting Index (T.I.): Selectivity / Selectivity 
observed with free paclitaxel. 
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As observed in the previous examples, the linker proved to be very important for the 

selectivity and for the overall pharmaceutical outcome of the conjugates. For this reason, 

my PhD work focused on the development of SMDCs containing different linkers, which 

can be either cleaved by lysosomal or extracellular enzymes. Moreover, we evaluated 

the SMDC activation by ubiquitous enzymes, potentially expressed both in intracellular 

compartments and in extracellular milieu.

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 2: Conjugates bearing 
lysosomally cleavable linkers. 
 

Part of the work described in this Chapter was published in the following articles: 

 

• P. López Rivas, L. Bodero, B. Korsak, T. Hechler, A. Pahl, C. Müller, D. Arosio, 

L. Pignataro, C. Gennari, U. Piarulli, Beilstein J. Org. Chem. 2018, 14, 407-415. 

 

• P. López Rivas, I. Ranđelović, A. R. M. Dias, A. Pina, D. Arosio, J. Tóvári, G. 

Mező, A. Dal Corso, L. Pignataro, C. Gennari, Eur. J. Org. Chem. 2018, 2902-

2909. DOI: 10.1002/ejoc.201800447 

 

2.1. Synthesis and biological evaluation of RGD-peptidomimetic-
paclitaxel conjugates bearing the Gly-Phe-Leu-Gly linker. 

In this section, a deeper study of RGD conjugates bearing lysosomally-cleavable linkers 

is reported. Starting from the promising data obtained with compound cyclo[DKP-RGD]-

Val-Ala-PTX (33), the design of new SMDC products was carried out with the aim of 

evaluating the influence of each individual moiety of the conjugate on the integrin affinity 

and selective cell toxicity . Taking the structure of conjugate 33 as a reference, 

modifications were introduced at three different points (Figure 21): the peptide linker, the 

spacer connecting the linker to the ligand and the integrin ligand. 

 

Figure 21. Summary of the changes introduced in the SMDCs structure.
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Both the cytotoxic drug paclitaxel and the self-immolative spacer remained unchanged. 

The mechanism of drug release is explained in Scheme 1 (mechanism E, section 1.4.1 

of the Introduction). In this self-immolative fragment, a dimethylethylenediamino chain is 

connected to a p-aminobenzylcarbamate (PABC) spacer through a physiologically-

stable carbamate bond.[24a,79] Furthemore, another carbamate bond connects the 

dimethylethylenediamino structure to the 2’-OH bond of paclitaxel (Figure 22).  

 

Figure 22. Structure and mechanism of cyclization of the N,N’-dimethylethylenediamino spacer 
to release free PTX. 

 

This particular combination of 1,6-elimination and cyclization spacers has been often 

used for the preparation of prodrugs and, in the case of PTX, the two carbamate bonds 

improve the poor stability in murine and human plasma observed for previous conjugates 

(e.g., compound 36, Figure 23), bearing an ester bond.[77] The two methyl groups 

introduced at both nitrogen atoms of the dimethylethylenediamino chain are used both 

to accelerate the cyclization process (i.e. more nucleophilic N atom) and to prevent the 

rearrangement of the 2’-carbamate bond and subsequent degradation of the paclitaxel’s 

structure.[80] 

 

Figure 23. Structure of cyclo[DKP-RGD]-PTX bearing an ester bond.
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On the other hand, the glutarate spacer introduced between the Linker and Ligand 

(present in conjugate 33) was compared to a hydrophilic tetraethylene glycol (PEG-4), 

connected to the linker-drug module through a triazole ring. The polyethylene glycol 

chains are known to improve the hydrophilicity and flexibility of the SMDC constructs as 

well as their bioavailability. [81]  In this work, a short PEG-4 spacer was selected in order 

to avoid the formation of bulky loops that can impair the binding to the receptor.[82] 

Connected to this spacer, the Gly-Phe-Leu-Gly (GFLG) linker was selected as an 

alternative to Val-Ala: this tetrapeptide is a widely known lysosomally-cleavable linker 

possessing good plasma and serum stability.[51c] Specifically, this linker is known to be 

cleaved by Cathepsin B at the C-terminal glycine.[83] One of the first examples of the use 

of GFLG as smart linker for tumor-targeting was introduced by Omelyanenko et al. in 

1998. In this work, the linker was used to conjugate doxorubicin and meso chlorin e6 

mono(N-2-aminoethylamide) (Mce6) to the HMPA copolymer [(N-(2-

hydroxypropyl)methacrylamide]. The resulting polymer-drug conjugate was also labelled 

with the OV-TL16 antibody, which was used to target ovarian carcinoma cell lines. The 

resulting Antibody-polymer-Drug conjugate showed  2 orders of magnitude improvement 

of the in vitro cytotoxicy against OVCAR-3 cell line when compared with the non-targeted 

HPMA copolymer conjugates.[84] More recently, the GFLG linker has been used in 

different delivery systems such as dendrimers[51c], nanoparticles[85] and SMDCs bearing 

gonadotropin-releasing hormones (GnRH)[51a,51d] or cell-penetration peptides (CPP).[51b]  

Beside the linker and spacer fragments, we devised the replacement of the cyclo[DKP-

RGD] ligand with the cyclo[RGDfK] cyclopeptide. The latter is a widely used and 

synthetically accessible integrin ligand[86] and its inclusion in the tested compounds would 

provide insights into the effects of the different ligand structures in the biological output. 

As a result of this modular design, four GFLG-bearing conjugates were designed and 

their structures are depicted in Figure 24. The prepared compounds were evaluated in 

vitro for their integrin receptor binding and their antiproliferative activity and compared 

with cyclo[DKP-RGD]-Val-Ala-PTX 33 and its PEG-4 analogue cyclo[DKP-RGD]-PEG-

4-Val-Ala-PTX 41 (Figure 24) synthesized in our group.[50,81b] 
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Figure 24. Structures of cyclo[DKP-RGD]-GFLG-PTX (37), cyclo[RGDfK]-GFLG-PTX (38), 
cyclo[DKP-RGD]-PEG-4-GFLG-PTX (39), cyclo[RGDfK]-PEG-4-GFLG-PTX (40) and cyclo[DKP-
RGD]-PEG-4-Val-Ala-PTX (41). 
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2.1.1. Synthesis 

A) Synthesis of cyclo[RGDfK], cyclo[RGDfK]-PEG-4-azide and Fmoc-GFLG-OH 

The RGD ligand cyclo[RGDfK] and the GFLG linker were both synthesized by solid 

phase peptide synthesis (SPPS). In particular, the linear protected Fmoc-Asp(OtBu)-D-

Phe-Lys(Boc)-Arg(Pbf)-Gly-OH (43, Scheme 2.A) and Fmoc-Gly-Phe-Leu-Gly-OH (48, 

scheme 2.B) were synthesized on 2-chlorotrityl resin (0.87 mmol/g loading capacity) 

using the Fmoc protocol. Upon loading of the C-terminal amino acid (Fmoc-Gly-OH in 

both cases) sequences of amino acid coupling and deprotections led to the final 

sequences 42 and 47, still bound to the resin.  

The peptide sequences, protected at the Lys, Asp and Arg side chains with acid-labile 

protecting groups (respectively, Boc, OtBu and Pbf) were cleaved from the resin with a 

mildly acidic mixture (i.e. 8:1:1 CH2Cl2/MeOH/AcOH) and the oily crudes were 

precipitated with water, leading to compounds 43 and 48. Both compounds were used 

without further purification and the latter one was used as starting point for the synthesis 

of the four final conjugates. The formation of the peptide cycle was performed upon Fmoc 

removal from compound 43, and the resulting amine 44 was reacted with a 6:4:4 

iPr2NEt/BOP/HOBt mixture, in a highly diluted (1 mM) DMF solution. Remarkably, the 

efficacy of the peptide cyclization was found to be dependent on the reaction scale, with 

results worsening when the starting material was higher than 150 mg.  

Final deprotection of 45 was performed with a cocktail of 

TFA/thioanisole/EDT/phenol/TIS and the crude was precipitated in cold diethyl ether. 

The centrifuged pellet was purified by preparative HPLC yielding pure cyclo[RGDfK] 46. 

This compound was either coupled to glutarate-based linkers or to a PEG-4 spacer 

(following a procedure reported previously[81b] and shown in Scheme 3) resulting in the 

corresponding cyclo[RGDfK]-PEG-4-azide (51a) compound. Cyclo[DKP-RGD]-PEG-4-

azide (51b) was synthesized following the same methodology. 
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Scheme 2. Synthesis of cyclo[RGDfK] (46) and Fmoc-GFLG-OH (48). Reagents and conditions: 

a) i. Fmoc-Gly-OH (1 equiv.), iPr2NEt (3 equiv.), 1:1 CH2Cl2/DMF, 2 h, r.t.; ii. Capping with 7:2:1 

CH2Cl2/MeOH/iPr2NEt; b) i. Fmoc-deprotection: 2% DBU, 2% piperidine, DMF, 1 h; ii. Fmoc-AA-

OH (3 equiv.), HOBt (4 equiv.), DIC (4 equiv.), 2 h; conditions (b) are repeated for the coupling of 

every amino acid of the sequence; c) 8:1:1 CH2Cl2/MeOH/AcOH, 2 h, precipitation in water; d) 

DMF, 20% piperidine, 2 h; e) 6:4:4 iPr2NEt/BOP/HOBt, 1 mM concentration in DMF, 24 h, 

precipitation in 5% NaHCO3; f) TFA/thioanisole/EDT/phenol/TIS (14.25 mL / 375 µL / 375 µL 

/1.125 g / 375 µL), 3 h. DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene; AA = amino acid; BOP = 

(benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; DIC = N,N’-

diisopropylcarbodiimide; EDT = 1,2-ethanedithiol; TIS = triisopropylsilane. 
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Scheme 3. Synthesis of cyclo[RGDfK]-PEG-4-azide (51a) and cyclo[DKP-RGD]-PEG-4-azide 
(51b). Reagents and conditions: a) EDC • HCl, NHS, THF; b) Cyclo[RGDfK] (46) or cyclo[DKP-
RGD]-CH2NH2 (32), CH3CN/PBS (pH 7.3-7.6), overnight. PBS = phosphate-buffered saline. 

 

B) Synthesis of conjugates 37- 40 

Conjugates 37- 40 were synthesized as described in Scheme 4. 

 

 

Scheme 4. Synthesis of conjugates 37-40. Reagents and conditions: a) HOBt, DIC, 4-
aminobenzyl alcohol, DMF, overnight; b) 4-nitrophenylchloroformate, pyridine, 4:1 THF/DMF, 2 
h; c) N-Boc-N,N’-dimethylethylenediamine 60, iPr2NEt, THF, overnight; d) i. piperidine, DMF, 4 h; 
ii. glutaric anhydride, DMAP, iPr2NEt, DMF, overnight; e) i. DIC, NHS, DMF; ii. Cyclo[DKP-RGD]-
CH2NH2 32 (for 56a) or cyclo[RGDfK] 46 (for 56b), 1:1 DMF/PBS (phosphate-buffered saline, pH 
7.3-7.6), overnight; f) i. TFA, CH2Cl2; ii. 2’-(4-nitrophenoxycarbonyl)PTX 60, iPr2NEt, DMF, 
overnight; g) i. piperidine, DMF, 4 h; ii. 4-pentynoic acid, HATU, HOAt, iPr2NEt, DMF, overnight; 
h) cyclo[DKP-RGD]-PEG-4-azide (51b) or cyclo[RGDfK]-PEG-4-azide (51a), CuSO4 • 5 H2O, 
sodium ascorbate, DMF/H2O. DIC = N,N’-diisopropylcarbodiimide; DMAP = 4-
dimethylaminopyridine; NHS = N-hydroxysuccinimide; PTX = paclitaxel. 
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The preparation of compounds 37-40 started with the installation of the self-immolative 

spacer to the protected tetrapeptide Fmoc-GFLG-OH (48), produced by SPPS. This 

compound was treated with 4-aminobenzyl alcohol in the presence of HOBt and DIC 

coupling agents, to yield amide 52. The hydroxyl group was reacted with p-nitrophenyl 

chloroformate and elongated with N-Boc-N,N’-dimethylethylenediamine 59[87] (scheme 

5), affording carbamate 54. The latter was used as a common intermediate for the 

synthesis of all RGD-PTX conjugates, bearing either the PEG-4 or the glutarate spacers. 

In particular, for the synthesis of compounds 37 and 38, the Fmoc protecting group was 

removed in solution and, after removal of DMF and piperidine from the reaction mixture, 

the crude amine was treated with glutaric anhydride. Flash chromatography afforded the 

resulting hemigluatarate 55 in high yield (up to 70% in two steps). This carboxylic acid 

was activated with N-hydroxysuccinimide (NHS) and coupled either to the functionalized 

cyclo[DKP-RGD] (32) or to cyclo[RGDfK] (46). This conjugation was run at controlled pH, 

since the reaction is inhibited at pH < 7.0, due to amine protonation, whereas at pH > 7.6 

the hydrolysis of the NHS ester competes significantly with the desired coupling. Due to 

the presence of cyclo[DKP-RGD] (which is routinely isolated as a TFA salt, upon HPLC 

purification), the pH of the reaction mixture was adjusted in the 7.3-7.6 range by adding 

aliquots of base (0.2 M aqueous solution of NaOH). The crude residue was purified by 

semipreparative HPLC affording intermediates 56a and 56b. As last step, compounds 

56a and 56b were Boc-deprotected and reacted with 2'-(4-

nitrophenoxycarbonyl)paclitaxel (60, scheme 5) affording the final cyclo[DKP-RGD]-

GFLG-PTX (37) and cyclo[RGDfK]-GFLG-PTX (38). 

For the PEG-4 containing conjugates, intermediate 54 was Fmoc-deprotected as 

described above and treated with 4-pentynoic acid in the presence of HATU, HOAt and 

iPr2NEt, affording compound 57. The latter was Boc-deprotected and coupled with 2'-(4-

nitrophenoxycarbonyl)paclitaxel (60, scheme 5) to yield alkyne 58. The latter was 

subjected to copper-catalyzed azide-alkyne cycloaddition with either cyclo[RGDfK]-PEG-

4-azide (51a) or cyclo[DKP-RGD]-PEG-4-azide (51b).[81b] The final conjugates 39 and 

40 were obtained after purification through semipreparative HPLC. 
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Scheme 5. A) Synthesis of N-Boc-N,N’-dimethylethylenediamine 59. Reagents and conditons: a) 
N,N’-dimethylethylenediamine, Di-tert-butyl dicarbonate, CH2Cl2, overnight; B) Synthesis of 2'-(4-
nitrophenoxycarbonyl)paclitaxel 60. Reagents and conditions: b) PTX, 4-nitrophenyl 
chloroformate, pyridine, -50º C to -20 ºC, 4 h. 

 

2.1.2. In vitro biological evaluation 

A) Integrin receptor competitive binding assays 

The new GFLG conjugates 37-40 were examined in vitro for their ability to inhibit 

biotinylated vitronectin binding to the purified αVβ3 and αVβ5 receptors and compared with 

the values obtained for the free ligands cyclo[RGDfK] 46 and cyclo[DKP-RGD] ligand 31. 

The calculated IC50 values are shown in Table 2, together with the data reported for 

compound cyclo[DKP-RGD]-Val-Ala-PTX 33 (Figure 19) and its PEG-bearing analogue 

cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX 41 (Figure 24), as previously published by our 

group. [50,77,81b] 

Screening assays were carried out through incubation of the immobilized integrin 

receptors with solutions of the tested compounds at different concentrations (10−12-10−5 

M) in the presence of biotinylated vitronectin, and measuring the concentration of bound 

vitronectin. 

As reported in Table 2, cyclo[DKP-RGD] 31 and cyclo[RGDfK] 46 showed a similar 

affinity for the αVβ3 , with IC50 values in the low nanomolar range. However, cyclo[RGDfK] 

46 proved more selective towards the αVβ3 (in comparison with αVβ5) than cyclo[DKP-

RGD] 31. However, the respective SMDC products did not reflect the observed 

selectivity, since a more pronounced selectivity for αVβ3 integrin was exhibited by SMDC 

products containing the cyclo[DKP-RGD]. In general, all synthesized compounds 

showed high binding affinity and selectivity for αVβ3, with IC50 values in the low nanomolar 

range, comparable with those obtained for the free ligands (31 and 46). 
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B) Cell viability assays 

In order to evaluate the antitumor properties of the new conjugates and to assess the 

ability of the synthesized compounds to selectively target αVβ3 integrin in human cancer 

cells, antiproliferative assays were carried out using two cell lines with different levels of 

expression of integrin αVβ3. These experiments were performed in collaboration with the 

National Institute of Oncology (OOI) of Budapest. 

U87 cells (human glioblastoma) were chosen as αVβ3 expressing cell line and HT29 cells 

(human colorectal adenocarcinoma) were selected as αVβ3 negative. The different αVβ3 

expression on the cell membrane of the two cell lines was confirmed by flow cytometry 

(see the Experimental Section) and the results were in keeping with literature data.[88] 

Both U87 and HT29 cell lines were treated with free PTX and with conjugates 33 and 37-

41 and incubated for 96 hours. The choice of this incubation time was made by taking 

into account the cyclization of the self-immolative N,N’-dimethylethylenediamino spacer, 

which is known to be a slow transformation. 

The data emerged from this in vitro assay are shown in Table 3.  

 

 

 

Table 2. Inhibition of biotinylated vitronectin binding to the isolated αvβ3 and αvβ5 receptors. 

Compound Structure 
IC50 (nM)[a] 

αVβ3 
IC50 (nM)[a] 

αVβ5 

31 cyclo[DKP-RGD] 4.5 ± 1.1 149 ± 25 

46 cyclo[RGDfK] 1.4 ± 0.2 117.5 ± 7.8 

37 cyclo[DKP-RGD]-GFLG-PTX 54.8 ± 14.0 > 1000[b] 

38 cyclo[RGDfK]-GFLG-PTX 62.6 ± 10.9 649 ± 136 

39 cyclo[DKP-RGD]-PEG-4-GFLG-PTX 42.4 ± 7.4 > 1000[b] 

40 cyclo[RGDfK]-PEG-4-GFLG-PTX 12.1 ± 2.0 473 ± 25 

33 cyclo[DKP-RGD]-Val-Ala-PTX 13.3 ± 3.6 924 ± 290 

41 cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX 14.8 ± 3.9  >1000[b] 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of 

biotinylated vitronectin binding as estimated by GraphPad Prism software. All values are the 

arithmetic mean ± the standard deviation (SD) of duplicate determinations. [b] Biotinylated 

vitronectin binding was not completely inhibited in the concentration range tested. 
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Table 3. In vitro antiproliferative activity of free PTX and conjugates 33 and 37-41 in U87 and HT29 cell 

lines for 96 hours. 

 IC50 (nM)[a] 
   

Comp. U87 (αVβ3+) HT29 (αVβ3–) RPU87
[b] RPHT29

[c] TI[d] 

PTX 32.66 ± 21.81 1.82 ± 1.85 1 1 1 

37 2031 ± 454 3413 ± 983 0.01608 0.00053 30 

38 1250 ± 293.6 2692 ± 676 0.02613 0.000692 38 

39 854.7 ± 165.1 1979 ± 252 0.03821 0.0009196 42 

40 506.2 ± 113.6 1272 ± 156 0.06452 0.001431 45 

33 2686 ± 589 6452 ± 1723 0.01216 0.0002821 43 

41 432.6 ± 129.3 12840 ± 2730 0.07550 0.0001417 533 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell viability. 

Both cell lines were treated with different concentrations of PTX and compounds 33 and 37-41 during 96 

hours. The samples were measured in triplicate; [b] Relative Potency in U87 cell line (RPU87): IC50 PTX in 

U87/ IC50 Conjugate in U87; [c] Relative Potency in HT29 cell line (RPHT29): IC50 PTX in HT29/ IC50 

Conjugate in HT29; [d] Targeting Index (TI): RPU87/RPHT29. 

 

All tested conjugates proved to be less potent than free paclitaxel against both cell lines. 

However, it has been reported by our group that the use of a RGD-PTX conjugate devoid 

of peptide linkers and chemically “uncleavable” is normally much less active against 

cancer cells (i.e. IC50 > 10 µM).[50] Furthemore, conjugates bearing the PEG-4 spacer 

(39-41) proved more potent (2.4-6.2 times) against  the U87 cell line than the analogs 

containing the glutarate spacer (33, 37 and 38), which may be ascribed to the enhanced 

hydrophilicity and flexibility provided by the PEG-4 spacer, which may assist the binding 

to the receptor.[81a]  

In order to quantify the loss of potency of each conjugate with respect to paclitaxel a new 

parameter was introduced: the Relative Potency (RP), consisting in the ratio IC50 

PTX/IC50 Conjugate calculated for each cell line. It was observed that for all the 

conjugates, the RP in the HT29 cell line (αVβ3-) was 1-2 orders of magnitude lower than 

in U87 (αVβ3+). This indicated that the loss of potency of the conjugates with respect to 

PTX increases when there is no αVβ3 receptor in the cell line, which highlights the 

selectivity displayed by the RGD conjugates. 

Subsequently, RP values of the conjugates were normalized in terms of Targeting Index 

(TI), which provided a direct evaluation of the ability of these new conjugates to target 

the αvβ3 expressing cell lines (TI= RPU87/RPHT29). Good Targeting Indexes were observed 

through the whole series, with values between 30-45 (for conjugates 33 and 37-40).To 
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our delight, conjugate 41 displayed excellent selectivity, with the highest TI value 

(TI=533) of the series. 

To assess if the observed targeting was ascribable to an integrin-mediated binding and 

cell internalization process, conjugate 41 was added to the αVβ3+ cell line U87 in the 

presence of 50-fold excess of free ligand cyclo[DKP-RGD] (31). In this competition 

experiment, binding site of surface-expressed integrin receptors should be blocked by 

the excess of free ligand, thus preventing the binding of the conjugates and the following 

receptor-mediated endocytosis. For this reason, an increase in the IC50 values of the 

conjugates should be observed. The results of this experiment are shown in Table 4. 

 

 

Table 4. Competition experiments of conjugate 41 in the presence of a 50-fold excess of cyclo[DKP-

RGD] (31) in U87 for 96 hours. 

Compound(s) 
IC50 (nM)[a]  

U87 (αVβ3+) 
Inhibition Ratio[b] 

Corrected  

Inhibition Ratio[c] 

cyclo[DKP-RGD] (31) 342.8 • 103 ± 94.7 • 103 - - 

PTX 32.66 ± 21.81 - - 

PTX + 50-fold excess  

cyclo[DKP-RGD] (31) 
10.66 ± 4.8  0.33 1 

41 432.6 ± 129.3 - - 

41 + 50-fold excess  

cyclo[DKP-RGD] (31) 
717.5 ± 216.3 1.66 5.03 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell 

viability. U87 cells were treated with different concentrations compound 41 in the presence of 50-fold 

excess cyclo[DKP-RGD] (31) during 96 hours. The samples were measured in triplicates; [b] Inhibition 

Ratio = (IC50 Compound + 50-fold excess 31) / IC50 Compound; [c] Corrected Inhibition Ratio = Inhibition 

Ratio PTX/Inhibition Ratio 41. 

 

 

As foreseen, cyclo[DKP-RGD] (31) was barely toxic for the U87 cells, with an IC50 in the 

µM range (343 µM), but the treatment was associated to cell morphology changes and 

cell detachment, which is in line with the physiological nature of integrins as cell adhesion 

mediators. However, treatment with free ligand was found to enhance the cell sensitivity 

to paclitaxel, as revealed by the unexpected 3-fold decrease of PTX IC50 values. On the 

contrary, the presence of free ligand resulted in a loss of potency displayed by compound 

41. Taking in consideration the observed synergy between free cyclo[DKP-RGD] 31 and 

PTX, a Corrected Inhibition Ratio was calculated, showing a 5-fold decrease of the 

cytotoxicity of conjugate 41 in the presence of the free ligand. These results suggest that 

the internalization process is mediated, at least in part, by the αVβ3 receptor. 
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2.1.3. Conclusions 

In this section, four new conjugates bearing the GFLG linker were successfully 

synthesized (37-40) and evaluated in vitro for their integrin binding and their cell 

antiproliferative activity. These compounds were evalutated together with two other 

conjugates containing the Val-Ala linker, previously synthesized in our research group 

(33 and 41). All conjugates exhibited good binding affinity (IC50 values in the low 

nanomolar range) and selectivity towards the αVβ3 receptor. In the cell viability assays 

against U87 (αVβ3+) and HT29 (αVβ3-), all conjugates were less active than the free PTX 

payload, with conjugates containing the PEG-4 spacer (39-41) showing the highest 

potency. Furthermore, the RPs values were considerably smaller in HT29 than in U87, 

indicating the correlation between the cytotoxic activity and the integrin expression. 

From this series, cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX (41) proved the best one, 

showing TI=533. A competition experiment with this conjugate in the presence of 

cyclo[DKP-RGD] (31) demonstrated a 5-fold decreased cytotoxicity,  supporting the 

hypothesis that the RGD-PTX conjugate interacts with the αVβ3 receptor and selectively 

releases the cytotoxic cargo inside integrin-expressing cells. Due to all mentioned before, 

we consider that conjugate 41 is a good candidate to proceed for in vivo experiments in 

the future. 
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2.2. Synthesis and biological evaluation of cyclo[DKP-RGD]-α-
amanitin conjugates. 

The selective drug delivery to diseased tissues has been successfully carried out with 

the use of particular types of cytotoxic agents, which were found to be too potent to be 

used as “non-targeted” drugs. This approach overcomes the observed physiological 

decrease of drug potency resulting from the covalent conjugation to a targeting vehicle 

and it can be considered the key to the marketing success of ADC products. From the 

pharmacological point of view, the increased drug potency impacts on the therapeutic 

window of targeted prodrugs by decreasing the minimum effective dose (MED).  

Among the variety of cytotoxic agents that have been investigated as anticancer drugs, 

the amatoxin family is found mostly in the death cap mushroom (Amanita Phalloides) 

and it is known to cause fatal poisoning in humans. As one of the most toxic member of 

this family, α-amanitin has been isolated around 60 years ago and it has been 

investigated for therapeutic purposes. From the structural point of view, this toxin 

consists of a bicyclic octapeptide featuring an intra-annular tryptathionine (highlighted in 

green in Figure 25). While the extraction from natural source has been the only source 

of α-amanitin,[89] its total synthesis has been recently published by Mathinkoo et al.[90] . It 

has been reported that α-amanitin mediates cell death by blocking the RNA Polymerase 

II. This enzyme mediates the cellular transcription of DNA to mRNA and its susceptibility 

for α-amanitin depends on the species of eukaryotic cell.[91] In most mammalian cells, α-

amanitin exhibits low cellular uptake and µM cytotoxicity, since it is a strongly polar and 

poorly membrane permeable compound.[92] Howerer, the toxin is highly active against 

mammalians’ hepatocytes , since they express the OATP1B3 transporter on their 

surface, which is responsible for the internalization of amatoxins and, as a result, for the 

related hepatic failure.[93] 

 

Figure 25. Structure of α-amanitin. 
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This transporter-mediated mechanism of internalization suggests that the conjugation of 

α-amanitin to devices able to bind internalizing tumor antigens might be a successful 

approach for cancer therapy. One of the first antibody-drug conjugates bearing α-

amanitin was developed in 1981.[94] This product, raised against protein Thy-1.2 (a 

transmembrane murine receptor,  expressed on murine T cells) was featured α-amanitin 

as payload and it was evaluated in vitro against the T lymphoma S49.1 cell line. In this 

test, the ADC product showed higher toxicity than the free α-amanitin. More recently, 

Moldenhauer and coworkers synthesized an anti-EpCAM-α-amanitin conjugate (i.e. a 

chimerized monoclonal antibody targeting the epithelial cell-adhesion molecule EpCAM). 

After two injections of this ADC (at 100 μg/kg dose), complete tumor regression in 90% 

of the mice bearing BxPc-3 pancreatic xenograft tumors was observed.[95] Besides the 

ADC application, α-amanitin has been also conjugated to a pH low insertion peptide 

(pHLIP), capable of improving the internalization of the peptide payload through a pH-

mediated translocation across the membrane, followed by intracellular cleavage of a 

disulfide linker.[96] Finally, in 2015, Perrin and co-workers conjugated the cyclo[RGDfK] 

integrin ligand to an amanitin analog through a triazole ring.[97] The conjugate was tested 

in vitro against the U87 glioblastoma cell line, but the conjugate was found to be only 

slightly more potent than the free α-amanitin. 

Inspired by this literature data, and in collaboration with Heidelberg Pharma (HDP) we 

developed two SMDCs containing the α-amanitin toxin conjugated and the functionalized 

cyclo[DKP-RGD] 32 through both a lysosomally-cleavable Val-Ala and an uncleavable, 

nonpeptide linker (Figure 26). The latter was prepared to be used as control compound 

for the biological assays.  
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Figure 26. Structures of cyclo[DKP-RGD]-Val-Ala-α-amanitin (62) and cyclo[DKP-RGD]-
uncleavable- α-amanitin (63). 

 

2.2.1. Synthesis 

Compounds 62 and 63 were prepared following similar synthetic strategies as described 

in Scheme 6.  

 

Scheme 6. General synthesis of α-amanitin-RGD derivatives. Reagents and conditions: a) glutaric 
anhydride, DMAP, iPr2NEt, DMF, overnight, b) i. DIC, N-hydroxysuccinimide (NHS), DMF, overnight; ii. 
cyclo[DKP-RGD]-CH2NH2 (32), PBS/DMF (for conjugate 62) or PBS/CH3CN (for conjugate 63) (pH 7.5), 
overnight. DMAP: 4-dimethylaminopyridine; DIC: N,N’-diisopropylcarbodiimide; PBS: phosphate-buffered 
saline. 
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The α-amanitin compounds containing either the uncleavable (64a) or the Val-Ala (64b) 

linker were provided by HDP and directly reacted with glutaric anhydride to form 

compounds 65a and 65b, respectively. Initially, low yield was observed for 65a (41%), 

as the reaction proceeded with the formation of a side product. The modulation of the 

stoichiometry improved the yield of the reaction up to 77% for 65a and 98% for 65b. Both 

compounds were activated as N-hydroxysuccimidyl esters and directly coupled to the 

functionalized cyclo[DKP-RGD] (32)  affording final compounds 62 and 63. 

 

2.2.2. In vitro biological evaluation 

A) Integrin receptor competitive binding assays 

Analogously to the SMDC products bearing the GFLG linker (section 2.1.), the two new 

cyclo[DKP-RGD]-α-amanitin conjugates were evaluated by their ability to inhibit 

biotinylated vitronectin binding to the purified αVβ3 receptor. The calculated IC50 values 

are shown in Table 5. This analysis was carried out in parallel with other three conjugates 

synthesized in the research group of Prof. Umberto Piarulli (University of Insubria), 

bearing the integrin ligand cyclo[DKP-isoDGR] (compound 66 and its amine-bearing 

derivative 67, depicted in Figure 27). This compound was developed as analogue of the 

most well-known RGD-bearing peptidomimetics, in which the RGD sequence is 

substituted with an isoaspartate-glycine-arginine tripeptide. The latter is also recognized 

by integrins and the cyclo[DKP-isoDGR] was found to bind αVβ3 receptor with low 

nanomolar affinity.[98] The resulting cyclo[DKP-isoDGR]-α-amanitin conjugates were 

structurally similar to the RGD-bearing analogs 62 and 63. In particular, the ligand and 

the α-amanitin were connected through either a Val-Ala dipeptide or an uncleavable 

nonpeptide linker (in compound 68 and 69, respectively). Furthermore, a third structure 

containing the PEG-4 spacer was also included (70). 



48  Chapter 2: Conjugates bearing lysosomally cleavable linkers 

 

 

Figure 27. Structure of both the cyclo[DKP-isoDGR] (66) and the aminomethyl functionalized 
cyclo[DKP-isoDGR] (67). 

 

 

Figure 28. Structures of cyclo[DKP-isoDGR]-Val-Ala-α-amanitin (68), cyclo[DKP-isoDGR]-
uncleavable-α-amanitin (69), and cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin (70). 
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The results showed that both cyclo[DKP-RGD]-α-amanitin and cyclo[DKP-isoDGR]-α-

amanitin conjugates (62-63 and 68-70) bind to the purified αvβ3 receptor at low 

nanomolar ranges despite the presence of the bulky α-amanitin drug. The IC50 values 

where found to be in the same range of the one of free ligands cyclo[DKP-RGD] 31 and 

cyclo[DKP-isoDGR] 66. 

 

B) Cell viability assays 

With the aim to evaluate the selective release of α-amanitin to human cancer cells 

expressing αVβ3 integrin, antiproliferative assays were carried out as described in Section 

2.1. U87 glioblastoma cells were selected as αVβ3 positive cell line, while MDA-MB-468 

(breast adenocarcinoma) and A549 (human lung carcinoma) were selected as αVβ3 

negative cells. Even though literature data about the presence of the β3 subunit in MDA-

MB-468 are often contradictory,[88a, 99] we performed FACS analysis revealing no αVβ3 

expression in our experimental conditions.  

The two cyclo[DKP-RGD]-α-amanitin and the three cyclo[DKP-isoDGR]-α-amanitin 

conjugates were added to the cell lines at different concentrations, in parallel with free 

α-amanitin, and incubated for 96 hours. Cell viability was evaluated with the CellTiterGlo 

2.0 assay and the results are shown in Table 6.  

 

Table 5. Inhibition of biotinylated vitronectin binding to the isolated αvβ3 receptor 

Compound Structure IC50 (nM)[a] αVβ3 

31 cyclo[DKP-RGD] 4.5 ± 1.1 

66 cyclo[DKP-isoDGR] 9.2 ± 1.1 

63 cyclo[DKP-RGD]-uncleavable-α-amanitin 11.6 ± 2.4  

69 cyclo[DKP-isoDGR]-uncleavable-α-amanitin 6.8 ± 4.3 

62 cyclo[DKP-RGD]-Val-Ala-α-amanitin  14.7 ± 6.6 

68 cyclo[DKP-isoDGR]-Val-Ala-α-amanitin  6.4 ± 1.9  

70 cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin 3.8 ± 0.3 

[a] IC50 values were calculated as the concentration of compound required for 50% 

inhibition of biotinylated vitronectin binding as estimated by GraphPad Prism software. All 

values are the arithmetic mean ± the standard deviation (SD) of duplicate determinations. 



50  Chapter 2: Conjugates bearing lysosomally cleavable linkers 

 

Table 6. Antiproliferative activity of free α-amanitin and conjugates 62-63 and 68-70 in U87, MDA-MB-468 

and A549 cell lines for 96 hours. 

  IC50 (nM)[a] 

Comp. Structure 
U87  

(αVβ3+) 

MDA-MB-468 

(αVβ3-) 

A549  

(αVβ3-) 

61 α-amanitin 347 ± 132.5[b] 185 ± 49.6[b] 518 ±  305[b] 

63 cyclo[DKP-RGD]-uncleavable-α-amanitin 2552 ± 37.6 1111 ± 228.4 n.d.[c] 

69 cyclo[DKP-isoDGR]-uncleavable-α-amanitin 3355 ± 19.1 2200 ± 96.2 n.d.[c] 

62 cyclo[DKP-RGD]-Val-Ala-α-amanitin 1446 ± 83.9 202 ± 10.3 2160 ± 23.3 

68 cyclo[DKP-isoDGR]-Val-Ala-α-amanitin 143 ± 33.8 59 ± 23.4 217 ± 98.3 

70 cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-

amanitin 
165 ± 4.0 66 ± 24.1 720 ± 98.1 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell viability. 

All cell lines were treated with different concentrations of α-amanitin and compounds 62-63 and 68-70 for 

96 hours. The samples were measured in triplicate; [b] Average values from three independent 

experiments; [c] n.d.: these data could not be determined. 

 

 

As reported for the previous paclitaxel-bearing conjugates, cyclo[DKP-RGD]-

uncleavable-α-amanitin (63) and cyclo[DKP-isoDGR]-uncleavable α-amanitin (69), 

proved less potent than the free toxin, against all treated cell lines. However, while the 

cyclo[DKP-RGD]-α-amanitin conjugate bearing Val-Ala (62) showed also decreased 

potency against all cells, IC50 values  were much lower than the uncleavable analogs. 

Interestingly, cyclo[DKP-isoDGR]-Val-Ala-α-amanitin (68) proved moderately more 

potent than α-amanitin in the three cell lines (2.4-3.1 times), while cyclo[DKP-isoDGR]-

PEG-4-Val-Ala-α-amanitin (70) proved more potent only against U87 and MDA-MB-468 

(2.1-2.8 times). In general, these data seemed to indicate that the isoDGR ligand may 

mediate a better internalization of the cytotoxic payloads, albeit with no significant 

correlation with the expression of αVβ3 on the cell surface.  

This observation may be ascribed to the fact that both U87 and MDA-MB-468 cell lines 

express other integrin receptors different from αVβ3. For this reason, competition 

experiments of ligand-drug conjugates in the presence of free integrin ligand were carried 

out in order to determine if the observed cytotoxicity is given by non-specific interactions 

with the targeted cells or by an integrin-mediated process. Cyclo[DKP-isoDGR]-Val-Ala-

α-amanitin (68) and cyclo[DKP-isoDGR-PEG-4-Val-Ala-α-amanitin (70) were tested 

against U87 (αVβ3 +, αVβ5 +, αVβ6 -, α5β1 +) and MDA-MB-468 (αVβ3 -, αVβ5 +, αVβ6 +, α5β1 

-) cells, in the presence of 50-fold molar excess of cilengitide (Table 7).[88b,99,100] The latter 
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was chosen considering its high affinity for a panel of integrin heterodimers, such as 

αVβ3, αVβ5, αVβ6 and α5β1.[101]  

In vitro test against U87 cells showed that the excess of free ligand did not influence the 

biological activity of compound cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin (70),  as 

observed from the non-significant increase of IC50 values, from 91 nM (in the absence of 

cilengitide) to 143 nM (with cilengitide). On the other hand, a more significant increase 

of IC50 values was observed for both compounds against MDA-MB-468 cells: from 47 

nM (in the absence of cilengitide) to 259 nM (with cilengitide ) for conjugate 68 and from 

65 nM to 340 nM for conjugate 70. 

These results suggest that this two conjugates can, at least partially, bind and be 

internalized by integrins different from αVβ3 (e.g. αVβ5). However, the exact nature of this 

process is not clearly defined yet and further studies are needed. 

 

 

2.2.3. Conclusions 

In this section, two new cyclo[DKP-RGD]-α-amanitin conjugates (62 and 63) were 

synthesized and evaluated in vitro for their integrin receptor binding affinity and their 

antiproliferative activity. These compounds were evaluated together with three other 

conjugates containing the cyclo[DKP-isoDGR] ligand (68-70). Despite the presence of 

the bulky α-amanitin drug, the conjugates bound the αVβ3 receptor in the low nanomolar 

Table 7. Competition experiments of conjugate 68 and 70 in the presence of a 50-fold excess of 

cilengitide in U87 for 96 hours. 

Structure 

IC50 (nM)[a] 

U87  

(αVβ3+, αVβ5+, 

αVβ6-, α5β1+) 

MDA-MB-468  

(αVβ3-, αVβ5+, 

 αVβ6+, α5β1-) 

cyclo[DKP-isoDGR]-Val-Ala-α-amanitin (68) 107 ± 26.8 47 ± 21.1 

cyclo[DKP-isoDGR]-Val-Ala-α-amanitin (68) + 50-

fold excess of cilengitide 
106 ± 11.6 259 ± 55.2 

cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin (70) 91 ± 30.6 65 ± 17.6 

cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin (70) 

+ 50-fold excess of cilengitide 
143 ± 59.3 340 ±  210.3 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell 

viability. Both cell lines were treated with different concentrations of compounds 68 and 70 in the 

presence of a 50 fold excess of cilengitide during 96 hours. The samples were measured in triplicates.  
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range, with IC50 values comparable to those of the free ligands. In cell viability assays, a 

loss of potency was observed for cyclo[DKP-RGD]-Val-Ala-α-amanitin (62) and the two 

conjugates bearing the uncleavable linker (63 and 69). On the other hand, cyclo[DKP-

isoDGR]-Val-Ala-α-amanitin (68) and cyclo[DKP-isoDGR]-PEG-4-Val-Ala-α-amanitin 

(70) showed better IC50 against all tested cell lines, proving that the isoDGR motif can 

display higher potency against cancer cell lines, even though no direct correlation was 

observed between the αVβ3 expression and the observed cytotoxic activity. Competition 

experiments carried out with the two latter compounds (68 and 70) demonstrated that a 

more marked increase of the IC50 values in the presence of cilengitide occurred  when 

the MDA-MB-468 cell line (αVβ3 -, αVβ5 +, αVβ6 +, α5β1 -) were studied, suggesting that 

this two conjugates are possibly bound and internalized by integrins different from αVβ3 

(e.g. αVβ5). 

 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3: Conjugates containing  
extracellular MMP-2 cleavable linkers 
 

While the antigen internalization has been often indicated as a key requirement for the 

efficacy of targeted therapeutics, the development of new drug delivery platforms, 

capable of releasing the payload in the extracellular environment, is an emerging 

approach for drug delivery.[102] This strategy relies on the accumulation of ADCs or 

SMDCs at the tumor site, mediated by the binding to non- or poorly internalizing proteins. 

Here, the release of the free drug takes place extracellularly, upon action of specific 

extracellular effectors (e.g., extracellular reducing agents, pH, enzymes, etc.). Once 

released in the extracellular milieu, the free drug should enter the cancer cells by passive 

diffusion, causing localized damage (Figure 29) and, potentially, kill cancer cells that may 

not express the targeted antigen.[103] Considering this mechanism of action, the success 

of these conjugates is determined by different features, such as the efficacy of the ligand 

or antibody to accumulate in the tumor mass, the kinetic of drug release or the presence 

of a suitable linker-payload tandem (e.g., highly lipophilic and membrane-permeable 

drugs should be preferable). This approach proved effective in several mouse models of 

cancer, and it has been proposed as a valid approach, especially against certain types 

of solid tumors. In this Chapter, new Small Molecule-Drug Conjugates have been 

developed to target αVβ3 integrin and, assuming the slow internalization process of the 

transmembrane antigen, these conjugates were designed to be activated by the 

extracellular Matrix Metalloproteinase 2 (MMP-2, also known as gelatinase A). 

 

Figure 29. Mechanism of extracellular drug release of conjugates.[104]
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MMP-2 is one of the 25 members of the MMP family (also called matrixins), which are 

zinc-dependent endopeptidases that play important roles in the degradation of collagen, 

elastin, fibronectin, laminin and other proteins, such as cell adhesion molecules and 

growth factor receptors. MMP-2 and other MMPs (MMP-1, MMP-14, MMP-18, etc.) 

unwind and cleave the triple helix of interstitial collagens, which constitutes the first step 

in the degradation of extracellular matrix compounds.[105] The MMPs are classified on the 

basis of the substrate recognition (MMP-2 is known to recognize collagens IV, V, VII, X 

and gelatin). It is now widely accepted that the ECM remodeling mediated by these 

proteins sustains significantly tumor growth and development.[106] For this reason, these 

proteins are overexpressed in many human tumors and, specifically, the expression of 

MMP-2 is elevated in breast, prostate, colorectal, ovary, bladder and gastric cancer.[107] 

MMP-2 is formed by three fundamental domains (propeptide, catalytic and 

hemopexin/vitronectin like domain) and it is initially secreted as an inactive zymogen 

(proenzyme). After proteolytic cleavage, the soluble active form is produced and trapped 

by cancer cell surface receptors.[107b] 

In particular, MMP-2 was found to colocalize with αVβ3 in vivo in angiogenic blood vessels 

and melanoma tumors.[108] The presence of the αVβ3-MMP-2 complex on the cell surface 

of tumors has been described as a marker of aggressive tumors, as the interaction of 

the hemopexin C domain of MMP-2 and αVβ3 is necessary for cell invasion and 

angiogenesis.[109]  

The MMP-2 enzyme is able to recognize and cleave several peptides of different 

lengths.[110] Most part of the substrates described in the literature vary from 6 to 9 amino 

acids and they have been used as linkers in different drug delivery systems, such as 

dendrimers, nanoparticles and peptide-drug conjugates.[111]  It has been observed that 

sequences starting with the Gly-Pro-Leu-Gly (GPLG) tetrapeptide are cleaved at the C-

terminal Gly residue with high proteolytic rates.[112] For this reason, many peptides 

containing either GPLG or the shortened PLG sequence have been used for imaging of 

MMP-2 activity and for the extracellular delivery of cytotoxic agents.[113] Among them, 

Gly-Pro-Leu-Gly-Val-Arg-Gly (GPLGVRG) has been widely studied.[114] For instance, the 

peptide was derivatized by Bremer et al. in 2001 with a C-terminal lysine (resulting in the 

peptide GPLGVRGK), which was coupled to the fluorophore FITC (fluorescein-5-

isothiocyanate). Furthemore, this structure was attached to a copolymer (methoxy-

polyethylene-glycol-derivatized poly-L-lysine), labeled with a near-infrared dye (Figure 

30). As long as the peptide is intact, the NIR fluorophore is quenched by proximity with 

FITC. By contrast, after cleavage of the MMP-2 linker, the increased dye fluorescence 

can be used to monitor MMP-2 activity.
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Figure 30. Structure of the MMP-2 cleavable probe bearing two fluorophores and a copolymer 
developed by Bremer et al. [115] 

 

This construct was tested in vivo in mice bearing the BT20 tumor (which had been 

indicated as low MMP-2-expressing cells) and HT1080 (which was reported to produce 

high amounts of MMP-2). It was observed that, in the first case, a lower fluorescence 

signal was observed in comparison with the HT1080 tumors (31.0 ± 6.6 versus 85.0 ± 

5.1 AU).[115] 

Inspired by these applications and by the observation of the MMP-2/αVβ3 colocalization, 

we designed two conjugates containing MMP-2 cleavable linkers. In the first case, 

cyclo[RGDfK] 46 was connected to the anthracycline daunorubicin (Dau) through the 

GPLGVRG linker (Figure 31, compound 71). In this case, daunorubicin was connected 

via the N-terminus of the linker. Furthemore, Dau was connected to the GPLGVRG linker 

through an aminoxy acetate spacer, taking advantage of its high chemoselectivity for the 

ketone group of Dau. It is known that functionalizations of this C-13 ketone group do not 

affect dramatically the antitumor effect.[51a] Furthemore, the oxyme bond is known to be 

highly hydrolitycally and chemically stable (at pH values between 3 and 8), avoiding 

premature drug release in circulation.[116] For this reason, SMDC 71 was designed to be 

activated by  MMP-2, leading to the release of active metabolite 72. 

Following an alternative approach, cyclo[RGDfK] 46 was connected to paclitaxel (PTX) 

through the GPLG sequence. The resulting conjugate 73 was designed as structural 
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analogue of RGD-PTX compounds described in the previous Chapters, featuring the 

same payload and “two-step” self-immolative spacer.  

 

 

Figure 31. A. Molecular structure of Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71); B. Molecular 
structure of cyclo[RGDfK]-GPLG-PTX (73) and mechanism of PTX release. 

 

3.1. Synthesis 

A) Synthesis of Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) 

Compound 71 was synthesized as depicted in Scheme 7. The peptide linker of 

compound 71 was synthesized on 2-chlorotrityl resin following the Fmoc protocol, as 

described in section 2.1.1. In the initial steps of the SPPS, a clear detection of proline 

loading with traditional colorimetric tests was not possible, which made necessary the 

cleavage of small portions of resin, followed by LC-MS analysis of the detached material.  
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Scheme 7. a) i. Fmoc-Gly-OH (1 equiv.), iPr2NEt (3 equiv.), 1:1 CH2Cl2/DMF, 2 h, r.t.; ii. Capping 
with 7:2:1 CH2Cl2/MeOH/iPr2NEt; b) i. Fmoc-deprotection: 2% DBU, 2% piperidine, DMF, 1 h; ii. 
Fmoc-AA-OH (3 equiv.), HOBt (4 equiv.), DIC (4 equiv.), 2 h; conditions (b) are repeated for the 
coupling of every amino acid of the sequence; c) i. Fmoc-deprotection: 2% DBU, 2% piperidine, 
DMF; ii. 2-((propan-2-ylideneamino)oxy)acetic acid 76 (1 equiv.), HOBt (4 equiv.), DIC (4 equiv.), 
2 h; d) 95/2.5/2.5 TFA/TIS/H2O, 3 h., precipitation in diethyl ether; e) i.Pre-activation: BOP (0.9 
equiv.), iPr2NEt (2.7 equiv.), DMF, 20 mins; ii. Cyclo[RGDfK] (46); f) i. O-methyloxylamine 
hydrochloride,  NH4OAc buffer; 2h.; ii. Daunorubicin, NH4OAc buffer, 2 days; g) acetone, r.t., 45 
mins. DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene; AA = amino acid; BOP = (benzotriazol-1-
yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; DIC = N,N’-
diisopropylcarbodiimide. 

 

After the synthesis of the peptide sequence, the protected 2-((propan-2-

ylideneamino)oxy)acetic acid 76 was coupled on resin, following the same protocol 

described for the amino acids coupling. This compound was previously synthesized by 

protection of the commercially available 2-(aminooxy)acetic acid (Aoa) with acetone for 

45 minutes, affording the protected compound 76 in 94% of yield. 

Finally, the peptide sequence was cleaved from the resin with 95/2.5/2.5 TFA/TIS/H2O 

mixture. These highly acidic conditions were chosen in order to isolate the peptide devoid 

of the Pbf group on the arginine side chain. Later on, compound 78 was successfully 

coupled to the cyclo[RGDfK] integrin ligand: after several trials of unsuccessful activation 

of 78 with either N-hydroxysuccinimide or N-hydroxyphthalimide, the compound was pre-
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activated with BOP and iPr2NEt and then coupled with cyclo[RGDfK] 46, leading to 

compound 79 in high yields. As last step, the aminooxy acetate was deprotected and 

coupled directly with daunorubicin, affording the final Dau=Aoa-GPLGVRG-

cyclo[RGDfK] (71). 

 

B) Synthesis of cyclo[RDGfK]-GPLG-PTX (73) 

Compound 73 was synthesized as described in Scheme 8. The Fmoc-GPLG-OH 

sequence was produced following the same SPPS protocol described in the previous 

section for Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71). Since this peptide sequence did not 

show any acid-labile groups on the amino acid side chains, a milder cleavage cocktail 

was tested. In particular, treatment of the resin with a 8:1:1 CH2Cl2/MeOH/AcOH mixture 

led successively to compound 81, which was later treated with 4-aminobenzyl alcohol 

and EEDQ, to yield compound 82. The following steps leading to compound 85 were 

carried out as described before (section 2.1.1., synthesis B). Also in this case, pre-

activation of 85 with BOP and iPr2NEt and coupling with cyclo[RGDfK[ (46), led to the 

isolation of compound 86. Upon Boc removal, the resulting amine was reacted with 2'-

(4-nitrophenoxycarbonyl)paclitaxel (60). The crude residue was purified by 

semipreparative HPLC affording 73. 
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Scheme 8. a) i. Fmoc-Gly-OH (1 equiv.), iPr2NEt (3 equiv.), 1:1 CH2Cl2/DMF, 2 h, r.t.; ii. Capping 
with 7:2:1 CH2Cl2/MeOH/iPr2NEt; b) i. Fmoc-deprotection: 2% DBU, 2% piperidine, DMF; ii. Fmoc-
AA-OH (3 equiv.), HOBt (4 equiv.), DIC (4 equiv.), 2 h; conditions (b) are repeated for the coupling 
of every amino acid of the sequence; c) 8:1:1 CH2Cl2/MeOH/AcOH, 2 h, precipitation in water; d) 
EEDQ, 4-aminobenzyl alcohol, CH2Cl2, overnight; e) 4-nitrophenylchloroformate, pyridine, 
CH2Cl2, overnight; f) N-Boc-N,N’-dimethylethylenediamine 59, iPr2NEt, CH2Cl2, overnight; g) i. 
Piperidine (5 equiv.), CH2Cl2, 3 h; ii. glutaric anhydride, DMAP, iPr2NEt, CH2Cl2, overnight; h) 
i.Pre-activation: BOP (0.9 equiv.), iPr2NEt (2.7 equiv.), DMF, 20 min; ii. Cyclo[RGDfK] (46); i) i. 
TFA, CH2Cl2, 1h.; ii. 2’-(4-nitrophenoxycarbonyl)PTX 60, iPr2NEt, DMF, overnight. DBU = 1,8-
Diazabicyclo[5.4.0]undec-7-ene; AA = amino acid; BOP = (benzotriazol-1-
yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; DIC = N,N’-
diisopropylcarbodiimide; EEDQ= N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. 

 

 

3.2. Cleavage experiments in the presence of MMP-2 

The effective cleavage of the peptide linker of Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) 

was evaluated in the presence of recombinant Human MMP-2 in TCNB-buffer (pH=7.5) 
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and the metabolites assessed by HPLC-MS analysis. The peptide:enzyme rate was 

100:1. Unfortunately, cyclo[RGDfK]-GPLG-PTX (73) was not soluble under the 

experimental conditions, and its kinetics of drug release are still under investigation. 

The results are shown below: 
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As expected, the preferred cleavage site is between Gly and Val. It was observed that 

the formation of the active metabolite 72 started after 1 hour and the complete formation 

was achieved after 6 hours of incubation with the MMP-2 enzyme 
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3.3. In vitro biological evaluation 

Integrin receptor competitive binding assays 

Analogously to the conjugates bearing lysosomally cleavable linkers (Chapter 2) the two 

new conjugates were evaluated by their ability to inhibit biotinylated vitronectin binding 

to the purified αVβ3 receptor. The calculated IC50 values are shown in Table 8, together 

with the free ligand cyclo[RGDfK] (46). 

As highlighted by the Table, compounds 71 and 73 showed good binding affinity, with 

IC50 values in the low nanomolar range, comparable with the affinity reported for the free 

ligand cyclo[RGDfK] 46. These results prompted us to proceed with further in vitro 

antiproliferative assays, which are currently ongoing. 

 

 

 

 

  

 

 

 

 

 

3.4. Conclusions 

In this section, two new conjugates bearing extracellular cleavable linkers were 

synthesized: Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) and cyclo[RDGfK]-GPLG-PTX 

(73). For compound 71, linker cleavage by MMP-2 was evaluated, showing that the 

peptide bond between Gly and Val is the preferential site of the enzymatic cleavage, and 

that the formation of the active metabolite 72 (Dau=Aoa-GPLG-OH) was completed 

within 6 hours. Furthermore, both conjugates were evaluated in vitro for their integrin 

Table 8. Inhibition of biotinylated vitronectin binding to the isolated αvβ3 and αvβ5 

receptors. 

Compound Structure 
IC50 (nM)[a] 

αVβ3 

46 cyclo[RGDfK] 1.4 ± 0.2 

71 Dau=Aoa-GPLGVRG-cyclo[RGDfK] 2.04 ± 0.86 

73 cyclo[RGDfK]-GPLG-PTX 1.75 ± 1.10 

[a] IC50 values were calculated as the concentration of compound required for 

50% inhibition of biotinylated vitronectin binding as estimated by GraphPad 

Prism software. All values are the arithmetic mean ± the standard deviation (SD) 

of duplicate determinations.  
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receptor binding, which revealed that both compounds retained good binding affinity (in 

the low nanomolar range). At the moment, cell viability assays are being performed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4: Conjugates containing  the β-
glucuronide linker 
 

β-Glucuronidase is a well-known tumor-associated enzyme, present both in intracellular 

compartments  (i.e. lysosomes) and in the extracellular environment of tumors. The high 

expression of this enzyme in the tumor interstitium has been linked to the extracellular 

liberation of lysosomal β-glucuronidase from apoptotic or necrotic cancer cells.[105,117] 

Furthermore, the accumulation in the extracellular matrix was found to significantly 

increase upon inflammation, which is one of the hallmarks of cancer. In particular, the 

activation of tumor-infiltrating macrophages and neutrophils was found to result in the 

extracellular release of β-glucuronidase.[116b,118] 

This enzyme is a tetrameric glycoprotein with four identical subunits (77 kDa each) and 

its active site comprises three amino acid residues: Glu540, Glu451 and Tyr504. The role of 

the latter one is still unclear. However, as observed in the proposed mechanism of Figure 

32, Glu540 acts as a nucleophile and Glu451 has the role of an acid-base catalyst or proton 

donor. The substrate specificity of this enzyme is wide: almost any aglycone in a β-

linkage can be hydrolyze to glucuronic acid. In particular, β-glucuronidase is responsible 

for the cleavage of glucuronosyl-O bonds of glucuronic acid moieties in 

glucosaminoglycans (e.g. heparan sulfate, chondroitin sulfate and dermatan sulfate) and 

its deficiency is known to provoke a rare lysosomal storage disease, known as 

mucopolysaccharidosis type VII (Sly syndrome).[105, 117a, 118a] Compared to normal 

tissues, β-glucuronidase is highly expressed in breast, lung, melanomas and 

gastrointestinal tract carcinomas.[105,119] Due to this high tumor expression and specific 

enzymatic activity, glucuronide-containing prodrugs have been developed with the aim 

to target the cancer tissues avoiding systemic toxicity (since the enzyme is not present 

in the general circulation).[105, 118a]  For instance, glucuronide triggers have been applied 

to the so-called field of  antibody-directed enzyme prodrug therapy (ADEPT), which aims 

at increasing the enzyme concentration at the tumor site, as well as in gene-directed 

enzyme prodrug therapy (GDEPT), in which a gene encoding the enzyme is targeted to 

the tumour.[118,119] Moreover, β-glucuronide-containing prodrugs[120] and imaging 

agents[121] have been developed, showing high stability in circulation and a high 

hydrophilicity, which limits the cell permeability of the intact prodrug, and the resulting 

off-target toxicity.[117b,122] Furthermore, these prodrugs may take advantage of the 

presence of dying cells (and necrotic areas) in the tumor mass, which results in a 

significant initial expression of β-glucuronidase. This improves the penetration of the
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 prodrug into the tumor and the resulting cytotoxic activity prompts the cancer cells to 

shed more enzyme, leading to an amplification of the cleavage cascade.[117a] 

 

 

Figure 32. Proposed mechanism of β-glucuronidase-mediated hydrolysis. 

 

One example of prodrug cleaved by β-glucuronidase is the conjugate containing 

cyclopamine (an inhibitor of the Hedgehog signalling pathway of cancer cells) and β-

glucuronide (compound 87, Figure 33, developed by Renoux et al. in 2011.[123] 

 

 

 

Figure 33. Structure of compound 87 and mechanism of release.
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This compound was incubated with U87 cells  for 5 days: after addition of β-

glucuronidase in culture media, a good antiproliferative effect was observed, with 

prodrug 87 showing an IC50 value of 24.5 µM, which was comparable to the activity 

reported for the free drug (IC50= 16.5 µM). On the other hand, in the absence of the 

enzyme, prodrug 87 did not affect the viability of the cells.  

Furthermore, the β-glucuronide linker has been widely used in ADC products.[124] For 

example, mAbs cAC10 (anti-CD30) and h1F6 (anti-CD70) have been conjugated to 

doxorubicin using this linker as shown in Figure 34.[125] 

 

 

Figure 34. Structure of the mAbs conjugated to doxorubicin (Doxo) through the β-glucuronide linker. 

 

These ADC products have been subjected to in vitro cytotoxicity studies against a panel 

of cell lines and the results are reported in Table 9. It was observed that both conjugates 

were selective for the corresponding antigen-positive cell lines and that the potency was 

comparable with that of the free drug. This observation seems to indicate that the ADC 

products used are internalized by the parent antigens, following receptor-mediated 

endocytosis and intracellular cleavage of the glucuronide linker.    

 

Table 9. In vitro cytotoxicity of cAC10-β-glucuronide-Doxo and h1F6-β-glucuronide-Doxo in different cell 

lines 

  IC50 (nM) 

Compound Antigen 

Karpas 

299[a] 

(CD30+) 

L428[a] 

(CD30+,

CD70-) 

L540 

Cy[a] 

(CD30 +) 

WSU-

NHL[a] 

(CD30-) 

Caki-1[a] 

(CD70 +) 

Doxo - 1.2 0.1 0.5 - 0.7 

cAC10-β-glucuronide-Doxo CD30 0.4 0.4 0.9 >32[b] - 

h1F6-β-glucuronide-Doxo CD70 - >29[b] - - 0.6 

[a] The free drug and the Antibody-drug conjugates were incubated for 96 h; [b] No activity at highest 

concentration tested. 
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Inspired by all these data, two cyclo[DKP-RGD]-MMAE (monomethyl auristatin E) 

conjugates bearing β-glucuronide as linker were developed, containing both a glutarate 

(88) and a PEG-4 spacer (89). In these conjugates, the drug release occurs through the 

same 1,6-elimination triggered by enzymatic cleavage of the glycosidic bond, mentioned 

in Figure 33. The use of the MMAE payload, possessing a secondary amine group, 

allows the direct formation of a carbamate bond with the p-aminobenzyl alcohol 

fragment, avoiding the use of diamine-based cyclization spacer (i.e. unlike PTX and other 

payload that are normally functionalized at hydroxyl groups). 

 

Figure 35. Structures of cyclo[DKP-RGD]-glucuronide-MMAE (88) and cyclo[DKP-RGD]-PEG-4-
glucuronide-MMAE (89). 

 

4.1. Synthesis 

The synthetic methodology of both final conjugates is described in Scheme 9. 

Compounds 90 and 91 were linked through a glycosidic bond, giving intermediate 92. 

The aldehyde group of this compound was reduced with sodium borohydride to give 

alcohol 93 followed by hydrogenation of the nitro group, yielding 94. The latter was a 

common intermediate for the formation of both final conjugates. For the synthesis of 

cyclo[DKP-RGD]-β-glucuronide-MMAE 88, compound 94 was Fmoc-protected and 

reacted with 4-nitrophenylchloroformate, affording carbonate 95. The latter was reacted 
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with the secondary amine moiety of MMAE in the presence of HOBt under basic 

conditions. Upon deprotection of both sugar and aniline moieties, the resulting compound

96 was coupled to di(succinimidyl) glutarate with a disappointing 15% yield, due to both 

the low reactivity of the aniline nitrogen atom and the partial deprotection of compound 

97 under the reaction and HPLC conditions. Later on, this N-hydroxysuccinimidyl ester 

was reacted with the cyclo[DKP-RGD] ligand, as described for previous conjugates, 

leading to the final compound 88 upon HPLC purification.  

 

 

 

Scheme 9. Synthesis of conjugates 88 and 89. Reagents and conditions: a) Ag2O, molecular 
sieves, CH3CN, overnight; b) Silica gel, NaBH4, iPrOH/CHCl3, 2.5 h; c) H2/Pd, EtOAc, EtOH, 
MeOH, overnight; d) Fmoc-OSu, iPr2NEt, DMAP, CH2Cl2, 3 h; e) 4-nitrophenylchloroformate, 
pyridine, THF, 3 h; f) MMAE, HOBt, iPr2NEt, pyridine, DMF, 2 h: g) LiOH, 1:1 MeOH/H2O, 2 h; h) 
Di(succinimidyl)glutarate, iPr2NEt, DMAP, DMF, 3 h; i) cyclo[DKP-RGD] 32, PBS/DMF, 3 h; j) 4-
pentynoic acid, HATU, HOBt, iPr2NEt, DMF, overnight; k) N3-PEG-4-cyclo[DKP-RGD] 51b, 
CuSO4 • 5H2O, sodium ascorbate, DMF/H2O. 

 

For the synthesis of cyclo[DKP-RGD]-PEG-4-glucuronide-MMAE (89), compound 94 

was coupled with 4-pentynoic acid, yielding the alkyne 98 in low yield. The latter was 

activated and coupled with MMAE, followed by deprotection of the sugar moiety, as 

described above. Finally, a copper-catalyzed azide-alkyne cycloaddition was performed 

using N3-PEG-4-cyclo[DKP-RGD] 51b and the terminal alkyne 100, affording the final 

conjugate 89 in 84% yield after HPLC purification. 
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The evaluation of integrin binding affinity, enzymatic cleavage and antiproliferative 

activity of both cyclo[DKP-RGD]-glucuronide-MMAE (88) and cyclo[DKP-RGD]-PEG-4-

glucuronide-MMAE (89) are still in progress.  

 

4.2. In vitro biological evaluation 

Integrin receptor competitive binding assays 

Analogously to to the conjugates bearing lysosomally cleavable linkers (Chapter 2) and 

MMP-2 cleavable linkers (Chapter 3), cyclo[DKP-RGD]-glucuronide-MMAE (88) and 

cyclo[DKP-RGD]-PEG-4-glucuronide-MMAE (89) were evaluated by their ability to inhibit 

biotinylated vitronectin binding to the purified αVβ3 receptor and compared to the free 

ligand cyclo[DKP-RGD] (31). The calculated IC50 values are shown in Table 10. 

 

 

 

 

 

 

 

 

Both compounds showed high binding affinity, with IC50 values in the low nanomolar 

range, comparable with those obtained for the free ligands (31). 

 

4.3. Conclusions 

In this Chapter, two cyclo[DKP-RGD]-MMAE (monomethyl auristatin E) conjugates 

bearing β-glucuronide as linker, containing both a glutarate (88) and a PEG-4 spacer 

(89) were synthesized. The preparation of the latter proved to be more straightforward, 

carried out with generally higher yields. As a future work, a negative control for the 

cleavage experiments and antiproliferative assays will be synthesized. This compound 

was designed with a different distribution of the substituents in the aminobenzyl aromatic 

Table 10. Inhibition of biotinylated vitronectin binding to the isolated αvβ3 receptor. 

Compound Structure 
IC50 (nM)[a] 

αVβ3 

31 cyclo[DKP-RGD] 4.5 ± 1.1 

88 cyclo[DKP-RGD]-glucuronide-MMAE 20.0 ± 9.6 

89 cyclo[DKP-RGD]-PEG-4-glucuronide-MMAE 76.7 ± 5.8 

[a] IC50 values were calculated as the concentration of compound required for 50% 

inhibition of biotinylated vitronectin binding as estimated by GraphPad Prism 

software. All values are the arithmetic mean ± the standard deviation (SD) of 

duplicate determinations.  



Chapter 4: Conjugates containing the β-glucuronide linker  71 

 

ring, with the β-glucuronide linker in meta-position with respect to the MMAE (101, Figure 

36). In particular, this structure should not lead to the release of the free drug upon 

enzymatic cleavage of the β-glucuronide linker, since the 1,6-elimination will not take 

place

 

 

Figure 36. Structure of the negative control to be developed. 

 

Overall, the in vitro evaluation of this group of RGD-MMAE conjugates bearing β-

glucuronide linker will provide information about the integrin-targeting ability of the RGD 

ligand. Indeed, cancer cell lines with different levels of integrin expression will be used, 

following an experimental set similar to the one described by Senter and coworkers[125] 

(Table 9). The ideal observation of high TI values would be consistent with the 

mechanism of integrin-mediated endocytosis of these SMDCs, with linker cleavage in 

intracellular compartments and subsequent release of MMAE. Importantly, the high 

potency of this payload makes these compounds attractive candidates for in vivo 

applications. The administration of these compounds to tumor-bearing mice would 

hopefully result in their high accumulation in the tumor xenograft. Here, the presence of 

dying cells and necrotic areas is likely to result in the high expression of β-glucuronidase 

in the tumor microenvironment. For this reason, it is conceivable that the linker cleavage 

may occur preferentially in extracellular areas, leading to the diffusion of MMAE in the 

tumor mass. 

 



 
  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Conclusions and perspectives 
 

In this PhD work, a variety of new SMDCs were designed and synthesized featuring 

different types of linkers and cytotoxic payloads. All of them were characterized and 

conjugated to peptidomimetic ligands bearing the RGD sequence (namely, the 

cyclo[DKP-RGD] and cyclo[RDGfK] compounds) aimed at targeting αVβ3 integrin 

receptor overexpressed in many human cancers. 

In the first part of this thesis, different conjugates cleaved by lysosomal enzymes were 

synthesized. At first, taking the previously synthesized cyclo[DKP-RGD]-Val-Ala-PTX 33 

as reference, the influence of each individual moiety of the conjugate on the integrin 

affinity and selective cell toxicity was evaluated. The newly synthesized conjugates (37-

40), bearing the lysosomally cleavable GFLG linker and glutarate or PEG-4 spacer, were 

evaluated in vitro for their cell antiproliferative activity and compared with compounds 33 

and 41 (bearing the lysosomally cleavable Val-Ala linker). In the cell viability assays 

against U87 (αVβ3+) and HT29 (αVβ3-), all conjugates proved less active than the free 

PTX payload, with conjugates containing the PEG-4 spacer (39-41) showing the highest 

potency in the series. In this part, we proposed the determination of the Relative Potency 

(RP), consisting in the ratio IC50 PTX/IC50 conjugate calculated for each cell line. This 

new parameter quantifies the loss of cytotoxic potency of each conjugate with respect to 

paclitaxel. Since higher RP values were observed for the U87 cell line we could conclude 

that the loss of potency was more evident when the cell does not express αVβ3. As 

reported in previous works of our group, the Targeting Index value was introduced to 

correlate the different RP values observed for a single compound for the two cell lines. 

Among all the tested compounds, cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX 41 showed the 

best Targeting Index of the series (TI = 533). Competition experiments were carried out 

with this conjugate in the αVβ3+ cell line U87 in the presence of 50-fold excess free ligand 

cyclo[DKP-RGD] (31). The observed 5-fold decrease of conjugate toxicity demonstrated 

that conjugate 41 is, at least partially, internalized by the cancer cells through an integrin 

αVβ3-mediated process, which leads to the intracellular delivery of the cytotoxic cargo. 

Unfortunately, the use of α-amanitin as a more potent cytotoxic payload did not lead to 

a significant improvement of the targeting ability of these conjugates, nor to the 

development of more potent integrin-targeted conjugates. 

For this reason, the study of extracellularly cleavable linkers was investigated. We 

focused on the GPLG and GPLGVRG peptide sequences, which are recognized and 

cleaved by MMP-2 enzyme. Two conjugates were synthesized: Dau=Aoa-GPLGVRG-
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cyclo[RGDfK] (71) and cyclo[RDGfK]-GPLG-PTX (73). Cleavage experiments in the 

presence of the MMP-2 enzyme were carried out for 71, confirming that the preferred 

cleavage site is between Gly and Val and that the formation of the active metabolite 72 

(Dau=Aoa-GPLG-OH) is completed within 6 hours. Currently, further in vitro experiments 

(antiproliferative assays) are being performed.  

In the last part of the thesis, two cyclo[DKP-RGD]-MMAE (monomethyl auristatin E) 

conjugates bearing β-glucuronide as linker, containing both a glutarate (88) and a PEG-

4 spacer (89) were synthesized. These conjugates are recognized by β-glucuronidase, 

which is a well-known tumor-associated enzyme, present both intracellularly (in 

lysosomes) and extracellularly (in the interstitium of highly aggressive and necrotic 

tumors). These compounds will be subjected to cleavage experiments and cell viability 

assays. 

In summary, the loss of potency generally displayed by the lysosomally cleavable 

conjugates in antiproliferative assays prompted us to the design of new SMDCs bearing 

extracellular cleavable linkers. This strategy has got credits from literature data and it 

has been proposed as a promising alternative to internalizing conjugates. While this 

approach will allow us to take the internalization out of the equation and to develop highly 

potent conjugates, it will be important to submit these compounds to in vivo therapy 

experiments, in order to understand the contribution to the selectivity given by the integrin 

ligand.  Evidences of efficient drug release from non-internalizing prodrugs, brought at 

the diseased site by the RGD affinity for tumor-expressed integrins, will potentially 

support the clinical investigation of this anticancer devices. 

 

 

 

 

 

 

 

 

 



 

Experimental section 
 

General remarks and procedures 
 

Materials and methods 

All manipulations requiring anhydrous conditions were carried out in flame-dried 

glassware, with magnetic stirring and under a nitrogen atmosphere. All commercially 

available reagents were used as received. Anhydrous solvents were purchased from 

commercial sources and withdrawn from the container by syringe, under a slight positive 

pressure of nitrogen. The reactions were monitored by analytical thin-layer 

chromatography (TLC) using silica gel 60 F254 pre-coated glass plates (0.25 mm 

thickness) or Macherey-Nagel 0.20 mm silica gel 60 with fluorescent indicator pre-coated 

polyester sheets (40 × 80 mm). Visualization was accomplished by irradiation with a UV 

lamp and/or staining with Cerium/Molibdate reagent, ninhydrin or cynnamaldehyde. 

Automated chromatography was performed with Teledyne Isco CombiFlash Rf 150. 

HPLC purifications were performed on Dionex Ultimate 3000 equipped with Dionex RS 

Variable Wavelenght Detector (semipreparative column: Atlantis Prep T3 OBDTM 5 µm 

19 × 100 mm; flow 15 mL/min unless stated otherwise). Also, preparative HPLC LaPrep∑ 

equipped with autosampler AS3950 and a Phenomenex Luna C-18(2) column, 10 µm, 

250 × 21.2 mm, with precolumn at 30 mL/min flow rate and KNAUER 2501 HPLC system 

(preparative column: Luna 10 m C18 (2) 100A 250 × 21.2 mm) were used. HPLC traces 

of final products were performed on Hitachi Chromaster (column oven Chromaster 5310, 

pump Chromaster 5110, autosampler Chromaster 5210, DAD Chromaster 5430) 

equipped with a Phenomenex Luna C-18(2) column, 10 µm, 250 × 4.6 mm, with 

precolumn at 1.4 mL/min flow rate were used. The analysis of the integrals and the 

relative percentage of purity were performed with the software Chromeleon 6.80 SR11 

Build 3161. Freeze-drying: the products were dissolved in water and frozen with dry ice. 

The freeze-drying was carried out at least for 48 h at -50 °C using the instrument 5Pascal 

Lio5P DGT.  

Proton NMR spectra were recorded on a spectrometer operating at 400.16 MHz. or 500 

MHz. Proton chemical shifts are reported in ppm (δ) with the solvent reference relative 

to tetramethylsilane (TMS) employed as the internal standard (DMSO δ = 2.5 ppm; D2O
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δ = 4.79 ppm; CDCl3 δ = 7.26 ppm; CD2Cl2 δ = 5.32 ppm). The following abbreviations 

are used to describe spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, bs = broad signal, dd = doublet of doublet, ddd = doublet of doublet of doublet, 

ddt = doublet of doublet of triplet, td = triplet of doublet. Carbon NMR spectra were 

recorded on a spectrometer operating at 100.63 MHz or 126 MHz, with complete proton 

decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the 

respective solvent resonance as the internal standard. 

Low resolution mass spectra (MS) were recorded on Thermo Finnigan LCQ Advantage 

(ESI source), Bruker Daltonics Esquire 3000+ ion trap mass (ESI source), Micro Waters 

Q-Tof (ESI source) and Thermo Fisher linear ion trap LTQ XL mass spectrometer. The 

MALDI–TOF–MS spectra were recorded on a Bruker Microflex™ LT instrument, 

supporting the sample on α-cyano-4-hydroxycinnamic acid (HCCA) and sinapinic acid 

(SA) matrices. The peptide calibration standard (300–3000 Da range), which consisted 

of angiotensin II, angiotensin I, substance P, bombesin; ACTH clip 1-17, ACTH clip 18-

39, somatostatin 28, was purchased from Bruker Daltonics® and used to calibrate the 

MALDI-TOF-MS instrument. High-resolution mass spectra (HRMS) were performed with 

a Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometer APEX II & 

Xmass software (Bruker Daltonics) – 4.7 T Magnet (Magnex) equipped with ESI source, 

available at CIGA (Centro Interdipartimentale Grandi Apparecchiature) c/o Università 

degli Studi di Milano. 

 

 

General procedure for SPPS 

The compounds were synthesized manually on 2-chlorotrityl resin (0.87 mmol/g loading 

capacity) using the Fmoc protocol. The resin (1 g) was swollen in CH2Cl2 for 30 min. 

Then, the CH2Cl2 was removed and the resin was washed 3 times with DMF. After this, 

coupling of the amino acids was carried out. 

The protocol is as follows: 

 

1) Coupling of the first amino acid (Fmoc-glycine-OH): 

(i) A solution of Fmoc-glycine-OH (300 mg, 1 equiv.) and iPr2NEt (700 µL, 3 equiv.) in 

1:1 CH2Cl2/DMF (4 mL) was added to the swollen resin, and the mixture was stirred for 

2 h; (ii) the resin was washed with DMF (2 ×) and CH2Cl2 (2 ×); (iii) capping in a 7:2:1 

CH2Cl2/MeOH/iPr2NEt (3 times × 5 min, 20 mL); (iv) the resin was washed with CH2Cl2 
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(3 ×), DMF (2 ×) and CH2Cl2 again (3 ×); (v) the Kaiser test was performed as follows: a 

few drops of ninhydirin solution (0.28 M in ethanol), phenol solution (21 M in ethanol) and 

KCN solution (0.33 mM in pyridine)[a] were added over a bead of resin and then the 

mixture was heated (a yellow color was observed in the absence of free amines); (vi) the 

resin was washed with DMF (2 ×); (vii) Fmoc deprotection was performed: the resin was 

treated with 2% piperidine and 2% of DBU in DMF (3 × 7 min), then washed with DMF 

(3 ×) and CH2Cl2 (2 ×) before performing again the Kaiser test (a blue color was indicative 

of successful removal of the Fmoc protecting group). 

 

2) Addition of the other amino acids 

The following protocol was repeated for the addition of every single amino acid: 

(i) a solution of the amino acid (3 equiv.), HOBt (540 mg, 4 equiv.) and DIC (540 µL, 

mmol, 4 equiv.) in 4 mL of DMF was added to the resin and the suspension was stirred 

for 2 h; (ii) the resin was washed with DMF (3 ×), CH2Cl2 (2 ×) and DMF (2 ×); (iii) Kaiser 

test was performed; (iv) Fmoc deprotection was performed as described in Paragraph 1, 

step (vii).  

 

3) Cleavage from the resin 

 

Cleavage A 

(i) The resin was dried under vacuum for 2 h and then dissolved in a 8:1:1 

CH2Cl2/MeOH/AcOH mixture (25 mL) for 2 h; (ii) the resin was filtered, washed with other 

25 mL of 8:1:1 CH2Cl2/MeOH/AcOH mixture and then the solution was evaporated 

obtaining an oil; (iii) distilled water was added to the crude and a white solid was formed, 

which was filtered and washed with additional water; (iv) the white solid was dried under 

vacuum for one day. 

 

Cleavage B 

(i) The resin was dried under vacuum for 2 h and then dissolved in 95/2.5/2.5 

TFA/TIS/H2O mixture for 3 h; (ii) the resin was filtered, washed with more 95/2.5/2.5 

TFA/TIS/H2O mixture and then the solution was added to cold diethyl ether, observing 

the formation of a white solid (iii); The precipitate was centrifuged (3 × 5 mins), frozen-

dried and used without further purificacion. 

                                                           
[a] This solution was prepared as follows: 16.5 mg of KCN were dissolved in 15 mL of distilled 
water. 1 mL of the previous solution was then diluted with 49 mL of pyridine.  
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4) Calculation of the yield for SPPS 

The yield is calculated using the formula: [amount of peptide obtained/ (resin loading × 

amount of resin × MW peptide)] × 100. 

 

Biological assays 
 

Solid-phase binding receptor assay 

Recombinant human integrin V3 receptor (R&D Systems, Minneapolis, MN, USA) and 

(when also determined) purified V5 receptor (Chemicon International, Inc., Temecula, 

CA, USA) were diluted to 0.5 g/mL in coating buffer containing 20 mM Tris-HCl (pH 7.4), 

150 mM NaCl, 1 mM MnCl2, 2 mM CaCl2, and 1 mM MgCl2. An aliquot of diluted receptor 

(100 L/well) was added to 96-well microtiter plates (Nunc MaxiSorp) and incubated 

overnight at 4 °C. The plates were then incubated with blocking solution (coating buffer 

plus 1% bovine serum albumin) for 2 h at r.t. to block nonspecific binding. After washing 

2 times with blocking solution, plates were incubated shaking for 3 h at r.t., with various 

concentrations (10-5-10-12 M) of test compounds in the presence of 1 g/mL biotinylated 

vitronectin (Molecular Innovations, Novi, MI, USA). Biotinylation was performed using an 

EZ-Link Sulfo-NHS-Biotinylation kit (Pierce, Rockford, IL, USA). After washing 3 times, 

the plates were incubated shaking for 1 h at r.t., with streptavidin-biotinylated peroxidase 

complex (Amersham Biosciences, Uppsala, Sweden). After washing 3 times with 

blocking solution, plates were incubated with 100 L/well of Substrate Reagent Solution 

(R&D Systems, Minneapolis, MN, USA) for 30 min with shaking. After stopping the 

reaction with the addition of 50 L/well 2N H2SO4, absorbance at 415 nm was read in a 

SynergyTM HT Multi-Detection Microplate Reader (BioTek Instruments, Inc.). Each data 

point represents the average of triplicate wells; data analysis was carried out by nonlinear 

regression analysis with GraphPad Prism software (GraphPad Prism, San Diego, CA, 

USA). Each experiment was repeated in duplicate 
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Determination of integrin αVβ3 receptor expression of U87 and HT29 cell 
lines for the in vitro experiments of the conjugates bearing the Gly-Phe-
Leu-Gly linker 

U87 and HT29 cells were seeded in T25 flasks with ventilation cap and incubated at 

37 °C in a humidified atmosphere with 5% CO2 for 48 h. Cells were harvested and fixed 

with 4% PFA (Paraformaldehyde). With 3% BSA (Bovine Serum Albumin) were blocked 

all possible non-specific binding sites on the cell, and cells were exposure with LM609 

anti Integrin αVβ3 antibody conjugated with FITC (Merck Millipore, Darmstadt, Germany). 

In control samples cells were not stained with antibody, and auto-fluorescence intensity 

of cells was measured. Fluorescent intensity of stained samples was measured by flow 

cytometer Beckman Coulter, and compared with auto-fluorescence intensity of control 

samples. 

 

Figure 37. Flow cytometry analysis of integrin αVβ3 in U87 and HT29 cell lines. Black: auto-
fluorescence of the cell; Red: fluorescence of αVβ3 integrin antibody. 
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Figure 38. Mean fluorescence intensity of αVβ3 receptors expression in U87 and HT29 cell lines. 
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Determination of integrin αVβ3 receptor expression of U87, MDA-MB-468 
and A549 cell lines for the in vitro experiments of the cyclo[DKP-RGD]-α-
amanitin conjugates 

The expression of integrin αVβ3 in U87-MG, A549 and MDA-MB 468 cells was 

determined by flow cytometry on a FACSCalibur device (Becton Dickinson). Before 

staining, cells were fixed with fixation solution (0.5% PFA in PBS). 5 × 105 cells per 

sample were stained in staining medium (PBS, 25 mM HEPES, 3% FCS, 0.02% Na-

Azide) with an anti-human integrin αVβ3 antibody conjugated to Alexa Fluor 488 (R&D 

Systems) or isotype control conjugated to Alexa Fluor 488 (Thermo Fischer) at a 

concentration of 4 µg/mL for 45 min at room temperature. Cells were washed with PBS 

and the mean fluorescence intensity was measured for 10.000 gated events. Data were 

analyzed using flow cytometry and associated software (BD Biosciences) (Figure 39). 

 

 

 

Figure 39. Flow cytometry analysis of integrin αVβ3 expression in cancer cell lines. U87-MG: 
integrin αVβ3 overexpressed; A549 and MDA-MB 468: integrin αVβ3 negative.  
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Cell culture of U87 and HT29 cell lines for the in vitro experiments of the 
conjugates bearing the Gly-Phe-Leu-Gly linker 

U87 (human malignant glioma) and HT29 (human colorectal adenocarcinoma) cell lines 

obtained from ATCC were cultured in sterile T25 flasks with ventilation cap (Sarstedt, 

Nümbrecht, Germany) at 37 °C in a humidified atmosphere with 5% CO2. For U87 cells, 

DMEM medium (Dulbecco's Modified Eagle's Medium) (Lonza, Basel, Switzerland) 

containing 4500 mg L−1 glucose and supplemented with 10% heat-inactivated and filtered 

FBS (Fetal Bovine Serum) (Lonza, Basel, Switzerland) and 1% Penicillin-Streptomycin 

(Lonza, Basel, Switzerland) was used. HT29 cells were grown in RPMI 1640 medium 

supplemented with 10% FBS and 1% Penicillin-Streptomycin.  

 

Cell culture of U87, MDA-MB-468 and A549 cell lines for the in vitro 
experiments of the cyclo[DKP-RGD]-α-amanitin conjugates 

All cell culture reagents were purchased at PAN-Biotech GmbH unless otherwise stated. 

Cell lines were obtained from CLS (U87-MG, MDA-MB 468 and A549). Cell lines were 

authenticated using Multiplex Cell Authentication by Multiplexion (Heidelberg, Germany) 

as described recently.[126] The SNP profiles matched known profiles or were unique. The 

purity of cell lines was validated using the Multiplex cell Contamination Test by 

Multiplexion (Heidelberg, Germany) as described recently.[127] No Mycoplasma, SMRV 

or interspecies contamination was detected. U87-MG, MDA-MB 468 and A549 cells were 

cultivated continuously for not more than 3 months in MEM Eagle´s, DMEM or Ham´s 

F12 medium, respectively supplemented with 10% heat inactivated fetus calf serum, L-

glutamine and antibiotics. Cell lines were maintained at 37 ºC and 5% CO2 in a high 

humidity atmosphere. 

 

Cell therapy and viability assay of the conjugates bearing the Gly-Phe-Leu-
Gly linker  

Cell viability was determined by MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide) obtained from Sigma Aldrich (St. Louis, MO, USA). After standard 

trypsinization, cells were seeded at 3 × 103 cells (U87) and 4 × 103 cells (HT29) per well 

in a 96-well plates and incubated. After 24 h, cells were treated with various 

concentrations of conjugates 33 and 37-41 and free drug PTX (paclitaxel) and incubated 
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in appropriate serum-containing growth medium for 96 h under standard growth 

conditions. Control wells were untreated. Afterward, the MTT assay was performed by 

adding 20 μL of MTT solution (5 mg mL−1 in PBS) to each well and after 4 h of incubation 

at 37 °C, the supernatant was removed. The formazan crystals were dissolved in 100 μL 

of a 1:1 solution of DMSO (Sigma Aldrich, St. Louis, MO, USA) and EtOH (Molar 

Chemicals Kft. Hungary) and the absorbance was measured after 15 min at λ = 570 nm 

by using a microplate reader (BIO-RAD, model 550). Average background absorbance 

of DMSO-EtOH only, was subtracted from absorbance values of control and treated 

wells, and cell viability was determined relative to untreated (control) wells where cell 

viability was arbitrarily set to 100%. Absorbance values of treated samples were 

normalized versus untreated control samples and interpolated by nonlinear regression 

analysis with GraphPad Prism software to generate dose-response curves. The 50% 

inhibitory concentration (IC50) was determined from the dose-response curves by using 

sigmoidal interpolation curve fitting. The experiments were done in triplicate. 

  

 

Figure 40. Dose-response curves of conjugates 33 and 37-41. 

 

 

Cell therapy and viability assay of the cyclo[DKP-RGD]-α-amanitin 
conjugates 

Cell viability assays were performed in U87-MG, A549 and MDA-MB 468 cell lines 

according to the following procedure: 2 × 103 cells/well were plated in 96-well black clear 

bottom plates (Perkin Elmer) and incubated overnight. 1:5 serial dilutions of compounds 

62, 63 and 68-70 were prepared in cell culture media. The compounds were added to 

the cell culture and incubated for additional 96 h. Starting concentration of compounds 

62, 63 and 68-70 in the wells was 1 × 10−5 M and cell viability was determined with the 
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CellTiterGlo 2.0 assay (Promega) in accordance to manufacturer’s instructions. The cell 

viability was calculated in relation to the non-treated controls for each cell line. All 

samples were measured in triplicate. Data analysis was carried out using software 

GraphPad Prism (GraphPad Software Inc., La Jolla, CA, USA). 

 

Competition experiments of the conjugates bearing the Gly-Phe-Leu-Gly 
linker  

Antiproliferative activity of compound 41 in the presence of free ligand was carried out 

as follows: U87 integrin αVβ3-expressing cells were seeded at 3 × 103 cells per well in 

96-well plates and incubated. After 24 h, cells were treated simultaneously with 

conjugate 41 and with 50-fold molar excess of free RGD ligand (31, Figure 18) for 96 h. 

Cells were also treated with free Paclitaxel (PTX) in the presence of 50-fold molar excess 

of free RGD ligand (31) for 96 h. Control wells were untreated. Cell viability was 

determined by MTT assay. IC50 was calculated using GraphPad Prism software. The 

experiments were done in triplicate. 

 

Figure 41. Dose-response curves of Paclitaxel and conjugate 41 in the presence of 50-fold 
excess cyclo[DKP-RGD] (31) in U87 cell line. 

 

 

Competition experiments of the cyclo[DKP-RGD]-α-amanitin conjugates 

The competition experiments were performed in U87-MG and MDA-MB 468 cell lines 

according to the following procedure: 2 × 103 cells/well were plated in 96-well black clear 

bottom plates (Perkin Elmer) and incubated overnight. A solution containing 1 × 10-4 M of 

the conjugate (68 or 70) and 5 × 10-3 M of Cilengitide 18 (Figure 13) (50 fold excess of 

ligand in comparison to the conjugate) was prepared in the growth medium and 1:5 serial 
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dilutions were prepared in cell culture media. The compounds were added to cell culture 

and incubated for 96 h. Starting concentration of the compounds in the wells was 0.01 

mM whereas that of cilengitide was 0.5 mM. Cell viability was determined with the 

CellTiterGlo 2.0 assay (Promega) in accordance to manufacturer’s instructions. Cell 

viability was calculated in relation to the non-treated controls for each cell line. All 

samples were measured in triplicate. Data analysis was carried out using software Graph 

Pad Prism (Graph Pad Software Inc., La Jolla, CA, USA).  
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Cleavage experiments with Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) 

The conditions of the cleavage experiments are summarized as follow: 

Injection Temperature 365 °C 

Drying gas 12 L/min 

Nebulizer gas pressure 70 psi 

Target 900 

Range 350-1900 

Flow rate 1 mL/min 

Program (t-B%) 2min   2% 
25min 70% 
26min 95% 
28min 95% 
29min 2% 

Injected amount 7 µL (loop: 5 µL) 

Guard Column C4, Phenomenex 

RP-HPLC Column Phenomenex; Aeris 3,6 µm; Widepore XB-C8; 150x4.6 mm 

Eluent A Distilled H2O + 0.1% CH3COOH 

Eluent B CH3CN/ distilled H2O (80:20) + 0.1% CH3COOH 

Enzyme Human MMP-2 Recombinant expressen in E. Coli (Sigma-Aldrich) 

Peptides Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) 
Cyclo[RGDfK]-GPLG-PTX (73) was not soluble under 
measurement conditions 

Peptide:Enzyme rate 100:1 

Peptide concentration 50 pmol/ µL  

Buffer TCNB-buffer; pH:7.5 (Tris-HCl buffer; 150mM NaCl; 5 mM CalCl2, 
1mM 4-aminophenylmercuric acetate) 

Samples 1, 3, 6 h  (enzymatic reactions were stopped by adding CH3COOH) 
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Synthesis of RGD Peptidomimetic-paclitaxel conjugates bearing the 

Gly-Phe-Leu-Gly linker (37-40) 
 

Synthesis of cyclo[RGDfK] (46) 

 

Fmoc-Asp(OtBu)-D-Phe-Lys(Boc)-Arg(Pbf)-Gly-OH (43) 

 

 

The experimental protocol is described in the general procedure for SPPS. Cleavage A 

was used in this case. 

MS (ESI+): m/z calcd. for [C64H86N9O15S]+: 1252.60 [M + H]+; found: 1252.9. 

 

H2N-Asp(OtBu)-D-Phe-Lys(Boc)-Arg(Pbf)-Gly-OH (44) 

 

 

Compound 43 (2.2 g, 2.1 mmol) was dissolved in DMF and cooled at 0 ºC. A 20% solution 

of piperidine in DMF (20 mL) was then added and the resulting solution was stirred for 3 

h at r.t. The suspension was then filtered, the liquid phase was evaporated and used in 

the following reaction without further purification. Yield: 1.13 g (60%). MS (ESI+): m/z 
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calcd. for [C49H76N9O13S]+: 1030.56 [M + H]+; found: 1030.5; m/z calcd. for 

[C49H77N9O13S]2+: 515.77 [M + 2H]2+; found: 515.9. 

 

Cyclized H2N-Asp(OtBu)-D-Phe-Lys(Boc)-Arg(Pbf)-Gly-OH (45) 

 

 

Compound 44 (100 mg,[b] 0.097 mmol, 1 equiv.) was dissolved in 100 mL of DMF (1 mM) 

and the pH adjusted to 8 by adding aliquots of NaOH 0.2 M. BOP (171 mg, 0.388 mmol, 

4 equiv.) and HOBt (52.42 mg, 0.388 mmol, 4 equiv.) were added and the reaction was 

stirred at r.t. for 24 h. The solvent was evaporated and a 5% aqueous solution of NaHCO3 

was added. The precipitate formed was filtered, freeze-dried and used without further 

purification. MS (ESI+): m/z calcd. for [C49H74N9O12S]+: 1012.52 [M + H]+; found: 1012.6. 

 

Cyclo[RGDfK] (46) 

 

Compound 45 (132 mg) was dissolved in 15 mL of the cleavage cocktail 

TFA/thioanisol/EDT/phenol/TIS (14.25 mL / 375 µL / 375 µL /1.125 g / 375 µL) and the 

reaction was stirred at r.t. for 3 h. Cold Et2O was added to the mixture and centrifuged. 

The obtained pellet was purified by preparative HPLC [Gradient: 95% (H2O + 0.1% 

                                                           
[b] It was observed that with an amount of compound 44 larger than ca. 150 mg the performance   
of the cyclization reaction decreased drastically.  
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CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 50% (H2O + 0.1% CF3COOH) / 50% 

(CH3CN + 0.1% CF3COOH) in 45 min]. MS (ESI+): m/z calcd. for [C27H42N9O7]+: 604.32 

[M + H]+; found: 604.4; m/z calcd. for [C27H43N9O7]2+: 302.67 [M + 2H]2+; found: 302.9. 

 

Synthesis of Fmoc-Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N′-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl (54) 

 

Fmoc-Gly-Phe-Leu-Gly-OH (48) 

 

 

The experimental protocol is described in the general procedure for SPPS. 

1H NMR (400 MHz, DMSO) δ 12.55 (s, 1H), 8.14-7.98  (m, 3H), 7.89 (d, J = 7.5 Hz, 2H), 

7.70 (d, J = 7.4 Hz, 2H), 7.51 (t, J = 6.0 Hz, 1H), 7.41 (t, J = 7.3 Hz, 2H), 7.32 (t, J = 7.3 

Hz, 2H), 7.24-7.18 (m, J = 4.0 Hz, 4H), 7.18-7.12 (m, 1H), 4.55 (td, J = 8.7, 4.5 Hz, 1H), 

4.37-4.29 (m, 1H), 4.28-4.18 (m, 3H), 3.76-3.69 (m, 2H), 3.57 (ddd, J = 22.8, 17.2, 6.5 

Hz, 2H), 3.02 (dd, J = 13.8, 4.4 Hz, 1H), 2.81-2.74 (m, 1H), 1.60 (td, J = 13.1, 6.5 Hz, 

1H), 1.48 (t, J = 7.2 Hz, 2H), 0.85 (dd, J = 16.8, 6.5 Hz, 6H); MS (ESI+): m/z calcd. for 

[C34H39N4O7]+: 615.28 [M + H]+; found: 615.4. 
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Fmoc-Gly-Phe-Leu-Gly-N-[4-(hydroxymethyl)phenyl] (52) 

 

 

Compound 48 (270 mg, 0.44 mmol, 1 equiv.), HOBt (119 mg, 0.88 mmol, 2 equiv.) and 

DIC (136 µL, 0.88 mmol, 2 equiv.) were dissolved in DMF (16 mL) under nitrogen and 

stirred for 5 min. 4-Aminobenzyl alcohol (108.4 mg, 0.88 mmol, 2 equiv.) dissolved in 

DMF (5 mL) was then added to the previous mixture and the reaction was stirred 

overnight under nitrogen. DMF was then evaporated and CH2Cl2 was added. A yellow 

precipitate was formed and the solid was separated by filtration. Yield: 249 mg (78%). 

1H NMR (400 MHz, DMSO) δ 9.78 (s, 1H), 8.17 (q, J = 11.9, 6.7 Hz, 2H), 8.04 (d, J = 8.0 

Hz, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.70 (d, J = 7.4 Hz, 2H), 7.59-7.47 (m, 3H), 7.41 (t, J = 

7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.27-7.19(m, 6H), 7.18-7.11 (m, 1H), 5.09 (t, J = 5.6 

Hz, 1H), 4.57 (td, J = 8.6, 4.7 Hz, 1H), 4.43 (d, J = 5.2 Hz, 2H), 4.33-4.19 (m, 4H), 3.94-

3.80 (m, 2H), 3.59 (ddd, J = 46.2, 16.8, 6.1 Hz, 2H), 3.04 (dd, J = 13.9, 4.4 Hz, 1H), 2.79 

(dd, J = 13.8, 9.2 Hz, 1H), 1.66-1.57 (dt, J = 13.1, 6.6 Hz, 1H), 1.51 (t, J = 7.2 Hz, 2H), 

0.87 (dd, J = 18.0, 6.4 Hz, 6H) 13C NMR (101 MHz, DMSO) δ 172.70, 171.57,169.46, 

167.82, 156.93, 144.29, 141.17, 138.09, 137.89, 129.69, 128.47, 128.11, 127.55, 

127.43, 126.70, 125.71, 120.58, 119.28, 66.24, 63.06, 54.19, 51.83, 47.06, 43.78, 42.96, 

41.14, 37.89, 24.56, 23.46, 22.15. 
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Fmoc-Gly-Phe-Leu-Gly-N-[4-[[[(4-nitrophenoxy)carbonyl]oxy]methyl]phenyl] (53) 

 

 

Compound 52 (97 mg, 0.134 mmol, 1 equiv.) was dissolved in a mixture of THF (3 mL) 

and DMF (1 mL) and the reaction was cooled to 0 ºC under nitrogen. Pyridine was added 

(27 µL, 0.335 mmol, 2.5 equiv.) followed by a solution of 4-nitrophenyl chloroformate (54 

mg, 0.268 mmol, 2 equiv.) in DMF (710 µL). The reaction was stirred for 10 min at 0 ºC 

and then stirred for 2 h at r.t.. The solvent mixture was then removed and the crude was 

dissolved in CH2Cl2 and washed with 1 M aqueous KHSO4 (2 ×). The organic phase was 

dried over Na2SO4, concentrated and purified by flash chromatography (eluent: 95:5 

CH2Cl2/MeOH). Yield: 68.1 mg (58%). 1H NMR (400 MHz, DMSO) δ 9.93 (s, 1H), 8.34-

8.27 (m, 2H), 8.24-8.15 (m, 2H), 8.03 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.68 

(dd, J = 12.0, 8.0 Hz, 4H), 7.59-7.49 (m, 3H), 7.41 (t, J = 8.1 Hz, 4H), 7.31 (t, J = 7.1 Hz, 

2H), 7.22 (d, J = 4.3 Hz, 4H), 7.18-7.11 (m, 1H), 5.24 (s, 2H), 4.62-4.51 (m, 1H), 4.34-

4.17 (m, 4H), 3.89 (d, J = 6.1 Hz, 2H), 3.72-3.48 (m, 2H), 3.04 (dd, J = 13.9, 4.4 Hz, 1H), 

2.79 (dd, J = 13.9, 9.3 Hz, 1H), 1.61 (dt, J = 13.1, 6.5 Hz, 1H), 1.51 (t, J = 7.2 Hz, 2H), 

0.87 (dd, J = 18.2, 6.4 Hz, 6H). 13C NMR (101 MHz, DMSO) δ 172.76, 171.58, 169.47, 

168.17, 156.93, 155.76, 152.43, 145.64, 144.29, 141.17, 139.74, 138.08, 129.98, 

129.69, 128.47, 128.10, 127.54, 126.69, 125.87, 125.71, 123.07, 120.58, 119.46, 70.72, 

66.24, 54.18, 51.82, 47.06, 43.78, 43.16, 41.13, 37.90, 24.55, 23.77, 23.45, 22.15; MS 

(ESI+): m/z calcd. for [C48H48N6NaO11]+: 907.33 [M + Na]+; found: 907.37. 
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Fmoc-Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N′-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (54) 

 

 

Compound 53 was dissolved in THF (1 mL) and the solution cooled to 0 ºC under 

nitrogen. A solution of N-Boc-N,N’-dimethylethylenediamine (13.9 µL, 0.068 mmol, 2 

equiv.) and iPr2NEt (14.8 µL, 0.085 mmol, 2.5 equiv.) in THF (0.55 mL) was then added 

and the reaction was stirred overnight at r.t..The mixture was diluted with CH2Cl2 and 

washed with 1 M aqueous solution of KHSO4 (2 ×), saturated aqueous solution of 

NaHCO3 (2 ×) and brine (1 ×). The organic phase was dried over Na2SO4 and 

concentrated. The product was used without further purification. Yield: 27.6 mg (87%). 

1H NMR (400 MHz, DMSO) δ 9.86 (s, 1H), 8.21-8.14 (m, 2H), 8.03 (d, J = 8.0 Hz, 1H), 

7.89 (d, J = 7.5 Hz, 2H), 7.68 (t, J = 14.0 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 7.52 (t, J = 

5.9 Hz, 1H), 7.41 (t, J = 7.4 Hz, 2H), 7.36-7.25 (m, 4H), 7.21 (d, J = 4.2 Hz, 4H), 7.18-

7.10 (m, 1H), 4.97 (s, 2H), 4.63-4.51 (m, 1H), 4.36-4.08 (m, 4H), 3.90 (d, J = 14.7 Hz, 

2H), 3.73-3.49 (m, 2H), 3.03 (dd, J = 13.8, 4.3 Hz, 1H), 2.87-2.64 (m, 8H), 1.65-1.57 (m, 

1H), 1.56-1.47 (m, = 2H), 1.43-1.31 (m, 12H), 0.86 (dd, J = 18.1, 6.4 Hz, 6H); 13C NMR 

(101 MHz, DMSO) δ 172.25, 171.08, 168.99, 167.54, 156.46, 155.34, 154.65, 143.82, 

140.70, 138.47, 137.61, 132.08, 131.60, 129.22, 128.93, 128.42, 128.27, 127.99, 

127.62, 127.29, 127.07, 126.21, 125.24, 121.39, 120.10, 118.93, 78.45, 66.04, 65.77, 

53.71, 51.33, 46.59, 45.89, 43.30, 42.65, 40.67, 37.43, 33.70, 28.02, 24.08, 22.98, 21.67; 

MS (ESI+) m/z calcd. for [C51H63N7NaO10]+: 956.45 [M + Na]+; found: 956.71. 
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Synthesis of cyclo[DKP-RGD]-GFLG-PTX (37) and cyclo[RGDfK]-GFLG-

PTX (38) 

 

(Hemiglutarate)-Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N′- 

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (55) 

 

 

Compound 54 (10 mg, 0.011 mmol, 1 equiv.) was dissolved in DMF (200 µL) and the 

mixture was cooled to 0 ºC under nitrogen. Piperidine (5.3 µL, 0.054 mmol, 5 equiv.) was 

added and the reaction was stirred for 5 h. The crude was diluted with CH2Cl2 and 

extracted with saturated aqueous solution of NaHCO3 (3 ×). The organic phase was dried 

over Na2SO4, concentrated, dried under vacuum for 2 h and used in the following step 

without further purification. The crude free amine (0.011 mmol, 1 equiv.) was dissolved 

in DMF (120 µL) and cooled to 0 ºC under nitrogen atmosphere. iPr2NEt (7.1 µL, 0.041 

mmol, 3.75 equiv.), DMAP (0.33 mg, 0.00275 mmol, 0.25 equiv.) and glutaric anhydride 

(3.1 mg, 0.0275 mmol, 2.5 equiv.) were then added and the reaction was stirred 

overnight at r.t.. The mixture was diluted in CH2Cl2 and washed with 1 M aqueous solution 

of KHSO4 (2 ×) and brine (1 ×). The organic phase was dried over Na2SO4, concentrated 

and purified by flash chromatography (eluent: 9:1 CH2Cl2/MeOH + 0.2% AcOH). Yield: 

6.4 mg (70%) over two steps. 1H NMR (400 MHz, DMSO): δ 9.91 (s, 1H), 8.37 (s, 1H), 

8.24-8.15 (t, J = 5.5 Hz, 2H), 8.06 (t, J = 5.4 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.28 (d, J 

= 8.3 Hz, 2H), 7.25-7.21 (m, 4H), 7.19-7.15 (m, 1H), 4.98 (s, 2H), 4.53 (td, J = 9.0, 4.6 

Hz, 1H), 4.29 (td, J = 14.0, 8.4 Hz, 1H), 3.87 (d, J = 5.8 Hz, 2H), 3.70-3.53 (m, 3H), 3.32 

(s, 6H), 3.04 (dd, J = 13.8, 4.4 Hz, 1H), 2.87-2.65 (m, 8H), 2.14 (dd, J = 16.7, 7.5 Hz, 

4H), 1.89 (s, 2H), 1.74-1.67 (m, 2H), 1.64-1.48 (m, 4H), 1.35 (s, 9H), 0.87 (dd, J = 20.2, 

6.3 Hz, 6H). 13C NMR (101 MHz, DMSO) δ 172.86, 171.69, 169.53, 168.15, 155.82, 

138.99, 138.23, 132.04, 129.66, 128.87, 128.73, 128.50, 126.69, 119.42, 78.88, 66.53, 

66.32, 54.55, 51.89, 46.80, 46.42, 46.32, 46.08, 43.28, 42.52, 41.08, 37.73, 34.88, 34.41, 

34.15, 28.42, 24.57, 23.50, 22.09, 21.22; MS (ESI+) m/z calcd. for [C41H59N7NaO11]+: 

848.42 [M + Na]+; found: 848.64. 
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Cyclo[DKP–RGD]–Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (56a).  

 

 

Compound 55 (11 mg, 0.0119 mmol, 2 equiv.) was dissolved in DMF (500 µL) and cooled 

to 0 ºC under nitrogen. N-Hydroxysuccinimide (NHS, 1.8 mg, 0.0155 mmol, 2.6 equiv.) 

and EDC • HCl (3.4 mg, 0.0179 mmol, 3 equiv.) were added and the reaction was stirred 

at 0 ºC for 5 min. The reaction was allowed to reach r.t. and stirred overnight under 

nitrogen. Volatiles were removed in vacuo and the crude was re-dissolved in DMF (375 

µL). A solution of compound 32 (5.2 mg, 0.006 mmol, 1 equiv.) in phosphate buffer 

solution (375 µL, pH 7.5) was then added. During the first 3 h, the pH value was kept 

near 7.3-7.5 adding 0.2 M aqueous NaOH when necessary. The resulting solution was 

stirred overnight and then concentrated under vacuum. The crude residue was purified 

by semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 

0.1% CF3COOH) to 25% (H2O + 0.1% CF3COOH) / 75% (CH3CN + 0.1% CF3COOH) in 

15 min; tR (product): 10.5 min]. Yield: 1.41 mg (15%) over 2 steps. HRMS (ESI+): m/z 

calcd. for [C68H96N17O18]+:1438.712 [M + H]+; found: 1438.710; m/z calcd. for 

[C68H96N17NaO18]+: 730.856 [M + H + Na]2+; found: 730.851; m/z calcd. for 

[C68H95N17Na2O18]2+: 741.840 [M + 2Na]2+; found: 741.842. 
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Cyclo[DKP-RGD]-GFLG-PTX (37) 

 

 

A half volume of TFA was added to a 0.03 M solution of intermediate 56a in CH2Cl2 and 

the reaction was stirred at r.t. for 1 h. The solvent was evaporated under vacuum to afford 

the amine TFA salt. The crude was freeze-dried and used without further purification. 

The resulting TFA salt (6.4 mg, 0.0041 mmol, 1 equiv.) was dissolved in DMF (470 µL) 

and cooled to 0 ºC under nitrogen atmosphere. iPr2NEt (3.6 µL, 0.0205 mmol, 5 equiv.) 

and 2’-(4-nitrophenoxycarbonyl)paclitaxel (12.5 mg, 0.0123 mmol, 3.5 equiv.) were 

added and the mixture was allowed to reach r.t. and stirred overnight. The crude was 

concentrated, and the residue was purified by semipreparative HPLC [Gradient: 100% 

(H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O + 0.1% 

CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 12.5 min]. Yield: 

2.09 mg (26%). MS (MALDI): m/z calcd. for [C111H137N18O31]+: 2219.38 [M + H]+; found: 

2220.6 (HCCA matrix), 2219.1 (SA matrix); HRMS (ESI+): m/z calcd. for 

[C111H137N18O31Na]2+: 1120.480 [M + H + Na]2+; found: 1120.479; m/z calcd. for 

[C111H137N18O31Na2]3+: 754.650 [M + H + 2Na]3+; found: 754.648. 
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Cyclo[RGDfK]-Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (56b) 

 

 

Compound 55 (13 mg, 0.016 mmol, 1.3 equiv.) was dissolved in DMF (350 µL) and 

cooled to 0 ºC under nitrogen. NHS (2.8 mg, 0.024 mmol, 2 equiv.) and DIC (3.7 µL, 

0.024 mmol, 2 equiv.) were added and the reaction was stirred at 0 ºC for 5 min. The 

reaction was allowed to reach r.t. and stirred overnight under nitrogen. Volatiles were 

then removed in vacuo and the crude was re-dissolved in DMF (750 µL). A solution of 

cyclo[RGDfK] 1 (10 mg, 0.012 mmol, 1 equiv.) in phosphate buffer (750 µL, pH 7.5) was 

then added. In the initial part of the reaction (first 2-3 h), the pH was kept in the 7.3-7.6 

range by adding small aliquots of 0.2 M NaOH. The resulting solution was stirred 

overnight and then concentrated under vacuum. The crude residue was purified by 

semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% 

CF3COOH) to 25% (H2O + 0.1% CF3COOH) / 75% (CH3CN + 0.1% CF3COOH) in 15 

min; tR (product): 11 min]. Yield: 3.15 mg (17%) over two steps. MS (MALDI): m/z calcd. 

for [C68H99N16O17]+: 1412.61 [M + H]+; found: 1412.2 (HCCA matrix); HRMS (ESI+): m/z 

calcd. for [C68H98N16NaO17]+: 1433.719 [M + Na]+; found: 1433.717; m/z calcd. for 

[C68H98N16Na2O17]2+ 728.360 [M + 2Na]2+; found: 728.355. 

 

 

 

 

 

 

 

 



96 Experimental section 

  
 
Cyclo[RGDfK]-GFLG-PTX (38) 

 

 

A half volume of TFA was added to a 0.03 M solution of intermediate 56b in CH2Cl2 and 

the reaction was stirred at r.t. for 1 h. The solvent was evaporated to afford the free amine 

as TFA salt. The crude was freeze-dried and used without further purification. The 

resulting TFA salt (2.5 mg, 0.00163 mmol, 1 equiv.) was dissolved in DMF (190 µL) and 

cooled at 0 ºC under nitrogen atmosphere. iPr2NEt (2 µL, 0.0115 mmol, 7 equiv.) and 2’-

(4-nitrophenoxycarbonyl)paclitaxel 60 (5.8 mg, 0.0057 mmol, 3.5 equiv.) were added and 

the mixture was stirred overnight at r.t.. The crude was concentrated, and the residue 

was purified by semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% 

(CH3CN + 0.1% CF3COOH) to 0% (H2O + 0.1% CF3COOH) / 100% (CH3CN + 0.1% 

CF3COOH) in 20 min; tR (product): 13 min]. Yield: 1.22 mg (33%). MS (MALDI): m/z 

calcd. for [C111H140N17O30]+: 2192.39 [M + H]+; found: 2193.4 (HCCA matrix); 2194.1 (SA 

matrix); HRMS (ESI+): m/z calcd. for [C111H140N17O30Na]2+: 1106.993 [M + H + Na]2+; 

found: 1106.991. 
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Synthesis of cyclo[RGDfK]-PEG-4-azide (51a) 

 

Cyclo[RGDfK]-PEG-4-azide (51a) [c] 

 

 

Compound 50 (6.52 mg, 0.018 mmol, 1.3 equiv.) was dissolved in CH3CN (800 µL) and 

cooled to 0 ºC under nitrogen atmosphere. Cyclo[RDGfK] 46 (10 mg, 0.014 mmol, 1 

equiv.) was dissolved in phosphate buffer solution (pH 7.5, 600 µL) and added to the 

previous solution. The reaction was allowed to reach r.t. and stirred overnight under 

nitrogen. During the first 3 h, the pH value was kept near 7.3-7.5 by adding 0.2 M 

aqueous NaOH when necessary. The mixture was then concentrated and the crude 

purified by semipreparative HPLC [gradient: 90% (H2O + 0.1% CF3COOH) / 10% 

(CH3CN + 0.1% CF3COOH) to 55% (H2O + 0.1% CF3COOH) / 45% (CH3CN + 0.1% 

CF3COOH) in 10 min]. 1H NMR (400 MHz, D2O) δ 7.39 (t, J = 7.2 Hz, 2H), 7.33 (d, J = 

7.1 Hz, 1H), 7.27 (d, J = 7.2 Hz, 2H), 4.65 (dd, J = 9.6, 6.3 Hz, 1H), 4.36 (dd, J = 9.0, 5.6 

Hz, 1H), 4.22 (d, J = 15.0 Hz, 1H), 4.09 (s, 2H), 3.89 (dd, J = 10.1, 4.7 Hz, 1H), 3.76 (s, 

5H), 3.72 (t, J = 3.2 Hz, 10H), 3.53 (s, 1H), 3.50 (t, J = 4.8 Hz, 3H), 3.26-3.13 (m, 5H), 

3.11-2.88 (m, 4H), 2.75 (dd, J = 16.8, 6.4 Hz, 1H), 1.88 (dt, J = 20.3, 6.8 Hz, 1H), 1.66 

(dd, J = 17.2, 11.4 Hz, 3H), 1.58-1.46 (m, 4H), 1.04-0.94 (dd, J = 14.3, 7.1 Hz, 2H), 1.00 

(s, 2H); 13C NMR (101 MHz, D2O) δ 174.53, 174.32, 173.02, 172.72, 172.26, 171.33, 

171.27, 156.66, 135.97, 129.14, 128.79, 127.24, 70.30, 69.64, 69.56, 69.21, 55.41, 

55.04, 52.38, 50.14, 49.61, 43.46, 40.46, 38.51, 36.96, 34.28, 29.90, 27.58, 27.30, 24.43, 

22.55; MS (ESI+) m/z calcd. for [C37H59N12O12]+: 863.44 [M + H]+; found: 863.65; m/z 

calcd. for [C37H58N12NaO12]+: 885.42 [M + Na]+; found: 885.66; m/z calcd. for 

[C37H59N12NaO12]2+: 443.22 [M + Na + H]2+; found: 443.78. 

 

                                                           
[c] A. Raposo Moreira Dias, A. Pina, A. Dal Corso, D. Arosio, L. Belvisi, L. Pignataro, M. Caruso, 
C. Gennari, Chem. Eur. J. 2017, 23, 14410-14415. 
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Synthesis of cyclo[DKP-RGD]-PEG-4-GFLG-PTX (39) and cyclo[RGDfK]-

PEG-4-GFLG-PTX (40) 

 

4-((5S,8S)-8-benzyl-5-isobutyl-4,7,10,13-tetraoxo-3,6,9,12-tetraazaheptadec-16-

ynamido)benzyl tert-butyl ethane-1,2-diylbis(methylcarbamate) (57) 

 

 

Compound 54 (15 mg, 0.016 mmol, 1 equiv.) was dissolved in DMF (300 µL) and cooled 

to 0 ºC under nitrogen. Piperidine (7.9 µL, 0.08 mmol, 5 equiv.) was added and the 

reaction was stirred at r.t. overnight. The mixture was diluted with AcOEt and washed 

with saturated aqueous solution of NaHCO3 (3 ×). The organic phase was dried over 

Na2SO4, concentrated and dried under vacuum. The resulting free amine was used in 

the next step without further purification.  A solution of 4-pentynoic acid (2.35 mg, 0.024 

mmol, 1.5 equiv.) in DMF (540 µL) was cooled to 0 ºC under nitrogen. HATU (10.3 mg, 

0.0272 mmol, 1.7 equiv.), HOAt (3.7 mg, 0.0272 mmol, 1.7 equiv.) and iPr2NEt (11 µL, 

0.064 mmol, 4 equiv.) were added and the mixture was stirred at 0 ºC for 20 min. A 

solution of the free amine in DMF (230 µL) was then added to the stirred mixture. The 

reaction was allowed to reach room temperature and stirred overnight. The mixture was 

diluted with a 4:1 AcOEt/CH2Cl2 mixture and washed with 1 M aqueous solution of 

KHSO4 (2 ×), a saturated aqueous solution of NaHCO3 (1 ×) and brine (1 ×). The organic 

phase was dried over Na2SO4 and concentrated. The solid was suspended in Et2O and 

the product was collected. Yield: 6.9 mg (55%) over two steps. 1H NMR (400 MHz, 

DMSO) δ 9.86 (s, 1H), 8.19-8.10 (m, 3H), 8.05 (d, J = 8.1 Hz, 1H), 7.60 (d, J = 8.4 Hz, 

2H), 7.29 (d, J = 8.4 Hz, 2H), 7.25-7.21 (m, 4H), 7.19-7.13 (m, 1H), 4.98 (s, 2H), 4.54 

(td, J = 9.0, 4.3 Hz, 1H), 4.29 (dd, J = 14.7, 7.9 Hz, 1H), 3.87 (dd, J = 5.5, 3.1 Hz, 2H), 

3.76-3.54 (m, 2H), 3.04 (dd, J = 13.9, 4.2 Hz, 1H), 2.86-2.65 (m, 9H), 2.32 (s, 4H), 1.65-

1.56 (m, 1H), 1.52 (t, J = 6.6 Hz, 2H), 1.35 (s, 12H), 0.88 (dd, J = 20.1, 6.4 Hz, 6H); MS 

(ESI+) m/z calcd. for [C41H57N7NaO9]+: 814.41 [M + Na]+; found: 814.66. 
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Alkyne-Gly-Phe-Leu-Gly-PTX (58) 

 

 

A half volume of TFA was added to a 0.03 M solution of compound 57 in CH2Cl2 and the 

reaction was stirred at r.t. for 1 h. The solvent was evaporated to afford the free amine 

as TFA salt. The crude was freeze-dried and used without further purification. The 

resulting TFA salt (7.5 mg, 0.0108 mmol, 1 equiv.) was dissolved in DMF (320 µL) and 

cooled at 0 ºC under nitrogen atmosphere. iPr2NEt (7.5 µL, 0.043 mmol, 4 equiv.) and 

2’-(4-nitrophenoxycarbonyl)paclitaxel 60 (16.5 mg, 0.0162 mmol, 1.5 equiv.) were added 

and the mixture was stirred at r.t. overnight. The reaction mixture was diluted with AcOEt 

and washed with a 1 M aqueous solution of KHSO4 (2 ×) and brine (1 ×). The organic 

phase was dried over Na2SO4, concentrated and purified by flash chromatography 

(eluent: 9:1 CH2Cl2/MeOH) to afford pure 58. Yield: 10.18 mg (60%). HRMS (ESI+): m/z 

calcd. for [C84H98N8O22Na]+: 1593.669 [M + Na]+;  found: 1593.667; m/z calcd. for 

[C84H98N8O22Na2]2+: 808.329 [M + 2Na]2+; found: 808.328. 
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Cyclo[DKP-RGD]-PEG-4-GFLG-PTX (39) 

 

 

Compounds 58 (3.9 mg, 0.0025 mmol, 1.5 equiv.) and 51b (1.7 mg, 0.0017 mmol, 1 

equiv.) were dissolved in a degassed 1:1 water/DMF mixture (170 µL). Degassed 

aqueous solutions of CuSO4 
• 5H2O (0.2 mg, 0.000835 mmol, 0.5 equiv.) and sodium 

ascorbate (0.198 mg, 0.001 mmol, 0.6 equiv.) were added at r.t. and the mixture was 

stirred overnight at 30 ºC. The solution was concentrated, and the crude residue was 

purified by semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% 

(CH3CN + 0.1% CF3COOH) to 0% (H2O + 0.1% CF3COOH) / 100% (CH3CN + 0.1% 

CF3COOH) in 20 min; tR (product): 12.5 min]. Yield: 1.67mg (39%) over two steps. MS 

(ESI+): m/z calcd. for [C121H153N21O35Na2]2+: 1253.81 [M + 2Na]2+, found 1254.06; MS 

(ESI-): m/z calcd. for [C121H151N21O35]2-: 1229.8 [M - 2H]2-, found 1230.0. 
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Cyclo[RGDfK]-PEG-4-GFLG-PTX (40) 

 

 

Compound 58 (5 mg, 0.0032 mmol, 1.5 equiv.) and 51a (1.84 mg, 0.0022 mmol, 1 equiv.) 

were dissolved in a degassed 1:1 water/DMF mixture (220 µL). Degassed aqueous 

solutions of CuSO4 
• 5H2O (0.28 mg, 0.0011 mmol, 0.5 equiv.) and sodium ascorbate 

(0.26 mg, 0.00132 mmol, 0.6 equiv.) were added at r.t. and the mixture was stirred 

overnight at 30 ºC. The solution was concentrated, and the crude residue was purified 

by semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 

0.1% CF3COOH) to 0% (H2O + 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 

20 min; tR (product): 13 min]. Yield: 4.13 mg (76 %) over two steps. MS (MALDI): m/z 

calcd. for [C121H157N20O34]+: 2434.65 [M + H]+, found: 2436.0 (HCCA matrix); 2435.7 (SA 

matrix). 
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Synthesis of cyclo[DKP-RGD]-α-amanitin conjugates (62 and 63) 
 

Synthesis of cyclo[DKP-RGD]-Val-Ala-α-amanitin (62) 

 

Hemiglutarate-Val-Ala-α-amanitin (65b) 

 

 

Compound 64b (5 mg, 3.9 μmol, 1 equiv.) was cooled at 0 ºC under nitrogen atmosphere. 

Glutaric anhydride (0.65 mg, 5.7 μmol, 1.5 equiv.), DMAP (0.12 mg, 0.9 μmol, 0.25 

equiv.) and iPr2NEt (1 µL, 5.7 μmol, 1.5 equiv.) were added as stock solutions in DMF 

and the reaction was stirred at 0 ºC for a few minutes. The mixture was then warmed to 

room temperature and stirred overnight under nitrogen atmosphere. The solvent was 

evaporated under high vacuum and the crude was purified by semipreparative HPLC 

[Waters Atlantis 21 mm × 10 cm column; gradient: 100% (H2O + 0.1 % CF3COOH)/0% 

(CH3CN + 0.1% CF3COOH) to 50% (H2O + 0.1 % CF3COOH)/50% (CH3CN + 0.1% 

CF3COOH) in 9 minutes; tR: (product): 8.6 min]. The purified compound was then freeze-

dried to allow compound 65b as a white solid (4.92 mg, 98% yield). MS (MALDI-TOF): 

m/z calcd. for [C59H82N13O19S]+: 1309.42 [M + H]+; found: 1309 (SA matrix);  m/z calcd. 

for [C59H81N13NaO19S]+: 1331.40 [M + Na]+; found: 1331.7 (HCCA matrix), 1331 (SA 

matrix); m/z calcd. for [C59H81N13Na2O19S2]2+: 1354.39 [M + 2 Na]2+; found: 1353.7 (HCCA 

matrix), 1353 (SA matrix). 
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Cyclo[DKP-RGD]-Val-Ala-α-amanitin (62) 

 

 
Compound 65b (8.46 mg, 6.5 μmol, 1 equiv.) was dissolved in 80 µL of DMF and cooled 

at 0 ºC under nitrogen conditions. N-hydroxysuccinimide (1.11 mg, 9.7 μmol, 1.5 equiv.) 

and DIC (1.5 µL, 9.7 μmol, 1.5 equiv.) were added (the two incorporated reagents were 

prepared as stock solutions in DMF) and the reaction was stirred at 0 ºC for a few 

minutes. The mixture was then warmed to room temperature and stirred overnight under 

nitrogen atmosphere. Volatiles were then removed in vacuo to give a solid, which was 

re-dissolved in PBS (210 µL, pH 7.5) and DMF (30 µL) and cooled at 0 ºC. A solution of 

NH2CH2-cyclo[DKP-RGD] (32) (2.78 mg, 3.23 µL, 0.5 equiv.) in phosphate buffer (150 

µL, pH 7.5) was then added to the previous solution, and the pH was adjusted to 7.3-7.6 

by adding small aliquots of aqueous NaOH (0.2 M) during the first hours of reaction, until 

a stable value was observed. The solution was concentrated, and the crude residue was 

purified by semipreparative HPLC [Waters Atlantis 21 mm × 10 cm column; flow: 15 

mL/min, gradient: 100% (H2O + 0.1 % CF3COOH)/0% (CH3CN + 0.1% CF3COOH) to 

50% (H2O + 0.1 % CF3COOH)/50% (CH3CN + 0.1% CF3COOH) in 9 minutes; tR: 

(product): 8.3 min]. The purified compound was then freeze-dried to allow compound 62 

as a white solid (4.85 mg, 74% of yield). 

MS (ESI+) m/z calcd. for [C86H119N23O26S]2+: 960.92 [M + 2H]2+; found: 960.76; m/z calcd. 

for [C86H118N23NaO26S]2+: 971.91 [M + Na + H]2+; found: 972.23; m/z calcd. for 

[C86H117N23Na2O26S]2+: 982.9 [M + 2Na]2+; found: 982.74; HRMS (ESI+): m/z calcd. for 

[C86H118N23NaO26S]2+: 971.91 [M + Na + 1H]2+; found: 971.91; m/z calcd. for 

[C86H117N23Na2O26S]2+: 982.90 [M + 2Na]2+; found: 982.90; m/z calcd. for 

[C86H116N23Na3O26S]2+: 993.89 [M + 3Na - H]2+; found: 993.89; m/z calcd. for 

[C86H117N23Na3O26S]3+: 662.93 [M + 3Na]3+; found: 662.93. 
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Synthesis of cyclo[DKP-RGD]-uncleavable-α-amanitin (63) 

Hemiglutarate-aminohexyl-α-amanitin (65a) 

 

 
Compound 64a (5 mg, 4.4 μmol, 1 equiv.) was dissolved in 10 µL of DMF and cooled at 

0 ºC under nitrogen conditions. Glutaric anhydride (1.26 mg, 11 μmol, 2.5 equiv.), DMAP 

(0.13 mg, 1.1 μmol, 0.25 equiv.) and iPr2NEt (2.87 µL, 16.5 μmol, 3.75 equiv.) were 

added as stock solutions in DMF and the reaction was stirred at 0 ºC for a few minutes. 

The mixture was then warmed to room temperature and stirred overnight under nitrogen 

atmosphere. The solvent was evaporated under high vacuum and the crude was purified 

by semipreparative HPLC [Waters Atlantis 21 mm × 10 cm column; gradient: 100% (H2O 

+ 0.1 % CF3COOH)/0% (CH3CN + 0.1% CF3COOH) to 55% (H2O + 0.1 % 

CF3COOH)/45% (CH3CN + 0.1% CF3COOH) in 10 minutes; tR: (product): 8.8 min]. The 

purified compound was then freeze-dried to allow compound 65a as a white solid (3.85 

mg, 77% yield). 1H NMR (400 MHz, D2O) δ 8.70 (d, J = 9.8 Hz, 1H), 8.25 (d, J = 7.1 Hz, 

1H), 7.77 (d, J = 8.9 Hz, 1H), 7.10 (d, J = 2.0 Hz, 1H), 6.96 (dd, J = 8.9, 2.1 Hz, 1H), 5.26 

(td, J = 11.4, 8.1 Hz, 1H), 5.11 (dd, J = 12.8, 4.7 Hz, 1H), 5.00 (s, 1H), 4.74 (s, 1H), 4.67 

– 4.61 (m, 2H), 4.26 – 4.09 (m, 5H), 3.88 (d, J = 13.7 Hz, 1H), 3.82 (d, J =18.8 Hz, 2H), 

3.77 – 3.71 (m, 5H), 3.67 – 3.52 (m, 3H), 3.30 – 3.20 (m, 4H), 2.94 (dd, J = 14.6, 11.8 

Hz, 1H), 2.58 – 2.50 (m, 1H), 2.49 –  2.41 (m, 1H), 2.34 – 2.28 (m, 2H), 2.27 – 2.14 (m, 

3H), 1.89 – 1.79 (m, 4H), 1.78 – 1.70 (m, 1H), 1.61 – 1.48 (m, 5H), 1.47 – 1.38 (m, 2H), 

1.29 – 1.19 (m, 1H), 1.03 (d, J = 7.0 Hz, 3H), 0.92 – 0.86 (m, 6H); 13C NMR (101 MHz, 

D2O) δ 174.86, 174.17, 173.79, 173.27, 171.88, 171.65, 170.91, 170.17, 168.65, 168.53, 

157.00, 139.14, 127.40, 122.47, 121.38, 114.35, 111.87, 96.07, 72.73, 69.84, 68.81, 

63.36, 62.08, 59.91, 56.63, 55.73, 52.89, 51.60, 50.64, 42.58, 41.68, 39.12, 37.87, 37.21, 

34.85, 33.30, 32.69, 28.06, 25.44, 25.33, 24.76, 20.76, 14.12, 12.96, 9.80; MS (ESI+) 

m/z calcd. for [C50H74N11O17S]+: 1132.50 [M + H]+; found: 1132.87; m/z calcd. for 

[C50H73N11NaO17S]+: 1154.48 [M + Na]+; found: 1154.86; m/z calcd. for [C50H75N11O17S]2+: 
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566.75 [M + 2H]2+; found: 566.95; m/z calcd. for [C50H74N11NaO17S]2+: 578.25 [M + 1H + 

Na]2+; found: 577.94. 

 

Cyclo[DKP-RGD]-uncleavable-α-amanitin (63) 

 

 
Compound 65a (7.58 mg, 6.7 μmol, 1 equiv.) was dissolved in 175 µL of DMF and cooled 

at 0 ºC under nitrogen atmosphere. N-hydroxysuccinimide (1.15 mg, 10 μmol, 1.5 equiv.) 

and DIC (1.55 µL, 10 μmol, 1.5 equiv.) were added as stock solutions in DMF and the 

reaction was stirred at 0 ºC for a few minutes. The reaction was allowed to reach room 

temperature and stirred overnight under nitrogen atmosphere. Volatiles were then 

removed in vacuo to give a solid, which was redissolved in acetonitrile (176 µL) and 

cooled at 0 ºC. A solution of NH2CH2-cyclo[DKP-RGD] (32) (2.88 mg, 3.35 μmol, 0.5 

equiv.) in phosphate buffer (211 µL, pH 7.5) was then added to the acetonitrile solution, 

and the pH value was adjust to 7.3–7.6 with NaOH (0.2 M). The resulting solution was 

warmed to room temperature and stirred overnight. During the first hours, the pH was 

adjusted between 7.3–7.6 with NaOH (0.2 M), until a stable value was observed. The 

solution was concentrated, and the crude residue was purified by semipreparative HPLC 

[Waters Atlantis 21 mm × 10 cm column; gradient: 100% (H2O + 0.1 % CF3COOH)/0% 

(CH3CN + 0.1% CF3COOH) to 50% (H2O + 0.1 % CF3COOH)/ 50% (CH3CN + 0.1% 

CF3COOH) in 9 minutes; tR: (product): 8 min]. The purified compound was then freeze-

dried to allow compound 63 as a white solid (2.87 mg, 46% yield). 1H NMR (400 MHz, 

D2O) δ 8.70 (s, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 8.9 Hz, 1H), 7.26 (m, 4H), 7.01 

(d, J = 2.1 Hz, 1H), 6.88 (dd, J = 8.8, 2.1 Hz, 1H), 5.30 – 5.19 (m, 1H), 5.11 (dd, J = 9.5, 

4.7 Hz, 1H), 5.03 – 4.97 (m, 2H), 4.88 (t, J = 7.1 Hz, 1H), 4.75 (s, 1H), 4.68 – 4.61 (m, 

2H), 4.55 (dd, J = 7.9, 5.6 Hz, 1H), 4.39 – 4.04 (m, 11H), 4.00 – 3.79 (m, 3H), 3.79 – 

3.48 (m, 10H), 3.31 – 3.14 (m, 6H), 2.99 – 2.74 (m, 2H), 2.66 – 2.43 (m, 1H), 2.34 – 2.12 

(m, 4H), 2.05 – 1.87 (m, 2H), 1.85 – 1.70 (m, 3H), 1.71 – 1.60 (m, 1H), 1.57 – 1.44 (m, 

4H), 1.43 – 1.33 (m, 2H), 1.26 – 1.20 (m, 2H), 1.15 (d, J = 6.5 Hz, 8H), 1.04 (d, J = 7.0 
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Hz, 3H), 0.95 – 0.85 (m, 6H). MS (MALDI-TOF): m/z calcd. for [C77H110N21O24S]+: 

1745.89 [M + H]+; found: 1746.5 (HCCA matrix), 1747.9 (SA matrix). 

 

Synthesis of Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) and 

cyclo[RGDfK]-GPLG- PTX (73) bearing extracellular cleavable linkers 
 

Synthesis of Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) 

 

2-((propan-2-ylideamino)oxy)acetic-Gly-Pro-Leu-Gly-Val-Arg-Gly-OH (78) 

 

 

The experimental protocol is described in parts 1 (Coupling of the first amino acid – 

Fmoc-glycine-OH) and 2 (Addition of other amino acids) of the General procedure for 

SPPS.[d]

The resin was dried under vacuum for 2 h and then dissolved in a 9.5/0.5/0.5 

TFA/TIS/H2O mixture with magnetic stirring for 3 h. After this, the crude was added into 

a diethyl ether cold solution and a white solid was formed. The diethyl ether was 

centrifuged (3 x 5 mins) and the pellet obtained was frozen-dried. The compound was 

used without further purification. Yield: 200 mg (60%). MS (ESI+): m/z calcd. for 

[C33H58N11O10]+: 768.44 [M + H]+; found: 768.6. 

 

 

 

 

 

 

 

                                                           
[d] The addition of 2-((propan-2-ylideneamino)oxy)acetic acid was made also in SPPS following the 
experimental procedure described in Part 2 of the general procedure for the SPPS. 
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2-((propan-2-ylideamino)oxy)acetic-Gly-Pro-Leu-Gly-Val-Arg-Gly-cyclo[RGDfK] (79) 

 

 

 

 

 

 

 

Compound 78 (31 mg, 0.035 mmol, 1 equiv.) and BOP (14.2 mg, 0.032 mmol, 0.9 equiv.) 

were dissolved in DMF (600 µL). After this, iPr2EtN (16.5 µL, 0.0945 mmol, 2.7 equiv.) 

was added and the mixture was stirred for 20 minutes. Then, a solution of cyclo[RGDfK] 

46 (14.6 mg, 0.0175 mmol, 0.5 equiv.) in DMF (800 µL) was added and the reaction was 

stirred during 3 hours. The crude is purified by preparative HPLC [Gradient: 95% (H2O + 

0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 50% (H2O + 0.1% CF3COOH) / 

50% (CH3CN + 0.1% CF3COOH) in 45 min]. Yield: 24.8 mg (89%). HRMS (ESI+): m/z 

calcd. for [C60H97N20O16]+: 1353.731 [M + H]+; found: 1353.743; m/z calcd. for 

[C97H98N20O16]2+: 677.373 [M + 2H]2+; found: 677.371; m/z calcd. for [C97H97N20O16Na]2+: 

688.364 [M + H + Na]2+; found: 688.363. 
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Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) 

 

 

Compound 79 (14 mg, 0.0088 mmol, 1 equiv.) was dissolved in NH4OAc buffer (3 mL) 

and then O-methyloxylamine hydrochloride (15.7 mg, 0.176 mmol, 20 equiv.) was added. 

The reaction was stirred for 2 hours and then purified by semipreparative HPLC 

[Gradient: 95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 50% (H2O 

+ 0.1% CF3COOH) / 50% (CH3CN + 0.1% CF3COOH) in 45 min]. The unstable 

deprotected intermediate was evaporated under high vacuum and used directly in the 

following reaction. The compound was redissolved in NH4OAc buffer and then 

daunomycin (15 mg, 0.028 mmol, 3.2 equiv.) was added. The mixture was stirred over 

two nights and then purified by semipreparative HPLC [Gradient: 95% (H2O + 0.1% 

CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 50% (H2O + 0.1% CF3COOH) / 50% 

(CH3CN + 0.1% CF3COOH) in 45 min]. Yield: 7.9 mg (41% over two steps). MS (ESI +): 

m/z calcd. for HRMS (ESI+): m/z calcd. for [C84H121N21O25]2+: 911.942 [M + 2H]+; found: 

912.443.
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Synthesis of cyclo[RGDfK]-GPLG-PTX (73) 

 

Fmoc-Gly-Pro-Leu-Gly-OH (81) 

 

 

The experimental protocol is described in the general procedure for SPPS. 

1H NMR (400 MHz, CDCl3): δ 7.74 (d, J = 7.5 Hz, 2H), 7.57 (dt, J = 25.4, 12.8 Hz, 2H), 

7.38 (t, J = 7.2 Hz, 3H), 7.33 – 7.27 (m, 2H), 6.30 (s, 1H), 5.70 (s, 3H), 4.53 (d, J = 18.7 

Hz, 1H), 4.41 – 4.31 (m, 1H), 4.26 (m, 1H), 4.22 – 4.09 (m, 2H), 3.99 (d, J = 14.9 Hz, 

1H), 3.90 – 3.69 (m, 3H), 3.48 (s, 1H), 2.12 (s, 2H), 2.00 (s, 2H), 1.80 (s, 1H), 1.60 (d, J 

= 7.1 Hz, 2H), 0.92 – 0.82 (m, 6H). MS (ESI+): m/z calcd. for [C30H37N4O7]+: 565.3 [M + 

H]+; found: 565.4. 

 

 

Fmoc-Gly-Pro-Leu-Gly-N-[4-(hydroxymethyl)phenyl] (82) 

 

 

Compound 81 (250 mg, 0.44 mmol, 1 equiv.) was dried under vacuum for 1 hour before 

using. After this, it was dissolved in CH2Cl2 (5 mL) and EEDQ (247 mg, 0.88 mmol, 2 

equiv.) and 4-aminobenzyl alcohol (108.4 mg, 0.88 mmol, 2 equiv.) were added. The 

reaction is stirred overnight under argon conditions at r.t. The solvent is evaporated and 
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cold diethyl ether is added. The precipitate formed was filtered, dried and used without 

further purification. Yield: 270.4 mg (91%). MS (ESI+): m/z calcd. for [C37H44N5O7]+: 670.3 

[M + H]+; found: 670.4. 

 

 

Fmoc-Gly-Pro-Leu-Gly-N-[4-[[[(4-nitrophenoxy)carbonyl]oxy]methyl]phenyl] (83) 

 

 

Compound 82 (50 mg, 0.075 mmol, 1 equiv.) and 4-nitrophenyl choloroformate (30 mg, 

0.15 mmol, 2 equiv.) were dissolved in CH2Cl2 (2.1 mL). Then, pyridine (20 µL, 0.187 

mmol, 2.5 equiv.) was added and the reaction was stirred overnight under argon 

conditions. The mixture was extracted with a 1 M aqueous solution of KHSO4 (2 ×) and 

brine (1 ×). The organic phase was dried over Na2SO4, concentrated and purified by flash 

chromatography (eluent: 9.5:0.5 CH2Cl2/MeOH) to afford pure 83. Yield: 45 mg (72%). 

MS (ESI+): m/z calcd. for [C44H47N6O11]+: 835.3 [M + H]+; found: 835.3. 

 

 

Fmoc-Gly-Pro-Leu-Gly-N-[4-[[[(N-(Boc)-N,N′-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (84) 

 

 

Compound 83 (331 mg, 0.396 mmol, 1 equiv.) was dissolved in CH2Cl2 (9 mL) and cooled 

to 0 ºC. Then, a solution of N-Boc-N,N’-dimethylethylenediamine (162 µL, 0.792 mmol, 
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2 equiv.) and iPr2Net (172 µL, 0.99 mmol, 2.5 equiv.) in CH2Cl2 (9 mL) was added. The 

reaction was allowed to reach room temperature and stirred overnight. The mixture was 

extracted with 1 M aqueous solution of KHSO4 (2 ×) and saturated 5% aqueous solution 

of NaHCO3 (2 ×). The organic phase was dried over Na2SO4, concentrated and purified 

by flash chromatography (eluent: 9.5:0.5 CH2Cl2/MeOH) to afford pure 84. Yield: 301 mg 

(86%). MS (ESI+): m/z calcd. for [C47H62N7O10]+: 884.5 [M + H]+; found: 884.4. 

 

 

(Hemiglutarate)-Gly-Pro-Leu-Gly-N-[4-[[[(N-(Boc)-N,N′-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (85) 

 

 

Compound 84 (405 mg, 0.458 mmol, 1 equiv.) was dissolved in CH2Cl2 (4.6 mL) and the 

mixture was cooled to 0 ºC under argon. Piperidine (226 µL, 2.29 mmol, 5 equiv.) was 

added and the reaction was stirred for 3 h. The crude was extracted with 5% aqueous 

solution of NaHCO3 (3 ×). The organic phase was dried over Na2SO4, concentrated, dried 

under vacuum for 2 h and used in the following step without further purification. The 

crude free amine (303 mg, 0.458 mmol, 1 equiv.) and DMAP (15.8 mg, 0.12 mmol, 0.25 

equiv.)  were dissolved in CH2Cl2 (5.3 mL) and cooled to 0 ºC under argon atmosphere. 

Then, iPr2NEt (338 µL, 1.94 mmol, 3.75 equiv.) is added followed by glutaric anhydride 

(147 mg, 1.29 mmol, 2.5 equiv.) dissolved in CH2Cl2/DMF (1.3 mL/2 mL). The reaction 

was kept a few minutes at 0 ºC and then it was allowed to reach r.t. and stirred overnight. 

The solvents are evaporated and the mixture is redissolved in CH2Cl2. The mixture is 

extracted with with 1 M aqueous solution of KHSO4 (2 ×) and brine (1 ×). The organic 

phase was dried over Na2SO4, concentrated and purified by flash chromatography 

(eluent: 9:1 CH2Cl2/MeOH + 0.2% AcOH). Yield: 220 mg (62%) over two steps. MS 

(ESI+): m/z calcd. for [C37H58N7O11]+: 776.4 [M + H]+; found: 776.4. 

 



112  Experimental section 

 

Cyclo[RGDfK]–Gly-Pro-Leu-Gly-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (86).  

 

 

Compound 85 (17.4 mg, 0.022 mmol, 1 equiv.) and BOP (8.9 mg, 0.0202 mmol, 0.9 

equiv.) were dissolved in DMF (500 µL) and then iPr2Net (10.3 µL, 0.0549 mmol, 2.7 

equiv.) was added (pH = 6-7). The mixture was stirred at r.t. for 20 minutes and after 

cyclo[RGDfK] 46 (9.14 mg, 0.011 mmol, 0.5 equiv.) dissolved in DMF (570 µL) was 

added. The mixture was stirred for 3 hours and then it was purified directly by preparative 

HPLC [Gradient: 95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 50% 

(H2O + 0.1% CF3COOH) / 50% (CH3CN + 0.1% CF3COOH) in 45 min]. Yield: 5.2 mg 

(32%). MS (ESI+): m/z calcd. for [C64H97N16O17]+: 1361.7 [M + H]+; found: 1361.9. 
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Cyclo[RGDfK]-GPLG-PTX (73) 

 

 

 

A half volume of TFA was added to a 0.03 M solution of intermediate 86 in CH2Cl2 and 

the reaction was stirred at r.t. for 1 h. The solvent was evaporated under vacuum to afford 

the amine TFA salt. The crude was freeze-dried and used without further purification. 

The resulting TFA salt (3.06 mg, 0.00206 mmol, 1 equiv.) and and 2’-(4-

nitrophenoxycarbonyl)paclitaxel 60 (42 mg, 0.0041mmol, 2 equiv.) were dissolved in 

DMF (149 µL) and cooled to 0 ºC under nitrogen atmosphere. iPr2NEt (1.79 µL, 0.0103 

mmol, 5 equiv.) was added and the mixture was allowed to reach r.t. and stirred over two 

nights. The crude was concentrated, and the residue was purified by semipreparative 

HPLC [Gradient: 95% (H2O + 0.1% CF3COOH) / 5% (CH3CN + 0.1% CF3COOH) to 50% 

(H2O + 0.1% CF3COOH) / 50% (CH3CN + 0.1% CF3COOH) in 45 min]. Yield: 0.3 mg 

(6%). MS (ESI+): m/z calcd. for [C107H138N17O30]+: 2141.0 [M + H]+; found: 2141.6. 
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Synthesis of conjugates containing the β-glucuronide linker (88 and 

89) 
 

(2S,3R,4S,5S,6S)-2-(4-formyl-2-nitrophenoxy)-6-(methoxycarbonyl)tetrahydro-2H-

pyran-3,4,5-triyl triacetate (92) 

 

 

To a solution of 4-hydroxy-3-nitrobenzaldehyde (5 g, 29.6 mmol, 1 equiv.) and 

acetobromo-α-D-glucuronic acid methyl ester (8.5 g, 31.3 mmol, 1.1 equiv.) in CH3CN 

(100 mL), molecular sieves (10 g) and Ag2O (18 g) were added. The reaction was stirred 

under argon overnight and then filtrated and concentrated under vacuum. The crude was 

diluted in H2O (100 mL) and washed with ethyl acetate (2 x 200 mL). The organic phase 

was dried over MgSO4, concentrated and purified by automatic chromatography 

(gradient: from 100% CH2Cl2/ 0% CH2Cl2:CH3OH 9:1 to 50% CH2Cl2/ 50% 

CH2Cl2:CH3OH 9:1 in 27 minutes). Yield: 9.33 g (65%). 1H NMR (500 MHz, CDCl3) δ 

9.97 (s, 1H), 8.31 (d, J = 2.0 Hz, 1H), 8.08 (dd, J = 8.7, 2.1 Hz, 1H), 7.50 (d, J = 8.6 Hz, 

1H), 5.43 – 5.39 (m, 2H), 5.34 – 5.26 (m, 2H), 4.33 (d, J = 8.5 Hz, 1H), 3.70 (s, 3H), 2.12 

(d, J = 6.8 Hz, 3H), 2.06 (t, J = 6.0 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 188.73, 170.03, 

169.37, 169.20, 166.76, 153.39, 141.20, 134.41, 131.54, 126.81, 118.81, 98.63, 72.75, 

70.26, 69.82, 68.22, 53.22, 20.70, 20.66, 20.65. 
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(2S,3R,4S,5S,6S)-2-(4-(hydroxymethyl)-2-nitrophenoxy)-6 

(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (93) 

 

 

 

NaBH4 (1.23 g, 32.5 mmol, 1.7 equiv.) was added to a solution of 92 (9.21 g, 19 mmol, 

1 equiv.) in iPrOH/CHCl3 (37 mL/135 mL) under argon conditions. The reaction was 

stirred at 0 ºC for 2 hours and a half. The crude mixture was quenched with water and 

later diluted with ethyl acetate and washed with ammonium hydroxide solution and brine. 

The organic phase was dried over MgSO4, concentrated and purified by automatic 

chromatography (gradient: from 100% CH2Cl2/ 0% CH2Cl2:CH3OH 9:1 to 0% CH2Cl2/ 

100% CH2Cl2:CH3OH 9:1 in 27 minutes). Yield: 5.71 g (62%). 1H NMR (500 MHz, CDCl3) 

δ 7.79 (d, J = 2.0 Hz, 1H), 7.52 (dd, J = 8.5, 2.1 Hz, 1H), 7.35 (d, J = 8.5 Hz, 1H), 5.35 – 

5.25 (m, 3H), 5.18 (d, J = 6.9 Hz, 1H), 4.71 (d, J = 4.5 Hz, 2H), 4.22 – 4.19 (m, 1H), 3.73 

(d, J = 6.4 Hz, 3H), 2.18 (d, J = 4.5 Hz, 1H), 2.11 (s, 3H), 2.05 (d, J = 3.4 Hz, 6H); 13C 

NMR (126 MHz, CDCl3) δ 170.01, 169.32, 169.30, 166.70, 148.10, 141.22, 137.36, 

131.90, 123.15, 120.16, 99.84, 72.46, 71.10, 70.15, 68.71, 63.37, 53.03, 20.55, 20.51, 

20.47. 
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(2S,3R,4S,5S,6S)-2-(2-amino-4-(hydroxymethyl)phenoxy)-6-

(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (94) 

 

 

 

Compound 93 (5.71 g, 11.8 mmol, 1 equiv.) was dissolved in ethyl acetate (80 mL), EtOH 

(180 mL) and MeOH (40 mL) and then a spatula of Pd catalyst was added under argon. 

After this, H2 was added. The reaction was stirred overnight at room temperature. The 

catalyst was filtered with celite and concentrated under vacuum. The crude was used 

without further purification. Yield: 5.2 g (97%). 1H NMR (500 MHz, CDCL3) δ 6.88 (d, J 

= 8.2 Hz, 1H), 6.71 (d, J = 1.8 Hz, 1H), 6.63 (dd, J = 8.2, 1.9 Hz, 1H), 5.38 – 5.24 (m, 

3H), 4.99 (t, J = 10.3 Hz, 1H), 4.53 (s, 2H), 4.13 (t, J = 12.0 Hz, 1H), 3.76 (d, J = 14.7 

Hz, 3H), 3.04 (s, 2H), 2.11 – 1.99 (m, 9H); 13C NMR (126 MHz, CDCl3) δ 169.99, 169.63, 

169.37, 166.78, 143.67, 137.80, 137.30, 116.70, 116.50, 114.46, 100.52, 72.49, 71.59, 

70.93, 69.22, 64.93, 52.98, 20.72, 20.57, 20.45. 
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Synthesis of cyclo[DKP-RGD]-β-glucuronide-MMAE (88) 

 

Fmoc-(2S,3R,4S,5S,6S)-2-(2-amino-4-(hydroxymethyl)phenoxy)-6-

(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (94b) 

 

 

 

Compound 94 (200 mg, 0.44 mmol, 1 equiv.) was dissolved in CH2Cl2 (12 mL) and 

iPr2NEt (115 µL, 0.66 mmol, 1.5 equiv.) and DMAP (13.4 mg, 0.11 mmol, 0.25 equiv.) 

were added. Then, Fmoc-OSu (178 mg, 0.53 mmol, 1.2 equiv.) was added and the 

reaction was stirred under argon for 3 hours. The reaction mixture was washed with a 1 

M aqueous solution of KHSO4 (2 ×) and brine (1 ×). The organic phase was dried over 

MgSO4, concentrated and purified by automatic chromatography (eluent: 9.8:0.2 

CH2Cl2/MeOH). Yield: 66 mg (22%). MS (ESI+): m/z calcd. for [C35H36NO13]+: 678.22 [M 

+ H]+; found: 678.17; m/z calcd. for [C35H35NO13Na]+: 700.20 [M + Na]+; found: 700.25. 
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Fmoc-(2S,3R,4S,5S,6S)-2-(2-amino-4-((((4-

nitrophenoxy)carbonyl)oxy)methyl)phenoxy)-6-(methoxycarbonyl)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (95) 

 

 

 

Compound 94b (66 mg, 0.097 mmol, 1 equiv.) was dissolved in THF (2.9 mL) and then 

pyridine (19.6 µL, 0.242 mmol, 2.5 equiv.) was added. The reaction was stirred at 0 ºC 

under argon conditions. Then, 4-nitrophenylchloroformate (39.3 mg, 0.195 mmol, 2 

equiv.) was added and the reaction is stirred at room temperature for 3 hours. The 

mixture is diluted in CH2Cl2 (40 mL) and washed with an aqueous solution of citric acid 

(2 x 20 mL) and brine (1 x 20 mL). The organic phase was dried over MgSO4, 

concentrated and purified by automatic chromatography (eluent: 4:6 hexane/ethyl 

acetate). Yield: 34 mg (42%). MS (ESI+): m/z calcd. for [C42H38N2O17Na]+: 865.21 [M + 

Na]+; found: 865.17. 
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MMAE-Fmoc-(2S,3R,4S,5S,6S)-2-(2-amino-4-(hydroxymethyl)phenoxy)-6-

(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (95b) 

 

 

 

Compound 95 (15 mg, 0.0178 mmol, 1.5 equiv.), MMAE (8.5 mg, 0.0119 mmol, 1 equiv.) 

and HOBt (0.32 mg, 0.00238 mmol, 0.2 equiv.) were dissolved in DMF (340 µL) at 0 ºC. 

Then, pyridine (12 µL, 0.149 mmol, 12.5 equiv.) and iPr2NEt (4.1 µL, 0.0238 mmol, 2 

equiv.) were added. The reaction was stirred at room temperature under argon 2 hours. 

The solvent was evaporated and a preparative HPLC was carried out [Gradient: 95% 

(H2O + 0.05% CF3COOH) / 5% CH3CN to 50% (H2O + 0.05% CF3COOH) / 50% CH3CN 

in 1 min and then from 50% (H2O + 0.05% CF3COOH) / 50% CH3CN to 100% CH3CN in 

14 mins]. Yield: 12.06 mg (71%). MS (ESI+): m/z calcd. for [C75H100N6O21Na]+: 1443.68 

[M + Na]+; found: 1443.67. 

 

 

MMAE-β-glucuronide (96) 

 

 

Compound 95b (10 mg, 0.007 mmol, 1 equiv.) was dissolved in MeOH (250 µL) and 

cooled at – 20 ºC in acetone/dry ice. After this, LiOH (1.35 mg, 0.066 mmol, 8 equiv.) 

dissolved in H2O (250 µL) was added and the reaction was stirred 2 hours at 0 ºC. The 

purificacion was carried out in preparative HPLC was carried out [Gradient: 95% (H2O + 
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0.05% CF3COOH) / 5% CH3CN to 100% CH3CN in 15 min]. Yield: 3.42 mg (46%). MS 

(ESI+): m/z calcd. for [C53H82N6O16Na]+: 1081.57 [M + Na]+; found: 1081.58. 

 

 

MMAE-β-glucuronide-hemiglutarate-N-hydroxysuccinimidyl (97) 

 

 

Compound 96 (3.62 mg, 0.0034 mmol, 1 equiv.) was dissolved in DMF under argon 

conditions. Then, Di(succinimidyl)glutarate (5.58 mg, 0.0171mmol, 5 equiv.), iPr2NEt (pH 

8-10) and DMAP (0.415 mg, 0.0034 mmol, 1 equiv.) were added and the reaction was 

stirred at 50 ºC for 6 hours. The purification was carried out in preparative HPLC was 

carried out [Gradient: 95% (H2O + 0.05% CF3COOH) / 5% CH3CN to 30% (H2O + 0.05% 

CF3COOH) / 70% CH3CN in 15 min and 100% CH3CN in 3 mins]. Yield: 1.44 mg (33%). 

MS (ESI+): m/z calcd. for [C62H92N7O21]+: 1270.63 [M + H]+; found: 1270.33; m/z calcd. 

for [C62H91N7O21Na]+: 1292.62 [M + Na]+; found: 1292.5. 
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MMAE-β-glucuronide-cyclo[DKP-RGD] (88) 

 

 

Cyclo[DKP-RGD]-CH2NH2 32 (3.09 mg, 0.0036 mmol, 1 equiv.) was dissolved in 

Phosphate Buffer (100 µL, pH= 7.5) and the pH adjusted to 7.3-7.6. Then, this mixture 

was added to a solution of compound 97 in DMF (100 µL) at 0 ºC and the reaction was 

stirred 3 hours. The pH was kept between 7.3-7.6 all the time. The purificacion was 

carried out in preparative HPLC was carried out [Gradient: 95% (H2O + 0.05% 

CF3COOH) / 5% CH3CN to 100% CH3CN in 15 mins]. Yield: 0.84 mg (26%). MS (ESI+): 

m/z calcd. for [C85H125N16O26Na]2+: 904.44 [M + H + Na]2+; found: 904.50; m/z calcd. for 

[C85H124N16O26Na2]2+: 915.44 [M + 2Na]2+; found: 915.92; m/z calcd. for [C85H123N16O26]-: 

1783.88 [M - H]-; found: 1784.83. 
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Synthesis of cyclo[DKP-RGD]-PEG-4-β-glucuronide-MMAE (89) 

 

4-pentyonyl-(2S,3R,4S,5S,6S)-2-(2-amino-4-(hydroxymethyl)phenoxy)-6-

(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (98) 

 

 

 

4-pentynoic acid (32.4 mg, 0.33 mmol, 1.5 equiv.) was dissolved in DMF (7.5 mL) and 

preactivated with HATU (142.2 mg, 0.374 mmol, 1.7 equiv.), HOBt (50.53 mg, 0.374 

mmol, 1.7 equiv.) and iPr2NEt (153 µL, 0.88 mmol, 4 equiv.) for 20 minutes. Then, 

compound 94 (100 mg, 0.22 mmol, 1 equiv.) dissolved in DMF (3 mL) was added and 

the pH adjusted to 8-9 with iPr2NEt. The reaction mixture was washed with a 1 M aqueous 

solution of KHSO4 (2 ×) and brine (1 ×). The organic phase was dried over MgSO4, 

concentrated and purified by automatic chromatography (gradient: from 100% CH2Cl2/ 

0% CH3OH to 95% CH2Cl2/ 5% CH3OH in 12 minutes). Yield: 40 mg (34%). MS (ESI+): 

m/z calcd. for [C25H29NO2Na]+: 558.16 [M + Na]+; found: 558.17; MS (ESI-): m/z calcd. 

for [C25H28NO2]- : 534.14 [M - 1H]-; found: 533.92. 
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4-pentyonyl-(2S,3R,4S,5S,6S)-2-(2-amino-4-((((4-

nitrophenoxy)carbonyl)oxy)methyl)phenoxy)-6-(methoxycarbonyl)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (98b) 

 

 

 

Compound 98 (30 mg. 0.056 mmol, 1 equiv.) was dissolved in THF (1.6 mL) and cooled 

at 0 ºC. Then, pyridine (11.3 µL, 0.14 mmol, 2.5 equiv.) and 4-nitrophenyl chloroformate 

(22.6 mg, 0.112 mmol, 2 equiv.) were added. The reaction was stirred under argon 

conditions at room temperature for 2 hours. The reaction mixture was washed with a 1 

M aqueous solution of KHSO4 (2 ×) and brine (1 ×). The organic phase was dried over 

MgSO4, concentrated and purified by automatic chromatography (gradient: from 100% 

hexane/ 0% ethyl acetate to 45% hexane/ 55% ethyl acetate in 12 minutes). Yield: 20 

mg (51%). MS (ESI+): m/z calcd. for [C32H32N2O16Na]+: 723.16 [M + Na]+; found: 723.17 

; MS (ESI-): m/z calcd. for [C32H31N2O16]- : 699.17 [M - 1H]-; found: 698.92. 

 

 

MMAE-4-pentyonyl-(2S,3R,4S,5S,6S)-2-(2-amino-4-(hydroxymethyl)phenoxy)-6-
(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (99) 
 

 

 

Compound 98b (20 mg, 0.029 mmol, 1.5 equiv.), MMAE (13.7 mg, 0.019 mmol, 1 equiv.) 

and HOBt (0.5 mg, 0.0038 mmol, 0.2 equiv.) were dissolved in DMF (550 µL) at 0 ºC. 

Then, pyridine (19.3 µL, 0.24 mmol, 12.7 equiv.) and iPr2NEt (6.6 µL, 0.038 mmol, 2 
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equiv.) were added and the reaction was stirred at room temperature under argon 

conditions for 2 hours. The solvent was evaporated and the mixture was purified by 

automatic chromatography (gradient: from 100% CH2Cl2/ 0% CH3OH to 95% CH2Cl2/ 5% 

CH3OH in 13 minutes).  Yield: 14 mg (58%). MS (ESI+): m/z calcd. for [C65H94N6O20Na]+: 

1301.64 [M + Na]+; found: 1301.58. 

 

MMAE-β-glucuronide-alkyne (100) 

 

 

Compound 99 (3 mg, 0.0023 mmol, 1 equiv.) was dissolved in MeOH (100 µL) and 

cooled at – 20 ºC in acetone/dry ice. After this, LiOH (0.45 mg, 0.019 mmol, 8 equiv.) 

dissolved in H2O (100 µL) was added and the reaction was stirred 2 hours at 0 ºC. The 

purificacion was carried out in preparative HPLC was carried out [Gradient: 95% (H2O + 

0.05% CF3COOH) / 5% CH3CN to 100% CH3CN in 15 mins]. Yield: 6.06 mg (62 %). MS 

(ESI+): m/z calcd. for [C58H86N6O20Na]+: 1161.59 [M + Na]+; found: 1161.89; MS (ESI-): 

m/z calcd. for [C58H85N6O20]- : 1137.6 [M - 1H]-; found: 1137.95. 
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MMAE-β-glucuronide-PEG-4-cyclo[DKP-RGD] (89) 

 

 

 

Compound 100 (5.24 mg, 0.0046 mmol, 1.5 equiv.) and N3-PEG-4-cyclo[DKP-RGD] 51b 

(3.08 mg, 0.0031 mmol, 1 equiv.) were dissolved in a degassed mixture of H2O/DMF 

(1:1). A degassed solution of CuSO4 • 5 H2O (0.39 mg, 0.0016, 0.5 equiv.) and sodium 

ascorbate (0.37 mg, 0.0019 mmol, 0.6 equiv.) were added at room temperature and 

stirred overnight at 30 ºC. The solvents were evaporated and the mixture was purified in 

semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% 

CF3COOH) to 0% (H2O + 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 20 

min]. Yield: 5.27 mg (84%). MS (ESI+): m/z calcd. for [C95H143N19O30]2+: 1015.01 [M + 

2H]2+; found: 1015.81; m/z calcd. for [C95H144N19O30]3+: 677.01 [M + 3H]3+; found: 677.75. 
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HPLC traces of the final compounds 
 

The purity evaluation of cyclo[DKP-RGD]-β-glucuronide-MMAE (88) was carried out in 

Phenomenex Luna C-18(2) column 10 μm, 250 × 21.2 mm, with precolumn at 30 mL/min 

flow rate. In the rest of the cases, the Dionex Ultimate 3000 equipped with Dionex RS 

Variable Wavelength Detector (semipreparative column: Atlantis Prep T3 OBDTM 5 m 

19 × 100 mm; flow 15 ml/min) was used. 

 

Cyclo[RGDfK] (46) 

Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O 

+ 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 14 min; tR (product): 6 min. 

Purity: 100%. 

 

 

 

Cyclo[DKP-RGD]-GFLG-PTX (37) 

Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O 

+ 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 12.5 min. 

Purity: 99%. 
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Cyclo[RGDfK]-GFLG-PTX (38) 

Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O 

+ 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 13 min. 

Purity: 93%. 

 

 

 

Cyclo[DKP-RGD]-PEG-4-GFLG-PTX (39) 

Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O 

+ 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 12.5 min. 

Purity: 100%. 

 

 

 

Cyclo[RGDfK]-PEG-4-GFLG-PTX (40) 

Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O 

+ 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 13 min. 

Purity: 93%. 
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Cyclo[DKP-RGD]-Val-Ala-α-amanitin (62) 

Gradient: 100% (H2O + 0.1 % CF3COOH)/0% (CH3CN + 0.1% CF3COOH) to 50% (H2O 

+ 0.1 % CF3COOH)/50% (CH3CN + 0.1% CF3COOH) in 9 minutes; tR: (product): 8.3 min 

Purity: 99.6%. 

 

 

 

Cyclo[DKP-RGD]-uncleavable-α-amanitin (63) 

Gradient: 100% (H2O + 0.1 % CF3COOH)/0% (CH3CN + 0.1% CF3COOH) to 50% (H2O 

+ 0.1 % CF3COOH)/ 50% (CH3CN + 0.1% CF3COOH) in 9 minutes; tR: (product): 8 min. 

Purity: 95%. 

 

 

 

 

Dau=Aoa-GPLGVRG-cyclo[RGDfK] (71) 

Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O 

+ 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 14 min; tR (product): 7.9 min. 

Purity: 98.5%. 
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Cyclo[RGDfK]-GPLG-PTX (73) 

Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O 

+ 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 14 min; tR (product): 10.7 min. 

Purity: 85%. 

 

 

 

Cyclo[DKP-RGD]-β-glucuronide-MMAE (88) 

Gradient: 95% (H2O + 0.05 % CF3COOH)/5% CH3CN to 0% (H2O + 0.05 % 

CF3COOH)/100% CH3CN in 15 mins, tR (product): 8.5 min 

Purity: 96%. 
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Cyclo[DKP-RGD]-PEG-4-β-glucuronide-MMAE (89) 

Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% CF3COOH) to 0% (H2O 

+ 0.1% CF3COOH) / 100% (CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 11.4 min. 

Purity: 94%. 
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Fmoc-Gly-Phe-Leu-Gly-OH (48) 

1H NMR (400 MHz, DMSO) 
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Fmoc-Gly-Phe-Leu-Gly-N-[4-(hydroxymethyl)phenyl] (52) 

 
1H NMR (400 MHz, DMSO) 

 

13C NMR (101 MHz, DMSO) 
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Fmoc-Gly-Phe-Leu-Gly-N-[4-[[[(4-nitrophenoxy)carbonyl]oxy]methyl]phenyl] (53) 

1H NMR (400 MHz, DMSO) 

 

13C NMR (101 MHz, DMSO) 
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Fmoc-Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N′-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (54) 

1H NMR (400 MHz, DMSO) 

 

13C NMR (101 MHz, DMSO) 
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(Hemiglutarate)-Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N′- 

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (55) 

1H NMR (400 MHz, DMSO) 

 

13C NMR (101 MHz, DMSO) 
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Cyclo[RGDfK]-PEG-4-azide (51a) 

1H NMR (400 MHz, DMSO) 

 

13C NMR (101 MHz, DMSO) 
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4-((5S,8S)-8-benzyl-5-isobutyl-4,7,10,13-tetraoxo-3,6,9,12-tetraazaheptadec-16-

ynamido)benzyl tert-butyl ethane-1,2-diylbis(methylcarbamate) (57) 

1H NMR (400 MHz, DMSO) 
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Hemiglutarate-aminohexyl-α-amanitin (65a) 

 

1H NMR (400 MHz, D2O) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13C NMR (101 MHz, D2O) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 Appendix of 1H NMR and 13C NMR spectra 

  

Cyclo[DKP-RGD]-uncleavable-α-amanitin (63) 

 

1H NMR (400 MHz, D2O) 
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Fmoc-Gly-Pro-Leu-Gly-OH (81) 

 

1H NMR (400 MHz, CDCl3) 
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 (2S,3R,4S,5S,6S)-2-(4-formyl-2-nitrophenoxy)-6-(methoxycarbonyl)tetrahydro-2H-

pyran-3,4,5-triyl triacetate (92) 

 

1H NMR (500 MHz, CDCl3) 

 

 

13C NMR (126 MHz, CDCl3) 
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(2S,3R,4S,5S,6S)-2-(4-(hydroxymethyl)-2-nitrophenoxy)-6 

(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (93) 

 

1H NMR (500 MHz, CDCl3) 

 

 

13C NMR (126 MHz, CDCl3) 
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(2S,3R,4S,5S,6S)-2-(2-amino-4-(hydroxymethyl)phenoxy)-6-

(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (94) 

 

1H NMR (500 MHz, CDCl3) 

 

 

13C NMR (126 MHz, CDCl3) 
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