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Novel treatments for multiple myeloma (MM) have increased rates of complete response, raising interest
in more accurate methods to evaluate residual disease. Cell-free tumor DNA (cfDNA) analysis may
represent a minimally invasive approach complementary to multiparameter flow cytometry (MFC) and
molecular methods on bone marrow aspirates. A sequencing approach using the Ion Torrent Personal
Genome Machine was applied to identify clonal IGH gene rearrangements in tumor plasma cells (PCs)
and in serial plasma samples of 25 patients with MM receiving second-line therapy. The same clonal IGH
rearrangement identified in tumor PCs was detected in paired plasma samples, and levels of IGH cfDNA
correlated with outcome and mirrored tumor dynamics evaluated using conventional laboratory
parameters. In addition, IGH cfDNA levels reflected the number of PCs enumerated by MFC immuno-
phenotyping even in the complete response context. Patients determined by MFC to be free of minimal
residual disease were characterized by low frequencies of tumor clonotypes in cfDNA and longer
survival. This pilot study supports the clinical applicability of the noninvasive monitoring of tumor
levels in plasma samples of patients with MM by IGH sequencing. (J Mol Diagn 2018,-: 1e12; https://
doi.org/10.1016/j.jmoldx.2018.07.006)
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The treatment of multiple myeloma (MM) has changed
during the past decade with the introduction of several
classes of new effective drugs that have greatly improved
response rates,1,2 highlighting the need for more accurate
methods of residual disease assessment. Several studies
using multiparameter flow cytometry (MFC) or allele-
specific oligonucleotide quantitative PCR have found that
the presence of residual tumor cells after therapy is associ-
ated with shorter progression-free survival (PFS).3 More
recently, next-generation sequencing (NGS) techniques on
bone marrow (BM) aspirates have been used.4 Minimum
residual disease (MRD) negativity by NGS of the IGH gene
rearrangements is significantly associated with longer time
to progression and better overall survival in patients treated
with front-line novel therapies. Similar results were
observed using MFC, although authors report the presence
of a subset of patients who tested positive by MFC and
negative by sequencing that probably reflects the patchy
stigative Pathology and the Association for M
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pattern of BM infiltration typically observed in MM.4 This,
together with extramedullary disease, represents a potential
pitfall common to all techniques that use BM aspirates that
may be nonrepresentative of the disease infiltration. The use
of alternative methods for disease assessment, such as the
monitoring of circulating cell-free tumor DNA (cfDNA),
could improve the estimation of the risk of progression.5

Ongoing studies are examining tumor cfDNA as a sensi-
tive measure of small amounts of residual cells in
lymphoma and myeloma.6e8 The sensitivity of cfDNA
analysis is still unknown, but the development of peripheral
blood (PB)ebased disease monitoring approaches should be
olecular Pathology. Published by Elsevier Inc.

/licenses/by-nc-nd/4.0).
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Table 1 List of Monoclonal Antibodies Used for Flow Cytometric
Analysis

Antigen Fluorochrome Clone

CD19* PE LT19
CD20y VioBlue LT20
CD27* FITC M-T271
CD28* PE Vio770 15E8
CD38y BV500 HIT2
CD45* VioBlue 5B1
CD45* APC Vio770 5B1
CD56* PE Vio770 REA196
CD56y PE Cy7 MEM-188
CD81* PerCP Vio700 REA513
CD117* PE A3C6E2
CD117* APC Vio770 A3C6E2
CD138* APC 44F9

*Miltenyi Biotec, Gladbach, Germany.
yBiolegend. Q16

APC, allophycocyanin; FITC, fluorescein isothiocyanate; PE, phosphati-
dylethanolamine; PerCP, peridinin chlorophyll protein complex. Q17
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a goal because it would allow for serial sampling without
repeated BM biopsies (BMBs) in MM. In the present study,
we describe a deep-sequencing method that allows identi-
fying and quantifying residual tumor burden in patients with
MM from plasma samples. The method was applied to a
cohort of myeloma samples collected prospectively within a
clinical trial.

Materials and Methods

Patients, Treatment Plan, and Sample Collection

We conducted a prospective randomized phase 3 trial in
MM at first relapse comparing the activity of bortezomib,
cyclophosphamide, and dexamethasone versus lenalido-
mide, cyclophosphamide, and dexamethasone as second-
line therapy. Within this study, 25 patients who achieved
complete response during therapy (International Myeloma
Working Group guidelines)9 and had longitudinal biological
samples collected for disease monitoring were analyzed.
Our institutional review board approved this study (INT 57/
10), and patients provided informed consent.

BM and PB samples were obtained during routine clinical
evaluations at study entry; after 3, 6, and 9 cycles of ther-
apy; and at follow-up time points. Plasma was obtained
processing PB samples collected in K2-EDTA tubes
(BD Vacutainer, Becton Dickinson, Franklin Lakes, NJ)
within 3 hours, with a first centrifugation at 1500 � g for
10 minutes and a second high-speed centrifugation at
16,000 � g for 10 minutes at 4�C. Plasma samples were
stored at �80�C until extraction.10 PB of 10 healthy donors
was also collected. Namalwa (human Burkitt lymphoma;
ACC 24) and JVM-2 (human chronic B-cell leukemia; ACC
12) cell lines were from DSMZ (Braunschweig, Germany).

Flow Cytometry and Immunomagnetic Separation

BM nucleated cells were isolated from a median of 8 mL
(range, 7 to 14 mL) of BM aspirates after red blood cells
lysis with a hypotonic solution (NH4Cl, 1.5 mol/L; KHCo3,
100 nmol/L; and Na4EDTA, 10 nmol/L; pH 7.2 to 7.4).
Plasma cells (PCs) were stained according to the European
Myeloma Network guidelines11 using eight-color mono-
clonal antibody combinations (Table 1) on a MACSQuant
Analyzer (Miltenyi Biotec, Gladbach, Germany). Data were
analyzed using MACSQuantify software version 2.6
(Miltenyi Biotec) and FlowJo software version 10.2 (FlowJo
LLC, Ashland, OR). The target for collection was >500,000
cellular events in each tube. An immunomagnetic
beadebased strategy was used to isolate BM CD138þ PCs
on the AutoMACS ProSeparator (Miltenyi Biotec).

Genomic and Cell-Free DNA Extraction

Genomic DNA (gDNA) was extracted using Nucleospin
Tissue kit (Macherey-Nagel GmbH & Co., Düren,
2
FLA 5.5.0 DTD � JMDI726_proo
Germany). cfDNA was extracted from 1 to 3 mL of plasma
and eluted in 50 mL of Buffer AVE using a QIAamp
Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany)
following manufacturer’s instructions. Extracted cfDNA
was quantified on a high-sensitivity benchtop fluorometer
(Qubit 2.0, Thermo Fisher Scientific, Waltham, MA). The
size distribution of the fragments was tested by capillary
electrophoresis (Agilent 2100 Bioanalyzer, Agilent
Technologies, Böblingen, Germany). cfDNA was stored
at �20�C until amplification and library preparation.

Amplification, Library Preparation, and Sequencing of
IGH Gene Rearrangements

Amplification was performed by multiplex PCR using 500
ng of gDNA or a median of 20.3 ng of cfDNA (range, 8.6 to
45.9 ng) according to the BIOMED-2 concerted action with
a consensus reverse IGHJ primer and in the forward
direction a mix of framework region 1 (FR1) or a frame-
work region 3 (FR3) IGHV familyespecific primers12,13

(Table 2). The gDNA PCR reactions were performed in
50 mL with the following components: 5 mL of dNTPs 2
mmol/L, 5 mL of buffer 10�, 5 mL of MgCl2 (FR1: 20
mmol/L; FR3: 15 mmol/L), 1 mL of each primer 10 mmol/L
(seven to FR1 or FR3 and one to IGHJ ), 0.2 mL of Taq Gold
5 U/mL, and 1 to 26.8 mL of gDNA. The cfDNA PCR
reactions were performed in 85 mL with the following
components: 8.5 mL of dNTPs 2 mmol/L, 8.5 mL of buffer
10�, 8.5 mL of MgCl2 (FR1: 20 mmol/L; FR3: 15 mmol/L),
1 mL of each primer 10 mmol/L (seven to FR1 or FR3 and
one to IGHJ ), 0.2 mL of Taq Gold 5 U/mL, and 45 mL of
cfDNA. PCR conditions were 96�C for 10 minutes followed
by 35 cycles of 96�C for 30 seconds, 62�C for 30 seconds,
72�C for 30 seconds, and a final extension at 72�C (FR1:
10 minutes; FR3: 5 minutes) with cooling to 4�C.
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Table 2 Primers Used for IGH Gene Rearrangements’
Amplification

Primer Sequence

VH1D 50-CCTCAGTGAAGGTCTCCTGCAAGG-30

VH2D 50-TCCTGCGCTGGTGAAAGCCACACA-30

VH3D 50-GGTCCCTGAGACTCTCCTGTGCA-30

VH4aD 50-TCGGAGACCCTGTCCCTCACCTGCA-30

VH4bD 50-CGCTGTCTCTGGTTACTCCATCAG-30

VH5D 50-GAAAAAGCCCGGGGAGTCTCTGAA-30

VH6D 50-CCTGTGCCATCTCCGGGGACAGTG-30

VH1-FR3 50-TGGAGCTGAGCAGCCTGAGATCTGA-30

VH2-FR3 50-CAATGACCAACATGGACCCTGTGGA-30

VH3-FR3 50-TCTGCAAATGAACAGCCTGAGAGCC-30

VH4-FR3 50-GAGCTCTGTGACCGCCGCGGACACG-30

VH5-FR3 50-CAGCACCGCCTACCTGCAGTGGAGC-30

VH6-FR3 50-GTTCTCCCTGCAGCTGAACTCTGTG-30

VH7-FR3 50-CAGCACGGCATATCTGCAGATCAG-30

JHD 50-ACCTGAGGAGACGGTGACCAGGGT-30

Forward and reverse primers were pooled together in a multiplex PCR
reaction. The expected amplicon size is in the range of 310 to 360 bp for
framework region 1 (FR1) primer set and 100 to 170 bp for framework
region 3 (FR3) primer set.

cfDNA Monitoring in Multiple Myeloma

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
PCR products were controlled for quantity and quality
on an Agilent 2100 Bioanalyzer using the high-sensitivity
DNA kit (Agilent Technologies). Adapter ligation and
barcoding were performed using Ion Plus Fragment Li-
brary kit and Ion Xpress Barcode Adapters 1-16/17-32 kits
(Thermo Fisher Scientific) following the manufacturer’s
instructions. Barcoded libraries were purified using
AMPure beads (Beckman Coulter, Brea, CA) according to
the library size as reported in the manufacturer’s
instructions (FR1: 1�; FR3: 1.5�). Equimolar concentra-
tions of each library were pooled and sequenced with a
calibration standard panel (Thermo Fisher Scientific) on an
Ion Personal Genome Machine (PGM) system with Ion
PGM Hi-Q View Chef kit and Ion PGM Hi-Q View
Sequencing kit using Ion 318 Chips v2 BC (Thermo Fisher
Scientific). Reproducibility of the high-throughput
sequencing method using the PGM was tested by
running gDNA samples in duplicate with a different bar-
code in the same run and with the same barcode on a
separate run. As for cfDNA, instead, given the limited
availability, libraries were sequenced in duplicate in two
runs using the same barcode. Namalwa cell line was used
as internal positive control in each run.

Bioinformatics Workflow

Using the Torrent Suite software version 5.0.2 with default
parameters (Thermo Fisher Scientific), raw reads were
trimmed for low-quality 30 ends and barcodes demulti-
plexed, thus obtaining the raw sequencing data (FASTQ
format) produced by the Ion Torrent PGM. Quality assess-
ment and reads filtering were performed using open-source
tools (FastX-toolkit, Cutadapt) in a custom bash (Unix
The Journal of Molecular Diagnostics - jmd.amjpathol.org
FLA 5.5.0 DTD � JMDI726_proof �
Shell) script (Supplemental Script S1). Specifically, raw
sequencing reads were analyzed and filtered for base quality
(median Phred score, >30; minimum quality score, 20) and
sequence length (FR1: >255 bp, FR3: >70 bp) to get rid of
incomplete reads or unspecific amplification products.
Sequences were retained only if both forward and reverse
primers could be identified, and then primer sequences were
trimmed from the reads.

Filtered reads were converted to FASTA format
(Supplemental Script S1) and aligned against IMGT germ-
line database (IMGT, Montpellier, France) using the IMGT/
HighV-QUEST online tool (http://imgt.org/HighV-QUEST/
login.action, freely available on registration, last accessed
October 11, 2017) with default parameters.14

Aligned reads were parsed using the open source
VDJtools Qsoftware15 version 1.1.1. In detail, mapped reads
were aggregated into clonotypes based on their
complementary-determining region 3 (CDR3) nucleotide
sequence and the same IGH variable, diversity, and joining
[IGH V(D)J] gene segment use. Frequency-based correction
(Supplemental Script S1) was performed with default
parameters (maximum number of mismatches allowed
between clonotypes being compared, 2; child-to-parent
clonotype size ratio threshold under which child clonotype
is considered erroneous, 0.05) to eliminate erroneous
clonotypes. Corrected samples were stored as a clonotype
abundance tables for the subsequent analyses.
Statistical Analysis

Repertoire overlap was analyzed with VDJtools. Fisher’s
exact test, U-test, Kaplan-Meier analysis, log-rank test, and
one-way analysis of variance with posthoc Tukey honestly
significant difference test were performed in R version 3.3.2
(R Development Core Team, http://www.r-project.org, last
accessed January 31, 2018)16 and GraphPad Prism version
5.0 (GraphPad Software, San Diego, CA). Correlation
analyses were conducted using the Pearson’s correlation
coefficient (r). Venny Q(http://bioinfogp.cnb.csic.es/tools/
venny, last accessed October 24, 2017) was used to
generate Venn diagrams. P < 0.05 was considered
statistically significant.
Results

Patient Characteristics

Clinical features of the 25 patients at their first relapse are
summarized in Table 3. Previous treatments included
mainly bortezomib [nine patients (36%)] and high-dose
melphalan [16 patients (64%)]. Median follow-up for the
cohort is 17 months (range, 2 to 82 months). At accrual time
point, patients had variable levels of CD138þ PCs in the
BM (median, 8.8%; range, 0.05% to 80%) but no circulating
CD138þ PCs in the PB.
3
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Table 3 Baseline Characteristics of the Study Cohort

Characteristic Finding (n Z 25)

Age in years, median (range) 65 (41e75)
Sex, n (%)

Male 16 (64)
Female 9 (36)

MM subtype, n (%)
IgG 13 (52)
IgA 8 (32)
Light chain 4 (16)

Laboratory findings
BM infiltration on trephine biopsy,
median (range), %

40 (10e95)

BM infiltration by flow cytometry,
median (range), %

8.8 (0.05e80)

BM infiltration by NGS,
median (range), %

50.1 (1.4e86.7)

Serum M protein, median
(range), g/dL

2.60 (0.09e9.79)

Serum FLC ratio,
median (range)

33 (0.01e344)

Serum LDH,
median (range), U/L

294 (228e433)

Cytogenetic abnormalities, n (%)
t4; 14 1 (4)
t14; 16 2 (8)
17p- 2 (8)
1qþ 4 (16)
>1 6 (24)
None 5 (20)
NA 5 (20)

MM staging, n (%)
ISS I 10 (40)
ISS II 6 (24)
ISS III 9 (36)

Time in months from diagnosis,
median (range)

51 (22e117)

Follow-up, median (range), months 17 (2e82)

BM, bone marrow; FLC, free light chain; ISS, International Staging
System; LDH, lactate dehydrogenase; MM, multiple myeloma; NA, not
applicable; NGS, next-generation sequencing.

Biancon et al
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Identification and Characterization of Rearranged
Clonal IGH by Ion PGM Sequencing in MM PCs

To identify the dominant tumor clonotype, rearranged IGH
V(D)J loci in genomic tumor cell DNA (tcDNA) derived
from isolated BM CD138þ PCs were amplified by multiplex
PCR using validated degenerate PCR primers complemen-
tary to IGH FR1 and the consensus IGHJ primer.12,13,17

These oligonucleotides do not cause significant PCR
amplification bias in multiplex PCR settings, allowing the
correct representation of all the VH gene families.18,19 The
amplification generated products of expected sizes that were
sequenced on Ion PGM. Sequencing yielded a means � SD
of 101,455 (79,377) reads that were subjected to quality
assessment and filtering (Supplemental Figure S1).
4
FLA 5.5.0 DTD � JMDI726_proo
A means � SD of 47,755 � 32,787 sequences (47% � 32%
of total reads) passed quality filters and were used for
subsequent downstream analyses. To assess clonality in the
samples, the percentage of reads having the same V(D)J use
and a unique CDR3 nucleotide sequence was determined.
The most represented clone had a median frequency of
50.1% (range, 1.4% to 86.7%). Setting a frequency
threshold >5% to define a clone as a tumor clonotype,4,20

the sequencing method successfully identified a myeloma
clonotype in 22 of 25 patients with MM (88%), indicating a
specificity similar to the one reported in previously
described NGS assays for clonal IGH identification
(91%).4,21

In addition, consistent with previously published data,22

in all 22 patients the IGH V(D)J gene segment use of the
tumor clonotype was nonrandom: IGHV3, IGHV4, IGHV1,
and IGHV2 were the VH families expressed at the highest
frequencies (Supplemental Figure S2A), and a preferential
expression of VH3-23 [4 of 22 patients (18%)], VH1-69,
VH2-5, VH3-30, VH3-48, and VH3-7 (each at 9%) was
observed (Supplemental Figure S2B). IGHD6-19 and
IGHD6-13 predominated (Supplemental Figure S2C),
consistent with what seen in other B-cell malignant
tumors.23 Among the IGHJ subgroups (Supplemental
Figure S2D), IGHJ4 was statistically overrepresented
(45% observed versus 16.7% expected, assuming a random
choice for JH; P < 0.001, Fisher’s exact test), whereas
IGHJ2 and IGHJ3 were significantly underrepresented (5%;
P < 0.001).

Validation Studies

Validation studies included i) comparison with traditional
sequencing, ii) amplification with a different set of primers,
and iii) evaluation of sensitivity. To validate the consistency
of the NGS data, traditional Sanger sequencing of PCR
products obtained using the same consensus sense primers
complementary to FR1 and an antisense primer derived
from the JH region at the 30 end was performed.17 Se-
quences were visualized with Chromas Lite version 2.1.1
(Technelysium, South Brisbane, Australia), and a single
consensus sequence was generated, which was analyzed
using IMGT/V-QUEST online tool (http://imgt.org/IMGT_
vquest/share/textes, last accessed November 3, 2017).24 In
all 22 patients, the V(D)J identity and the CDR3 sequence of
the tumor clonotype identified by NGS corresponded to that
inferred with traditional Sanger sequencing approach.
Moreover, in the remaining three patients for whom the
NGS approach identified IGH sequences at frequencies
under the validated threshold,20 Sanger sequencing high-
lighted a polyclonal IGH repertoire (Table 4).
Consistent results were obtained when amplicons were

generated using the FR3 primer set,13 sequenced on the Ion
PGM following manufacturer’s instruction and analyzed
with our custom bioinformatics workflow using a tailored
length filtering. The absence of a tumor clonotype was
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Table 4 Genomic Tumor Cell DNA (Bone Marrow CD138þ Plasma Cells) Sequencing Statistics

Sample Reads, n
Reads after
filtering, n

Most represented
IGH clone, % CDR3 sequence Sanger sequencing

MM_1 106,941 61,651 57.5 50-TGTGCACACAGCGAGGTCGGTGGTTATTACTAC-
CCTAAACCCCTTGACTTCTGG-30

Confirmed clonal

MM_2 122,011 68,574 80.1 50-TGTGTACGTAGGGGGCAGCCTTCAATAGTCGCCG-
ATGGAGGCATCTACTTTGACCACTGG-30

Confirmed clonal

MM_3 112,528 63,862 76.4 50-TGTGCGAGAGTTTCGGGGGGTATAGCAGTGGCTG-
CGATCGACCGACCCATATTATACTACTACGGTATG-
GACGTCTGG-30

Confirmed clonal

MM_4 113,414 64,861 1.4 No IGH tumor clonotype (<5%) Confirmed polyclonal
MM_5 50,607 16,530 69.4 50-TGTGCGAGAGGTGTCGTGAGTGGTAGCTGCTACT-

TTCGAAATTGGTTCGACCCCTGG-30
Confirmed clonal

MM_6 81,978 35,170 8 50-TGTGTGAAGTCTCTCGGGGCTTCTTGGCACTACG-
CTATGGACGTCTGG-30

Confirmed clonal

MM_7 68,208 22,751 63.1 50-TGTGCGAGAGATAAGATAGGAGCAGCAGCTGGTA-
GTTGGTTCGACCCCTGG-30

Confirmed clonal

MM_8 44,827 14,832 42.7 50-TGTGCGAGAGATTTAGGGGACGCTATGGACGTCTGG-30 Confirmed clonal
MM_9 22,078 14,968 47.6 50-TGTGCGAGAGTCACACGAGGGTACTACTTTGACT-

ACTGG-30
Confirmed clonal

MM_10 166,011 48,873 26.6 50-TGTGCGAGAGGCCTGGGTAACGGAGCAGCTGCCC-
AGGAAACTCACCTCGTCTGGTTCGACCCCTGG-30

Confirmed clonal

MM_11 161,260 70,487 81.4 50-TGTGCGAAAGATCATAACGAGTGGGAGCTGAGAC-
GATCCGGGGACTGG-30

Confirmed clonal

MM_12 101,841 32,718 85.8 50-TGTGCGATGGACCGAACTGCAACGGAGGGGCTCG-
ACCCCTGG-30

Confirmed clonal

MM_13 113,960 54,211 86.7 50-TGTGCGAGACATTCTGGAACAGTGGCTGGTATCT-
TTGACAACTGG-30

Confirmed clonal

MM_14 89,243 40,015 55.3 50-TGTACCACCTGGGCGACCGCAGTGTCTGGGCGACTG-30 Confirmed clonal
MM_15 190,832 76,913 50.1 50-TGTGCAAAAGACGGGGGGTATAGCAGTGGCTGGG-

CCCAAGAGGGCTTGGACTACTGG-30
Confirmed clonal

MM_16 48,521 20,387 2.7 No IGH tumor clonotype (<5%) Confirmed polyclonal
MM_17 37,374 17,433 21.0 50-TGTGCGAAACTGCAGGGGCATTACTATGATAGTA-

GTGGTTATCCGAACTGG-30
Confirmed clonal

MM_18 49,426 21,320 51.4 50-TGTGCGAGTTCTATTGTAGTAGTACCACCGGGC-
GTCTGG-30

Confirmed clonal

MM_19 36,952 14,994 9.1 50-TGTGCGAGGGATCGTGATGGCAGTGGCTGGTCCT-
TTGATTACTGG-30

Confirmed clonal

MM_20 117,138 67,269 13.0 50-TGTGCGAGAGCGGCGTCGGCAGCAGCTGGTACG-
GAGGGGTTGTTCGACCCCTGG-30

Confirmed clonal

MM_21 174,692 80,542 62.3 50-TGTGCGACTATAGCAGTGGCTGGTCCCTACTGGT-
ACTTCGATCTCTGG-30

Confirmed clonal

MM_22 133,781 80,193 9.8 50-TGTGCGGCGGGCCTGGAACCCCGCTACTGG-30 Confirmed clonal
MM_23 159,121 71,957 74.9 50-TGTGCGACCGCCCCAATACCGGACTCGGGAAGAC-

TTGACAACTGG-30
Confirmed clonal

MM_24 66,296 23,777 4.1 No IGH tumor clonotype (<5%) Confirmed polyclonal
MM_25 167,322 69,586 17.8 50-TGTGCGAGAACGACCAGCAGCTCCTTTGGCGACTGG-30 Confirmed clonal

CDR3, complementary-determing region 3; MM, multiple myeloma.
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619
confirmed in the same three patients excluding, overall, a
primer amplification bias under the conditions here
reported.

To assess the sensitivity of the sequencing approach,
samples generated by serial 10-fold dilutions of DNA
extracted from the two cell lines Namalwa and JVM-2
bearing a known clonal IGH rearrangement, into healthy
The Journal of Molecular Diagnostics - jmd.amjpathol.org
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controls’ polyclonal DNA were studied. The clonal
sequences at dilutions as low as 10�5, corresponding to a
sensitivity of at least 0.001% [two Namalwa-specific
sequence reads for a total of 60,624 filtered
reads (0.003299%) and three JVM-2especific sequencing
reads for a total of 71,387 filtered reads (0.0042%)]
were identified and quantified (Supplemental Table S1).
5
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Figure 1 Sequencing of the IGH rearrangements Q11in cell-free DNA of a representative patient with multiple myeloma (MM) and a healthy donor. Histogram
of plasma clonotype frequencies detected in a patient with MM (A) and a healthy donor (B) with a zoom-in on lower frequencies (dotted box); unique
clonotype frequencies are plotted on the y axis for both the patient with MM and the healthy donor (as a percentage of the total reads analyzed). V-J junction
circos plot for a patient with MM (C) and a healthy donor (D). Arcs correspond to different VH Q12and JH segments, scaled to their frequency in sample. Ribbons
represent VH-JH pairings, and their broadness corresponds to the number of IGH sequences that exhibit this gene combination.
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cfDNA Extraction and Amplification: Experimental
Setup

cfDNA was extracted with QIAamp Circulating Nucleic
Acid kit (Qiagen) starting from different volumes of plasma
(0.5, 1, 2, 3 mL). A linear correlation between plasma
Figure 2 Overlap analysis of the clonotypes detected by next-generation sequ
the clonotype frequencies (log10 scale) observed in a representative patient with
cfDNA on the y axis]. Most clonotypes are detected at low frequencies, whereas
the highest frequency in both compartments (plasma and BM tumor sample). Nex
and the related complementary-determining region 3 amino acid sequence. B: Ve
unique and shared clonotypes between the plasma (blue circle) and tumor (yellow
plasma cells.

6
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volume and cfDNA concentration was not observed, prob-
ably because of a saturation effect of the silica membrane.
The median cfDNA quantity extracted from healthy donors’
PB samples was indeed 4.6 ng from 0.5 mL of plasma,
7.5 ng from 1 mL, 13.0 ng from 1.5 mL, and 20.4 ng
from 3 mL.
Q13encing (NGS) in tumor cell DNA and cell-free DNA (cfDNA). A: Scatterplot of
multiple myeloma (MM) [bone marrow (BM) clonotypes on the x axis and
the tumor-associated clonotype (red box) can be identified as the one at
t to the top 3 most frequent shared clonotypes are the VH gene (IGHVx-x)
nn diagram showing the number (x% calculated on the total clonotypes) of
circle) compartments. The Venn diagram was generated using Venny Q14. PCs,
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To verify whether the plasma samples stored within the
clinical trial for patients with MM at first relapse were
suitable for cfDNA extraction and amplification, the quality
and quantity of cfDNA extracted from plasma into K2-
EDTA tubes (BD Vacutainer) or in Cell-Free DNA BCT
tubes (Streck, Inc., Omaha, NE) that contained a cell-
stabilizing agent that prevents cell lysis were compared.

PB from 10 healthy donors was collected in both tubes,
processed as described above within 3, 6, 12, 24, 48, and 72
hours and 1 week, and stored at �80�C for at least 1 week.
Of note, when plasma samples are processed within 3 hours
(compatible with what was done for the samples stored
within the MM clinical trial) both cfDNA BCT tubes and
K2-EDTA tubes had similar performances, with only
slightly higher concentrations of cfDNA from plasma
samples collected in cfDNA BCT tubes (mean, 8.2 versus
7.5 ng with K2-EDTA tubes). It could clearly be confirmed
that cfDNA stability is guaranteed only with the cfDNA
BCT tube when samples are processed after 3 hours
(median, 7.1 ng after 24 hours, 6.8 ng after 48 hours, 4.8 ng
after 72 hours, 3.6 ng after 1 week), making them the best
option for multicenter clinical studies in which samples are
often centralized.

It was also studied whether plasma storage conditions
might affect cfDNA recovery. No difference was observed
when processing fresh or frozen samples (median cfDNA
quantity from 1 mL of plasma: 7.8 ng after immediate
processing, 7.5 ng after short-term storage of <6 months,
7.4 ng after >6 months).

Therefore, considering the minimum quantity of PCR
products required for library preparation [10 to 100 ng to
obtain 40 to 60 pM of final library (Ion Plus Fragment
library kit and Ion PGM Hi-Q View Chef Kit protocols)], in
the present study, the available 1 to 3 mL of plasma
collected in K2-EDTA tubes was considered sufficient for
extraction and downstream amplification.

Sequencing of the IGH Gene Rearrangements in Plasma
Samples: Performance and Concordance of tcDNA and
cfDNA Results

Matched genomic tcDNA and plasma cfDNA samples
obtained at study entry were available for all 22 patients
with a defined myeloma clonotype. IGH cfDNA sequencing
yielded a means � SD of 21,0056 (161,520) reads, with a
means � SD of 77,188 (55,058) sequences passing quality
filters (37% of total reads versus 47% on tcDNA) and
available for subsequent analyses. In MM plasma samples,
the percentage of predominant clones ranged from 1.2% to
18% (Figure 1A). In comparison, in control plasma samples
from healthy donors (n Z 10), several different clones were
present at low percentages, and no clonally related
sequences were observed (mean, 0.006%; range, 0.002%
to 1%) (Figure 1B).

To compare the recombinant repertoire in plasma of
patients with MM and donors, Circos plots (VDJtools)
The Journal of Molecular Diagnostics - jmd.amjpathol.org
FLA 5.5.0 DTD � JMDI726_proof �
showing the relative prominence of each VH-JH recombi-
nation within the repertoire of each subject were generated
(Figure 1, C and D). These plots revealed that V genes are
paired with many other J genes in control samples, whereas
MM samples show few but broad connections, indicating
the predominance of one VH-JH combination (one clono-
type) in patients among other clones present at lower
frequencies.

The tumor clonotype identified in cellular DNA in plasma
samples was then searched. In all 22 cases (100%), the
rearranged tumor-associated IGH sequence was present in
plasma (Figure 2A) at percentages ranging from 1.2% to
18% of total filtered circulating IGH DNA reads (median
frequency, 4.7%). As reported above for tcDNA, results
were confirmed using an FR3 primer set. In addition,
clonotypes (means � SD, 10% � 7%) were detected at high
frequencies that are shared between paired plasma and
tumor samples, whereas other clonotypes were found to be
exclusive of each compartment (Figure 2B). Therefore,
plasma cfDNA can accurately mirror the profiles of the most
abundant clonotypes; furthermore, plasma cfDNA may
reflect myeloma burden in BM but also in extramedullary
sites.

Prognostic Implication of Clonotypic IGH cfDNA Levels
in Patients with MM

Because there are different ways to determine the percent-
age of PCs in the BM (counting cells on trephine BMBs or
on aspirate smears) and these methods often give discrepant
results,25 it was speculated that the analysis of clonal IGH in
cfDNA may be used to help estimating tumor levels,
overcoming BM sampling and analysis limitations. PCs on
BMB were present in all patients before therapy at a median
frequency of 40% of BM leukocytes (range, 10% to 95%):
these frequencies did not correlate with clonotypic cfDNA
frequencies (r Z 0.098, P Z 0.6724). Similarly, no sig-
nificant correlation was found between M-protein levels
evaluated by serum electrophoresis (SPEP) and clonotypic
cfDNA frequencies (r Z �0.018, P Z 0.9504). IGH
cfDNA levels and serum-free light chain (sFLC) ratios show
a moderate positive but not significant correlation
(r Z 0.4567, P Z 0.2552) (Supplemental Figure S3A).
Likewise, no correlation was found between BMB PCs and
SPEP levels (r Z 0.289, P Z 0.295), BMB PCs levels and
sFLC ratios (r Z 0.148, P Z 0.7793), and SPEP levels and
sFLC ratios (r Z �0.032, P Z 0.8465), supporting the idea
that MM is a complex disease and none of these laboratory
parameters alone accurately describes tumor levels in a
single patient. Of interest, disease levels at baseline evalu-
ated by NGS on plasma samples compare favorably to BM
PCs infiltration by MFC (r Z 0.713, P Z 0.0002) and to
NGS performed using tcDNA (r Z 0.45, P Z 0.0354)
(Supplemental Figure S3B).

It was next determined whether cfDNA analysis might
facilitate the early identification of clinically relevant risk
7
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Figure 3 Correlation Q15of IGH cell-free DNA
(cfDNA) levels at baseline with progression-free
survival. Data are expressed as estimated median
values. n Z 10 (patients with frequencies
<4.7%); n Z 12 (patients with frequencies
�4.7%). Hazard ratio Z 3.507 by Cox propor-
tional hazards regression model, P Z 0.04988 by
log-rank test.
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groups among the cohort of patients with MM enrolled in
the study. Levels of the tumor-associated clonotype in
cfDNA distinguish between groups of patients with different
prognoses, with the median percentage of the tumor-
associated clonotype in cfDNA as the cutoff value (4.7%
of total reads). Patients with levels �4.7% (n Z 12) of the
tumor-associated IGH sequence before therapy had signifi-
cantly inferior PFS [estimated median values, 268 versus
990 days; hazard ratio (HR) Z 3.507, P Z 0.04988, log-
rank test] (Figure 3) than patients with levels <4.7%
(n Z 10). When considering baseline features, such as
BMB PCs, SPEP levels, and sFLC ratios, no significant
association was found with survival. Similarly, none of the
variables known to affect clinical outcome in patients with
MM, such as age, International Staging System status, or the
Revised International Staging System status,26 which in-
cludes serum lactate dehydrogenase and high-risk cytoge-
netic abnormalities (t4; 14, t14; 16, 17p- and 1qþ),27

significantly correlated with PFS or overall survival
(Supplemental Table S2). On the other hand, as expected
given the high concordance of cfDNA NGS results and
MFC (Supplemental Figure S3B), higher numbers of PCs
enumerated by MFC (median percentage as cutoff value,
8.8%) are associated with poorer PFS (estimated median
values, 268 versus 545 days; HR Z 3.745, P Z 0.04655,
log-rank test) (Supplemental Figure S4A), whereas no
significant association was found between NGS results on
tcDNA and survival (Supplemental Figure S4B).

Disease Monitoring by Clonotypic IGH cfDNA
Sequencing

It was next hypothesized that longitudinal analysis of clonal
IGH cfDNA may help understand tumor dynamics over
8
FLA 5.5.0 DTD � JMDI726_proo
time. Seventy plasma samples of the selected 22 patients
with MM were analyzed. IGH cfDNA sequencing revealed
that the tumor-associated clonotype could be tracked over
time in plasma samples. The levels of the clonotypic IGH
sequences in plasma reflected tumor dynamics evaluated
using the International Myeloma Working Group criteria
(BM PCs, SPEP levels, and sFLC ratios) (Figure 4). In
addition, the phenotypic aberrancies detected in PCs at
study entry for each patient (based on CD38/CD56/CD19/
CD45, CD38/CD27/CD45/CD28, CD20/CD81/CD38/
CD117) were used as patient-specific probes for residual
disease assessment after therapy on consecutive samples.
Cell-free DNA levels reflected the number of PCs
enumerated by MFC immunophenotyping (Figure 4).
In the context of complete response time points (n Z 22),

MFC was used for MRD monitoring. At least 1 � 106

cellular events were collected and residual cells detected at a
median frequency of 0.00065 (range, 0.00000668 to 0.027)
tumor cells of the total events analyzed (range, 10,14,888 to
19,46,108). MRD negativity was defined when <50
aberrant-phenotype PCs were detected28; thus, six patients
achieved MRD negativity during the timeframe of our
analysis. When analyzing cfDNA IGH frequencies in these
22 patients at complete response time points (median,
0.0000395; range, 0.00000756 to 0.037), a high level of
correlation was found between cfDNA NGS and MFC data
(r Z 0.5831, P Z 0.0044, Pearson’s correlation test)
(Figure 5A). Accordingly, PFS was significantly prolonged
(P < 0.001) for the six patients who achieved MRD nega-
tivity, displaying frequencies of the clonotypic cfDNA
rearrangement <10�5 (for clonotypic cfDNA frequencies
<10�5: n Z 6, means � SD PFS, 714 � 327 days; for
clonotypic cfDNA frequencies �10�5-�10�4: n Z 9,
325 � 75 days; for clonotypic cfDNA frequencies >10�4,
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 4 Quantification of IGH cell-free DNA (cfDNA) levels in relation to multiple myeloma (MM) clinical indexes. Following a top-down disposition, the
y axes of the line plots are respectively related to percentage of bone marrow plasma cells on trephine biopsies (BMB PCs) (linear scale), M-protein
concentrations evaluated by serum electrophoresis (SPEP) (linear scale), serum-free light chain (sFLC ratio) (linear scale for A and B, log2 scale for C; reference
range, 0.26 to 1.65); bone marrow PCs enumerated by multiparameter flow cytometry (MFC) (tumor PCs by MFC, frequency, log10 scale); and plasma IGH cfDNA
levels (tumor IGH cfDNA, frequency, log10 scale). Time points are labeled on the x axis. A: Case MM_21: plasma IGH cfDNA levels decrease during treatment,
paralleling the decrease of BMB PCs and SPEP levels, which become undetectable after nine cycles of treatment. This finding is consistent with the MFC trend
and contrasts with the sFLC ratio, which is stable during treatment. B: Case MM_22: Plasma IGH cfDNA levels decrease rapidly after the initial cycles of therapy,
stabilize from cycles 3 to 6, and then decrease again after the sixth cycle. These dynamic changes are reflected by SPEP, sFLC, and MFC. BMB PCs levels instead
steadily decrease during treatment. C: Case MM_23: Levels of IGH cfDNA decrease after three cycles of therapy and become stable and present a slight increase
after nine cycles, mirroring specifically the trend of sFLC and MFC and also of BMB PCs. In this case, the SPEP levels contrast as they become undetectable at
the end of therapy.
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n Z 7, 143 � 59 days) (Figure 5B). In these cases, to in-
crease theoretical sensitivity, NGS of cfDNA samples was
performed with a lower level of plexing (maximum of eight
samples on an Ion 318 Chip v2 BC) to obtain at least
5 � 105 reads per sample.
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Discussion

cfDNA is emerging as a noninvasive disease biomarker in
solid tumors and lymphomas.29,30 However, its clinical
utility is still under investigation, and few data are available
in the context of MM. We provide the first report describing
the clinical significance of detecting and monitoring cfDNA
in patients with relapsed or refractory MM using an IGH
The Journal of Molecular Diagnostics - jmd.amjpathol.org
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deep-sequencing method. We extend previous findings8 by
demonstrating that this approach allows i) the identification
of the tumor-associate IGH clonotype in BM tumor PCs and
consequently in plasma samples, ii) the assessment of tumor
levels at study entry and during therapy from plasma sam-
ples, and iii) the analysis of residual disease using cfDNA
with results comparable to standard MFC.

The clonally rearranged IGH genes of mature B-cell
malignant tumors offer specific somatic DNA sequences
that can serve as molecular markers for tumor cells.
Standardized primers developed by us12,31 and by the
BIOMED-2 concerted action13 were used to amplify all IGH
sequences in patients’ tumor samples. Libraries were
sequenced on an Ion PGM bench-top system and data
analyzed with a set of web-based specific bioinformatic
9
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Figure 5 Comparison between IGH cell-free DNA (cfDNA) sequencing
and multiparameter flow cytometry (MFC) data. A: Scatterplot showing
correlation between IGH cfDNA sequencing (IGH cfDNA, log10 on the x axis)
and eight-color flow cytometry (MFC, log10 on the y axis) in assessing re-
sidual disease in the selected 22 patients (black dots). The frequencies of
IGH cfDNA (x axis) are expressed as the number of patient-specific tumor
clonotype sequencing reads over the total sequencing filtered reads. The
frequencies of bone marrow (BM) multiple myeloma (MM) plasma cells (PCs)
detected by MFC are expressed as the number of cells bearing the aberrant
immune-phenotype (detected at study entry) over the total collected
events. Blue line represents the best-fit line obtained using the linear
method; shaded area indicates the 95% CI of the best-fit line. Pearson’s
correlation test was used to quantify the strength of the association
(P Z 0.0044). Red dashed line set the sensitivity threshold for MFC
(frequency <5 � 10�5). B: Group analysis shows that levels of disease
detected by IGH cfDNA sequencing are significantly correlated with
progression-free survival (PFS). Dashed blue lines represent the mean value
of each category. The strength of the correlation (P) was calculated using
one-way analysis of variance with the posthoc Tukey honestly significant
difference test. n Z 6 (patients with frequencies <10�5); n Z 9 (patients
with frequencies �10�5-�10�4); n Z 7 (patients with frequencies
>10�4). ***P < 0.001. CR, complete response.
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tools openly available. IGH V(D)J gene segment use in our
cohort of patients with MM resembles that seen by other
studies22,23 and supports the idea that the approach used can
be applied for identification, characterization, and quantifi-
cation of myeloma-associated IGH clonotype in tumor
samples.

Clonotypic IGH sequences could be determined from
baseline tumor cells in 88% of patients with MM at first
10
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relapse, and results were consistent with those obtained by
PCR and Sanger sequencing, indicating a specificity similar
to that reported using commercial sequencing approaches.4

Consistently, in all patients with the characterized IGH
gene rearrangement in tumor samples, the NGS approach
was able to detect the same rearrangement in plasma sam-
ples. A predominant clonotype was detected among other
clones likely representative of normal B-cells. In contrast, in
healthy donors no clonally related sequences were observed,
most likely reflecting the enormous diversity of IGH V(D)J
combinations generated during B-cell development.
A significant advantage of cfDNA analysis in the care of

patients with MM would be the ability to measure tumor
burden by avoiding invasive BMBs. Quantification of BM
PCs is crucial for diagnosis and prognostication, as reem-
phasized in the revised International Myeloma Working
Group guidelines.32 However, the degree of BM infiltration
by conventional morphologic or immunohistochemical
analysis may vary significantly not only among patients but
also within the same patient. This has been attributed to the
patchy pattern of PCs infiltration, a factor that could also
explain the inconsistency of PC counts on BM aspirates as a
prognostic factor.33 In the present study, we demonstrate the
clinical implication of the detection of cfDNA: patients with
MM with a high cfDNA level of the tumor-associated IGH
sequence before treatment have a shorter PFS than the
others. This finding suggests that cfDNA levels might
indeed reflect tumor burden and represent potentially rele-
vant prognostic biomarkers at study entry. This strategy
could complement current methods used to determine tumor
levels that are limited by invasive biopsies and suboptimal
results attributable to sampling variability.
Molecular disease monitoring using cfDNA has a clear

clinical relevance even during therapy and might also
complement the longitudinal assessment of BM PCs counts,
serum monoclonal proteins, or sFLC concentration for
response evaluation. In fact, our findings reveal the ability
of cfDNA analysis to track tumor kinetics as already shown
in lymphoma5 and suggest that cfDNA may be further
useful in cases where disease is predominantly confined to
the tissues (eg, solitary plasmacytomas, extramedullary and
nonsecretory myeloma).
The fact that cfDNA levels well mirror results obtained

with MFC prompted us to evaluate whether such analysis
may be relevant even in the MRD context. The current gold
standard for MRD monitoring in MM involves immuno-
phenotyping using flow cytometry on BM samples to detect
the residual MM cells bearing an aberrant phenotype.34,35

The use of a PB-based assay for MRD analysis has
numerous advantages over any method relying on invasive
BMBs.36 In our study, results obtained analyzing MRD by
MFC on BM samples using consensus antibody panels37

showed complete concordance with cfDNA analysis in all
cases. Of note, patients defined as MRD negative by MFC
(<5 � 10�5 BM PCs) were also characterized by very low
frequencies of the tumor-associated clonotype in plasma
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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samples (<10�5) and had a significantly longer PFS than
patients with >10�5 BM PCs.

Several studies have shown that NGS of the IGH repre-
sents an effective and highly promising tool for MRD
detection in BM samples of patients with lymphoma and
MM with sensitivity that may approach �10�6.4,37 Sensi-
tivity is a critical aspect in MRD detection and is limited by
the number of input cells or DNA. However, the sensitivity
that can be obtained using cfDNA is still unknown because
the origin of cfDNA has yet to be fully understood. In this
study, our sequencing approach on cfDNA allowed us to
analyze at least 5 � 105 reads among which the clonal
rearrangement was searched for. Increasing the amount of
cfDNA will in the future serve to further improve the
theoretical sensitivity. Another reasonable option would be
to focus on shorter IGH fragments using the FR3 primer set.
In cfDNA, because the most adundant DNA fragments are
160 bp long (length of DNA on one nucleosome), one could
imagine that shorter amplificates (100 to 170 bp) would be
more suitable and that such an approach would reach higher
sensitivity than restricting the analysis to less abundant
longer DNA molecules. On the other hand, as comparable
results were obtained using FR3 primers in cfDNA of pa-
tients and healthy donors, this study was conducted
analyzing FR1 amplified fragments that would potentially
provide additional sequence information relevant to monitor
clonal dynamics. A formal comparison between sensitivity
of FR1- and FR3-based strategies on cfDNA is still lacking.
In addition, it still remains to be determined whether
enhanced sensitivity will provide supplementary clinical
information in the context of current therapy protocols
for MM.38

In summary, results of this pilot study support the clinical
applicability and utility of quantifying tumor levels by our
deep sequencing of IGH gene rearrangements present in
plasma of patients with MM. This method can be imple-
mented in any laboratory with NGS capability, can be
applied to most patients with MM with a short turnaround
time, and can be exploitable for the study of MRD.
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