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A definition of complexity based on logic functions, which are widely used as compact descriptions of rules in

diverse fields of contemporary science was explored. Detailed numerical analysis shows that (i) logic complexity is

effective in discriminating between classes of functions commonly employed in modeling contexts; (ii) it extends the

notion of canalization, used in the study of genetic regulation, to a more general and detailed measure; (iii) it is

tightly linked to the resilience of a function’s output to noise affecting its inputs. Its utility was demonstrated by

measuring it in empirical data on gene regulation. Logic complexity is exceptionally low in these systems, and the

asymmetry between ‘‘on’’ and ‘‘off ’’ states in the data correlates with the complexity in a non-null way. A model of

random Boolean networks clarifies this trend and indicates a common hierarchical architecture in the three sys-

tems. VC 2016 Wiley Periodicals, Inc. Complexity 21: 397–408, 2016
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1. INTRODUCTION

I
rreducibility is a property often ascribed to complex

entities: their behavior cannot be compressed into

compact descriptions. Symmetries—a paramount con-

cept in physics—and recurrent patterns are prominent

facilitators, enabling implicit definitions of the systems.

The amount of implicitness allowed is a measure of infor-

mation content [1], as illustrated by Kolmogorov’s defini-

tion of complexity. The concept of complexity pervades

contemporary science, from the statistical mechanics of

disordered systems and complex networks to economical

and technological studies, prominently in the emerging

field of complex systems, where it can promote the dis-

covery of regularities and large-scale trends [2–10]. A

recurrent question, notably in evolutionary biology, is

whether complexity contributes to fitness [11–14]. Its deep

interplay with system-level properties such as tolerance

and modularity has been investigated both in technologi-

cal and biological designs [15,16]; robustness of complex

systems against fluctuations and attacks, in particular, is

the subject of numerous studies [17–19].

Although complexity has been examined in detail in

single contexts, by employing specific definitions, a study
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across disciplines is still lacking, and the general conse-

quences and relations with other traits are still largely

unknown. In this work we employ a definition of complex-

ity based on Boolean logic [20], that is generic enough to

be applicable in diverse fields. Logic functions are a natu-

ral and simple representation of how information flows in

complex systems [21]. They are used to express genotype

to phenotype mappings—both in metabolic [22] and elec-

tronic [23] systems—, rules for the control of gene expres-

sion [24], protein network organization [25], cryptographic

cyphers [26], functions realized by digital electronic cir-

cuits [27], simple cooperative games [28], and they lie at

the foundations of mathematical logic [29]. Complexity in

a Boolean setting has been addressed especially regarding

the global dynamics of Boolean networks [30], yet it

proves profitable already to focus on single functions

(nodes) [31–33]. We will concentrate on the properties of

individual functions in this article.

There are 22n

distinct Boolean functions with n varia-

bles: finding useful coordinates in this high-dimensional

space is a necessity in all fields concerned with logic func-

tions. A large number of quantities describing various

characteristics have been defined and analyzed. Some are

especially useful for assessing their cryptographic proper-

ties (such as correlation immunity [26]), some are suited

for biological systems (such as the canalizing quality [24]),

some are designed to address issues in specific domains

(such as the Nakamura number in cooperative game theo-

ry [34]). Here we concentrate on two natural and general

‘‘observables,’’ bias and complexity, whose versatility ena-

bles their use as a reference frame for comparing different

systems in different fields.

We define the notion of logic complexity of a Boolean

function as the size of the most compact Boolean expres-

sion that realizes it [20] (see Section 2 for the choice of

the description language). Firstly (in Section 3), we show

that this definition assigns quantitatively different com-

plexities to popular classes of logic functions. We clarify

its relation with bias—a measure of the asymmetry

between ‘‘on’’ and ‘‘off’’ values—and with resilience of the

functions in noisy environments, thus establishing a quan-

titative relation between complexity and robustness.

Importantly, logic complexity realizes a rigorous and gen-

eral measure for the notion of canalization, a fruitful con-

cept developed in the context of gene regulation [24]. In

this field, our results further expose the inconveniences of

the commonly used threshold functions, which turn out

to have exceptionally high complexity.

Secondly (in Section 4), as an illustrative application of

the concepts developed, we compute the complexity and

the bias in three exemplary systems belonging to the

realms of biology, technology, and mathematics, namely

genetic regulation, electronic circuits, and propositional

calculus. We find that the three systems are characterized

by different ranges of the bias, and that the logic complex-

ities are generally small, compared with a null model of

random Boolean functions. The non-null trends are eluci-

dated by a model of random Boolean networks, suggesting

hierarchical organization as a shared architecture.

Altogether, the results presented here advocate the use

of bias and complexity as coordinates in a ‘‘morphospace’’

for the classification of logic functions, and in particular

as a powerful tool for comparing Boolean models and

data. More in general, our results remark that complexity

is a measurable and empirically relevant trait, indicating

similar features in dissimilar systems; however, its role is

entangled with other important properties, such as bias,

robustness, and information dispatching, and cannot be

contemplated in isolation.

2. MEASURING LOGIC COMPLEXITY AND BIAS
A Boolean (or logic) function maps the set f0; 1gn to {0,

1}, associating a truth value to each combination of its n

Boolean inputs (by convention the integers 1 and 0 mean

true and false, or on and off, respectively). The binary

nature of this description is sometimes just an approxima-

tion to a continuous or multi-valued empirical situation

(such as the expression levels of a gene), but has the

advantage of being simple to deal with. Since the domain

is finite, a function can be specified by exhaustively listing

the values it takes for all input combinations. Such a list

constitutes the truth table of the function. See Figure 1 for

an example.

The bias B, defined as the average output value over all

input combinations, measures the propensity of the sys-

tem described by the given function to be in one of the

two states 0 and 1: B 5 1 for a tautology (the function that

is true for all values of its inputs), B 5 0 for a falsity (the

negation of a tautology).

Beyond the truth table, there is a way of writing Bool-

ean functions which makes them more intelligible to

humans, as opposed to computers. In fact, one can assign

names to the function’s inputs—the literals—and decom-

pose the function into binary sub-functions (i.e., functions

of two literals) and negations (which are unary functions),

thus writing it in the form of a Boolean expression; Figure

1 presents an example. Such an expression contains the

literals (possibly repeated), parentheses, and binary and

unary operators. All Boolean functions can be expressed

in this way, as every Boolean function can be written as

the composition of binary and unary functions. We will

use the set of logical operators f� ;�;:g (i.e., AND, OR,

and NOT) to express them. As an example, consider

the function of 3 literals p, q, and r that is true if one

or two literals are true, and false otherwise. With our

choice of basic operators it can be written as

ðp � q � rÞ�:ðp � q � rÞ.
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The definition of complexity that we shall employ for

Boolean functions uses disjunctive normal forms (DNF) as

the description language. A formula is in DNF if it is of

the form ðA � B � � � �Þ� ðC � D � � � �Þ� � � �, where A;B; . . . are

literals or their negations. For example, ðp � qÞ�:p is in

disjunctive normal form, while :ðp � qÞ is not. Consider

the tautology of n 5 2 literals. A particular normal form

(called full DNF) can be built by listing explicitly all these

combinations, thus obtaining the formula

ðp � qÞ� ðp �:qÞ� ð:p � qÞ� ð:p �:qÞ; however, a more

concise formula would be, for instance, p �:p. Such a lev-

el of conciseness is intuitively related to the lack of com-

plexity of the tautology. In general one expects that the

more complex a function is, the less compact it can be

made. We shall then define the complexity C of a function

as the number of terms in the shortest DNF specifying the

function (normalized by 2n). This definition assigns mini-

mum complexity to tautologies and their negations. At the

other end of the spectrum, the parity function, which

counts the number of true literals modulo 2, is balanced—

meaning that B 5 1/2—and has the largest possible com-

plexity, namely 1/2. Note that in general C � B. The main

definitions and concepts are summarized in Figure 1 for a

simple function. See the Appendix for detailed definitions.

Measuring the bias of a function f is straightforward, as

it amounts to counting the number of ones in the truth

table. Calculating the complexity, instead, is in general a

computationally hard problem. The presence of

symmetries in the truth table is what enables the com-

pression. By symmetry, in this context, we mean a choice

of a particular combination of values for a fixed subset of

literals, such that the value of f, conditioned to this choice,

does not depend on the other literals. This is the defini-

tion of a cell (see the Appendix). Finding the most com-

pact normal form representing a function (or minimizing

it) thus amounts to finding the smallest number of cells

sufficient to describe the function’s truth values; this

means exploiting the set of its symmetries in the best pos-

sible way. However, even if one has listed all the cells of a

function, there could be non-trivial overlaps between

them—causing what is known as frustration in statistical

mechanics—thus complicating the task of finding the

smallest subset that recovers the function. In fact, this

problem is equivalent to the ‘‘set cover problem,’’ a well-

known NP-HARD problem in algorithmic complexity theo-

ry [35,36].

Fortunately, since the minimization of logic function is

a crucial step in the design of digital circuits, standard

algorithms are available for this task. Here we use an

implementation of the Quine–McCluskey method [27],

which deterministically finds the minimal form of a func-

tion. The maximum number of literals in the analyses pre-

sented here is n 5 9. For much larger functions, an

approximate method is needed (such as ‘‘Espresso’’ [37]).

Such methods have the advantage of being adapted to

multivalued logic, and they even allow for indetermina-

cies, so they can be used for computing logic complexity

in more general settings.

We remark that ideas related to the one advanced here

were proposed in the fields of unconventional computa-

tion and cellular automata [32,33], where a notion of ‘‘con-

ceptual representation’’ for Boolean rules was developed.

That method, which makes use of a representation in

terms of cells, essentially corresponds to the first step in

the Quine–McCluskey algorithm, before the set-covering

problem is solved.

3. RESULTS
3.1. Bias and Logic Complexity Discriminate Popular Classes
of Functions

We show here that the Boolean complexity takes values

lying in different ranges for different commonly used clas-

ses of Boolean functions [38]. We examine random func-

tions, that is, Boolean functions with a fixed number of

literals drawn with uniform probability, canalizing func-

tions, for which the value of a single input variable

decides whether the other variables have any influence on

the result, and threshold functions, for which the result is

decided by the sum of ‘‘enhancer’’ variables minus the

sum of ‘‘inhibitor’’ variables.

FIGURE 1

A Boolean function f of n 5 3 literals p, q, r has eight possible
input combinations; the value of f ðp; q; rÞ on each of these (its
truth table) completely specifies the function. The fraction of com-
binations on which f is true, in this case six out of eight, is the
bias B. The full disjunctive normal form of f is obtained by explicitly
stating all these combinations; in this example it would be ð:p �
:q �:rÞ� ð:p �:q � rÞ� ð:p � q � rÞ� ðp �:q �:rÞ� ðp �
:q � rÞ� ðp � q � rÞ. However a shorter form can be obtained by
dividing the support of f into cells, thus exploiting its symmetries.
In this case two cells (blue and red groupings) are sufficient (and
necessary), thus the complexity is C 5 2/8.
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More formally, the ensemble of random functions with

n literals is defined as the set of all n-variables Boolean

functions, endowed with the flat probability measure. This

ensemble is useful as a null (unconstrained) model for

discerning positive features in other classes of functions,

as well as in the data. Random canalizing functions are

defined as follows. Consider a function f ðp1; . . . ;pnÞ of n

literals p1; . . . ;pn. If f is canalizing, then by definition there

exists a literal (by rearranging the literals, we can assume

it is p1) and two truth values (the input I and the output

O) such that f ðI ;p2; . . . ;pnÞ5O. If p15:I , then

f ð:I ;p2; . . . ;pnÞ5gðp2; . . . ;pnÞ, where g is a function of n –

1 variables. The random canalizing ensemble is specified

by taking both I and O to be 0 or 1 independently with

the same probability, and g to be a random (uniform)

function of n – 1 literals. Threshold functions are often

used to model regulatory rules starting from known

molecular interactions (e.g., in the cell cycle of yeast

[19,39]). Let aj be a set of n – 1 couplings, specifying the

nature of the influence of a protein, identified by j, on a

given gene product, identified by i. In particular, aj 5 1 if j

is an enhancer and aj521 if it is an inhibitor for i (inter-

action strength can be taken into account by extending

the possible values of aj). If xj are on/off values specifying

the presence (1) or absence (0) of each protein, then the

Boolean state f of i, is computed as 1 or 0 depending on

the sign of
P

j 6¼i ajxj2h (where h is the threshold) with the

exception that if the value is zero then f 5 xi. The ensem-

ble of random threshold functions of n variables is defined

by taking the aj’s to be random independent Bernoulli var-

iables in f21; 1g (we will fix h 5 0, unless specified

otherwise).

Figure 2(A) shows the complexities of the three classes

of functions defined above, as the number of inputs n is

varied. For clarity, we excluded very unbalanced functions

from this analysis, by restricting biases to the interval

0:4 < B < 0:6. Threshold, canalizing, and random func-

tions segregate into separate regions, already for n � 5.

Interestingly, the combination Cn1=2 appears to be approx-

imately increasing, decreasing, and constant in n for the

three classes, respectively [Figure 2(B)].

Let us restrict the analysis to fixed numbers of literals

n, in order to explore the relations between bias and com-

plexity. Panels C and D in Figure 2 show how the three

classes occupy different regions in the B–C space. These

plots have been obtained by generating random functions

of each class for each possible value of B fixed. While all

types of functions have comparable complexities for

FIGURE 2

Commonly-used classes of functions are characterized by markedly different complexities. Threshold functions are more complex than the typical
functions, while canalizing functions are simpler. Shaded areas are the 80% variability intervals (at fixed bias) for each class. (A) Complexity as a
function of the number of literals. Bias is restricted to the interval ð0:4; 0:6Þ (there are no threshold functions of an even number of literals satisfying
this constraint). (B) For random functions, C decreases approximately as 1=

ffiffiffi
n
p

. The plot shows the rescaled quantity C
ffiffiffi
n
p

. (C,D) Complexity as a
function of bias for the three classes of functions considered, with n 5 6 and n 5 7 literals.
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extreme biases (B � 0:2 and B � 0:9), in the balanced

regime they are sharply discriminated by complexity. This

rules out the possibility that the trends observed above

might be due solely to how the typical biases B depend on

n in the three classes of functions. Notice that both the

bias and the complexity of threshold functions are quan-

tized, because of symmetry under permutations of the

variables. Perhaps surprisingly, their complexity is larger

than the typical value. Changing the threshold value h has

the only effect of changing the ensemble weights of the

functions (larger h favors functions with lower bias), but

the B–C plot remains the same.

The figure also exposes a non-monotonic correlation

between complexity and bias, common to random and

threshold functions. Canalizing functions, whose defini-

tion modularly uses a random function of n – 1 variables,

present a similar behavior on a halved scale; we are going

to study this pattern more in detail.

3.2. Logic Complexity Realizes a Quantitative Measure of
Canalization

The definition of canalization employed above isolates

exactly one canalizing variable p1. However, a more general

definition can be given, where the number of such special

variables is k<n. If the value of the first canalizing variable

does not fix the output, then the second canalizing variable

is considered, and so on in a nested fashion, until the k-th

variable. More precisely, given a set of input values I1; . . . ;

Ik and a set of output values O1; . . . ;Ok , f ðp1; . . . ;pnÞ takes

the value Oj if pi 6¼ Ii for all i< j and pj 5 Ij; otherwise it is

a function gðpk11; . . . ;pnÞ of the remaining n – k variables.

The ensemble is specified by taking the Ii’s and Oi’s as ran-

dom independent Bernoulli variables in {0, 1} and g as a

random function of n – k literals. These functions will be

called random nested canalizing, and k their level (our defi-

nition is based on that of nested canalization given in [40],

but it uses a less constrained measure).

We generated 1000 random nested canalizing functions

of level k51; . . . ;n21 for each possible value of their bias,

and computed their complexity. The results (with n 5 7)

are in Figure 3 (not all levels are shown for clarity; other

values of n yield similar results). Disregarding for the

moment the fine structure that appears as a function of

bias, the overall trend is clear: the more levels of canaliza-

tion a function has, the smaller is its complexity.

Canalization itself cannot be measured quantitatively: the

level k is a rough measure, but it takes only n – 1 different

values. Therefore, complexity, which can take 2n different

values, appears as a much more detailed measure of

canalization.

The fractal nature of the plot is interesting. At level k,

the inverted-U pattern displayed by random functions is

repeated 2k times (this is true independently of n). Fully

canalizing functions, that is, those at level n – 1, satisfy a

deterministic relation between bias and complexity, which

can be seen to be given by C5S2ðB2nÞ=2n, where SqðmÞ is

the sum of all the digits in the base-q representation of

the integer m (in the case q 5 2 it is known as the binary

weight).

3.3. Logic Complexity Constrains Robustness
Noise is an important element of both living and artifi-

cial systems. Robustness against errors and fluctuations,

for instance in protein folding or signal transduction, is a

central question in biology [41,42]. In the field of regulato-

ry networks, noise can be implemented by means of a sto-

chastic generalization, called probabilistic Boolean

networks [43], where the functions computed by nodes

are subject to a certain degree of variability. One can then

ask what noise level the system can sustain without dis-

rupting its functions. Such questions are relevant in tech-

nological systems as well.

It is then interesting to discover that Boolean complexi-

ty is closely related to fault tolerance in our simple setting.

We employ the definition of robustness R detailed in the

Appendix, which counts the fraction of single-

variable flips that have no effect on the output. More

precisely, it is equal to the probability that

f ðp1; . . . ;pj; . . . ;pnÞ5f ðp1; . . . ;:pj; . . . ;pnÞ, when the values

of p1; . . . ;pn are chosen randomly and j is a random inte-

ger between 1 and n. As discussed above, simple functions

are intuitively recognized as those having a large number

of symmetries, where a symmetry (as outlined by the

technical notion of cell described in the Appendix) is a

group of input combinations such that the function’s value

is not sensitive to changes of some of the variables. Thus,

FIGURE 3

The complexity of random nested canalizing functions decreases
systematically with the level k. The shaded areas are the 80% var-
iability intervals. The inverted-U pattern repeats itself 2k times at
level k. At level n 2 1 (lowermost curve) complexity is a determin-
istic function of bias (circles are the analytical expression given in
the text). Here the number of input variables is n 5 7.
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one expects simpler functions to be more robust. In fact,

computing the robustness for functions with varying

biases and complexities shows that R is strongly depen-

dent on C (and very slightly on B). Figure 4 displays these

correlations, and shows that the dependence of R on the

number of variables n is almost undetectable. Statistically

significant correlations remain also if one conditions the

analysis to fixed values of the bias, thus confirming the

relation. Also, flipping 2 variables instead of 1, thus

increasing the noise level in the definition of R, has negli-

gible effects on the results.

4. APPLICATION TO EMPIRICAL SYSTEMS
We are going to apply the concepts developed in the

previous sections to empirical systems of different types,

belonging to the broad areas of biology, technology, and

mathematics. In particular, we will focus on transcription

regulation in Eukaryotes, digital electronic circuitry in a

general-purpose processor, and theorems in propositional

logic. The three data sets employed here are chosen as a

reference, and do not intend to be general representatives

of their respective fields. However, interesting features

about how logic complexity is expressed in empirical sys-

tems can be isolated already from this limited exploration.

4.1. Data Sets
4.1.1. Genetic Regulation

Transcription regulation is the machinery by which a

cell coordinates the generation of RNA from DNA,

ultimately orchestrating the production of proteins in

response to internal and external stimuli. Several proteins,

including transcription factors that bind to the DNA, can

participate in the regulation of a single gene. They can

play the simple roles of activators and repressors of tran-

scription, but their complex interactions within chromatin

can generate complicated dependencies between their

presence/absence patterns and the expression level of a

given gene. These relationships can then be summarized

by Boolean functions expressing whether each gene is

transcribed or not, depending on the presence of each

protein that has an influence on the gene. We compiled a

small data set of 34 such functions, obtained from the lit-

erature (5 regulating flower morphogenesis in Arabidopsis

thaliana [44]; 15 regarding segment polarity in Drosophila

melanogaster [45]; 6 controlling the mammalian cell cycle

[46]; 8 belonging to T lymphocytes in vertebrates [47,48]).

We restricted to articles where experimentally validated

functions were employed for the construction of Boolean-

network representations of gene interactions, since these

are the most easily accessible, and they have the addition-

al benefit of being used already in a Boolean setting. We

circumscribe the analysis to functions with n53; 4; 5; 6; 7

inputs.

4.1.2. Digital Circuits

Logic functions are the fundamental building blocks of

digital electronics. As mentioned above, hardware engi-

neering needs were the driving force behind the

FIGURE 4

Complexity of a Boolean function (x axis) strongly constrains its robustness (y axis), while bias and number of variables have a weak influence. Points
in panel A show the robustness versus the complexity of 1000 random Boolean functions with n 5 7 literals, generated uniformly on the full range of
biases; the inset shows robustness versus bias for the same data. Panel B collects data for different numbers of literals, showing the average (lines)
and the 80% variability interval (shaded areas) of the robustness as functions of the complexity.
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deployment of the known algorithms for minimizing Bool-

ean functions. Digital circuits are natively composed of

logic gates, and therefore have a natural network represen-

tation which has been already investigated within a statis-

tical physics viewpoint [49]. We used data from the ITC’99

benchmark [50], considering a partial logic-gate represen-

tation of the Intel 80386 processor (data set b15 [51]). The

data are in the form of a graph where nodes are gates

computing simple functions (either AND, NAND, OR,

NOR, or NOT) of a small number of inputs, and links run

from outputs to inputs of nodes. The full network has

around 8000 nodes and 17,000 links. We built individual

functions by considering all sub-graphs with n53; 4; 5; 6; 7

input links. The enumeration was restricted to sub-graphs

with at most five hierarchical levels (i.e., the longest path

from an input node to an output node travels along four

links); the data were then pruned of functions correspond-

ing to a single node. Our final data set comprises 1891

Boolean functions (approximately 250 for n 5 3, 170 for

n 5 4, and 500 for n 5 5, n 5 6, and n 5 7).

4.1.3. Formal Logic

The relations between logic functions and expressions

constitute the branch of logic known as propositional cal-

culus. Deductive systems can be used to formalize and

check, solely from syntactic grounds, whether a given for-

mula is a consequence of another. Basically, they rely on a

set of axioms, that are true by definition, and a set of

inference rules, that are used to form true expressions

starting from true premises. The data set we used is based

on the Metamath project [52], which implements a stan-

dard deductive system for the formalization of mathemat-

ics, providing a language and a proof-validation software

to the community of people involved. We restricted to the

part of the Metamath database that regards propositional

calculus, for which one can interpret expressions as

Boolean functions. It depends on only three axioms,

(known as the principles of simplification, transposition,

and Frege) and only one inference rule, the modus ponens.

Theorems can be in either one of two forms. The first is

j– P —where P is an expression—meaning ‘‘P is provable

in the formal system,’’ in which case P is a tautology,

thanks to the coherence of the system. The second is

j2Q1; j2Q2; . . . ; j2Qk ) j2R, meaning ‘‘if all Qi’s are prov-

able in the system, than so is R.’’ Our data set was con-

structed as follows. If a theorem is in the second class, we

keep the proposition R. If it is in the first class, it is trivial-

ly a tautology (maximum bias, minimum complexity), so

we parse P and cast it into the form OP(Q, R), where OP is

a binary operator; then if OP is a conditional (Q! R) we

keep R (since the original theorem could have been

written as j2Q) j2R), if OP is a biconditional (Q$ R)

we keep both Q and R, if OP is a disjunction (Q � R)

we keep both Q and R (since it could have been written as

j2:Q) j2R and j2:R) j2Q). We end up with 327

propositions.

4.2. Empirical Functions Have Low Complexity
The values of bias and complexity for the function in

our data sets are shown in Figure 5(A–D). The bias (on the

horizontal axis) discriminates between the three systems,

for each n considered. Functions expressing gene-

regulatory rules take the value 0 (meaning ‘‘no gene tran-

script’’) more often than in the other systems, while theo-

rems in mathematical logic show an inclination for the

value 1 (meaning ‘‘true’’); electronic sub-circuits, though

more balanced, are slightly biased toward the ‘‘on’’ state,

contrary to what one would expect from energy-

consumption considerations. Comparison with the null

model shows that the complexity of empirical functions is

consistently lower than the typical Boolean functions,

especially for larger n.

4.3. A Random-Network Model Reproduces the Empirical
Trends

A noticeable feature of the empirical B–C plots is the

monotonic correlation between bias and complexity, in

spite of the non-monotonic one expected for random

functions. This suggests the existence of a positive mecha-

nism present either in the empirical systems themselves

or in the way they are modelized through logic functions.

We explore a possible scenario based on a model of

random Boolean networks, defined below. Our goal is to

show that analysis of empirical data by means of the bias-

complexity coordinates can be helpful in discerning non-

null features in the data and devising positive models.

Let us start with n input nodes, which represent the lit-

erals [refer to Figure 5(E)]. We build a graph iteratively by

adding nodes one by one. Each new node carries a ran-

dom binary function / (either OR or AND), and attaches

itself to two randomly chosen nodes, among those already

present (literals included). If the values of these nodes are

p and q, than the value of the new node will be /ðp;qÞ.
The growth process is stopped as soon as the first node

depending on all n input literals appears. More precisely,

the function f embodied by the network is defined as the

first node whose light cone contains all input nodes, the

light cone of a node A being defined as the set of all nodes

B such that there is a directed path in the network going

from B to A. Figure 5 shows that the bias-complexity rela-

tion predicted by this model is in reasonable accord with

the trend observed in the empirical systems. The most

notable feature is the roughly linear correlation between

the two coordinates, which is instead non-monotonic for

random functions.

Notice that we have chosen / to be either OR or AND

with equal probability. This choice generates functions

with biases covering the whole interval (0, 1); a statistical
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prevalence of OR reduces the average B, while the oppo-

site happens for AND, without modifying the trend

observed. Adding a negation (NOT) in front of

randomly-chosen variables does not change the results

appreciably.

5. DISCUSSION
The view presented here is based on the observation

that logic functions are a widespread tool in modeling

complex systems, realizing compact two-state descriptions

of complicated response functions (bi-stability of the

underlying dynamics further supports their use in some

cases). Therefore, a definition of complexity in a Boolean

setting is useful, as it enables the quantitative comparison

of behaviors across systems. It proves fruitful also within

fields, as a concise indicator summarizing several ‘‘micro-

scopic’’ features in a single global observable.

As we showed, complexity effectively discriminates dif-

ferent classes of functions widely used in modeling

approaches. Specifically within the class of canalizing

functions, it produces a quantitative measure of ‘‘how

much’’ canalization is realized. This measure is more gen-

eral and more detailed than the number of canalizing vari-

ables; it can be measured exactly for all Boolean functions

and is arguably more suited to information-theoretic

analyses. A long-standing question in the field of genetic

regulation concerns the properties of regulatory networks

responsible for their not being chaotic [38,53]. It is well

known that Boolean networks can display chaotic dynam-

ics in certain regimes, at variance with the ordered state

they are found to be in living systems. Canalization is one

quality of regulatory rules that has been found to promote

network stability. It would be interesting to investigate

how the order-chaos transition in the Kauffman model (a

random network of random Boolean functions [54])

depends on the complexity of the rules; the results regard-

ing robustness described above are relevant in this sense

(see also Refs. 33,40, and 55). Another consequence of our

results on the classes of functions commonly used for

gene regulation is that threshold functions impose a sys-

tematic tendency toward high complexity, and constrain

both bias and complexity to very specific values.

The relations uncovered between complexity, on/off asym-

metry, and robustness seem to indicate the presence of archi-

tectural similarities between the empirical systems

considered. In particular, the low Boolean complexity

observed in our three data sets and the monotonic correlation

between C and B suggest the existence of a positive mecha-

nism underlying these empirical systems. A possible rationali-

zation is given by the simplified model of random logic

networks described above, which reproduces the trends. The

FIGURE 5

The bias (on x axes) and the complexity (on y axes) of logic functions from empirical data sets are related in a non-null way, which is captured by a
model of random Boolean networks. (A�D) Functions defined by genetic regulatory circuits (red triangles), electronic sub-circuits in the i386 micropro-
cessor (green squares), and theorems in propositional logic (blue circles) have lower complexity than typical Boolean functions, especially for larger
numbers of literals. Gray shaded areas comprise approximately 80% of all functions with a given bias. Point sizes are proportional to the number of
data points having the same bias and complexity. The pink shaded areas are small random Boolean networks, schematically described in panel (E). In
this example, the network is built in four steps; the resulting function is given by the bottommost node (which is the first one that connects to all liter-
als p,q,r,s), and is ðp�ðr�qÞÞ�ðs�ðr�qÞÞ.
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information provided is twofold. First, our example of an

empirical application shows that measuring complexity, espe-

cially combined with bias in the B–C parametrization, can

promote the discovery of hidden regularities, trends, and

tradeoffs. Second, it suggests a possible underlying mecha-

nism recapitulating the statistical regularities measured,

namely a modular structure where the whole function to be

realized by the system is expressed by means of smaller func-

tions (i.e., with fewer inputs than n) organized in a hierarchi-

cal arrangement. Such a common architecture need not be

generated by common evolutionary processes in the three

systems. It may be the consequence of selection—for instance

favoring robustness—, or a neutral effect of the system’s orga-

nization, or it could expose our preference for simple struc-

tures, at least in artificial systems. Remarkably, Boolean

complexity of concepts has been found to be a predictor of

subjective difficulty in human learning [56]. In the case of reg-

ulation, the difficulty in performing the experiments and

completely identifying the set of regulating proteins may be

partially responsible for the low complexities observed.

Finally, we remark that the results presented are not

sensitive on the particular description language one

employs in the definition of logic complexity. We used dis-

junctive normal forms (i.e., disjunctions of conjunctive

clauses) throughout the article, but we checked that defi-

nitions based on conjunctive normal forms (conjunctions

of disjunctive clauses) or algebraic normal forms (exclu-

sive disjunctions of conjunctive clauses) do not change

our result statements.
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APPENDIX
A boolean function for N variables is a map

f : f0; 1gn ! f0; 1g
r 7!f ðrÞ

where r5fp1; p2; . . . ; png is the configuration of the input vari-

ables (or literals) pi. A logic function fðp1; p2; . . . ; pnÞ is

uniquely determined by its truth table, which is the explicit

listing of the value of f for all 2n possible combinations of the

n variables pi. Notable functions are the tautology, which takes

the value 1 for all r (a tautology is ‘‘always true’’), and the pari-

ty function pðp1; . . . ; pnÞ5
X

pi mod 2, which takes the value 1

when the number of literals equal to 1 is odd (and 0

otherwise).

Boolean functions can be built by composition of

‘‘smaller’’ functions, for example, a ternary function f

can be obtained starting from two binary functions g

and h as fðp; q; rÞ : 5gðp; hðq; rÞÞ. This permits the defini-

tion of a small ‘‘vocabulary’’ of atomic functions, from

which Boolean expressions, corresponding to larger func-

tions, can be constructed by composition. As the basic

building blocks for logic functions, we choose the two

binary functions AND ( � ) and OR ( � ), and the unary

function NOT (:). The set B5 � ; � ;:f g is functionally

complete, meaning that the three atomic functions can

be composed to represent all possible functions of n lit-

erals. Notice that B is not minimal, as both � and �
could be expressed by means of the other two connec-

tives. However, it is a very natural generating set, as it

is tightly linked to the representation of functions in

terms of their truth table.

The two-dimensional morphospace we use summa-

rizes each function by two quantities: bias and com-

plexity. Bias measures the average value taken by the

function, and is therefore an indicator of the asymmetry

between the ‘‘on’’ (1) and ‘‘off’’ (0) output states.

Definition-The bias B (or on/off asymmetry) of a Bool-

ean function f is the fraction of input combinations for

which f is true, namely

B5
X
frg

f ðrÞ
.X
frg

1;

where the sums are over all possible input combina-

tions r (hence
X

152n for a function of n variables).

Defining complexity, as in Kolmogorov’s definition,

requires the specification of a description language. A nat-

ural language for logic functions is that of disjunctive nor-

mal forms (DNF). As described in the text, these are

Boolean expressions built with the elements of our base set

B, such that they take a canonical form, namely a disjunc-

tion of conjunctive clauses, in terms of literals and their

negations. A DNF is said to be full if each literal appears

exactly once in each conjunctive clause. If a logic function

f is expressed via its truth table, then its full DNF can be

immediately constructed, simply by listing all combina-

tions of truth values for which f is true. For instance, the

function XOR(p, q), which is true if exactly one of its literals

p, q is true, can be written as ðp�:qÞ� ð:p� qÞ. Let us

define the length lðuÞ of a DNF u as the number of clauses,

that is, the number of terms separated by � operators).

The bias of the function is then equal to the length of the

full DNF. Each term in a DNF can be considered as an

autonomous subfunction of a number k of literals, defining

a k-cell in the function’s truth table. A k-cell of a function is

a subset of input combinations for which the function is

true and such that it can be expressed, when restricted to

those combinations, as a single conjunctive term p1 � p2 �
. . . � pk (possibly with negations), all other n – k literals

remaining free.
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The full disjunctive normal form is typically not a

compact representation of a function. As an extreme

case, consider the tautology of n variables: its bias is 1

and its full DNF has 2n terms. However, a much shorter

DNF is for instance p�:p (where p is any literal),

which is still in DNF and has length 2, thus defining

the same function with a much shorter expression. As

discussed in the text, complexity is expected to measure

the minimal amount of information one has to specify

when defining an entity. Having fixed DNFs as the nat-

ural language, it is then straightforward to define the

complexity of a logic function as follows.

Definition-Let us denote by UðfÞ the set of all the DNFs

of the function f (it is a finite set if repetitions of

clauses are prohibited). The complexity C of a Boolean

function is the length of its shortest disjunctive normal

form, normalized by the length of its truth table, namely

C5min u2Uðf ÞlðuÞ
.X
frg

1;

where r is as in Definition 1.

An equivalent definition in terms of cells can be giv-

en, as the minimum number of cells needed to cover

the set of input combinations for which the function is

1 (see, e.g., Ref. 1).

Since the full DNF belongs to UðfÞ, and its length is

the number of 1s in the truth table, the inequality C

� B holds in general. It is interesting to note that the

parity function of n variables, for which B 5 1/2, has

the largest possible complexity, namely C 5 1/2 (the

sequence of its values realizes a fractal known as the

Thue–Morse sequence). This is easily proved by noting

that if there existed any cell containing more than one

element, than it would contain at least two combina-

tions of inputs having different parities. Parity functions

are used in various contexts, due to their symmetry and

tractability [31,57].

Finally, the notion of robustness measures how much fluc-

tuations in the input variables affect the function’s value.

Definition-The robustness R of a Boolean function f is

the fraction of pairs fr1;r2g such that fðr1Þ5fðr2Þ,
where r1 and r2 are two combinations of inputs differ-

ing only in the value of one variable (i.e., their Ham-

ming distance jr12r2j is 1), namely

R5
X

jr12r2 j51

df ðr1Þ;f ðr2Þ

. X
jr12r2j51

1

Tautologies and their negations have the highest robustness,

namely R 5 1, as changing the value of any variable never

changes the result. The parity function, on the contrary, has

the lowest robustness, R 5 0, since by definition a single flip of

any of its variables changes the function’s value. Remark that

this definition of R fixes a specific scale for the fluctuations,

namely only 1 variable. The analogous definition where one

considers 2 flips would assign minimum complexity to parity

functions. However, the results presented in the text are unaf-

fected by the number of variables flipped, showing that the

relation between robustness and complexity is robust.
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