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SUMMARY

This integrated, multiplatformPanCancer Atlas study
co-mapped and identified distinguishing molecular
features of squamous cell carcinomas (SCCs) from
five sites associated with smoking and/or human
papillomavirus (HPV). SCCs harbor 3q, 5p, and other
recurrent chromosomal copy-number alterations
(CNAs), DNA mutations, and/or aberrant methylation
of genes and microRNAs, which are correlated with
the expression of multi-gene programs linked to
squamous cell stemness, epithelial-to-mesenchymal
differentiation, growth, genomic integrity, oxidative
damage, death, and inflammation. Low-CNA SCCs
tended to be HPV(+) and display hypermethylation
with repression of TET1 demethylase and FANCF,
previously linked to predisposition to SCC, or harbor
mutations affecting CASP8, RAS-MAPK pathways,
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chromatin modifiers, and immunoregulatory mole-
cules. We uncovered hypomethylation of the alterna-
tive promoter that drives expression of the DNp63
oncogene and embedded miR944. Co-expression
of immune checkpoint, T-regulatory, and Myeloid
suppressor cells signatures may explain reduced
efficacy of immune therapy. These findings support
possibilities for molecular classification and thera-
peutic approaches.
INTRODUCTION

Squamous cell carcinomas (SCCs) are common cancers that

can arise from the epithelia of the aerodigestive and genito-

urinary tracts. They share histological characteristics, which

are of limited value for predicting site of origin, cause, clinical

behavior, prognosis, or optimal therapy. The Cancer Genome

Atlas (TCGA) recently completed initial analyses of mutations,
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DNA copy-number alterations, DNA methylation, RNA/micro-

RNA, and protein expression for SCCs from 5 individual sites,

including lung (LUSC), head and neck (HNSC), esophageal

(ESCA), cervical (CESC), and bladder cancers (BLCA)

(Cancer Genome Atlas Network, 2015; Cancer Genome Atlas

Research Network, 2012, 2014; Cancer Genome Atlas

Research Network et al., 2017a, 2017b). Those studies high-

lighted selected genomic alterations of potential biologic or

therapeutic interest in tumors from these sites, and related

to tobacco use and human papillomavirus (HPV) infection.

Previous comparisons (PanCan-12; Dotto and Rustgi, 2016;

Hoadley et al., 2014) suggested that tumors from these

different sites share some common molecular signatures.

Since then, TCGA datasets have been reanalyzed and nearly

doubled with new data for �1,400 squamous cancers, and

they have expanded to include �10,000 tumors of 33 cancer

types. These provide an opportunity to use newer tools to

integrate omics data toward a better molecular taxonomy

for SCCs and their subtypes and identify features and

relationships of biologic and clinical relevance for future

investigation.

This pursuit of a molecular taxonomy of SCCs and their

subtypes has been aided by the availability of newer analyt-

ical tools and computational resources. We used TumorMap

(TM) (Newton et al., 2017), an interactive visualization and

analysis portal, coupled with integrated Cluster (iCluster

[iC]) (Shen et al., 2009), and we found high overlap with

original histopathologic classifications of SCC. Further, these

tools uncovered broader and subtype-related genetic and

epigenetic alterations that distinguish SCCs from other

cancers and from one another. We examined the complex

recurrent chromosomal alterations and methylation patterns

underlying genome-wide mRNA expression observed in

SCCs using MVisAGe (for Modeling, Visualizing and
Analyzing the Cancer Genome) and MethylMix (Gevaert,

2015). These identified recurrent chromosomal alterations

and CpG methylation strongly correlated with the expression

of multiple genes that converge on pathways and functions

relevant to SCC biology and therapeutics. mRNA clustering

viewed using interactive Next-Generation Clustered Heat-

maps (NG-CHMs) (Broom et al., 2017), and an updated

Pathway Recognition Algorithm using Data Integration on

Genomic Models (PARADIGM) tool (Vaske et al., 2010),

helped to integrate omics data with pathways related to

squamous cell stemness, differentiation, growth, immortali-

zation, proliferation, survival, and inflammation. Clustered

mRNA alterations for immune checkpoint PD-L1, cytokines,

and cell determinants were deconvoluted using validated

gene signatures for immune cell types and CIBERSORT,

revealing overlap between effector T cell and immune check-

point signatures with those of T-regulatory and Myeloid sup-

pressor cells, which are linked to reduced efficacy of immune

therapy (Charoentong et al., 2017; Gentles et al., 2015).

These analyses and findings have the potential to influence

how we classify SCCs into molecular subtypes, with possible

implications for diagnosis, prognosis, and therapy. They also

provide an atlas of organized datasets for further hypotheses

generation and exploration by the large communities of

biological and clinical researchers who are investigating

squamous malignancies.

RESULTS

TM and iC Identify Significant Features Distinguishing
SCCs and Subtypes among PanCancer-33 Tumors
To identify a molecular signature-based classification, we con-

ducted an integrated TM and iC analysis of 9,759 tumor samples

from PanCancer-33 cancers for which DNA copy-number
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Figure 1. TumorMap and iCluster of Squamous Cancers from PanCancer-33 Analysis

(A) TumorMap analysis visualizing close mapping of LUSC, HNSC, ESCA, CESC, and BLCA among 28 PanCancer-33 islands.

(B) Higher resolution view of TM islands and distribution of SCC from 5 sites.

(C) HPV status showing the majority of HPV(+) CESC and HNSC map around a distinct island.

(D) Smoking history of SCC. Each spot in the map represents a sample. The colors of the sample spots represent attributes as described for each panel.

(E–I) Summary of iCluster analysis (E), DNA copy-number (F), methylation (G), mRNA (H), and miRNA (I) expression. PanCancer-33 SCC and other tumors and

Pan-SCC from 5 sites identified by histopathologic diagnosis cluster within iC10, iC25, and iC27. Annotation bars show cancer type and HPV status, and keys

show an increase (red) or decrease (blue) in features as indicated: DNA copy number, copy-number log ratio (tumor versus normal); DNAmethylation, normalized

beta values; miRNA expression, normalized log expression counts; miRNA expression, normalized log expression counts.
alteration (CNA), methylation, mRNA, microRNA (miRNA), and a

smaller set of protein expression profiles were available. SCC tu-

mors from 5 sites of origin (LUSC, HNSC, CESC, ESCA, and

BLCA) were found to overlap 5/28 islands closely co-localized

by TM and 3major iCs when compared to other cancers (Figures

1A–1I). Most HPV+ CESC and HNSC samples mapped closest

to a distinct TM island and iC27 (p < 0.001) enriched for lifelong
196 Cell Reports 23, 194–212, April 3, 2018
non-smoking individuals, while most HPV(�) cancers mapped to

nearby islands and iC10 and iC25, associated with distinct

molecular patterns, tissues of origin, and smoking history.

SCCs segregated into major subtypes by CNA, methylation,

and RNA/miRNA expression patterns, underpinned by sig-

nificant molecular features in SCC versus non-SCC, and be-

tween SCCs (Figures 1E–1I; Tables S1A–S1L). All three major



SCC-related clusters included significant chromosome 3q and

5p copy gains (Figures 1E and 1F; Table S1A). iC10/25 displayed

9p losses, and iC25 harbored 11q gains. Many iC10/25 HPV(�)

SCC tumors were associated with higher DNA CNA and broad

hypomethylation, with corresponding patterns of increased

mRNA and miRNA expression (Figures 1F–1I). The majority of

iC27 HPV(+) CESCs, HNSCs, and some HPV(�) SCCs exhibited

lower genomic DNA CNAs and wider hypermethylation, with a

broader decrease in mRNAs and miRNAs. These observations

suggest that most SCCs are driven by a combination of recurrent

CN and other alterations, while HPV, epigenetic, or other alter-

ations may have a greater role in subtypes with fewer CNAs.

Overall, mRNA expression in SCC was enriched for 3q genes

SOX2, TP63, and TP73, implicated in squamous stemness and

differentiation, and immune chemokines, cytochrome, oxidative

reduction, and cell adhesion pathway-related genes (Tables

S1C, S1F, and S1G).

Strikingly, this multiplatform molecular classification by TM/iC

co-mapped together all 1,341 (100%) of 1,409 tumors with squa-

mous histopathologic diagnosis for which data for the 4 plat-

forms were available, among 1,481 tumors from PanCan-33

(Figures 1A, 1B, and 1E; Table S1M). Additional BLCA tumors

clustered with BLCA with histopathologic squamous differentia-

tion, suggesting more of these cancers share squamous molec-

ular features than appreciated by pathologic criteria. A fraction of

PanCan-33 breast, lung, and esophageal adenocarcinomas

shared molecular features and co-clustered with SCC (Figures

1E–1I), similar to the PanCan-12 study (Hoadley et al., 2014).

We used 1,409 tumors confirmed to have squamous histology

for further Pan-SCC analyses below, for which clinical, individual

platform, and HPV classification are included in Tables S1M–

S1P. DNA copy-number, mutations, methylation, mRNA,

miRNA, and protein expression analyses are aggregated in

Tables S2A–S2N, S3A, S3B, S4A–S4F, S5A, and S5B).

DNA CNAs Correlate with Expression of mRNAs in Key
Growth, Mitotic DNA Integrity, Chromatin Modifier, and
Death Pathways
To explore the relationship of recurrent chromosomal CNAs with

mRNA expression genome-wide, Pan-SCC CNAs were corre-

lated with expression for each coding region using MVisAGe.

Smoothed Pearson correlation coefficients (r values) were

plotted to identify chromosomal regions for which CNA was

most highly correlated with gene expression, and selected indi-

vidual genes with rR 0.6 were highlighted (Figure 2A; Table S3).

This revealed broad and focal chromosomal regions for which

CNAs were highly correlated with the expression of multiple

genes, in addition to those within CNA peaks found by genomic

identification of significant targets in cancer (GISTIC) analyses

(Figures 2B–2G, S1A, and S1B; Table S3). Remarkably, many

of these genes on the same or different chromosomes are impli-

cated in related pathways and functions.

Chromosome 3qmost significantly associated with SCC by iC

(Table S1A) showed the highest correlation of CN gain with

expression for multiple genes in a broad peak between 3q24

and 3q29 (Figure 2B; �160–190 Mb). Strikingly, ACTL6A at the

top peak in 3q26 was recently associated with worse prognosis,

and it was reported to form a novel complex with oncogenic
N-terminal-truncated DNp63 isoforms of the nearby 3q28 squa-

mous differentiation gene TP63 in HNSC (Saladi et al., 2017).

Unexpectedly, the CN/expression correlation for TP63 was

lower than for other nearby genes, and it was associated with

predominant expression of the DNp63a isoform for all 5 sites

(Figure 2H), consistent with epigenetic regulation of these alter-

natively transcribed isoforms discovered below. The ACTLA6/

DNp63a complex can cooperatively drive a transcriptional pro-

gram that suppresses differentiation and promotes activation

of Hippo growth pathway transcriptional co-factor YAP1. Intrigu-

ingly, we found 11q22 amplification to be highly correlated with

YAP1 expression, and enrichment for this amplicon in mostly

HPV(+) SCCs displayed relative mutual exclusivity with higher

3q amplifications harboring ACTL6A and TP63 in the Pan-SCC

dataset (Figures 2E and S1C; Fisher’s exact test, p = 0.007).

These observations suggest that 3q26 or 11q22 CNAs could

be alternative drivers orchestrating deregulation of ACTLA6/

TP63 differentiation and Hippo growth pathway YAP1 gene

expression in SCC subtypes. 3q26 and 11q22 gains also

strongly correlated with the expression of additional genes impli-

cated in cell stemness (SOX2 and PRKCI), immortalization

(TERC and FXR1) WNT/b-catenin differentiation (DVL3), growth

(PIK3CA and ZNF639), and survival (BIRC2).

Chromosome 5p gains that distinguished Pan-SCC tumors by

iC correlated with the expression of genes linked to chromo-

somal instability and mitosis (Figure 2C). TRIP13 can promote

error-prone non-homologous end joining, cell proliferation, sur-

vival, and cisplatin chemoresistance in HNSC (Banerjee et al.,

2014), and it can cooperate with chaperonin CCT in regulating

the mitotic assembly and checkpoint system (Kaisari et al.,

2017). 5p gene TERT and 3q gene TERC form telomerase sub-

units important in stability of chromosomal tips, and they are

associated with syndromes at increased risk of HNSC and gen-

ito-urinary (GU) tract SCC (Alter et al., 2013). Together, alteration

of 5p geneswith these functions is consistent with the generation

of increased CNAs found in most SCCs.

Chr 8p11 CNAs correlate with the expression of chromosomal

modifier WHSC1L1/NSD3 in a subset enriched for HPV(�) SCC

(Figure 2D). This encodes a novel methyltransferase recently

found to promote monomethylation of histones and signal acti-

vation of membrane and nuclear epidermal growth factor recep-

tor (EGFR) (Saloura et al., 2016, 2017). Chr 11q gene KDM2A is a

histone demethylase implicated in the activation of genes

involved in stemness, differentiation, and inflammation (Chen

et al., 2017).

Chromosome 11q13/22, 5p15, and 14q32 CNAs correlate with

expression of multiple components of the nuclear factor kB

(NF-kB)/REL- and ATM-signaling axes involved in cell survival

or death (Derakhshan et al., 2017) (Figures 2C–2F). These include

tumor necrosis factor receptor (TNFR)-associated Fas-

associated death domain (FADD) and inhibitor of apoptosis pro-

teins (IAPs) encoded by BIRC2/3, which can complex to promote

NF-kB survival over cell death signaling. This complex can recruit

IKKb encoded by IKBKB to enhance the activation of NF-kB

RELA, which is a transcriptional enhancer of cyclin CCND1 and

prosurvival genes. These alterations in the extrinsic death

pathway may be complemented by loss of ATM and gain of

FASTKD3 expression, which are implicated in inhibiting the
Cell Reports 23, 194–212, April 3, 2018 197



Figure 2. Correlation between DNACopy Number of Chromosomal Regions and Expression of Multiple Genes, and Predominant Expression

of DNp63 Isoforms of TP63 Gene for 5 Pan-SCC Tumor Sites

TheMVisAGe R-package was used to compute and plot gene-level Pearson correlation coefficients (r values) based on quantitative measurements of DNA copy

number (CN) and log2(RSEM + 1) gene expression measurements for Pan-SCC data.

(A) Smoothed r values plotted for all chromosomes, with arrows highlighting regions of peak correlation between CN and expression for HPV(�) (black) and (+)

(red) SCC.

(B–G) Smoothed r values and selected genes with individual unsmoothed r > 0.6 plotted based on genomic positions in selected regions of chr3q (B), 5p (C),

8p (D), 11q13/q22 (E), 14q (F), and 19 (G).

(H) TP63 isoform mRNA abundance (RSEM) for full transactivating (TA) domain or alternatively transcribed N-terminally truncated (DN) isoforms in Pan-SCC

tumors. DNp63a (uc003fsc.2) and other DN isoforms are preferentially expressed compared to TA isoforms. Boxplots show median values and the 25th to 75th

percentile range in the data, i.e. the interquartile range (IQR). Whisker bars extend 1.5 times the IQR.
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Figure 3. Common, Unique, and Heterogeneous Genomic Alterations in Squamous Cell Carcinomas

(A) Unsupervised clustering of CNAs in 1,386 squamous cell carcinomas revealed five distinct clusters, with higher recurrent amplifications or deletions or with

few focal alterations. Color bars at the left indicate the 5 tumor types (HNSCs, LUSCs, ESCAs, CESCs, and BLCAs), HPV status, and CNA cluster. Red indicates

copy gain, blue indicates copy loss, and white indicates copy-number neutrality.

(B) 63 genes were significantly mutated in one or more of 5 tumors in the Pan-SCC cohort (MutSig2CV analysis; FDR q-value < 0.1), and themutation frequencies

of 17 of the genes that were correlated with CNA cluster are indicated.

(legend continued on next page)
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intrinsic mitochondrial cytochrome-mediated cell death pathway

(Simarro et al., 2010). Copy loss of TNFR-associated factor

TRAF3 has recently been implicated as a tumor suppressor of

NF-kB gene expression and HPV infection, and it is a marker for

HPV(+) HNSC tumors with better prognosis (Hajek et al., 2017).

This analysis also reveals CN-driven expression across

several chromosomes of multiple components of the PI3K-

AKT-mTOR-eIF pathway important in cell metabolism, protein

expression, growth, and survival (Figures 2B–2D, 2F, and 2G).

These include 3q amplicon genes PIK3CA and EIF2B2, 5p

gene GOLPH3, 8p gene EIF4EBP1, and chromosome (chr) 14

or 19 genes AKT1/2. PI3K-AKT signaling has been implicated

in the activation of 3q transcription factor SOX2 and stemness,

alternative transcription of DNp63, and phosphorylation and

function of YAP1 in complex with DNp63 (Barbieri et al., 2003;

Ehsanian et al., 2010). Together, the significance of these CN al-

terations, distinguishing major subsets of SCC by iC (Figure 1B;

Table S1A), and strongly correlated expression byMVisAGe (Fig-

ure 2), support their roles as important drivers of SCC.

Relationships among DNA CNAs, HPV Status, and
Mutations Affecting Genes Involved in Genomic
Integrity, Mitogen and Death Pathways, and Chromatin
Modification
Integration of unsupervised hierarchical clustering of significant

CNAs, available for 1,386 samples of squamous histology,

HPV status, and significant mutations, helped resolve different

candidate drivers of high- and low-copy-number variation

(CNV) subtypes (Figures 3A, 3B, and S2A–S2C). We resolved 5

major clusters, including higher to lower CNA C1–4, and a

copy-quiet C5 with a sub-cluster C5A enriched for HPV(+) tu-

mors (Figure 3A). C1–4 with higher CNAs displayed 5p amplifica-

tion and the highest frequency of deleterious mutations of TP53,

consistent with their function in maintaining genomic integrity.

Mutations in NFE2L2 and KEAP1, important in oxidative dam-

age, were also enriched in C1–3. Low-CNA C5A and B tumors

were enriched for mutations in (1) epigenetic modifiers EP300,

MLL4, and CTCF; (2) mitogen pathway components EPHA2,

HRAS, MAPK1, and RAC1; and (3) cell death mediator caspase

CASP8 (Figures 1A, 1B, and S2B). Intriguingly, EP300 is a chro-

matin modifier recently linked to the enhancement of target gene

activation by stemness transcription factor SOX2, which is

amplified on 3q in higher CNA SCCs (Kim et al., 2017), and these

alterations tended toward mutual exclusivity in CNA versus quiet

subtypes (p = 0.004). Mutations in EPHA2, HRAS, MAPK1, and

RAC1 cumulatively affected �27% and 46% of C5 and C5A tu-

mors, with EPHA2 and HRAS mutations tending toward mutual

exclusivity across all C5 samples (Figure S2B; p = 0.037).

EPHA2 mutations were enriched for truncating alterations,

consistent with evidence that it serves as a negative regulator
(C and D) The q-values for (C) recurrent amplifications and (D) deletions in the Pan-

of 27 non-SCC tumor types (x axis). Genes in the top left and bottom right quadra

respectively; genes in the top right are significantly altered in both.

(E) The best q-value for each significantly mutated gene across all SCC types (x a

types (y axis). Point size is proportional to the frequency of mutations in the gene i

defined by MutSig2CV (–log10 pCL) and/or enrichment for gain- or loss-of-functio

circles in the lower quadrant indicate genes more significant in another cancer ty
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of RAS pathway signaling (Macrae et al., 2005). Conversely,

HRAS, MAPK1, and RAC1 showed missense hotspot mutations

(Figure S2C), implicated in signal activation. HRAS and CASP8

significantly co-occured (Figure S2B; p = 0.001), suggesting

CASP8 inactivation may be linked to escape from HRAS-

induced senescence. C5A SCC displayed mutations of HLA-A

and -B and deletions of B2M, implicated in immune escape

(Figure 3B).

We examined if significant CNA or mutated genes are more

significantly altered in SCCs, other cancers, or both (Figures

3C–3E, S1A, and S1B). SCC-related alterations underscore the

importance of those implicated in stemness (SOX2), oxidative

DNA damage response (NFE2L2), mitogenic growth and cell

cycle (PDGFRA, IGF1R, CDK6, RAC1, MAPK1, EPHA2, and

CREBBP), PI3K signaling (AKT1/3), NF-kB signaling (REL and

TRAF3), squamous differentiation (FAT1/2, ROBO1, ZNF750,

JUB, NOTCH1, and TP63), chromatin modifiers (KDM5A/6A,

MLL3, and NSD1), and immune escape (PD-L1 and B2M). CN

and mutations inactivating FAT1 trended toward mutual exclu-

sivity with amplification of YAP1 (p = 0.08), consistent with a

role of FAT1 as a negative regulator of Hippo growth pathway

(Gao et al., 2014). Interestingly, these were exclusive of amplifi-

cations of 3q gene PIK3CA (p = 0.005) or mutations of PTEN

(p = 0.002), which could potentially enhance AKT signaling impli-

cated in YAP1 inactivation via cytoplasmic sequestration (Ehsa-

nian et al., 2010). Inactivating deletions or mutations of TP63 and

ZNF750 support possible alternative mechanisms for deregula-

tion of the TP63-ZNF750 differentiation pathways (Figures 2D,

2E, S2D, and S2E) (Okuyama et al., 2007; Sen et al., 2012).

JUB has been linked as a negative regulator of theWNT pathway

(Haraguchi et al., 2008).

Integration of DNA Methylation, mRNA Expression, and
Mutations Uncovers Chromatin Modifier, Fanconi DNA
Repair, and SRC Kinase Family Signatures
To identify significant alterations in CpG island methylation

between tumor and normal and inverse correlations with expres-

sion of their corresponding mRNAs, we used the recently devel-

oped MethylMix program (Gevaert, 2015). 905 differentially

methylated and expressed genes were identified and assorted

by consensus clustering into 5 groups (Figure 4A; Table S2K).

Notably, hypermethylated C2 enriched for HPV(+) CESC and

HNSC (p < 2.2E�16) predominantly overlapped the low-CNA

cluster C5A (Figures 4A, 4B, and S3A; Fisher’s exact test for

CNV-MethylMix Clusters, p = 1E�5). Hypermethylated C4 over-

lapped copy-quiet CNA C5B and C3 and C4 with mostly HNSC.

Hypomethylated C1, C3, and C5 overlapped with higher CNA

C1–3 enriched for HPV(�) LUSC, HNSC, ESCA, and BLCA.

Among 28/51 genes significantly mutated and differentially

distributed among the methylation clusters in SCC (Table S2L),
SCC cohort (y axis) are plotted against q-values for the same gene in the cohort

nts are significantly altered exclusively in the Pan-SCC and non-SCC cohorts,

xis) is plotted against the best q-value for the same gene in the 27 other tumor

n the Pan-SCC cohort. Point color indicates enrichment for mutation clustering

n mutations (–log10 p value; Fisher’s exact test) in the Pan-SCC cohort. Black

pe, compared to SCC tumor types.



Figure 4. DNA Methylation Consensus Clusters with Distinct Mutation and HPV Profiles, and Unique DNA Damage and Repair Genes in

Squamous Cell Carcinomas

(A) MethylMix identified 905 abnormally methylated genes inversely associated mRNA expression, and that formed five DNA methylation consensus clusters

presented in the heatmap. Top bars indicate DNA methylation clusters, cancer types, HPV status, mutations in genes, and other platform clusters that are

significantly differentially distributed between DNA methylation clusters. Brown, hypermethylation; blue, hypomethylation.

(B) Variability in the percentage of patients within each DNA methylation cluster that are HPV positive. Bar colors indicate the portion of different cancer types

among HPV-positive patients within each methylation cluster.

(legend continued on next page)
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hypermethylated HPV-enriched C2 also harbored fewer muta-

tions in HRAS, CDKN2A(p16), CASP8, NFE2L2, NSD1, and

TP53 than did clusters with predominantly HPV(�) SCC (Figures

4A and S3B). Strikingly, hypomethylation in C5 was linked to in-

activating mutations in the H3K36 histone methyltransferase

NSD1, defining a distinct subtype across SCC tissue sites previ-

ously observed in HNSC (Cancer Genome Atlas Network, 2015;

Papillon-Cavanagh et al., 2017).

Several new differentially methylated and expressed genes in

SCC clusters have been causally implicated in cancer develop-

ment in Catalogue of Somatic Mutations in Cancer (COSMIC)

(Figures 4C and 4D; Table S2K). These include hypermethylated,

repressed genes TET1, FANCF, and PPARG, enriched in C2

HPV(+) CESC and HNSC and C4 with HPV(�)HNSC (Figure 4C).

TET1 is a demethylase whose inactivation is implicated in sus-

taining CpG hypermethylation in cancer (Li et al., 2016), consis-

tent with hypermethylation found in C2 and C4. FANCF is a

component of the Fanconi-BRCA pathway essential for DNA

repair by non-homologous recombination (Ceccaldi et al.,

2016). A broader analysis of FANC and DNA damage repair

pathway genes revealed an unexpectedly high frequency

(�12%) of somatic methylation, CNAs, and mutations affecting

FANC-BRCA genes in SCC (Figure 4E), suggesting that acquired

as well as germline alterations in this pathway may contribute to

the development of a subset of SCC (Alter et al., 2013; Ceccaldi

et al., 2016). Of these, FANCF methylation is more often

observed in Pan-SCC than other PanCan-33 tumors (Figures

4F and S3C; chi-square, p < 2.2E�16). PPARG encodes a nu-

clear receptor and transcriptional modulator of squamous differ-

entiation of interest as a target for chemoprevention (McCormick

et al., 2015). Hypomethylated, overexpressed genes included

LCK in C5 and SYK (Figure 4D; Tables S2K and S2L). These

are SRC family kinases implicated in signal activation of STAT

transcription factors in SCC and in activated immune cells ex-

pressing immunoregulatory checkpoint molecules (Lund et al.,

1999; Ma et al., 2015; Sen et al., 2015).

mRNA Analyses Identify SCC Subtypes Differentially
Expressing 3q/11q, Oxidative DNA Damage, EMT,
Transcription Factor, and Immune Signatures
To determine how genomic, epigenetic, and transcriptional alter-

ations may relate to wider mRNA expression in SCC subtypes,

we performed unsupervised consensus cluster analysis for

1,867 annotated cancer-related genes (Sadelain et al., 2011).

K-means discriminated 6 mRNA expression clusters that

included mRNAs linked to significant CN, methylation, and

miRNA-related alterations found via other platforms in this study

(Figures 5A, 5B, and S4). Broadly, mRNA C1 with LUSC and

other SCCs displayed higher expression of lymphocyte kinase

(LCK), immune checkpoint PD-L1(CD274), T-regulatory
(C and D) Genes that are hypermethylated (C) or hypomethylated (D) and anti-cor

and portion of tumors from 5 SCC sites displaying abnormal methylation and ex

(E) Dysregulations of Fanconi Anemia (FA) and DNA repair pathways across squam

deletion, and methylation for FA and DNA damage response pathway genes.

(F) The percentage of cancer samples with altered FA and DNA damage response

the PanCan-33 tumor cohort (y axis). FANCF in the right lower region is significan

proportions, chi-square = 84.5, p < 2.2E�16).
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(FOX3P), and Myeloid-Derived Suppressor Cell (IDO1) immuno-

regulatorymRNAmarkers. Supporting the alternative CNAs in 3q

or 11q22 observed above, C2 tumors displayed a significantly

higher expression of 3q (SOX2 and PIK3CA) mRNAs and lower

11q22 (BIRC2/YAP1) mRNAs. Conversely, C3 and C6 showed

lower expression of those, and they more highly expressed

11q22-encoded YAP1/BIRC2 mRNAs. C5 enriched for HPV(+)

CESC and HNSC showed a lower expression of mRNAs for

11q22 (YAP1 and BIRC2); 14q (TRAF3); and hypermethylated

genes FANCF, TET1, and PPARG (Figures 5A, 5B, and S4). C6

and C1 were enriched for HNSC and LUSC with mRNAs for

ZEB2, IL-6, TWIST, SNAI1, CTGF, and CYR61 (Figures 5A, 5B,

and S4), found below to be associated with miRNA clusters

related to the epithelial-mesenchymal transition.

The increased expression of LCK overlapped those of immune

checkpoint CD274/PDL1, Treg marker FOXP3, and myeloid

derived suppressor cells (MDSCs) IDO1 mRNAs in C1, C5, and

C6 subclusters (Figures 5A and S4), suggesting their expression

could be linked to cellular immune responses. Another immune

signature seen in C1, C3, C5, and C6 includes transcription fac-

tors NFKB1, STAT3, EGR1, and JUN/FOS, as well as TNF and

chemokines CXCL1–3 mRNAs implicated in recruiting such

cellular immune responses (Figures 4A and S4) (Davis et al.,

2016). We explored if expression of PD-L1 overlaps signatures

that were recently developed and validated in other cancers

for MDSCs, CD8+CTL, Tregs, and other immune cells (Charoen-

tong et al., 2017; Gentles et al., 2015). Consensus clustering us-

ing anMDSC-related signature sorted 4 clusters with very high to

low expression of 49MDSC-related genes, including PD-L1 (Fig-

ure S5A). MDSC-inflamed C1 and C2 most significantly overlap-

ped mRNA C1, 5, and 6 with increased immune checkpoint

CD274/PDL1, Treg marker FOXP3, and MDSC IDO1 mRNAs

(Figures 5A, S4A, and S5A, mRNA cluster tracks; Table S4A;

p = 1E�07). CIBERSORT profiling for other immune cell types

(Figure S5B) revealed a parallel pattern of expression for CD8

CTL, natural killer, CD4+ (resting > activated) T helper (Th), and

Treg signatures. Additionally, these tumors showed a higher ratio

of M2 >M1macrophage signatures, which are linked to the sup-

pression of Th1 and CTL tumor immunity. These observations

indicate that SCC with increased CD8 CTL, natural killer (NK),

and CD4 Th responses co-occur with opposing PD-L1, MDSC,

and Treg signatures, providing a possible explanation and other

targets for improving the limited efficacy of immune checkpoint

therapy observed in SCC.

PARADIGM Pathway Analysis Distinguishes SCC
Subtypes with Signaling, Transcription Factor, Immune,
and Cell Cycle Signatures
To better understand the relationship between these complex

patterns of mRNA expression to underlying alterations and
related with mRNA expression in SCC, and annotated in COSMIC. The number

pression within each DNA methylation cluster are shown on the Y axes.

ous cell carcinomas. Oncoprint representation of frequency of mutation, deep

genes in the Pan-SCC cohort (x axis) are plotted against for the same genes in

tly altered more frequently in the Pan-SCC cohort (2-sample test for equality of
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pathways of biologic and clinical relevance, we used PARADIGM

(Vaske et al., 2010). This analysis inferred the activities of

�19,000 pathway features based on expression, copy-number,

and pathway interaction data for 9,829 tumor samples, including

1,373 SCCs. The analysis distinguished SCCs from other cancer

types, and 6 SCC clusters were defined by hierarchical cluster

analysis (Figure 6A). Several cluster pathways were significantly

aligned with genomic and transcriptomic alterations defined

above, when compared using Benjamini-Hochberg false discov-

ery rate (FDR) corrections. C1, which includes predominantly

LUSC and HNSC, supports relatively high inferred activation of

MAPK-JUN/FOS, RELA/p50(NFKB1) complex, p53/63/73, and

immune-related/STAT pathways. C1 was enriched for amplifica-

tion of MAPK1 (p = 0.001) and deletion of NF-kB negative regu-

lator TRAF3 (p = 3E�05), relative to other clusters. In contrast,

C2, with predominantly LUSC and ESCA, showed higher inferred

activation of proliferation-related cell cycle components, with

enrichment forCDK6 amplification (p = 1.3E�08),CDKN2A dele-

tion (3.6E�07), a decreased immune signature, and a lower pro-

portion of cases with amplification of immune checkpoint PDL1

(p = 0.0003). C3 with HNSC showed MAPK-JUN-FOS, TP53/63/

73, and proliferation signatures and lower immune signatures,

associated with amplifications of EGFR, IGF1R, and PDGFA

(p % 0.005). C4 and C5, with HPV+ CESC and some HPV(�)

tumors, shared high proliferation-related features, but they

had a lower proportion of cases with amplifications of

MAPK1 (p % 6.4E�0.05) and FGFR1 (p = 0.0006). C4, which

contains higher MYB/MYC negative regulator FBXW7mutations

(p = 0.04), displayed low inferred activation of immune features,

while C5 was enriched for PDL1 (CD274) amplification

(p = 0.0009), differentiating these HPV(+) SCC subsets. LUSC

enriched cluster C6, which contained a higher proportion of

cases with CDK6 amplifications (p = 1.9E�05) and exhibited

higher proliferation-related signature but lower JUN/FOS and

TP53/63/73 pathway activation.

Display of underlying components of MAPK-JUN-FOS, im-

mune-related, TP53/63/73, and proliferation-related pathways

highlight the activation of important regulatory nodes in SCC

(Figures 6B–6E). Consistent with overlapping expression pat-

terns for transcription factors observed with mRNA profiling

above (Figures 5A and S4A) PARADIGM revealed that JUN-

FOS, RELA/p50, and STAT3 form a network of co-activated

transcription factors that regulate diverse cancer and immune-

related mRNAs, such as TNF, CXCL1, PTGS2, and LCK (Figures

6B and 6C). Strikingly, PARADIGM C1, C5, and C6 with

increased immune signatures also appeared to closely overlap

the increasedMDSC C1, C2, C3, and related immune signatures

(Figures S5A and S5B, PARADIGM track; Table S4B; Fisher’s

exact test, p = 1E�5), suggesting these pathways are linked to

the co-occurring effector and deleterious immune responses

observed in SCC.
Figure 5. mRNA Expression Subtypes in Squamous Cell Carcinomas.

(A) Consensus unsupervised clustering analysis of 1,867 functionally defined can

subtypes from the five types of squamous cell carcinomas, visualized via cluster

annotation bars on the top. Differentially clustered oncogenes, tumor suppresso

(B) The relative mRNA expression levels of genes significantly differentially exp

representing 95% confidence intervals are shown.
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Pan-SCC Protein Expression
Reverse-phase protein array (RPPA) data were obtained for 748

SCCs using a set of 189 antibodies to assess expression and

phosphorylation of proteins inmultiple cancer-related pathways.

Unsupervised clustering as described in the STAR Methods

identified 6 clusters that revealed distinguishing patterns of

protein expression and pathway activity (Figure S6A; Table

S2M). Notably, a C2 arm and C3 with mostly HPV(+) CESC

and C4 and C5 with LUSC, ESCA, CESC, and BLCA were en-

riched for growth factor and rapamycin-sensitive mTORC1

target P70S6KpT389 and RAD51 DNA damage factor (Dibble

et al., 2009). The HPV(+) CESC C2 arm and C5 were also en-

riched for the mTORC2 target RICTORpT1135. C1, a C2

HNSC-enriched branch, and C6 with mostly LUSC lacked

this RICTOR signature. However, C1 was enriched for acti-

vated EGFRpY1068/1173 and HER2pY1248, as potential thera-

peutic targets for this subset. C2 and C6 showed increased

MAPKpT202Y204. AKTp473/T308 and GSK3p21S9 were en-

riched in C4 arm 1 and C6.

We found positive Pearson’s correlations between upstream

MAPKpT202Y204 and JUN phospho-proteins, between AKT

andmTOR, and amongGSK3ab, GSK3p21S9, andNF-kBpS536

(Figure 6B). These are consistent with the genomic, mRNA,

and inferred pathway alterations found above and co-activation

of these pathways observed in functional and preclinical

studies from HNSC (Mohan et al., 2015). Subsets of C1, C2,

C5, and C6 tumors with increased CAVEOLIN1, MYH11, and

YAPpS127 and decreased bCATENIN correlated with higher

EMT and reactive tissue scores (Figure 6A), reported in breast

and other cancers characterized by profuse stromal invasion

and tumor fibroblast signaling. As RPPA-robust antibodies for

immune checkpoint determinants were not available at the

time of these analyses, we integrated RPPA data with mRNA

expression data to identify protein correlates of CTLA4 and

PD-L1 mRNA expression. Increased LCK protein expression,

which was found to co-cluster with PD-L1 in mRNA analyses

above, was also found to correlate with CTLA4 mRNA expres-

sion across most tumor types, except ESCA (Figure 6C). Taken

together, our methylation, mRNA, and RPPA profiling data high-

light LCK/PDL1/CTLA expression signatures that could also be

investigated as predictors of response to immune therapies.
miRNAs Linked to Expression of EMT and Transcription
FactorDNp63 mRNAs and Hypomethylation in SCC
We performed unsupervised consensus clustering for 1,381

Pan-SCC samples using 270 expressed miRNA mature strands

(R25 reads permillion [RPM] in at least 10%of samples), andwe

selected a five-cluster solution, as described in the STAR

Methods (Figure S7A). This segregated HPV(�) tumors into

C1–4 and most HPV(+) CESC and HNSC in C5.
cer genes resulted in the identification of six gene expression-based clusters/

ed heatmap. The cancer types, HPV status, and clusters are indicated by the

r, and immune gene signatures are highlighted on the right side.

ressed across Pan-SCC mRNA subtypes. Mean mRNA expression with bars
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Additionally, we identified miRNAs that were differentially

abundant in SCC (n = 1,381) versus non-SCC (n = 9,436) tumors

(Figures S7A [bold] and S7B). Of these, we highlight the two with

the largest positive fold changes in SCC, miR-205-5p and miR-

944, and a set that included miRs-200a-c-5/3p, 141-5/3p, and

429, which we observed to exhibit decreased expression linked

with an increased EMT score in miRNA C2 and C3 (Figures 7A

and S7A, EMT score track). For these miRNAs, we identified

significantly anti-correlated mRNAs (FDR < 0.05, Spearman

rho < �0.2) for which there was also functional evidence anno-

tated in miRTarBase version (v.)6.0 (Figures 7B and S7C).

Notably, miR-205-5p as well as miR-200/141 and 429 were

anti-correlated (rho % �0.4) to the EMT-related transcription

factors ZEB1 and ZEB2 (Figures 7C and S7C). Other anti-corre-

lated miR-205-5p targets potentially related to EMT included

connective tissue growth factor (CTGF), cysteine-rich protein

61 (CYR61) (Lau, 2016; Thakur andMishra, 2016; Yeger and Per-

bal, 2016), and the inositol phosphatase INPPL1 (SHIP2), which

is involved in extracellular matrix (ECM) degradation and carci-

noma invasiveness (Rajadurai et al., 2016). The EMT-related

mRNAs ZEB2, CTGF, and CYR61 were observed to cluster

together above in a branch of mRNA C1 with LUSC and C6

with HNSC that overlap miRNA C2 and C3 with decreased

expression of these miRs (Figure S7A, mRNA track). These ob-

servations support a role for miR-205 and miR-200 family mem-

bers in regulating the expression of ZEB transcription factors and

EMT differentiation gene signatures in these SCC subtypes.

miR-944 targets include S100PBP, implicated in adhesion;

SPRY1, a modulator of EGFR signaling; and NPR1, an Inhibi-

tor-kB homolog that attenuates NF-kB signaling (Figure 7B)

(He et al., 2016; Subramanian et al., 2016).

We examined the possibility that overexpression of miR-205

and miR-944 in SCC could be related to hypomethylation of

CpG sites in the transcriptional start sites (TSSs) of these miRs

and their host genes. Decreased methylation of the CpG TSSs

predicted for MIR205 and other CpGs in the region of host

gene MIR205HG was strongly anti-correlated with miR205

expression (Spearman rho > 0.5), supporting a role for regional

hypomethylation in the regulation of miR205 and its EMT target

genes (Table S5A). Intriguingly, MIR944 resides within the

TP63 gene, within an intron beyond the alternative TSS for

DNp63 isoforms, which we found to be preferentially expressed

in the Pan-SCC dataset (Figures 7D and 7E). Expression of miR-

944 is most strongly and significantly correlated with expression

of TP63 mRNAs among all miRs across the Pan-SCC dataset

(Figure 7F; r = 0.51, p < 5E�90). As the correlation of expression

of TP63 with copy gain was lower than expected, we explored
Figure 6. PARADIGM Analysis Revealed Specific Signatures Enriched

(A) Consensus clustering of SCC based on top varying PARADIGM inferred pathw

nodes with >15 downstream targets also showing differential inferred activation.

PanCancer-33 cluster membership, and HPV status. Row color annotation on the

pathway categories or biological processes.

(B–E) Cytoscape plot of pathway features with differential PARADIGM IPLs conne

targets. Subnetwork neighborhoods centered around (B) ERK/MAPK1/JUN/FO

proliferation/mitosis. IPL level (red, higher in SCC; blue, lower in SCC) and nod

processes; square, protein family or miRNA). Edge color and type represent intera

complexes are labeled, and regulatory nodes with >15 downstream targets are h
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howbothCN andmethylation of TSSs and other CpG site probes

for the TA and DNp63 isoforms affect the expression of TP63

(Figure 7D). We discovered that two CpG sites that were nearest

the TSS for DNp63 and an experimentally determined TSS for

MIR944 (Budach et al., 2016) were associated with lower CN co-

efficients and negative methylation coefficients when compared

to other TP63-associated sites, reflecting selective hypomethy-

lation of these relative to other sites in the TP63 gene (Figures

7G and 7H). The cg06520450 site with lowest methylation was

most significantly correlated with overall expression of TP63

and miR-944 (Tables S5A and S5B). These findings support a

role for differential methylation as well as CN in the preferential

expression of DNp63 and miR-944 observed in SCC.

DISCUSSION

Here, integrated analyses of genetic, epigenetic, and expression

alterations of the PanCan-33 and the Pan-SCC datasets reveal

that SCCs from 5 sites have overlapping and distinguishing

molecular features that collectively set them apart from other

cancers. Several SCC subtypes distinguished by genomic

and epigenetic alterations were corroborated by independent

analyses, demonstrating overlap with corresponding mRNA

and miRNA expression and pathway activation inferred by

PARADIGM and RPPA. Although some of these features may

occur individually in other cancers, TM and iC multi-omic molec-

ular classification closely overlapped classifications by histo-

pathologic diagnosis, clinical site, and etiology, while identifying

molecular alterations underlying these subtypes of biologic and

clinical significance.

We uncovered a significant mutually exclusive relationship be-

tween gains in 3q or 11q22 affecting the majority of SCCs (Fig-

ure S1C; Table S2A). This finding supports these as possible

alternative drivers for a recently described mechanism by which

3q genes ACTLA6 and DNp63 were found to repress squamous

differentiation and promote activation of Hippo growth pathway

transcriptional factor YAP1 (Saladi et al., 2017). This inverse rela-

tionship in 11q22 and 3q CN gain is independently supported by

a reciprocal pattern of YAP1 and p63 protein immunostaining

observed previously in HNSC tissue arrays (Ehsanian et al.,

2010). In that study, DNp63 and AKT inhibition were shown to

modulate YAP1. Recent studies indicate that the function or sta-

bility of DNp63 and YAP1 can be disrupted by natural isothiocy-

nates such as sulforaphane, and by digitoxin, indicating potential

as targets for chemoprevention or therapy (Fisher et al., 2017;

Huang et al., 2017). We discovered that predominant expression

ofDNp63 isoforms and embeddedmiR-944 by SCC is correlated
in Squamous Cell Carcinomas

ay levels (IPLs). The heatmap shows scaled PARADIGM IPLs of key regulatory

Column color annotation shows consensus cluster membership, tumor type,

right side highlights groups of regulatory nodes potentially implicating the same

cted by regulatory interactions through nodes with >15 differential downstream

S, (C) RELA/p50 and STAT Immune related, (D) p63/DNA damage, and (E)

e shape reflect feature type (circle, genes; diamond, complexes; V, abstract

ction type (activating, purple arrow; green T, inhibitory). Proteins and selected

ighlighted in bold.



Figure 7. miRNAs Associated with EMT and Hypomethylation and Expression of DNp63 Isoforms of TP63 in SCC

(A) Abundance of the most differentially expressed miRNAs miR-205-5p and miR-944 with the highest median expression across the TCGA cancer types

(Figure S7). Dots represent Pan-SCC tumors (red), non-squamous TCGA tumors (gray), and normal tissues (blue). Boxplots show median values and the 25th to

75th percentile range in the data, i.e. the interquartile range (IQR). Whisker bars extend 1.5 times the IQR.

(B) Potential gene targets that are significantly anti-correlated to miR-205-5p and miR-944 (Spearman <�0.2, FDR < 0.05) and that have functional validation

evidence for direct targeting in miRTarBase v.6.0. Solid versus dotted lines indicate strong versus weaker functional evidence. Numbers on network edges show

Spearman correlations between a miRNA and gene.

(C) Heatmap of log10 abundance of miRNAs associated with EMTmRNAs across squamous tumors (n = 1,381). Samples are ordered by the sum of the Z scores

across the EMT-associated miRNAs.

(legend continued on next page)
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with decreased methylation of CpGs at the alternative TSS

compared to those of the TSS for the TAp63 isoforms. A correla-

tion between overall TP63 expression and miR-944 due to hypo-

methylation of the same TSSCpG island is supported by a recent

genome-wide analysis (Doecke et al., 2016), but the link with the

differential methylation of the alternative TSSs for TA/DN iso-

forms was unrecognized. Repression of TAp63 relative to

DNp63 was reported to be reversed by 5-Aza-20-deoxycytidine
in BLCA lines (Park et al., 2000). The preferential transcription

of DNp63 in SCC was also previously reported to be enhanced

by PI3K signaling (Barbieri et al., 2003), consistent with the

frequent alterations in PI3K-AKT found. These observations sug-

gest that methylation and PI3K inhibitors could modulate TA/

DNp63 to inhibit SCC.

Indeed, PI3K-AKT-mTOR-eIF signaling appears to be a com-

mon pathway in which recurrent 3q26 CNAs (69%; Table S2)

and PIK3CA mutations (11%–27%; Figure S2A) are observed.

MVisAGe revealed a wider variety of CNAs strongly correlated

with the expression of multiple components downstream of

PI3K than previously appreciated. Consistent with this, we

observed increases in a variety of PI3K, AKT, mTOR, eIF compo-

nents, and phospho-proteins and greater correlation scores for

signaling downstream of mTOR than PI3K detected by RPPA.

These observations may help explain the relatively lower sensi-

tivity to PI3K inhibitors of tumors with 3q and other CNAs than

those with hotspot mutations of PIK3CA (Mazumdar et al.,

2014). SCCs are enriched for P70S6KpT389, RICTORpT1135,

and RAD51 DNA damage proteins, which are associated with

growth factor and rapamycin sensitivity (Dibble et al., 2009).

Recent preclinical studies demonstrate that sensitivity of HNSC

lines and xenografts with PIK3CA gains to dual PI3K-mTOR in-

hibitors and irradiation is correlated with p-AKT and DNA dam-

age responses, supporting investigation of agents targeting

PI3K and mTOR in tumors in conjunction with irradiation and

pharmacodynamic markers of functional activation (Leiker

et al., 2015;Mohan et al., 2015). CNAs ormutations that enhance

expression and activation of receptors and kinases activating

PI3K-AKT and MAPK signal axes were observed and supported

by RPPA. PI3K-mTOR and MEK inhibitors have demonstrated

combinatorial inhibitory activity in preclinical studies and in sub-

sets or selected patients in clinical studies (Grilley-Olson et al.,

2016; Herzog et al., 2013; Hou et al., 2014; Mohan et al., 2015).

Co-activated MAPK-JUN-FOS, RELA/p50, and STAT3 inferred

by PARADIGM in major SCC subsets (Figure 6), may be targeted

simultaneously by HSP90 inhibitors (Friedman et al., 2013).

HPV(+) and (�) subsets harbored distinct alterations in cell

death and survival pathways, which have potential biologic
(D) Top, Genome view of TAp63, DNp63 isoforms, andMIR-944, with PROmiRNA

et al., 2013) that overlap the TSS of alternatively transcribedDNp63 isoforms. Botto

and coding portion of TAp63, DNp63, and MIR944 (blue box).

(E) TP63 isoform mRNA abundance (RSEM) for full transactivating (TA) domain

tumors (n = 1,403). The DN/TAp63 median ratio difference is 212.8-fold. Boxplots

interquartile range (IQR). Whisker bars extend 1.5 times the IQR.

(F) Across Pan-SCC data, miR-944 has largest positive Spearman correlation co

(G and H) Comparison of coefficients of correlation for copy number (CN), methyl

(D), with expression of TP63 (G), and MIR944 (H). The blue box corresponds to pro

and negativeMeth coefficients, that most highly correlatewith expression of TP63

p = 1.2E�112).
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and therapeutic implications. Previously, rare germline genomic

alterations in FANC-BRCA pathways have been shown to

convey extreme risk for the development of HNSC and GU tract

SCCs and susceptibility to HPV infection, but the association

with HPV(+) SCC is controversial (Alter et al., 2013). FANC-

BRCA defects are associated with increased sensitivity to stan-

dard DNA-damaging therapies, potentially helping explain the

relative sensitivity of some HPV+ tumors to chemoradiotherapy

and potential for their de-escalation. Targeted agents, such as

WEE1 inhibitors that prevent G2 checkpoint arrest and DNA

repair, may warrant investigation in SCCs with these defects

(Aarts et al., 2015) or those with TP53 mutations (Kao et al.,

2017). PARADIGM supported increased inferred activity of a

network including WEE1, PLK1, AURKA/B, and mTOR linked

to SCC displaying the proliferation signature, and activity target-

ing WEE1 and others is supported by published genome-wide

functional RNAi screens and preclinical studies targeting these

kinases in HNSC (Hu et al., 2016; Kao et al., 2017). Lastly, the

prevalence of 11q13/22 with FADD/IAP alterations in >30% of

HPV(�) HNSC, LUSC, and ESCA subtypes and their sensitivity

to IAP inhibitors plus radiotherapy in recent preclinical studies

support the investigation of IAP antagonists in those tumors (Ey-

tan et al., 2016).

HPV(+) and (�) subtypes display signatures for LCK, check-

point PD-L1, Tregs, and MDSCs that overlap protective immune

CD4, CD8, and NK responses, possibly helping to explain im-

mune escape of these tumors and limited response rates to im-

mune checkpoint therapies. Small molecules, antibodies, or

miRNA mimetics targeting these chemokines or their receptors

could be of interest in targeting MDSCs and Tregs in conjunction

with checkpoint inhibitors.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility,

MD Anderson Cancer Center

https://www.mdanderson.org/research/

research-resources/core-facilities/

functional-proteomics-rppa-core/

antibody-information-and-protocols.html

Biological Samples

Raw, processed and clinical data TCGA Network https://portal.gdc.cancer.gov/legacy-archive/search/f

PancanAtlas publication page TCGA Network https://gdc.cancer.gov/about-data/publications/

pancanatlas

Mutation data TCGA Network https://gdc.cancer.gov/about-data/publications/

mc3-2017

FireBrowse portal Broad Institute http://gdac.broadinstitute.org

cBioPortal Memorial Sloan Kettering

Cancer Center

http://www.cbioportal.org

Critical Commercial Assays

Genome-Wide Human SNP Array 6.0 Affymetrix/ThermoFisher 901182

HumanMethylation450 Platform Illumina WG-314-1003

HumanMethylation27 Platform Illumina WG-311-2201

Deposited Data

Raw genomic and clinical data NCI Genomic Data Commons https://gdc.cancer.gov

COSMIC Census PMID: 14993899 http://cancer.sanger.ac.uk/census

Software and Algorithms

TumorMap PMID: 29092953 https://tumormap.ucsc.edu/

iCluster PMID: 19759197 https://bioconductor.org/packages/release/bioc/

html/iClusterPlus.html

GISTIC2 PMID: 21527027 http://software.broadinstitute.org/cancer/software/

genepattern/modules/docs/GISTIC_2.0

MutSig2CV PMID: 24390350 N/A

DAVID Bioinformatics PMID: 19131956 https://david.ncifcrf.gov

MVisAGe software Comprehensive R Archive

Network

https://cran.r-project.org/web/packages/MVisAGe/

index.html

MethylMix R Package PMID: 25609794 https://www.bioconductor.org/packages/release/

bioc/html/MethylMix.html

Next-Generation Clustered Heatmaps

(NG-CHMs)

PMID:29092932 http://bioinformatics.mdanderson.org/TCGA/

NGCHMPortal/

ConsensusClusterPlus R package PMID: 20427518 https://www.bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html

Next-Generation Clustered Heatmap

(NG-CHM)

PMID: 29092932 http://bioinformatics.mdanderson.org/TCGA/

NGCHMPortal/

PARADIGM PMID: 20529912 http://sbenz.github.io/Paradigm/

miRTarBase v6.0 PMID: 26590260 http://mirtarbase.mbc.nctu.edu.tw

SuperCurveGUI R package PMID: 17599930 http://bioinformatics.mdanderson.org/Software/

supercurve/

NumPy Python library PMID: 27362647 http://www.numpy.org/

Survival R package N/A https://cran.r-project.org/package=survival
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be facilitated by the Lead Contact, Carter

VanWaes (vanwaesc@nidcd.nih.gov)

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Human Subjects
Tumor tissue, adjacent normal tissue, and normal whole blood samples were obtained from patients at contributing centers with

informed consent according to their local Institutional Review Boards (IRBs, see below). Biospecimens were centrally processed

and DNA, RNA, and protein were distributed to TCGA analysis centers.

TCGA Project Management has collected necessary human subjects documentation to ensure the project complies with 45-CFR-

46 (the ‘‘Common Rule’’). The program has obtained documentation from every contributing clinical site to verify that IRB approval

has been obtained to participate in TCGA. Such documented approval may include one or more of the following: 1) An IRB-approved

protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the protocol was not TCGA-

specific, the clinical site PI provided a further finding from the IRB that the already-approved protocol is sufficient to participate in

TCGA; 2) A TCGA-specific IRB waiver has been granted; 3) A TCGA-specific letter that the IRB considers one of the exemptions

in 45-CFR-46 applicable. The two most common exemptions cited were that the research falls under 46.102(f)(2) or 46.101(b)(4).

Both exempt requirements for informed consent, because the received data and material do not contain directly identifiable private

information; 4) A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects

research. This was most common for collections in which the donors were deceased.

A total of 11,188 patients were analyzed in TCGAwith at least onmolecular-profiling platform. This study contained bothmales and

females with inclusions of genders dependent on tumor types. There were 5,769 females, 5,282 males and 137 missing information

about gender. TCGA’s goal was to characterize adult human tumors; therefore, the vast majority are over the age of 18. However,

there are 20 samples that are under the age of 18 that had tissue submitted prior to clinical data. Age was missing for 188 patients.

The range of ages was 10 – 90 (maxed 90 for protection of human subjects) with a median age of diagnosis of 60 years of age.

Clinical Samples, Data Types, and Genomic Platforms
Details about sample collection, tissue-specific sample selection criteria, clinical annotations, and the genomic data pipelines the

PanCan-33 atlas can be found via the TCGA publication page of the Genome Data Commons (https://gdc.cancer.gov/

about-data/publications/pancanatlas) and the original TCGA marker paper for each tissue site (Cancer Genome Atlas Network,

2015; Cancer Genome Atlas Research Network, 2012, 2014; Cancer Genome Atlas Research Network et al., 2017a, 2017b). Appro-

priate consent was obtained for all subjects by the local committee as required by TCGA. Data for molecular features from iC analysis

for PanCan 33 tumors are found in Tables S1A–S1L. We conducted a comprehensive study of 1409 mostly untreated primary TCGA

tumors with clinical-pathologic diagnosis of SCC or squamous differentiation (Tables S1M and S1N). The tissues of origin included

522 HNSC, 489 LUSC, 95 ESCA, 256 CESC, and 47 BLCA cases with squamous differentiation (Table S1O). Histological diagnoses

by pathologists of the originating institution were used and were independently verified with high concordance by specialty pathol-

ogists for a majority of samples from each site (Cancer Genome Atlas Network, 2015; Cancer Genome Atlas Research Network,

2012, 2014; Cancer Genome Atlas Research Network et al., 2017a, 2017b). Human papilloma virus (HPV) status and viral subtypes

were assessed independently at the Broad Institute by DNA sequencing andPathSeq algorithm (Kostic et al., 2011) and at BCCancer

Center by RNA-seq expression levels (Cancer Genome Atlas Research Network et al., 2017a). The concordance between the two

was >99% (Table S1P). Data on DNA copy number, mutations, methylation, mRNA andmiRNA sequencing and expression, and pro-

tein expression by reverse-phase protein arrays (RPPA) are aggregated in Tables S2A–S2N. TCGA clinical and platform data are

available on the GDC website (https://gdc.cancer.gov).

METHODS DETAILS

iC and TM analysis of PanCan 33
The iC clustering algorithm formulates the problem of subgroup discovery as a joint multivariate regression ofmultiple data types with

reference to a set of common latent variables, which represent the underlying 28 tumor subtypes (Shen et al., 2009). The Bayesian

information criteria was used to guide the choice of number of clusters. Four datatypes for 9759 samples were used in this analysis as

input: mRNA expression, somatic CNA, DNAmethylation, andmiRNA expression. Data were pre-processed using the following pro-

cedures: FormRNA, andmature strandmiRNA sequence data, poorly expressed geneswere excluded based onmedian-normalized

counts, and variance filtering led to a list of reduced features for clustering. mRNA and miRNA expression features were log2 trans-

formed, normalized and scaled before using as an input to iC. Pre-processing led to 3217 mRNA and 382 miRNA features. Pre-pro-

cessed methylation data was obtained from the methylation single platform analysis group and included 3139 methylation features.

CBS-segmented SCNA data was further reduced to a set of 3105 non-redundant regions. iC was optimized using k-means for 28

major clusters, and visualized by TM. The latent variables were used to generate a TM layout of the samples (Newton et al.,
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2017). The TM layout was computed using the Euclidean similarity between each pair of samples in the iC latent space. From the

sample similarity matrix, TM uses the DrL layout engine to position the samples in a 2-dimensional map. Samples that were similar

in the high-dimensional latent space of the input data to iC are positioned in close proximity to each other in the 2-dimensional space

of the map.

Copy number/mRNA expression correlations by MVisAGe

MVisAGe software (https://cran.r-project.org/web/packages/MVisAGe/index.html) was used to compute and visualize gene-level

Pearson correlation coefficients computed from quantitative measurements of DNA copy number and gene expression. Briefly,

quantitative DNA copy number measurements for the five tumor types were obtained after downloading the GISTIC2 output from

the Broad Institute’s Firehose GDAC (https://gdac.broadinstitute.org/). Gene expression was quantified using log2(RSEM + 1) values

from the same cohort. A total of n = 1370 samples had both DNA copy number and gene expression data, while a total of n = 16,872

genes had measurements with non-zero variance in both datatypes. Gene-level Pearson correlation coefficients were computed

(i) across all 1370 subjects, (ii) separately within each tumor type (BLCA (n = 44), CESC (n = 242), ESCA (n = 93), HNSC (n = 508),

and LUSC (n = (483)), and (iii) separately within each group defined by HPV status (HPV- (n = 1068) and HPV+ (n = 302)). The smooth-

ing parameters used to create plots of smoothed Pearson correlation coefficients over larger genomic regions were chosen based on

manual review.

CNV analysis and clustering
Regions of significant CNAwere identified using GISTIC2 (Mermel et al., 2011) on PanCanAtlas SNP6 segmentation files for the entire

PanSCC cohort or the non-SCC tumors from the same tissue sites. Copy number values or bins for individual genes and regions were

output from the GISTIC2 analysis. It should be noted that the regions identified by the GISTIC2 analysis may be smaller than the re-

gion of copy number change in many samples. Therefore, all true driver genes may not always be included in the GISTIC-defined

peak region. Similarly, annotation of candidate driver gene(s) in the figures and tables is an interpretation of themost likely candidates

in or around that peak. We used hierarchical clustering for copy number (Euclidean distance, wardD2 on R), as hierarchical clustering

is more stable for copy number segment data because there are fewer copy number data points to cluster.

Mutation
Mutations were obtained from the MC3 maf file (v0.2.8). Significantly mutated genes were identified for each tumor type and for the

combined PanSCC cohort using MutSig2CV (Lawrence et al., 2014), which combines p values from tests for high mutational fre-

quency relative to the background mutation rate (pCV), clustering of mutations within the gene (pCL), and enrichment of mutations

within evolutionarily conserved sites (pFN). These p values are combined using the Fisher’s method. In order to reduce the number of

hypotheses tested in theMutSig2CV analysis, we excluded genes that exhibited low expression across tumors (median < 5 FPKM) as

previously described (Campbell et al., 2016). Only the genes with higher expression were considered in the Benjamini-Hochberg

correction for multiple hypothesis testing. A one-sided Fisher’s exact test was used to determine if the proportion of loss-of-function

mutations (including nonsense, frameshift, and de novo start out-of-frame mutations) to other mutations for a given gene was signif-

icantly higher compared to the proportion of loss-of-function mutations to other mutations across all other genes. To determine if

mutational frequency for each gene was associated with CNA cluster status, a Fisher’s exact test with 10,000 simulations was

used followed by a Bonferroni adjustment for multiple hypothesis testing.

Global Methylation
Two generations of Illumina infinium DNAmethylation beadarrays, including HumanMethylation27 (HM27) and HumanMethylation450

(HM450), were used to assay 1,406 pan-squamous tumor samples and 156 normal samples in total. Data fromHM27 andHM450were

combined and further normalized by using a probe-by-probe proportional rescaling method to yield a common set of 22,601 probes

with comparative methylation levels between two platforms, as described in detail in Syn7073804 on Synapse. Briefly, we rescaled

the HM27 data based on between-platform difference measured by technical replicates.

Epigenetic silencing genes

Epigenetic silencing calls at the gene level were processed on probes located within (�1500, +1500) bp of all TSS defined by UCSC

database and unmethylated in the normal tissues as well as sorted blood cells, with a median beta value of less than 0.2 required for

each normal cell type. In order to get rid of the impact of tissue specificity on gene expression, we z-score transformed gene expres-

sion data first into scaled data within each tumor type. The Z scores were derived using the mean and standard deviation calculated

with the unmethylated tumors only, defined as thosewith a beta value of (0, 0.1). Samples across all the tumor typeswere then pooled

together. For each probe/gene pair, we chose the probes that exhibited epigenetic silencing with the following criteria: 1) at least

5 samples were observed with a beta value of 0.3 or above (defined as the methylated group); 2) mean Z score of the methylated

group was lower than �2; 3) FDR-corrected p value according to one-side t test on Z scores was lower than 1e-5 between unme-

thylated and methylated group; 4) the maximum beta value of the methylated group was higher than 0.75. Probes survived this step

were retained to call epigenetic silencing events based on DNA methylation profiles for each sample. For genes with only one probe

retained, a beta value cutoff of 0.3 was applied to call silencing events, while genes with multiple probes that show evidence of

silencing, the beta value cutoff was relaxed to 0.2 with the requirement that greater than half of the probes consistently silenced

for that gene.
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Due to the presence of multiple transcripts in the CDKN2A region, HM27 did not have a correct probe for the p16 promoter. There-

fore, the silencing status for p16was called with probe cg13601799 onHM450 as previously described (Chen et al., 2016), with a beta

value of 0.2 or above considered as epigenetic silencing.

Functional analysis of those epigenetic silencing genes was conducted using DAVID bioinformatics resources (Huang et al., 2009).

MethylMix
Clustering of DNA methylation data

Methylation of neighboring CpG sites tends to be highly correlated. To reduce multiple testing of highly correlated CpG probes, and

to reduce the dimensionality of the methylation array data, probes for each gene were clustered using hierarchical clustering with

complete linkage. Average methylation values of these CpG clusters, were used as input for MethylMix.

Classification of abnormally methylated genes

MethylMix was applied to CpG cluster data available for 1408 SCC tumors to identify CpG clusters (hereafter referred to as ‘genes’)

that are abnormally methylated in all or a subset of cancers compared with adjacent normal tissue, where this abnormal methylation

state is associated with decreased RNA expression of the same gene, as previously described (Gevaert, 2015). To maximize the

number of patients for which methylation data was available, both 27k and 450k methylation array data was used. Methylation anal-

ysis was therefore restricted to probes represented on both arrays.

We aimed to identify genes that were aberrantly methylated in cancer versus 125 normal adjacent tissue samples available across

multiple SCC types, i.e., pan-cancer abnormally methylated genes.

Methylation of many genes differs between tissues under normal (non-cancerous) conditions. It is difficult to distinguish between

genes that display normal tissue-specific methylation differences, and those that are abnormally methylated in some cancers but not

others. Therefore, we restricted our analysis to genes whose methylation state was consistent across normal adjacent tissues

associated with each SCC cancer site, i.e., genes that are ‘unimodal’ across normal tissues. We applied MethylMix separately to

normal tissue data for all SCCs sites, and then to tumor and normal tissue data combined, to identify genes that were unimodal across

normal tissues, but abnormally methylated in all or a subgroup of tumors versus normal tissue. MethylMix identifies CpG clusters

that are inversely linearly associated with mRNA expression of the corresponding gene, using linear regression, with an r-squared

value > 0.1, and a p value < 0.001. These CpG clusters are termed ‘functional genes’. Overall, MethylMix identified 905 genes

that were unimodal in normal tissue but abnormally methylated in cancer, and where methylation was inversely associated with

RNA expression in cancer (Table S2K).

Consensus clustering to identify SCC DNA methylation subgroups

Unsupervised Consensus clustering was applied to DM values data for these 905 genes in all SCC patients, to identify robust methyl-

ation clusters (Putative subtypes). Consensus clustering was performed using the ConsensusClusterPlus R package (Wilkerson and

Hayes, 2010), using 1000 rounds of k-means clustering, with a maximum of k = 10 clusters. We identified five methylation clusters,

with selection of the optimal number of clusters based on inspection of plots, dendrograms and features provided by the Consensu-

sClusterPlus output (Figure 4A). All of the clusters included more than one cancer type that displayed similar methylation patterns

(Figure 4A).

DNA methylation profiles of DNA methylation clusters

The SCC clusters differed greatly in their average numbers hypermethylated and hypomethylated genes. Clusters 2 and 4 displayed

the highest numbers of hypermethylated genes, while cluster 3 had relatively few hypermethylated genes. Clusters 3 and 5 had the

highest number of hypomethylated genes.

Differential distribution of significantly mutated genes between DNA methylation clusters

Of 51 genes that are significantly mutated in SCC overall, 28 were significantly differentially distributed between clusters (Table S2L;

Figures 4A and S3B). These abnormally methylated genes included genes that have been causally implicated in cancer development

(listed in the COSMIC census http://cancer.sanger.ac.uk/census). Some of these genes were abnormally methylated across multiple

SCC types, and therefore represent pan-cancer abnormally methylated genes, while other genes were abnormally methylated within

specific subtypes. For example, TET1 and FANCF are specifically hypermethylated in HPV+ subtype 2, while SYK is hypomethylated

in HNSC, LUSC, and CESC within all subtypes. For each of the 905 abnormally methylated genes in SCC, MethylMix ascribed dif-

ferential methylation (DM) values, a categorical variable indicating the methylation state for that gene (normal, hypomethylated or

hypermethylated, relative to normal tissue) in each cancer.

mRNA
Consensus hierarchical clustering was performed in R on the PanSCC cohort using 1867 previously defined cancer-related genes, as

described in the text. The 1,867 gene compilation we used is based on evidence based compilation of cancer related genes, from

major data bases such as the Cancer Atlas (999), Sanger Cancer Gene Census (452), CAN genes (192) and Waldman gene locus

(455). These data bases include genes curated from SCC and other sites. The list was compiled by generating a dereplicated

gene list from ‘‘Table 1: Databases of genes implicated in cancer’’ in Sadelain et al. (2011). Review of this gene list confirms that

it includes many of the most significant and novel cancer related genes and signatures associated with iC, CNAs, mutations, methyl-

ation, miRNAs, paradigm analysis, and RPPA analyses found in the present study. Data was visualized with the next-generation clus-

tered heatmap tool mRNA clustering viewed using interactive Next-Generation Clustered Heatmaps (NG-CHMs)(Broom et al., 2017),
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(http://bioinformatics.mdanderson.org/TCGA/NGCHMPortal/). A k-means solution was found that discriminated 6 mRNA expres-

sion clusters that included mRNAs linked to significant CN, methylation, and miRNA-related alterations found via other platforms

(Figures 5A, 5B, and S4).

PARADIGM
The PARADIGM algorithm (Vaske et al., 2010) was used to infer the activities of �19K pathway features based on expression, copy

number and pathway interaction data for 9829 tumor samples, including 1373 squamous cancers. When we compared the

PARADIGM integrated pathway levels (IPLs) between squamous and other cancer types. Median-centered IPLs were used to

compute the squared Euclidean distance between samples; and this metric was used as the input to the ConsensusClusterPlus

algorithm. Hierarchical clustering using theWard’s minimum variance method (i.e., ward inner linkage option) with 80% subsampling

was performed over 1000 iterations; and the final consensus matrix was clustered using average linkage. The Ward’s minimum vari-

ance method is specifically chosen for the hierarchical clustering within each iteration because this method tends to form compact

spherical clusters and is less prone to yielding clusters with very few members. The final clustering of the consensus matrix uses

average linkage, which is the default option. Applying consensus clustering to subset the 1373 squamous cancers based on

�4000 pathway features with the highest (25%) variance, we observed 6 sub-groups with characteristics patterns of PARADIGM

inferred pathway activation pattern. These are shown in Figure 5A. With the exception of the predominantly HNSC cluster C3,

and the predominantly LUSC cluster C6, the other clusters are mixed in their tumor type composition. Amplifications, deletions

and mutation frequencies between clusters are compared in ‘‘one vs. all others’’ comparisons using the Fisher Exact test with

Benjamin-Hochberg False Discovery Rate correction.

miRNA
Unsupervised consensus clustering of miRNA abundance was performed using miRNAs with RPM > 25 in at least 10% of the sam-

ples, after assessing k-means clustering metrics, heatmaps and dendrograms, and covariate tracks for clustering results from other

platforms. The heatmap displays row-scaled, log10 abundance. MiRNAs with differential expression between PanSCC and all other

TCGA samples were identified. Gene-target associations were identified in miRTarBase V6.0 (Chou et al., 2016) and anti-correlations

were identified (Spearman < �0.2, FDR < 0.05).

DNA Repair
Fanconi anemia (FA) pathway analysis was performed by the TCGA PanCanAtlas DNA Damage Repair Pathway working group. The

FA pathway genes were manually curated. Gene alterations were called based on mutation, methylation, and deep copy number

deletions from PanCan 33 dataset for 1409 Pan-SCC, and the top 10 are presented as an oncoprint, and compared with 8350 other

cancers. The significance of the difference in FANCF observed in PanSCC versus PanCan 33 data was determined by 2-sample test

of the equality of proportions, and two-sided chi-square test p < P < 2.2e-16.

RPPA
RPPA experiments and data processing

Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L HEPES (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L MgCl2,

1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and

aprotinin 10 ug/mL) from human tumors and RPPA was performed as described previously (Hennessy et al., 2007; Hu et al., 2007;

Liang et al., 2007; Tibes et al., 2006). Lysis buffer was used to lyse frozen tumors by Precellys’ homogenization. Tumor lysates were

adjusted to 1 mg/mL concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS, and manually serial

diluted in two-fold of 5 dilutionswith lysis buffer. An AushonBiosystems 2470 arrayer (Burlington, MA) printed 1,056 samples on nitro-

cellulose-coated slides (Grace Bio-Labs). Slides were probed with 217 validated primary antibodies followed by corresponding

secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-Goat IgG). Signal was captured using a

DakoCytomation-catalyzed system and DAB colorimetric reaction. Slides were scanned in a CanoScan 9000F. Spot intensities

were analyzed and quantified using Array-Pro Analyzer (Media Cybernetics Washington DC) to generate spot signal intensities (Level

1 data). The software SuperCurveGUI (Hu et al., 2007) available at http://bioinformatics.mdanderson.org/Software/supercurve/, was

used to estimate the EC50 values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve (‘‘supercurve’’) was plotted

with the signal intensities on the y axis and the relative log2 concentration of each protein on the x axis using the non-parametric,

monotone increasing B-spline model (Tibes et al., 2006). During the process, the raw spot intensity data were adjusted to correct

spatial bias before model fitting. A QC metric was returned for each slide to help determine the quality of the slide: if the score

was less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was repeated to obtain a high quality score.

If more than one slide was stained for an antibody, the slide with the highest QC score was used for analysis (Level 2 data). Protein

measurements were corrected for loading as described (Gonzalez-Angulo et al., 2011; Hu et al., 2007) usingmedian centering across

antibodies (level 3 data). Final selection of antibodies was also driven by the availability of high quality antibodies that consistently

passed a strict validation process as previously described (Hennessy et al., 2010). These antibodies were assessed for specificity,

quantification and sensitivity (dynamic range) in their application for protein extracts from cultured cells or tumor tissue. Antibodies

were labeled as validated and use with caution based on degree of validation by criteria previously described (Hennessy et al., 2010).
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Data normalization

Median centering was performed across all the antibodies for each sample to correct for sample loading differences. These differ-

ences could arise because protein concentrations are not uniformly distributed per unit volume of lysate due to several factors such

as differences in protein concentrations of large and small cells, differences in the amount of proteins per cell, or heterogeneity of the

cells comprising the samples. The expression levels acrossmany different proteins in a sample could be used to estimate differences

in the total amount of protein in that sample versus other samples. Further, subtracting themedian protein expression level forces the

median value to become zero, allowing for a comparison of protein expressions across samples. These median-centered data were

used for the analysis of all samples. Following this normalization, nine antibodies were removed from the dataset since they showed a

large number of incomplete values (over 20%), for a total of 189 antibodies.

Surprisingly, processing similar sets of samples on different slides of the same antibody may result in datasets that have very

different means and variances. Neely et al. (Neeley et al., 2009) processed clinically similar ALL samples in two batches and observed

differences in their protein data distributions. There were additive andmultiplicative effects in the data that could not be accounted by

biological or sample loading differences. We observed similar effects in our batches of data as well. A new algorithm, replicates-

based normalization (RBN), was therefore developed using replicate samples run acrossmultiple batches to adjust the data for batch

effects. The underlying hypothesis is that any observed variation between replicates in different batches is primarily due to linear

batch effects plus a component due to random noise. Given a sufficiently large number of replicates, the random noise is expected

to cancel out (mean = zero by definition). Remaining differences are treated as systematic batch effects. We can compute those ef-

fects for each antibody and subtract them out. Many samples were run in both batches. One batch was arbitrarily designated the

‘‘anchor’’ batch and was to remain unchanged. We then computed the means and standard deviations of the common samples

in the anchor batch, as well as the other batch. The difference between the means of each antibody in the two batches and the ratio

of the standard deviations provided an estimate of the systematic effects between the batches for that antibody (both location-wise

and scale-wise). Each data point in the non-anchor batch was adjusted by subtracting the difference in means andmultiplying by the

inverse ratio of the standard deviations to cancel out those systematic differences. Our normalization procedure significantly reduced

technical effects, thereby allowing us to merge the datasets from different batches.

Cluster Analysis

The proteins versus samples data matrix was bi-directionally median centered, then hierarchical clustering was performed with

1-Pearson’s correlation coefficient as the dissimilarity measure and Ward’s linkage. Selection of cluster number was made after

considering k-means clustering metrics, including elbow, Silhouette width, and Gap statistic. Elbow and gap both gave monotoni-

cally increasing curves that were noninformative. Silhouette width provided two peaks, one at k = 2 which was too broad, and a

smaller one at k = 7 that split the second cluster from the left into two. Based on the dendrograms of the heatmaps, the height of

the tree for the second and fourth clusters from the left were almost the same, so there was a limited difference between splitting

the dendrogram at k = 7 versus k = 8. Therefore, we selected k = 6 because (i) it is close to the silhouette width result of k = 7,

(ii) it produces clusters that aren’t too small or too large, (iii) there was a noticeable difference in the dendrogram split point between

k = 6 and k = 7, but negligible difference between k = 7 and k = 8. The 6 clusters obtained showed clusters enriched for distinct and

shared molecular signatures highlighted in Figure S6A and the Results.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification methods and statistical analysis methods for each of the various data platforms and for integrated analyses are

described and referenced in their respective STAR Methods subsections.

DATA AND SOFTWARE AVAILABILITY

The raw data for TCGA PanCanSCC samples, including clinical data, DNA exome sequence, RNA expression sequence, miRNA

expression sequence, DNA methylation beta values, SNP Array (copy number data), and RPPA proteomics data are archived and

publicly available in the Genomic Data Commons (https://gdc.cancer.gov). Analysis results from other data platforms are provided

in the supplemental tables.

Software used for the analyses for each of the data platforms and integrated analyses are described and referenced in the indi-

vidual Method Details subsections and listed in the Key Resources Table.
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