Dynamic Language Updating

Albert Shaqiri
Id. Number: R10589

Scuola di Dottorato in Informatica
PhD in Computer Science

PhD School Headmaster: Prof. Paolo Boldi
Advisor: Prof. Walter Cazzola

UNIVERSITA DEGLI STUDI DI MILANO

Computer Science Department
ADAPT-Lab

Ciclo XXIX
INF/o1 Informatica
Academic Year 2016—2017

dVT-LdVAV e LNHWIIVJAA HONHIOS d4LNdNOD






Contents

. Introduction 1

. Background 7

2.1. Programming Languages and Interpreters . . . ... ............. 7

2.1.1. Defining the Syntax: Context-free Grammars . . . . ... ... ... 7

2.1.2. Defining the Semantics: Syntax-Directed Definitions . . . ... .. 9

2.1.3. Interpretation. . ... ... .. ... ... ... L oL 10

2.1.4. Development of Programming Language Interpreters . . .. ... 10

2.2. Modular Development of Programming Languages . . ... ........ 11

2.2.1. Language Decomposition . . .. ..................... 12

2.2.2. Language Composition . ......................... 12

2.2.3. Composition Soundness . . . .. ....... ... ... ........ 14

224. Neverlang . . ... ... ... ... .. 15

2.3. The Structure of Programming Language Interpreters . . . . .. ... ... 24

. Open Interpreters 27

3.1. Implications and Requirements for Open Interpreters . . . . ... ... .. 28

3.2. A Model for Open Interpreters . .. ....................... 29

3.2.1. Reflection on Language Specification . . . . ... ........... 29

3.2.2. Reflection on Language Feature Instances . . . . ... ........ 31

3.2.3. Reflection on Non-Grammatical Language Feature Instances . . . 33

3.3. Intercession Operations . . ... ............ ... ... ....... 33

3.4. Semantics Adaptation Implications. . . .. ............. .. ... . 36

. Open Interpreters in Neverlang 39

4.1. Definition Mapping . . .. ... ... ... ... ... 39

4.2. The Architecture . . .. ... ... . .. .. .. 40

4.3. Reflection on Open Interpreters . . . ... ... ................ 41
4.3.1. Reflection on Language Specification and Non-grammatical Com-

ponents . ... ... 42

4.3.2. Reflection on Linguistic Component Occurrences . . . .. ... .. 43

4.3.3. Reflection API . ... ... .. .. .. . ... 47

4.4. uDA: a Platform DSL for Open Interpreters . . ... ............. 49

4.5. Microlanguages . . . . .. ... ... 54

4.6. Discussion . ... .. ... ... ... e 56

. Applicability of Open Interpreters 59

5.1. Backward Compatibility . .. ........... .. ... .. ....... 59

5.2. Dynamic Software Updating . . . .. ....................... 63

5.3. Context-Aware Variability . ............................ 68

5.3.1. Accessibility . ... ... ... .. o 68



Contents

ii

5.3.2. Resource Usage Optimization . ..................... 71

5.4. Interpreter Optimization . ... ... ....................... 80
5.5. Aspect-Oriented Programming . . ... ..................... 83
5.6. Debugging . ... ......... ... ... ... 84
5.7. Security . . .. ... 86
5.8. DISCUSSIONn . . . . ... ... 87
Related Work 89
6.1. Language Extensions . ... ........ ... ... ... ... ...... 89
6.2. Metaobject Protocols . . . .. ... .. ... 90
6.3. Runtime Software and Interpreter Adaptation. . . .. ... ......... 92
6.4. Interpreter Composition . ... ...... ... . ... . . . ... 93
6.5. Quantification . . . ... ... Lo 94
Conclusions 97
. Composition Soundness 99
A.1. Syntax Formalization . ............................... 99
A.2. Operational Semantics. . . .. ................. .. .. . . . ... 101
A3. TypeSystem . . . ... ... ... 104
A4 Typelnference . . . . . . . . .. . 107



Introduction

Software systems are subject to continuous evolution which is motivated by unforeseen
requirements, evolution of the surrounding context, maintenance and the desire to
keep the pace with the never-sleeping competitors. As software systems, program-
ming languages are equally subject to evolution more or less for the same reasons.
However, as programming languages underly other systems their evolution can have
a tremendous impact on the existing software. This is one of the reasons why even a
small language evolution is meticulously considered and tested before it is applied. In
general, language engineers struggle to maintain the language backward compatible.
However, experience shows that, sooner or later, programming languages need to
evolve at the cost of loosing the full backward compatibility’. Furthermore, many
language implementations are monolithic and their evolution could not be otherwise;
they come in the form of monolithic updates with no possibility to partially apply
the evolution of those parts of the language implementation that would not break
existing applications [121]. Sometimes, language developers provide translation tools
to encourage and assist application developers in the migration process. For example,
Python provides the 2to3 translation tool which applies a series of fixers to transform
the Python 2.x source code into valid Python 3 code. It even allows developers to
define their own fixers to guide the translation process. Despite the provided migration
tools and the fact that it has been around since December 2008, Python 3 did not see a
mass adoption for various reasons. The 2to3 tool does not perform well for anything
beyond small-scale programs. Converting hundreds of thousands of lines of Python 2
code to make it compliant with Python 3 costs a lot of engineering time, often without
delivering any real benefit to the business. The latter is aggravated by the priority mis-
match between various stakeholders. The management is reluctant to fund something
that does not bring evident economic benefits. Furthermore, if existing software is not
going to be in service past the end-of-life of the current language being used, then
there is no point in putting the tremendous effort to migrate to the updated language.
Consequently, application developers often prefer to stick with the old version of the
language, while a minority adopts the new language and rolls up the sleeves to rewrite
applications in order to maintain their original behavior. Whatever the decision they
make, backward incompatibility of programming languages is a serious obstacle in
software development.

1E.g., see https://web.archive.org/web/20170625204029/http://www.oracle.com/technetwork/
java/javase/compatibility-417013.html


https://web.archive.org/web/20170625204029/http://www.oracle.com/technetwork/java/javase/compatibility-417013.html
https://web.archive.org/web/20170625204029/http://www.oracle.com/technetwork/java/javase/compatibility-417013.html

1. Introduction

For the reasons discussed above, language developers prefer to adopt the "slow-but-
sure" strategy. However, the slowness of evolution is not always motivated by the
desire to reduce the negative impact on the existing software systems, but is rather
due to the complexity of the language implementation itself. A possible evolution
should positively contribute to (or at least maintain) language consistency, conciseness,
reliability and predictability. In general, the success of the evolution heavily depends
on whether the software development was guided by software design principles that
contribute to clean, understandable and maintainable source code. Concepts like
separation of concern, single responsibility principle, “don’t repeat yourself”, etc.,
are highly appreciated principles that enabled the extraordinary growth of complex
software systems we witnessed in the last decades. The more these principles are
respected during software development the easier it will be to keep the pace with
the inevitable evolution of the application domain and context. One of the design
principles that contribute the most to the evolution is information hiding. According to
this principle, a software component should disclose its services through an interface,
but hide its implementation details that are likely to change in the future [95, 94].
Components interact with each other through interfaces and no component should
rely on the internal implementation of another component. This helps preserve the
interoperability between components, their reusability and portability and greatly
contributes to the maintenance of the system in its long-term evolution. Information
hiding is typically implemented through the encapsulation mechanism in the form of
modules®. As module interoperability depends solely on their interfaces, it becomes
easy for one to switch modules while preserving the integrity of the whole application.
This is especially useful when evolving systems that provide services which cannot
be shut down. Despite these facts, implementations of programming languages often
overlook many design principles, especially those related to modularity [121]. As
a result, many programming language interpreters are built as monolithic software
systems which are hard to evolve. The evolution becomes even harder when the
language design itself is poor and the language definition is inconsistent.

The situation is even worse if a language should evolve while its interpreter is
running a critical application that cannot be shutdown. Examples are applications
in devices that regulate some vital human body activity, air traffic control systems,
nuclear power plant monitors, etc. Updating the interpreter might be necessary if it is
found to have a security flaw or a bug. However, the interruption of system services
might lead to a non-negligible economic loss, an ecological disaster or even to tragic
consequences like death. On the other hand, the same aftereffects can occur if the
security flaw or a bug is not promptly removed. As discussed above, modularization,
backed by information hiding, is the key to smoother evolution as it allows one to
update a system by replacing its modules. However, experience shows that modularity
is rarely taken in consideration in programming language implementations. Therefore,

*Depending on the modularization granularity, encapsulation may concern concepts like methods,
classes, modules, etc. In this context, we use the term “module” in a broader sense to refer to a
modularization unit that interacts with other units through an interface.



most interpreters are not crafted for being dynamically updated.

The ability of a software system to adapt to the context is an increasingly appreciated
feature, especially in the area of mobile and ubiquitous (pervasive) computing. Conse-
quently, a lot was done to assist developers in designing and creating context-aware
applications3. However, despite the fact that programming language interpreters are
software systems themselves, they are rarely considered as candidates for adaptation to
the surrounding execution context. Some programming languages come with reflection
support that allows one to modify the behavior of the underlying interpreter. However,
such reflection support, if present at all, is often limited to specific linguistic features.
Even if reflection is richly supported, it is language-specific, therefore usable only by
applications written in that language. Interpreters lack a general mechanism that would
allow one to modify any linguistic feature and/or component of a language interpreter.

Software systems often evolve in response to new requirements and the domain
evolution. Typically, this requires that the existing code is rewritten to achieve the
desired goals. However, there are situations when a language evolution would be a
better and a more natural solution over the application evolution. This is especially
the case if the evolution is implicit in a language construct. Think of domain-specific
languages in which domain concepts are aligned with language constructs [122, 87, 49].
Any evolution in the domain can, thus, naturally be reflected in the evolution of the
concerning constructs. This strong link between the domain and the language could
be used to dynamically update systems that cannot be shutdown. In [19] we showed
that even applications written in general-purpose languages can benefit from language
evolution if the latter is implicit in a language construct. However, poor language
design and the lack of modularity support often prevent this kind of evolution.

Sometimes developers resort to reflection in order to tailor the language to the
application needs. However, in many mainstream languages the reflection support is
quite restricted and often limited only to introspection. Furthermore, the reflection
support often comes in the form of libraries or language constructs that developers
can use from within the same applications they are trying to evolve through language
evolution. Consequently, reflection and application code are mixed which might
obscure the original application logic.

As briefly discussed above, the evolution of a language often requires that the
overlying software be rewritten. This is often a timely and economically expensive
process, especially in large-scale projects. Sometimes the software cannot follow the
evolution of the language and the underlying platform due to economic reasons,
but it must evolve in order to satisfy the customers which would otherwise seek for
competitive solutions. A technically sustainable platform would allow one to adopt
and exploit the new features of the platform language and at the same time it would
preserve the original application semantics by leaving the sources untouched.

The discussion so far elicited the need for a smoother approach to language evolution
which would enable developers to

— alleviate the migration from an older to a newer version of a programming

3E.g., see https://developers.google.com/awareness.


https://developers.google.com/awareness

1. Introduction

language by allowing one to partially apply the evolution;

- dynamically evolve the language in order to catch up with the emerging require-
ments and domain evolution;

- evolve the language without modifying the original application code;

- separate application evolution from that of the language.

To this purpose, we defined the concept of open programming language interpreters
(from here after open interpreters) which enable language extensions and evolution
through reflection. A peculiarity of this approach is that the language extension code
is completely separated from the rest of the language implementation as well as from
the application code. Furthermore, under specific conditions, the extensions can be
shared across different language implementations. With this approach it is possible to
evolve the language both statically and/or dynamically. We illustrate how the approach
can be effectively used to extend languages and the overlying applications with cross-
cutting concerns (profiling, logging, etc.), to build linguistic tooling and instrumentation
(e.g., debuggers), to adapt an application to better fit the running context, to support
backward compatibility, to remove security flaws, etc. Open interpreters use some
aspect-oriented programming (AOP) concepts which draws our approach closer to
those familiar with AOP.

Contribution. The contribution of this work is summarized in the following points:

- we contribute a clear definition for the novel concept of open programming
language interpreters,

— we define the scope of application of open interpreters;

— we define a framework-level API to support introspection and intercession of
open interpreters,

— we define a domain-specific language for user-friendly introspection and interces-
sion of open interpreters,

— we integrate the support for open interpreters in Neverlang, hence, all Neverlang-
based interpreters become automatically open,

- we define a type and inference system to ensure the correctness of composition
and dynamic adaptation.

Organization. Chapter 2 introduces concepts that underly and help the reader better
understand the novel concept of open interpreters. Among others, it presents Neverlang,
our core framework for modular development of programming languages. We also
present the Neverlang’s type and inference system for preserving the composition
soundness during and after the language evolution process. Chapter 3 defines the



concept of open interpreters and describes how tree-based interpreters can become open
according to this definition. Chapter 4 describes the architecture needed to support
open interpreters, the integration of such support in Neverlang and it introduces a DSL
for reflection operations on interpreters. In Chapter 5 we discuss different application
domains of open interpreters. Chapter 6 discusses the related work and Chapter 7
draws conclusions on the topic. Additionally, Appendix A provides a formal definition
of language composition which is crucial for the correct operation of the interpreter and,
especially, for preserving the integrity of language interpreters after their (dynamic)
evolution.






Background

In this chapter we present the necessary concepts to understand the idea of open
interpreters. We explain what a programming language is and how we define one. We
briefly describe how an interpreter is developed and how it works. This information
should provide the reader with the necessary background to understand the novel
concept of open interpreters described in Section 3. Then, we introduce the modular de-
velopment of programming languages with Neverlang as a representative of this model.
Readers with background in programming languages can skip a large part of this
chapter and read just Section 2.3. Also, we advise reading Section 2.2.4 that describes
the Neverlang framework which is used in Chapter 5 to illustrate the applicability of
open interpreters.

2.1. Programming Languages and Interpreters

Just as natural languages, programming languages are a communication means. They
are used by developers to instruct the machine to perform some task. Differently from
human brains, computers are bad at handling informality, vagueness and ambiguity
which are typically present in natural languages. For this reason, the communication
between the developer and a machine requires strict formal rules that leave no room for
ambiguity. Several formal methods were designed to define programming languages. In
the following, we briefly discuss context-free grammars and syntax-directed definitions.
We provide only those details that are necessary to follow the discussion on open
interpreters in Section 3.

2.1.1. Defining the Syntax: Context-free Grammars

According to the Merriam-Webster’s dictionary, syntax is defined as “the way in which
linguistic elements (such as words) are put together to form constituents (such as phrases
or clauses)”. In the context of programming languages, syntax is the way in which
linguistic constructs (such as numbers, arithmetic operators, function calls, etc.) are
put together to form valid sentences and programs. Valid sentences are typically
determined by a language grammar which describes the hierarchical structure of
language constructs. One possible and a generally-known notation for specifying a
language syntax is context-free grammar.

Definition 1. A context-free grammar G is defined as a 4-tuple G = (X, N, S,I1), where:



2. Background

S — Expr

Expr — Term | Expr "+" Term

Term — Factor | Term "*" Factor

Factor — Integer

Integer — Digit | Digit Integer

Digit — "0@" | "1™ | "2" | "3"™ | "4" | "5" | "e" | "7" | "8" | "9"

Listing 2.1: Example grammar.

N is a set of nonterminal symbols or syntactic categories,

X is a set of terminal (or elementary) symbols of the language defined by the grammar
amd NnX = g,

I1 is a set of production rules of the form P: N - (NuX)*,
S is the start symbol (or start nonterminal), where S € N

A context-free grammar is given by listing the production rules. Listing 2.1 shows
a context-free grammar for the arithmetic operations of multiplication and addition.
By convention, nonterminals are capitalized and terminals are quoted. Notice that
the vertical bar “|” denotes an alternative derivation. For example, Digit —"1"|
"2" denotes two production rules, namely Digit — "1" and Digit — "2". From the
grammar definition we see that

N = {S,Expr, Term,Factor, Integer,Digit} is a set of nonterminal symbols,

~£={0,1,2,3,4,5,6,7,8,9,+, %} is a set of terminal string symbols,

S = S is the starting symbol,

and the set of production rules IT is given by the rules listed in Listing 2.1.

From a language grammar definition we can derive a parse tree of the source program
code. A parse tree is a hierarchical syntactic structure of the input source code. The
root of the tree is the start symbol of the grammar, the leaves correspond to the terminal
symbols of the derived sentence, while the internal nodes correspond to the grammar
nonterminals. The tree can be derived either top-down or bottom-up. In the top-down
derivation we start with the start symbol and then apply the production rules until
we derive the sentence. The application of rules means substituting the left-hand side
nonterminal with those in the production body. On the other hand, in the bottom-up
derivation we start from the sentence and apply the production rules in reverse order
(by replacing the right-hand side symbols with the head nonterminal) until we derive
the start symbol. If there exists no derivation given the grammar rules then the input
program is not valid. Fig. 2.1(a) shows the parse tree derived by the grammar in
Listing 2.1 for the expression 3+2+7. The tree structure is closely related to the grammar
definition and the leaf nodes, if read from left to right, correspond exactly to the original
expression.



2.1. Programming Languages and Interpreters

S S
| |
Expr Expr (val=17)
Expr " Term Expr (val=3) "4 Term (val=14)
| VIR \ PN
Term Term "' Factor Term (val=3) Term (val=2) " Factor (val=7)
| | | | | \
Factor Factor Integer Factor (val=3) Factor (val=2) Integer (val=7)
| | | | | |
Integer Integer Digit Integer (val=3) Integer (val=2) Digit (val=7)
| | | \ \ |
Digit Digit "7" Digit (val=3) Digit (val=2) 7"
| | | |
ng non ng non
(a) parse tree (b) annotated parse tree

Figure 2.1.: Parse tree for the expression 3+2*7.

No. PropuctIiON SEMANTIC RULE

1 S — Expr print(Expr.val)

2 Expr — Term Expr.val = Term.val

3 Expr — Expri"+"Term Expr.val = Exprj.val + Term.val
4 Term — Factor Term.val = Factor.val

5 Term— Term;"*"Factor Term.val = Termj.val * Factor.val
6 Factor — Integer Factor.val = Integer.val

7 Integer —Digit Integer.val = Digit.val

8 Integer —Digit Integery Integer.val = concatInt(Digit.val, Integerj.val)
9 Digit —"0" Digit.val = 0

10 Digit — "1" Digit.val =1

11 Digit — "9" Digit.val = 9

Table 2.1.: Syntax-directed definition example.

2.1.2. Defining the Semantics: Syntax-Directed Definitions

Syntax-directed definition (SDD) [1] is a formalism for defining both the syntax and
the semantics of a programming language. It extends a context free grammar with
attributes that are associated with grammar symbols. Attribute values are calculated by
semantic rules that are associated with grammar productions. If semantic rules have
no side-effects, SDDs are called attribute grammars [75].

For example, in Table 2.1 we define a list of SDDs by associating a semantic rule with
each production from Listing 2.1. For each grammar symbol we define the attribute
val which is calculated by semantic rules associated with grammar productions. For
example, the last row associates with the production Digit —"9" the semantic rule
which sets the value of the attribute val to 9.

Conceptually, a language construct can be defined by several SDDs, depending on



2. Background

how one structures the grammar. A language construct which is fully-defined by its
syntax and semantics represents the minimal distinguishable meaningful concept of a
language and is called a language feature [121].

2.1.3. Interpretation

The interpretation process is more easily understood if we first build a parse tree from
the input source code, although a parser can perfectly evaluate a program without
building its tree representation. At each node, the parser will execute the semantic
rule associated with the grammar production that was used to generate the subtree
rooted at the current node. Conceptually, the link between nodes and their semantics
is syntax-driven. The order in which the nodes are visited is determined by attribute
dependency. For example, an attribute might depend on attributes defined in the
node’s children, hence these should be visited before the current node is evaluated.
A badly defined SSD might lead to a situation where there is no suitable order for
attribute evaluation.

Consider the expression 3 +2 * 7 interpreted by the language defined in Table 2.1.
Figure 2.1(b) shows the annotated parse tree obtained by the interpretation. The
attribute dependency would make the interpreter first go all the way down to the tree
leaves. Then it would proceed up the tree to the root node. For example, when the
Digit node in the left-most branch is visited, the interpreter executes the semantic rule
no. 10 from Table 2.1, which attaches to the tree node the val attribute whose value is 1.
The visit would proceed on the parent node (Integer) associated with semantic rule 7
which simply copies the val to the current node. The val attribute is thus propagated
up the tree. When all nodes are visited and all rules executed, the tree is decorated as
in Figure 2.1(b) and the val attribute of the topmost Expr node contains the final value
of the expression 3 +2 % 7.

2.1.4. Development of Programming Language Interpreters

There are many ways to implement a programming language interpreter and each
presents its own benefits and drawbacks. The developer is usually put in front of a
trade off between simplicity and performance. For example, tree-based interpreters are
simple to implement, but usually have performance issues. On the other hand, bytecode
interpreters are faster at the cost of a more complex implementation. In this discussion
we will focus on tree-based interpreters. We motivate our choice because 1) tree-based
evaluators are considered to be one of the simplest way to implement interpreters [128]
and thus facilitates the discussion, 2) many interpreter development frameworks are
tree-based [96, 67, 128, 86, 58] which makes the idea of open interpreters, as described
in this paper, highly portable and 3) recently it was shown that, despite their simplicity,
tree-based interpreters can be very efficient [128, 11, 27].

The development approaches for tree-based interpreters can be divided in two
categories: manual and semi-automatic development. The first approach consists in
manually building a hierarchy of language features. In an object-oriented setting, this

10



2.2. Modular Development of Programming Languages

class Node {

}

abstract class Expr extends Node {
abstract Object execute(Environment env);

}
abstract class Stmt extends Node {
abstract void execute(Environment env);

}

class IntegerNode extends Expr {

@Override
Integer execute(Environment env) {
// implementation of integer behaviour goes here
}
}

Listing 2.2: Manual implementation of the AST node class hierarchy.

is typically done by defining the hierarchy of AST node classes through the inheritance
and polymorphism mechanisms. Listing 2.2 shows a Java snippet with a partial
implementation of such a hierarchy. This approach can contribute to the interpreter’s
efficiency as its implementation can be tailored to a specific language, as opposed
to framework-generated code that unavoidably contains some overhead code due to
automatization.

A more common approach is to use a formalism, e.g., syntax-directed definitions,
to describe a language specification and then use a compiler/interpreter generator to
automatically produce an interpreter. Typical examples of tools that support this kind
of development are Yacc [64, 80] and ANTLR [97, 96]. In the next section, we show this
approach in the Neverlang framework.

2.2. Modular Development of Programming Languages

The complexity of software systems is traditionally faced with modularization which
favors the separation of concerns, independent development, maintainability and reuse.
Programming language implementations are complex systems, thus, several tools
provide modularization support for developing programming languages [86, 58, 123,
67, 121]. Although the principles of modularization apply to language interpreters and
compilers, we will focus on interpreters which are the topic of this dissertation. Later
in this chapter we introduce the Neverlang framework for modular development of
programming languages. This should help the reader to better grasp some abstract
concepts and to understand the examples that in Chapter 5 are discussed as a proof of
concept.

11



2. Background

Lexer Parser Evaluator

output

tokens

source code
parse tree

Figure 2.2.: Vertical decomposition of an interpreter implementation.

2.2.1. Language Decomposition

In traditional language development, the language complexity is commonly faced by
decomposing the interpreter’s implementation functionally. This type of decomposition
is sometimes called a vertical decomposition and typically results in a lexer, parser,
and code evaluator, with possible additional intermediate phases for optimization. As
illustrated in Fig. 2.2, the output of each phase becomes the input of the next one and
eventually the interpreter produces the desired output. Thanks to the information
hiding principle, existing phases can be replaced or new ones can be interposed. Vertical
(functional) decomposition is very common among language implementations. On the
other hand, interpreters are rarely structurally decomposed. A structural (sometimes
called horizontal) decomposition consists in developing language-oriented concepts
as loosely-coupled reusable linguistic components that can be combined to form a
complete language. In this context, a linguistic component can be any language feature,
such as a variable declaration or the addition operation. Such components might even
be precompiled [30] and shared across different language implementations. Thus, a
language can potentially be extended by plugging in new components.

This fine-grained modularization highly eases the (dynamic) evolution of program-
ming language interpreters as will be discussed in Chapter 3. In the following, we
discuss this issue in the context of the Neverlang framework for modular language
development. This will help the reader to better grasp the above concepts and will serve
as the basis for the discussion on open interpreters (Chapter 3) and on the integration
of their support in Neverlang (Chapter 4).

2.2.2. Language Composition

In general, the composition of components is possible due to the already highlighted
information hiding principle according to which components interact with each other
trough interfaces. Therefore, in order to compose linguistic components they must
match on the interface. The question arises as to what makes the interface of a linguistic
component? To answer this question, consider the following SDDs, provided as two
separate components, that define, respectively, the addition and the multiplication
operations.

Component 1: Expr «— Expr; "+" Exprp { Expr.val Expri.val + Exprp.val; }

Component 2: Mul «— Exprq "*" Exprp { Mul.value = Exprj.value x Exprp.value; }

12



2.2. Modular Development of Programming Languages

To be fully compatible and, thus the two SDDs must match on nonterminals and the
attributes they define. The compatibility on nonterminals determines if it is possible
to build a parse tree for a mathematical expression with both the addition and the
multiplication operations (e.g., 3+2 * 7). The two components fail to match on this
aspect of the interface. Consequently, there would be no way to build, for example, the
parse tree for the expression 3 +2 x 7 by composing the two grammar productions. In
fact, the production for the addition operation “accepts” only the Expr nonterminals,
while the multiplication production is defined as Mul. To make the two SDDs compatible
we have to rename the nonterminals as follows (the modified part is written in bold
face).

Component 1: Expr «— Expry "+" Exprp { Expr.val = Expri.val + Exprp.val; }
Component 2: Expr «— Expry "*" Exprp { Expr.value = Exprj.value * Exprp.value; }

However, although it is now possible to build a parse tree for the expression 3 +2 *7,
the SDDs would still be incompatible due to the wrong naming of attributes. Indeed,
the semantic action for the addition operation expects that the nonterminals Expr;
and Expry provide the val attribute, but the multiplication semantic action defines the
value attribute. Therefore, to make the two SDDs fully compatible, we would have to
rename the attributes as follows.

Component 1: Expr «<— Expry "+" Exprp { Expr.val

Component 2: Expr «— Exprq "*" Exprp { Expr.val

Expri.val + Exprp.val; }
Exprq.val * Exprp.val; }

Nonterminals in the body of a production also contribute to the component’s interface.
Indeed, these are nonterminals that must be provided by other components in order
for the language definition to be complete. We say that two components are partially
compliant when they provide some, but not all nonterminals that are required by each
other. They are combinable but together they do not provide a complete language
definition. Consider the following SDDs.

Component 1: Term < Term "*" Factor { ...}
Component 2: Term < Factor { ...}

These components can be combined because Component 1 defines Term and requires
Term and Factor. Component 2 defines Term and requires Factor. Therefore, Component
2 partially provides what Component 1 needs. However, now they together require
that another component provide a definition for Factor. To summarize, the interface
of linguistic components is given by the required and provided nonterminals and
the attributes they define. This is analogous to function definitions whose signature
(interface) is given by the type of input parameters (required data) and the type of the
returned value.

In Figure 2.2 we illustrated a vertical decomposition that transforms the input
source code to the program output. Functional phases also need to match on an
interface. Indeed, each phase elaborates its input and produces an output to feed the

13



2. Background

Figure 2.3.: Language structural and functional composition.

next phase, with the exception of the last phase that produces the final output. The
input/output data therefore have to match on a predefined interface. When we combine
the component definitions in both dimensions, i.e., functionally and structurally, we
get the final language. This composition is illustrated in Figure 2.3. Each puzzle piece
has rounded tabs and “holes” that represent their interface. Pieces that match can be
combined. Each horizontal line represents a language component and each piece in a
line represents its implementation in a given phase. Vertical lines represent semantic
phases. For more information about component interfaces and their composition the
reader is referred to the Appendix A.

2.2.3. Composition Soundness

As discussed above, component composition depends on whether the grammar is
well defined. The problem of ensuring that a grammar is well defined has been
addressed since 1968 when Knuth for the first time introduced attribute grammars.
Several techniques were since then elaborated, but mainly they rely on the closure and
non-circularity properties.

The closure property requires that for each attribute there exist a semantic rule that
defines its value. This is fairly easy to ensure in the context of pure attribute grammars
in which an attribute is associated with the result of a function without side-effects; by
definition of a function, which always returns a value, this guarantees that attributes do
not remain uninitialized. Therefore, to verify the closure property it suffices to check

14



2.2. Modular Development of Programming Languages

that each attribute is associated with a function. Unfortunately, many tools do not
adopt full-fledged attribute grammars and although a semantic rule exists it might not
set the attribute. Among such tools we find Yacc, ANTLR, Silver [123], Neverlang [121]
and Lisa [86].

The non-circularity property states that an attribute value must not depend on the
attribute itself. In a monolithic setting, Knuth [75] presented an algorithm for testing
a grammar for both closure and non-circularity. Vogt et al. [124] extended Knuth’s
algorithm in the context of higher-order attribute grammars. Backhouse [4] presented a
definedness test that embodies both closure and circularity checks.

Although far from being trivial, ensuring well-definedness in a monolithic setting is
simpler when compared to the same task carried on a modular model where informa-
tion hiding, a key principle that assists composition, might also introduce interesting
challenges. In a modular setting, Kaminski et al. [66] presented a well-definedness
analysis for attribute grammars applied to a modular system. The analysis checks that
the composition of a host language with its extension results in a complete grammar
definition with no circular dependencies in attribute equations. The proposed solu-
tion is applied to Silver, an attribute grammar system supporting extensions through
forwarding. Later in this chapter we present the principles behind the Neverlang’s
type and inference system that ensures composition soundness in modular setting
where a challenge is present due to the dynamic nature of grammar attributes. A full
description and a formal definition of this type system is provided in Appendix A.

2.2.4. Neverlang

Neverlang [18, 30, 121] is a framework for modular development of programming
languages built in Java. It supports both functional and structural decomposition of a
language implementation.

Composition Model. Language development in Neverlang consists in defining a
variant of syntax-directed definitions as reusable modular units. This is best explained
by an example, therefore, we show how to partially implement a small language
for arithmetic expressions. Listing 2.3 illustrates the basic Neverlang concepts. In
Neverlang, the smallest unit of modularity is a module. Each module is uniquely
identified by a Java-style canonical name (e.g., mylang.AddSyntax in line 1). A module
can define a syntax and/or semantics of a language construct. Listing 2.3 shows
two modules that define, respectively, the syntax and the semantics of the addition
operation. In Neverlang, the syntax is defined as a set of grammar productions
where, by convention, nonterminals are capitalized, while terminals are quoted. Each
production is optionally labeled for easier reference. In our example, we have one
grammar production labeled Add (line 3). Notice that the Term nonterminal is defined
elsewhere, i.e., in another module (for simplicity not showed here). This is possible due
to the Neverlang’s composition system that will be explained later.

Module mylang.AddSemantics defines how the addition operation behaves. In Never-
lang, semantics is expressed in terms of semantic actions, where each action is written

15



OO O\ Ul A~ W N R

R
=

2. Background

module mylang.AddSyntax {
reference syntax {
Add: Expr < Expr "+" Expr;
}
}
module mylang.AddSemantics {
imports { mylang.Math; }
role ( evaluation ) {
Add: .{ $Add.val = Math.add($Add[1].val, $Add[2].val); }.
}
}

Listing 2.3: Neverlang basic concepts.

between the “.{” and “}.” symbols. The actions are written in pure Java code extended
with a domain-specific language that provides means to access and attach attributes to
tree nodes as mandated by the SDD formalism. Notice that there is no declaration of
attributes which, indeed, are dynamically defined at runtime when actions are executed.
This dynamic nature of attributes presents an interesting challenge in composition
which is the reason we designed a type system described in Section 2.2.3 and formally
defined in Appendix A. Semantic actions can optionally be labeled. Semantic actions are
grouped in roles which represent semantic phases, such as evaluation, type-checking,
etc. In our example, we define a role called evaluation (line 8), which defines one single
semantic action labeled Add (line 9). In semantic actions, nonterminals are referenced
to by the action label and the offset. Head nonterminal has offset 0. In our example,
Add[0] or simply Add refers to the head nonterminal Expr, while Add[1] and Add[2]
refer to the two Expr nonterminals in the production body". Therefore, $Add[2].val
used in line g refers to the val attribute attached to the tree node represented by the
Term nonterminal of the production labeled Add. Modules can import arbitrary data
structures as shown in line 7.

To this point the two modules discussed so far are unrelated. The Neverlang’s
slice construct can be used to combine two or more modules to form a component
as shown in lines 1-4 in Listing 2.4. The association between productions and se-
mantic actions is guided by labels. Hence, the grammar production labeled Add (in
module mylang.AddSyntax) is tied up with the semantic action labeled Add (in module
mylang.AddSemantics). Modules and slices can be shared and reused across different
language implementations. If no explicit slice is defined, Neverlang implicitly creates a
slice for each module.

Neverlang enables one to define objects that are globally accessible from within any
semantic action. This is typically used to define data structures like symbol tables
that store information about symbols in the input program, e.g., variable declarations,
types, bindings, etc. Such objects are defined as endemic slices. In Listing 2.4, lines 5-7,
the endemic slice named mylang.MathEndemic declares a globally accessible variable

'Given their constant nature, terminals need not be referenced, hence, they are not taken into account in
the offset.

16



OO N Ul A~ W N R

S
U~ WO N R

2.2. Modular Development of Programming Languages

slice mylang.Addition {
concrete syntax from mylang.AddSyntax
module mylang.AddSemantics with role evaluation
}
endemic slice mylang.SymbolTableEndemic {
declare { SymbolTable : mylang.utils.SymbolTable; }
}
language mylang.Arith {
slices

mylang.Addition
mylang.Integer
endemic slices
mylang.SymbolTableEndemic
roles syntax < evaluation

}

Listing 2.4: The composition of modules into a slice.

called Math which is an instance of the user-defined class mylang.Math that implements
mathematical operators. Endemic slices are accessed through the double dollar symbol
($$) and are accessible in any semantic action. In Listing 2.3, line 9, we use the declared
Math variable to perform the addition operation.

Once all slices are defined, they can be composed to form a language. To this purpose
Neverlang provides the language keyword whose usage is illustrated in lines 8-15 in
Listing 2.4. First, one must assign a language a unique canonical name identifier (e.g.,
mylang.Arith). Then, she must list all the slices that form the language (lines 9-11).
Next, any optional endemic slices are listed (lines 12 and 13). Finally, one must define
the execution order of roles or semantic phases (line 14). Neverlang has a built-in role
called syntax which is in charge of parsing and builds the parse tree that is used in
subsequent phases.

Development, Compilation and Execution. The process of compiling, loading and
running an interpreter in Neverlang is shown in Fig. 2.4. First, the Neverlang sources,
such as those in Listings 2.3 and 2.4 are compiled to Java code using the Neverlang
compiler (nlgc). The nlgc compiler takes in input optional parameters (e.g., class
path, destination folder) and one or more source files. The usage of nlgc is shown in
Listing 2.5(a). Each module and slice is compiled as a separate Java class and is thus

Compile time Load time Run time
Neverlang Java «class app-
sources sources files source Application
4’ N
k\ L\ —L\ 11 nlg runs N IT interpreter
] Neverlang VM
Java VM

Figure 2.4.: Neverlang’s compilation process: from code to a running interpreter.

17



2. Background

a) nlgc usage.

albert@Msx-1914:~$ nlgc --help

Usage: nlgc <options> <source files>

Description

Show this help message

--classpath, --cp <File: classpath> A ’:’ delimited list of directories,
JAR archives and ZIP archives used
to look for a class file

-0, --open Generates an open interprter

-s <dest dir> Specify where to place generated
source files

-v, --verbose Enable verbose output

--version Print version number

b) Compilation of a Neverlang module.

albert@MSX-1914:~/workspace/neverlang3/examples/Arith$ nlgc Addition.nl -s classes

Using Neverlang RSD Compiler 0.8.0 (compiled on: Tue Sep 26 10:41:56 CEST 2017)

Addition.nl

mylang/Addition$role$syntax.java
mylang/Addition$role$evaluation$0.java
mylang/Addition.java
albert@sx-1914:~/workspace/neverlang3/examples/Arith$

c) Compilation of the generated Java sources to Java .class files.

albert@Msx-1914:~/workspace/neverlang3/examples/Arith$ javac -d build -cp

$NEVERLANG_HOME/Neverlang.jar classes/mylang/*.java
albert@MsX-1914:~/workspace/neverlang3/examples/Arith$

Listing 2.5: nlgc usage and the compilation process from Neverlang modules to Java . class files.

reusable. Listing 2.5(b) shows the compilation of the modules for the addition operation
(see Listing 2.3): nlgc compiles all modules defined in Addition.nl into Java files which
are stored in the classes folder as specified by the -s flag. The nlgc compiler follows
the Java’s policy of creating a folder structure according to packages. Therefore, the
generated Java files are stored in classes/mylang folder. The generated Java sources
are then compiled to .class files using the Java compiler as shown in Listing 2.5(c).
Finally, the nlg tool is used to load and run the interpreter. It takes in input the
interpreter’s canonical name (abbreviated with IT in Fig. 2.4) and the application source
code written in the interpreted language. If the source file is not provided, nlg will
spawn an interactive shell with a read-evaluate-print loop for the developed interpreter
as shown in Listing 2.6. The nlg spawns the Neverlang Virtual Machine and runs the
interpreter. The parser builds a tree representation of the application code which is
then traversed according to the interpretation model as described in the following.

Interpretation Model The Neverlang’s interpretation model is based on parse trees.
For a given input program, Neverlang will derive the parse tree from the language
grammar definition. The semantic phases, like type-checking, optimization, evaluation,

18



AUl R~ W N R

2.2. Modular Development of Programming Languages

albert@MsX-1914:~/workspace/neverlang3/examples/Arith$ nlg -cp build mylang.Arith

NLGi. Neverlang Interactive REPL.
Language mylang.Arith

Available Commands:

thelp :th Get this screen

rquit Leave Repl

:reload Reload the language implementation from disk
itree Dump last parse tree as a Graphviz source file

:endemic
:grammar
:multiline

> 1+1
2
>

Dump Endemic Slices
Dump language grammar
Toggle multiline input

q
r
t

:parser :p Dump parser to disk
e
9
i

Listing 2.6: Neverlang’s read-evaluate-print loop for the developed interpreter.

etc., are implemented as a visit of the parse tree during which the defined semantic
actions are executed. Neverlang supports post-, preorder and a custom tree visit. The
latter is supported by providing the developer with a special keyword for guiding the
tree visit. If not specified otherwise, the visit is done in postorder. During the traversals,
the parse tree is decorated with arbitrary attributes dynamically attached to tree nodes.

The Neverlang’s interpretation model is shown in Fig. 2.5. Since a language grammar
can be specified modularly, different portions of the parse tree can be related with
different slices. For example, the tree in Fig. 2.5 was build from grammar productions
defined in two different slices, a fact that we emphasize with the blue and pink boxes.
The model’s heart is given by the inverted index that maps from grammar productions
to slices they were defined in. When a node is visited, Neverlang first checks which
production was used to generate the subtree rooted at the visited node. For simplicity
we refer to this production as current production and to the generated subtree as
current subtree. For example, in Fig. 2.5 the visited node is Stm and corresponds to
the head nonterminal of the print statement production (see line 4 in Listing 2.7) that
generated the subtree bounded by a blue box. Neverlang asks the inverted index for
the slice which defines the current production and what action is associated with it in
the current role (semantic phase). The associated action is then applied to the current
subtree.

module mylang.Print {
import mylang.Types;
reference syntax {
Print: Stm < "print" Exp;
}
}

Listing 2.7: Module implementing the print statement.

19



2. Background

execute a

PRINT SLICE
( Syntax J
Inverted Semantics
/ \ Index evaluation role
> action a;

current role

/\ evaluation

Figure 2.5.: Neverlang's interpretation model based on the inverted index.

Mutliple Semantic Action Dispacther. Neverlang allows one to associate many ac-
tions to the same grammar production in the same role. In Figure 2.5, the grammar pro-
duction for the print statement is associated with two actions (a1,a,) in the evaluation
role. The execution of actions is guided by condition guards, i.e., dynamic constraints
that determine if an action should be applied. This allows one to specify runtime
conditions that can take into account valuable context information that is not available
at the development- or load time.

The developer can associate guards with a priority to sort the alternative actions by
relevance. Priorities are integer numbers and a higher value means higher priority.
Guards with the same priority are sorted in the order in which they were written (first
come, first served). Actions without guards are implicitly assigned the lowest priority
and always come after the actions with guards. When a tree node is reached, the
dispatcher will verify guards one by one according to their order determined by the
sorting rules. The dispatcher supports two modes: lazy and scrupulous. In the lazy
mode, the dispatcher will trigger the first action whose guard evaluates to true and it
will skip other actions. In the scrupulous mode, the dispatcher will execute all actions
whose guards evaluate to true. The mode is set by a flag from command line when the
interpreter is executed.

Listing 2.8 shows an example module in which three actions (lines 10, 14 and 17) are
associated with the same production (they use the same label). According to the sorting
rules, the guards will be verified in this order: first, the guard in line 13 (explicit priority
of 10); then, the guard in line 9 (no priority, but an explicit guard); and, finally, the
implicit guard for the last action which always evaluates to true. Due to the condition
guards in lines 9 and 13, the first two semantic actions will trigger only when the type
of the expression to be printed is, respectively, Types.Integer or Types.String.

Neverlang classifies guards in two categories, namely, soft and hard guards. Irrespec-
tively of the type, whenever a guard evaluates to true, the associated action is executed.

20



OO O\ Ul A~ W N R

S T e e
H OO O\ AU~ W N R

2.2. Modular Development of Programming Languages

module mylang.Print {
import mylang.Types;
reference syntax {
Print: Stm <« "print" Exp;
}
}
module mylang.PrintSemantics {
role (evaluation) {
(% Print[1].type == Types.Integer %)
Print: .{
// 1if expression type is Integer do something
}.
(% Print[1l].type == Types.String %)[10]
Print: .{
// if expression type is Integer do something
}.
Print: .{
// otherwise do something else
}.

}
}

Listing 2.8: Multiple semantic actions per production.

However, the type of guard determines what happens after the action is executed. If a
guard is hard, the system will proceed with normal execution, i.e., by visiting the next
tree node according to the interpretation model. The next time the same node is visited,
the system will recheck the same guard. The adjective “hard” conveys the idea that a
hard guard should always be checked, i.e., the constraint it expresses is strong. On the
other hand, if the executed action is soft guarded, it will become a specialized action
for the associated tree node. The next time the system will visit this same node, it will
skip the guard checking process and directly execute specialized action. The adjective
“soft” suggests that, if the guard evaluates to true, its constraint is checked only once,
whereas the tree node is specialized forever or until the node is despecialized (reset).
Action specialization is useful for interpreter optimization as was explained in [27].

Composition Soundness Modularization is the key approach to breaking down the
complexity of a system. However, it introduces the problem of ensuring the composi-
tion soundness when components are to be combined. As discussed in Section 2.2.2,
components can be combined when they match on the interface they define. A compo-
nent’s interface is given by the required and the provided nonterminals and attributes.
However, in Neverlang, attributes are defined dynamically, i.e., at runtime. Since there
is no static declaration of attributes, the module’s static interface is given only by
the nonterminals it defines and uses. The components do not have a static interface.
Consequently, it becomes more difficult to verify the composition soundness. Nev-
erlang has a type and inference system for ensuring the correctness of composition.
The inference system traces attribute definitions and their types and ensures that the

21



OO O\ U1~ W N R

R R R R R R R R
N U A W N R

2. Background

a) if-then-else implementation. b) Numbers implementation.
module IfThenElse { 18 | module Numbers {
reference syntax { 19 reference syntax {
IF: Exp < "if" Exp "then" Exp "else" Exp; | 20 INT: Exp <+ /\d+/
} 21 DBL: Exp <— /\d+\.\d+/
role ( evaluation ) { 22 }
IF: .{ 23 role ( evaluation ) {
eval $IF[1]; 24 INT: .{
if (toBool($IF[1].val)) { 25 $INT.val = new Integer (#0.text);
eval $IF[2]; 26 }.
$IF.val = $IF[2].val; 27 DBL: .{
} else { 28 $DBL.value = new Double(#0.text);
eval $IF[3]; 29 }.
$IF.val = $IF[3].val; 30 }
} 31|}
}.
}
}

Listing 2.9: Composition soundness issue.

composed interpreter is well defined, i.e., no attributes are missing and their types
match. We believe that ensuring the composition soundness is essential for our system
to be adopted and to support user-friendly development and adaptation of interpreters.
In this section, we simplify the discussion by explaining the idea through an example.
A curious reader wishful of formal details is referred to Appendix A and to [21].

In Sect 2.2.2 we highlighted that information hiding is the key principle that enables
composition of linguistic components. However, as mentioned in Section 2.2.3, the same
principle might introduce interesting challenges. This is especially the case when the
composition interface, given by nonterminals and their attributes, is not fully statically
defined, as happens in Neverlang. To better understand this, let us consider an example.
Listing 2.9(a) shows a module implementing a functional version of the if-then-else
construct. In line 77, the semantic action, first, traverses the subtree representing the
condition part of the if-then-else construct. Indeed, the eval $IF[1] instruction forces
the tree visit to proceed through the node identified by $IF[1] which corresponds
to the condition part of the if-then-else language feature. This traversal may define
new attributes in the node represented by $IF[1]. These attributes may come from
other modules implementing the Exp nonterminal. Depending on the value of the
$IF[1].val attribute, the control flow will proceed by traversing one of the branches of
the if-then-else construct (eval $IF[2] or eval $IF[3] in lines 9 and 12, respectively).
In both branches, we copy the val attribute of the branch to the current node (lines 10
and 13).

Since the nature of attributes in Neverlang is dynamic, an attribute might not be
defined when needed for two reasons. First, an attribute might be defined only when
a specific computational path is followed. For example, let us suppose that the else

22



2.2. Modular Development of Programming Languages

branch in Listing 2.9(a) does not include the $IF.val = $IF[3].val; statement (line 13).
In this case, we would have no guarantee that, after the semantic action execution, the
attribute $IF.val will be defined. This would depend on whether the condition of the
if-then-else statement is true. The second reason why attributes might no be available
when needed lies in their naming. Indeed, attributes that have the same purpose
could have different names. Modules can be developed by different developers who
follows different naming conventions. Additionally, developers could name attributes
differently by error or by distraction. Let us consider Listing 2.9(b) where both integer
and floating point numbers are defined. The two rules define regular expressions to
match integers and doubles respectively (lines 20 and 21). So when the parser matches
a number it will build a subtree rooted at Exp and with a child holding the matched
value. The semantic actions simply extract the matched number (stored by the lexer
in #0.text) and put its value in an attribute. The semantic action for double—labeled
by DBL—defines an attribute named value instead of val. Thus, the language could
not guarantee that the Exp nonterminal will always have the val or the value attribute.
This last issue becomes particularly common when composing programming features
whose implementation has been developed by different teams.

To identify this kind of errors, we provided a formalization of Neverlang that
describes all the relevant entities involved in the framework and their formal semantics.
This formalization decorates semantic actions and nonterminals with types specifying
their definition and use of attributes. The decorations are used to assess the result that: if
the code of the semantic actions is well-typed with respect to these decorations then computation
on the syntax-tree of any string of the language correctly proceeds. The result assumes
that we have a complete language implementation, however, since development is
compositional we specify type-checking incrementally, by associating with a slice the
information about the defined /used attributes of the nonterminals occurring in it. To
type-check the composition of slices, we use this information, i.e., the code of the
semantic actions of the slice is not needed.

Returning to our example, the slice of Listing 2.9(a)* is well-typed and the type
associated with this slice says that nonterminal Exp requires that the attribute val be
defined after the evaluation of any semantic action associated with a production for Exp
(since after eval $IF[1] the attribute val is required by the condition). Moreover, all
the semantic actions of this slice (in this case there is a single one) define the attribute
val of Exp. If this was not the case, e.g., one of the two branches of the conditional
does not define the attribute val for the head nonterminal, this slice would not be
well-typed. Also the slice of Listing 2.9(b) is well-typed, and the type associated with
this slice specifies that nonterminal Exp does not require the definition of any attribute,
and that the semantic action of the slice does not define any attribute for Exp. However,
the composition of the two slices is not correct, since slice of Listing 2.9(b) does not
define the attribute val for Exp, which is required by the type of the other slice. If
we substitute value with val in the semantic action DBL, then the type for the slice of

?Recall that Neverlang implicitly creates a slice for each module. Therefore, although in Listing 2.9 we
define modules, in the text we refer to them as slices.

23



2. Background

Listing 2.9(b) would specify that the attribute val is defined for Exp and the composition
would be correct. In this case, the type of the composition would be equal to the type
of Listing 2.9(a).

The type decoration needed for type-checking can be inferred. In Appendix A we
outline an algorithm that, given a Neverlang slice, analyzes the code of its semantic
actions and produces the information about the definition/use of attributes for the
nonterminals associated with the slice. The algorithm fails in case the slice cannot
be decorated in such a way that type-checking succeeds. Moreover, if the algorithm
succeeds from the information produced we can derive all possible decorations for
the slice. Type inference of composition of slices relies on this information, making
inference compositional.

2.3. The Structure of Programming Language Interpreters

From the application developer’s point of view, an interpreter can be seen as a black box
that takes in input the application source code and produces an output. However, if we
open up this black box and consider things from the language engineer’s perspective,
we can identify many distinguishable parts that are combined to form the interpreter.
Roughly, we can say that an interpreter is made of:

— grammar rules for identifying valid statements;
- semantic actions that assign behavior to language constructs;
- auxiliary data structures for storing various information (e.g., symbol table).

Grammar rules and semantic actions are typically tied up to form linguistic com-
ponents. However, we will use the terms “component” and “language feature” in a
broader sense to denote any component that contributes to language definition. Hence,
language features include linguistic constructs (e.g., variable declaration, inheritance,
etc.) and auxiliary data structures (e.g., symbol tables).

In the following we provide formal definitions of these elements which will later
allow us to define reflection operations that should be supported by open interpreters.

Definition 2.

— A grammar production p is defined as p : X — Y where X is the head nonterminal and Y
is the body of the production.

— A sequence of grammar productions is defined as P = p1,...,pn where py is a single
production as per previous point.

— A set of semantic actions defined in a semantic phase (role) v is denoted as A, = {a1, ..., a, }.

- Given a sequence of productions P, a component Sp is a sequence of semantic phase
(role) definitions Aj, ..., A, where productions in P and actions in each A, are related
positionally, i.e., py and ay (from any A, defined in component Sp) are tied up3.

3Notice that in Neverlang productions and actions are coupled by labels. However, labels are syntactic
sugar built upon this number-based composition mechanism.

24



2.3. The Structure of Programming Language Interpreters

(+)
ONO
) @
(+)
ORO

Figure 2.6.: Two instances of the addition operation.

— For simplicity, components that do not contribute to language grammar (e.g., symbol
tables) are also denoted with Sp, where P is an empty sequence.

— The structure of the interpreter Y ¢ for the programming language L is defined as Y =
{Sp,...,Sp}

Language features whose syntactic component is empty (e.g., garbage collectors,
symbol tables, auxiliary data structures, helper classes, etc.) will from here after be
called non-grammatical language features. On the other hand, we will use the term
linguistic component or linguistic construct to refer to those language features that
have a syntactic meaning.

The constituent parts identified so far all have a static and a dynamic aspect. The static
aspect of an element is given by its definition or specification and is implementation-
dependent. The dynamic aspect is given by its runtime instances. In the object-oriented
terminology, the static aspect is given by the component’s class and its dynamic aspect
is given by the class instance objects. Consider, for example, a symbol table in a
Java-based interpreter. The static aspect of a symbol table is given by its class definition
which determines its behavior. The dynamic aspect is given by the state of its runtime
instance (e.g., current variable bindings). Or, consider the Neverlang-based language
construct for the addition operation defined in Listing 2.3. The static aspect of the
construct is given by the modules that define its grammar and semantics. The dynamic
aspect is given by its runtime instances which correspond to subtrees of the parse tree.
Consider a simplified tree in Figure 2.6 where for clarity the nodes were labeled with
numbers and arithmetic symbols (+ and —) instead of with their respective terminals
and nonterminals. The blue- and green-colored nodes represent two instances of the
addition operation construct.

25






Open Interpreters

We explain the concept of open interpreters top-down, starting from the general
notion of open systems and then by restricting the definition to programming language
interpreters. The concept of open implementations is a more general notion of reflection
applicable to all sorts of adaptable systems, i.e., not necessarily to programming
languages. Rao [102] gives the following definition:

“A system with an open implementation, besides providing a familiar interface
to its functionality called a base level interface, reveals aspects of its implementa-
tion through a metalevel interface. The metalevel interface defines points in the
implementation that can be tailored by the user.”

Let us restrict this definition to programming language interpreters. In order to make
the interpreter do something, the developer must use linguistic constructs to write a
program and then execute it. In other words, the base-level interface to the functionality
of a language interpreter is given by the language itself, i.e., by its constructs. Indeed,
when language constructs are executed they put the interpreter “in motion”. Many
programming languages also expose the meta-level interface through a metaobject
protocol, which “strips away a layer of abstraction”, as suggested in [59], unveiling
the implementation details of language constructs (base-level interface) which can
potentially be customized. Reflectional features allow one to introspect and modify the
base level functionality provided by the default interpreter implementation. Hence, one
is able to tailor the behavior of the interpreter on the task to be solved.

Many software systems are critical and cannot be shut down. Any change and evolu-
tion of such systems require the adoption of dynamic software updating techniques.
Furthermore, developers might not have access to the system’s source code. Indeed, the
system can be made of third-party modules which are precompiled. Therefore, there is
a need to reflect upon such systems without modifying the original source code.

From what was said, we define open interpreters as follows:

Definition 3. The interpreter Y. of the programming language L is said to be open if it
provides a meta-level interface which enables one to access and alter the static and dynamic
aspects of its constituent parts as per Definition 2 in a controlled way through an interface
without modifying the source code of the interpreted application.

In the following we will discuss the implications of Definition 3 as well as the
requirements that an interpreter must satisfy in order to be open. Then, we describe
one possible model that complies with the definition and the evinced requirements.

27



3. Open Interpreters

3.1. Implications and Requirements for Open Interpreters

The definition of open interpreters is general enough to be implemented in a variety
of ways making it applicable to many existing language development frameworks.
However, frameworks differ from each other in the development model (monolithic
or modular), the intermediate code representation (parse tree, bytecode), etc., which
makes a broad discussion of open interpreters” applicability very difficult. There are
just to many variations. But, from the definition we can derive general principles which
imply high-level requirements that can guide framework developers to integrate the
support for open interpreters. We discuss these implications and requirements and
design a possible tree-based model for open interpreters.

The definition of open interpreters requires that the developer must be able to in-
trospect and modify* all the interpreter’s constituent parts as defined in Definition 2.
This implies that all language features (Sp) that form a language be distinguishable. Al-
though a monolithic language implementation can provide a mechanism to distinguish
language components, a modular implementation has the advantage that its compo-
nents are by definition distinguishable modular units. This eases the reasoning about
open interpreters and the reflection operations on its constituent parts. However, it is
not mandatory to have a modular implementation as long as it provides a mechanism
to distinguish single language components.

Similarly, Definition 3 states that an open interpreter must enable one to reflect upon
single runtime instances of language features. This implies that component instances
must be identifiable. Furthermore, any modification to the state or the specification
of an instance must not affect other instances of the same type. To understand this,
consider an implementation in an object-oriented setting. A class represents object
specifications. Objects are instances of a class. Changing a class modifies the behavior of
all its instances. Therefore, one must be able to modify single objects without modifying
its class.

However, the definition of open interpreters says nothing about how exactly should
interpreter’s constituent parts be made available for reflection. Typically, reflective
operations are provided through API or special constructs by the language itself. In
this case, the reflection and the application code are mixed. However, we believe that
interpreter adaptation, as a separate concern, should be coded separately to maintain
the application sources clean and understandable. Furthermore, as explained above,
this is sometimes inevitable, especially when sources are unavailable or reflection
should be performed on critical systems that cannot be shutdown. Therefore, open
interpreters require that reflection and application code be separated.

To summarize, we can derive the following requirements that an interpreter must
satisfy in order to be open.

1. An open interpreter must enable one to distinguish and act upon the specification

'The ability of a program to modify its own execution state or its own interpretation or meaning
is often called intercession. Therefore, in this dissertation we use terms “modify” and “intercede”
interchangeably.

28



3.2. A Model for Open Interpreters

of its constituent parts which are defined in Definition 2.

2. An open interpreter must enable the developer to distinguish component occur-
rences and to introspect and intercede them in isolation.

3. The reflective code should be separated from the interpreter and application code.

The requirements are deliberately general and minimalistic in order to allow for a
broad range of implementations. In the following we describe one possible model that
complies with these requirements.

3.2. A Model for Open Interpreters

In this section we describe a minimalistic tree-based model for open interpreters that
satisfy the above requirements. We focus on tree-based interpreters for following
reasons: 1) tree-based evaluators are considered to be one of the simplest way to
implement interpreters [128], 2) many frameworks for interpreter development are
tree-based [96, 67, 128, 86, 58] which makes the idea of open interpreters, as described
in this dissertation, highly portable and 3) it was shown that, despite their simplicity,
tree-based interpreters can be very efficient [128, 11, 27]. Variations of the presented
model are possible and the use of tree-based evaluators should in no way limit the
portability of the idea to, e.g., bytecode interpreters, as long as the above definitions
hold. Tree-based interpreters were widely discussed in Chapter 2. In the following
we explain how an interpreter that reflects the structure defined in Definition 2 can be
made open according to Definition 3.

3.2.1. Reflection on Language Specification

Reflection on language specification comprises reflection on language features (Sp),
which include language constructs (e.g., variable declaration, for loop, etc.) and
non-grammatical components (e.g., symbol tables, etc.), as well as on the language
configuration itself (Y.). The question of how to provide reflection on the language
specification does not depend as much on the specific model but rather on the reflection
capabilities of the language or the tool used to build the interpreter and its runtime
system. Let us suppose, for example, that one decides to build an interpreter in
Java by manually defining the class hierarchy of language constructs as illustrated in
Listing. 2.2. The interpretation model is syntax-driven and tree-based. But that does not
say anything about whether the developer is able to modify the language at runtime.
That rather depends on Java’s reflection support to introspect and modify classes and
their instances.

Reflection on language specification requires a more powerful reflection mechanism
than the one provided by Java®. Indeed, in a Java-based interpreter, the language
specification would be given by class methods and fields which should be made

*The discussion that follows is not confined to Java which we use only as a representative of many
programming languages that have a poor intercession support. Hence, the elicited principles apply to
many programming languages.

29



3. Open Interpreters

accessible outside the interpreter. Java’s native reflection support would allow one to
“read” the language specification, but it has serious limitations in providing ways to
modify the behavior of objects. Although one can use dynamic class loading to change
the language specification, such changes would affect the behavior of all instances of
the modified class. While in some cases this might be a desirable effect, it is in contrast
with the second requirement defined in Section 3.1. In fact, Java provides no elegant
way of modifying the behavior of single component instances without modifying the
behavior of other instances of the same component. For example, consider changing
the semantics of a linguistic component by replacing one class definition with another
through dynamic class loading. The component replacement operation is formally
defined as follows:

replace(Y ¢, Sp°9, Sp™™W) = (Yo ~ {Sp9}) u {Sp™"}  where Spo e Y,

To understand how this change would affect all occurrences of that linguistic component,
consider the interpretation of the expression 1+2+3 with the “program counter” just
before the expression. If at that point of execution we change the specification of the
addition operation, for example, by associating the subtraction semantics to the plus
operator, the change would affect both occurrences of the addition operation, i.e., the
result of the expression would be -4, instead of 6. But the second requirement in
Section 3.1 states that one must be able to affect single components in isolation without
modifying other components of the same type. This is something hardly achievable
with Java’s native reflection support without recurring to intricate workarounds. The
same is true for non-grammatical language features (e.g., symbol table) which, in
addition to linguistic constructs, are part of the language specification.

Bottom line is that reflection on language specification depends on the reflection
capabilities of the underlying language and its runtime system. Therefore, the model
we present does not impose any specific reflection technique, but simply requires that
its implementation must provide a way to introspect and intercede the static definition
(the behavior) of language features. If reflection support is limited and there is no way
of changing the behavior of components, the interpreter cannot be defined as open
according to Definition 3. Notice, however, that the lack of reflection support by the
underlying language does not necessarily mean that an interpreter cannot be open. For
example, Neverlang-based interpreters target Java whose reflection support is limited
mainly to introspection. However, the Neverlang framework provides a runtime system,
which is an additional abstraction layer between Neverlang-based interpreters and the
Java Virtual Machine (see Fig. 2.4). This runtime system provides additional reflectional
features that rely upon dynamic class loading and enable one to fully introspect and
modify all language elements described in Definition 2. The details will be provided in
Chapter 4.

30



3.2. A Model for Open Interpreters

exgcute

~

A

{E.val = E;.val + Ez.val;}

agent 1

1

agent n

(a) Common tree-based interpretation model (b) Model extended with hooks and agents

Figure 3.1.: A common and an extended interpretation models.

3.2.2. Reflection on Language Feature Instances

As per Definition 3, an open interpreter must allow one to introspect and intercede
single language feature instances which include occurrences of linguistic components
(e.g., variable declaration, etc.) and instances of non-grammatical language features
(e.g., symbol table, garbage collector, etc.). Let us now describe how the proposed
model supports this kind of reflection.

Reflection on Linguistic Component Occurrences. Differently from providing reflec-
tion on language specification, enabling the introspection of component occurrences
in a running application heavily depends on the model or, rather, from the way the
interpreter represents the source code. In a tree-based interpreter, the source code is
represented by a parse tree built from the language grammar (given by Ps of all Sp
that form the language interpreter). An occurrence of a component Sp corresponds to
a subtree built by P. For example, in Figure 3.1(a) the subtree bounded by the blue box
corresponds to an occurrence of the component Sp defined as:

Sp=A
P = { Add: E<E; "+" E; }
A = { Add: { E.val = Ej.val + Ep.val; }

When the gray node, which corresponds to the head nonterminal of the production in
P, is visited, the associated action in A is executed.

To support reflection on single occurrences, the interpreter must enable one to
1) identify and select the desired occurrences (represented by tree nodes) and 2) to
introspect/intercede the identified occurrences. The interpreter must, thus, expose
to the developer the parse tree. Single nodes or subtrees could be tracked down by
using pattern matching in trees [61]. However, the model does not impose any specific
method for occurrence identification.

31



3. Open Interpreters

Regardless of how occurrences (tree nodes) are identified, one must be able to
introspect/intercede them. To this purpose, we extend the common execution model
illustrated in Figure 3.1(a) as shown in Figure 3.1(b). We borrow some concepts from
aspect-oriented programming [74] in order to enable one to execute arbitrary code
before and/or after a node is visited. To this purpose, we introduce the concept of
hooks which are points in the execution flow where one can attach an arbitrary piece
of code to perform reflective operations. In our model, hooks are positioned before and
after each tree node as illustrated by small squares in Fig. 3.1(b). Depending on their
position with respect to a node hooks are respectively called before and after hooks. A
piece of code attached at a hook is generically termed as agent. It is a self-contained
software entity, completely separated from the application source code represented by
the tree. This complies with the third requirement for open interpreters as discussed in
Section 3.1. Reflection upon construct components and their occurrences can be done
through an API provided to agents by the interpreter.

The model does not impose any specific method for injecting agents into hooks. As
illustrated in Figure 3.1(b), one can inject more than one agent in a hook. Before a node
is visited, the interpreter checks if any agent is present in the before hook. If there is
none, the node is regularly visited. Otherwise, the agents are executed in the order they
were injected into the hook. Their execution is synchronous and the node is visited
only after the last injected agent terminates its execution. After a node is visited, the
interpreter applies the same execution pattern to run all agents injected in the node’s
after hook. Notice that agents can be injected into hooks at load time, i.e., before the
interpreter starts executing any of the semantic phases. The only requirement is that
the parse tree is already built.

Agents must also be selectively removable. As with injection, the model does
not specify how agent removal should be implemented. However, the model being
presented requires that 1) agent injection and removal can occur at any moment of
the application execution (i.e., it is asynchronous) 2) agent injection/removal must be
atomic operations. The latter means that when the insertion/removal operation begins
the interpretation should pause. Then, an agent is either inserted to/removed from
all of the desired hooks or the operation fails and no hook is affected. Only after the
agent insertion/removal is completed, the interpretation can continue. This gives the
interpreter adapters more control over the adaptation process and avoids unexpected
behavior due to incomplete agent insertion/removal.

Conceptually, agent notification is event-driven where events are announced when
hooks are reached. Agents are event handlers that react to announcements of events to
which they previously registered.

With respect to traditional AOD, the concept of hooks is similar to joinpoints, tree pat-
terns are analogous to pointcuts and the agents corresponds to AOP advices. However,
our approach targets interpreter-level concepts, while the traditional AOP operates at
the application level.

32



3.3. Intercession Operations

3.2.3. Reflection on Non-Grammatical Language Feature Instances

Recall that non-grammatical language features are components that do not contribute to
the language grammar but are, however, necessary for the interpreter to do its job. For
example, a symbol table is a non-grammatical language feature that helps the interpreter
keep track of various symbols used in the input source code and perform operations
on them. A typical use of a symbol table is for storing bindings from variables to their
values. Such a data structure has nothing to do with the grammar, however, it is an
indispensable component of an interpreter. Non-grammatical components can also be
helper classes that implements some functionality of the interpreter. Such classes can
also be static, i.e., with no runtime instance. In this section, however, we focus on the
reflection of non-grammatical language features that can be instantiated.

When an interpreter is running, non-grammatical components are instantiated and
have a dynamic state. For example, the state of a symbol table would be given by the
current variable bindings. This state should be made available for introspection and
modification. In the previous subsections we introduced the concept of agents which
can use a specifically designed API to introspect/intercede the construct component
instances. The same technique can be used to reflect upon non-grammatical components
and their instances. However, due to the nature of non-grammatical components, it
is useful to have a way to execute agents without injecting them into specific hooks.
Suppose that we want to change the way the symbol table stores variables. For example,
we want it to store variable bindings in a TreeMap instead of a HashMap. We can code
an agent that uses the provided API to replace the current symbol table with a new
one. However, there is no point in registering the agent in some specific hook in the
parse tree. That hook might even never be reached and the change would never be
deployed. Instead, there is a need for an asynchronous one-time execution of the agent
that deploys the change. Again, this must be an atomic operation that pauses the
interpreter, executes the agent and resumes with the interpreter execution.

The model described so far is purposely rather abstract. It does not impose any
specific implementation method, except some constraints on how agent injection/re-
moval and their execution should occur. Also, it is restricted to tree-based interpreters,
although it should be fairly straightforward to port the idea on interpreter that use
some different code representation as long as it is able to identify language construct
occurrences and place hooks before and after them.

3.3. Intercession Operations

In this section we define a minimal set of intercession operations that an open interpreter
must provide. For convenience and with a slight abuse of notation we introduce the
following auxiliary definitions that we believe can simplify the exposition of intercession

operations definition.

- Sp(r) = A, i.e., Sp(r) denotes the actions defined for P in semantic phase (role) r.

33



3. Open Interpreters

= Yz (px) = Sp, where Sp € Y., and pg € P. In other words, Y. (px) denotes the
component that defines the production py.

- Ye(pk,v) = ax, where Sp = Yo (px), Sp(r) = A, and ax € A,. In other words,
Y. (pk,r) denotes the action defined for py in semantic phase (role) r.

— The node currently visited by the interpreter is denoted as 77,,, where py is the
production whose head nonterminal represents the current node.

In the following we provide a semi-formal definition of the execution model of
an open interpreter. This is necessary to define reflection operations on specific
occurrences of language components. A slightly simplified, but fully formal definition
of the operational semantics is provided in Appendix A.

- By default, when node 7,, is visited in semantic phase (role) r, the action
Y. (pr, 1) = ay is executed.

- A node can have a specialized semantic action which overrides the predefined
action given by Y. (px,7) = ar. Let v(17,,,7) = a be a mapping from nodes to
specialized semantic actions where a is either an action or null.

— The semantic action to be executed when node 7,, is visited in role  is therefore
given by:

- v(11p,,v) = aif a # null or

- Y. (pk,v) = a otherwise.

We can now define the intercession operations. We divide the discussion in two
parts according to the scope of the effects that the operations have on the application
execution. System-wide operations globally affect the behavior of running applications.
On the other hand, selective modifications alter the behavior of single component
instances while leaving the other occurrences of the same type untouched.

System-wide Modification. System-wide modifications update the language or some
component specifications. They have the effect of changing the behavior of all occur-
rences of the modified language constructs. Intercession operations that fall into this
category are:

— Component replacement that is defined as:

replace(Yg,Sp(’ld,Sp“eW) =(Ye~ {Sp()ld}) u{Sp"™}

Where:
SpOId € Yﬁ.

34



3.3. Intercession Operations

Notice that grammar productions denoted with P remain the same in both Sp°'¢
and Sp™®". We do not allow the grammar to be changed as that would require
one to modify the original source code which would violate the requirements
from Section 3.1.

— Action addition that is defined as:

add(Yr, p,r,a) = (Yo~ Sp) uSpreW
Where:
Yﬁ(p) _ Spold

Sp(r) = A, and a ¢ A,
S (r) = A, Ua

— Action removal that is defined as:

remove(Ye,p,1,a) = (Yo N Sp°1d) uSpeW
Where:
Yc(p) = Sp
Spo(r) = A, and a e A,
Sp"W(r)=A,Na

— Action replacement can be defined in terms of action removal and action addition.

We do not consider the addition and removal of linguistic components since that
would impact the language syntax. Consequently, the original application code would
have to be modified which would violate the requirements from Section 3.1.

Notice that the defined operations have no effect if their arguments are inconsistent.
For example, if one tries to replace a component that does not exist anymore, nothing
will happen (notice the Sp°d € Y, constraint in slice replacement definition). Also, a
type system, such as one defined by Neverlang, can prevent unsound modifications of
the interpreter.

Selective Modification. This type of adaptation is achieved by defining localized
behavior on specific nodes. It is used when one wants to change the semantics of
specific occurrences of language components in the program. The operations are
defined as follows:

— Set specialized action:
specialized(v, p,,7,a) = V[1]p, + a]

Where:

35



3. Open Interpreters

v is a mapping from nodes to specialized actions and 7, ~ a updates the
mapping from 7, to 4,

11y, is the node to be affected,

r is the semantic phase (role) for which the node behavior should be special-
ized,

a is the specialized semantic action.

— Action removal:

remove(V, 1y, 1,a) = V[1p, = Gempty]
Where:

v is a mapping from nodes to specialized actions,
11y, is the node to be affected,
r is the semantic phase (role) for which the node behavior should be special-
ized,
Aempty is an empty action.
In other words, a local removal of an action is equivalent to associated a node
with an empty specialized action.
- Reset node:

reset(V, 1p,, 1) = V[1p, = null]

Where:

v is a mapping from nodes to specialized actions,

17p, is the node to be affected,

r is the semantic phase (role) for which the node behavior should be reset
(unspecialized).

The defined operations represent a minimal set of intercession operations that an
open interpreter should implement. The set is rich enough to allow one to tailor the
interpreter to her needs for a variety of applications as will be shown in Chapter 5.

3.4. Semantics Adaptation Implications

Changing the semantics at runtime can have serious impact on interpreter execution,
especially on its correctness. For example, the new semantics might lead to a broken
interpreter, since components might have to provide other components with information
needed for a correct execution. For example, if a semantic action is removed (see action
removal operation defined in Section 3.3) the parse tree may be missing some attributes
that are needed for correct execution. To prevent erroneous usage of intercession
operations one can impose and check constraints before changing the semantics. In
attribute grammars, one can use one of the many formalisms for ensuring the well-
definedness of attribute grammar definitions [75, 124, 4, 66, 21]. This will guarantee that

36



3.4. Semantics Adaptation Implications

new semantics correctly defines the required attributes. Alternatively, in an interpreter
based on AST class hierarchies the constraints would be given by method signatures
(i.e., the interface) which would have to be respected when replacing methods. From
here after we will assume that intercession operations respect such constraints.

The feature interaction problem might occur when a dependency between language
features is broken due to a change in the language specification. Think of replacing
the semantics for the variable declaration with an empty semantic action. Will a for
loop construct, which depends on the variable declaration to introduce the loop control
variable, still work as expected? There would be no syntactic issues since at that point
of execution the parse tree is already built and the syntax analysis phase already did
its job. However, the interpreter would be broken since the loop control variable would
be undefined. The model implementation should, thus, address this issue to prevent
erroneous adaptations of the language specification.

Agent interaction issue concerns situations where an agent alters the interpreter in a
way that “interfers” with another agent. A possible solution is to notify agents when
the interpreter is modified. This way, agents can check whether conditions still hold for
them to be active and act accordingly (e.g., remove themselves from hooks, etc.). Similar
problems are present in aspect-oriented programming where aspects may interfere
with each other or even prevent the execution of other aspects. To prevent these kind of
errors, researchers introduced decoupling contracts that specify design rules to which
aspects must conform. This allows one to independently change the aspects modulo
their conformance to the related contracts [113]. The simples form of decoupling
contracts are black-box contracts that specify for each advice’s method the relationship
between its inputs and outputs while hiding the method’s implementation details.
Although such constraints contribute to the system integrity, black-box contracts cannot
tully prevent aspect interference. For example, if an aspect does not proceed (e.g., by
calling proceed in Aspect]), none of the aspects that come after would be executed. To
solve this issue, Bagherzadeh et al. [5] introduced translucid contracts which are based
on gray-box specifications [15]. Translucid contracts provide an abstract description of
the aspect behavior and thus allow one to better reason about aspect interference and
to express stronger assertions about aspect behavior. Open interpreters could similarly
introduce decoupling contracts to which agents should comply.

These are important implications and the possible implied issues need to be ad-
dressed to favor the adoption of open interpreters. The solutions discussed above are
minimalistic and there is certainly room for further research to make open interpreters
more useful and user-friendly.

37






Open Interpreters in Neverlang

In this Chapter we describe the main components of the Neverlang’s architecture
aimed at supporting open interpreters according to the model presented in Section 3.2.
We further present a framework-level API provided to support introspection and
intercession of an interpreter. We also present a domain-specific language for agent
development with special emphasis on user-friendly hook selection. Finally, we discuss
the strengths and drawbacks of the presented approach.

4.1. Definition Mapping

Let us first map Definitions 2 and 3 on the Neverlang framework introduced in
Chapter 2.2.4. The mapping is summarized in Table 4.1. This will help us identify the
Neverlang’s concepts that are relevant to open interpreters.

Consider first the Definition 2 concerning the implementation of an interpreter.
Conceptually, language components .k = (syn,, semy) correspond to Neverlang slices
where syn, and sem; correspond to modules that, respectively, define the syntax and the
semantics of a language component. Non-grammatical components (i.e., .k where syn;
is empty) correspond to Neverlang’s endemic slices which expose globally accessible
data structures to semantic actions. Neverlang interpreters are tree-based, hence an
occurrence of the linguistic component .k = (syn,,syn,) corresponds to a portion of the
parse tree that was generated by syn,. Notice that many subtrees can be generated by
syng. When the root node of a subtree generated by syny is visited, the semantics in
sem; is applied to it.

Now, consider the above elements in the light of Definition 3 concerning open
interpreters. A Neverlang interpreter is said to be open if it enables one to introspect

Open Interpreters Neverlang

language feature .k slice

syntax symn, module defining the syntax
semantics semy module defining the semantics
ok in which syn, is empty endemic slice

linguistic component occurrence of .k subtree generated by syn,
non-grammatical language feature occurrence | endemic slice instance

Table 4.1.: Mapping of open interpreter concepts to the Neverlang framework.

39



4. Open Interpreters in Neverlang

Legend:
O registration
@ notification

application ® introspection
intercession
»~ interpreter |,
G 2]
| NVM <’ agent
API

Figure g4.1.: Neverlang's architecture for open interpreters.

and modify the specification of modules, slices, endemic slices and of the language
definition itself. Furthermore, it must enable one to introspect the parse tree and modify
the behavior associated with subtrees (construct occurrences) without affecting the
general behavior of the concerned linguistic component. It should also allow one to
reflect upon the runtime state of endemic slices.

With this mapping in mind and the goal we want to achieve, let us now consider the
Neverlang’s architecture that fully supports the requirements for open interpreters.

4.2. The Architecture

We explain the Neverlang’s architecture top-down in reference to Figure 4.1 which
shows an abstract representation of the main architecture components and their inter-
action. The stack on the left-hand side corresponds to the stack in Figure 2.4 which
depicts the Neverlang’s compilation, loading and the execution process. An application
written in the interpreted language is executed by a Neverlang-based interpreter which
runs on top of the the Neverlang Virtual Machine (NVM). In turn, NVM runs on top of
the Java Virtual Machine (JVM). The running interpreter can be introspected and/or
modified by an agent, which is a Java object that implements the interface in Listing 4.1.
An agent is a self-contained object and runs on a separate JVM as illustrated on the
right-hand side of Figure 4.1. The reflection code is thus completely separated from the

import java.rmi.Remote;
import java.io.Serializable;

public interface IAgent extends Remote, Serializable {
public void before(IPatternMatch __pmCtx) throws RemoteException;
public void after(IPatternMatch __pmCtx) throws RemoteException;

}

Listing 4.1: Agent’s interface.

40



4.3. Reflection on Open Interpreters

Legend:

O registration request
& RMI bind

® RMI lookup

O returns stub

@® reflection

RMI registry (----------- ‘

®
®

R

-1 interpreter

e

9l NVM . > agent

Figure 4.2.: RMI registration and lookup process.

application code, which satisfies the third requirement from Section 3.1. Agent are able
to communicates with the interpreter through the API exposed by the NVM. There is
no restriction to the number of agents that can communicate with an interpreter. For
simplicity, Figure 4.1 shows just one agent.

The communication between agents and the interpreter is based on Remote Method
Invocation (RMI). Notice that the model in Section 3.2 does not impose any particular
communication method. The adoption of RMI is an implementational choice motivated
by the fact that RMI is well-known, robust, secure and allows the interacting entities
to reside either on the same machine or in a network. At the moment of execution,
the NVM registers an open interpreter in the RMI registry (rmiregistry) which is a
naming service that clients can use to look up for remote objects and call their remote
methods. In our case, it is used by agents to find running open interpreters and to
interact with them. The method of interaction between an agent and an interpreter
depends on the target object upon which the agent will perform reflective operations.
In the following section we discuss how reflection can be performed on constituent
parts of an interpreter as defined in Definition 2. Figure 4.2 shows the RMI registration
and the lookup process. First, the interpreter asks the NVM to be registered in the RMI
registry (@). NVM uses the Java RMI library to perform the RMI binding (@). The
agent can then lookup in the registry for an interpreter instance (®). As a lookup result,
the RMI registry returns a stub of the running interpreter (@). The stub is an interface
that defines which methods can be remotely invoked by the agent to reflect upon the
interpreter (®).

4.3. Reflection on Open Interpreters

Before an agent can perform any reflection operations, it must obtain a reference to the
target interpreter instance. To simplify this process, Neverlang provides the developer

41



1

W N

O O N Ul

=

4. Open Interpreters in Neverlang

public abstract class Agent implements IAgent {
protected OpenNeverlang interpreter;
protected static OpenNeverlang init(String[] args) throws RemoteException,
NotBoundException {
if (args.length < 1) {
System.out.println("Please provide the name of the interpreter’s instance.");
System.exit(1);
}
Registry registry = LocateRegistry.getRegistry();
return (OpenNeverlang) registry.lookup(args[0]);
}
}

Listing 4.2: Agent class provided by the Neverlang support library.

with a basic agent class implementation shown in Listing 4.2. In lines 8 and 9, the
init method retrieves from the RMI registry a reference to the previously registered
interpreter instance bound to the name stored in args[0] (lines 8 and 9). This abstract
class can be extended with customized agent behavior as illustrated in the following.

4.3.1. Reflection on Language Specification and Non-grammatical
Components

The Neverlang VM exposes an API that allows agents to introspect and modify the
language specification as illustrated in Listing 4.3. The agent called BeforeAfter
extends the Agent abstract class defined in Listing 4.2 and uses the inherited init
method to obtain a reference to the interpreter’s instance (line 5). The developer
can then use the interpreter variable to access the Neverlang’s reflection API (® in
Figure 4.1), which will be described in detail later in this chapter. In our example,
the agent invokes interpreter.getSlices() to obtain the list of slices that form the
interpreted language (line 11). When a method of the reflection API is invoked (e.g.,
interpreter.getSlices()), the NVM will pause the interpreter execution until the
invoked method returns the control flow to the agent.

In RMI, objects that are shipped between the two communicating entities are serial-
ized. Consequently, objects are sent by value and not by reference. While this would
be fine for introspection, it would present a serious obstacle for intercession. Indeed,
any agent-side change on the shipped object would not be reflected in the interpreter.
Fortunately, RMI allows one to define stubs that act as client’s local representatives for
remote objects. This is exactly the same mechanism we use in the first place to make the
agents-interpreter communication possible. In practice, this means that the objects that
should be made available for intercessions must implement the java.rmi.Remote inter-
face. However, we avoid declaring Neverlang’s core data structures as Remote since that
would expose them to uncontrolled reflection. As a matter of fact, the definition of open
interpreters (Definition 3) requires that reflection be done “in a controlled way through an
interface”. Therefore, we define a set of wrapper classes that act as stubs that agents
can use to modify the interpreter. These classes provide an interface with a reduced

42



4.3. Reflection on Open Interpreters

package reflection.test;
public class LangSpecAgent extends Agent {
int customVariable = 1;
public static void main(String[] args) throws RemoteException, NotBoundException {
OpenNeverlang interpreter = Agent.init(args);
if (interpreter == null) {
System.out.println("Error connecting to the interpreter instance.");
System.exit(1);
}

// use Neverlang’s API to introspect/intercede the interpreter
SliceInfo[] slices = interpreter.getSlices();

}

@Override

public void before(IPatternMatch __pmCtx) throws RemoteException {
// use Neverlang’s API to introspect/intercede the interpreter

}
@Override
public void after(IPatternMatch __pmCtx) throws RemoteException {
// use Neverlang’s API to introspect/intercede the interpreter
}
}

Listing 4.3: Agent performing reflection operations on language specification.

set of methods to prevent the agent from arbitrarily modifying the interpreter. These
classes follow the -Info naming convention (e.g., SliceInfo in Listing 4.3), where the
Info suffix conveys the idea of something non-modifiable. Indeed, these objects cannot
be modified, but instead can only trigger requests for modification. The same approach
is used to introspect and modify non-grammatical components which in Neverlang
correspond to endemic slices. For example, getSlice(String name) returns an object
of type SliceInfo which provides additional methods for introspection/intercession.

4.3.2. Reflection on Linguistic Component Occurrences

Conceptually, reflection on occurrences of a linguistic component is a two-step process:
1) the agent identifies the desired occurrences and 2) it performs reflection operations
on them. As per model described in Section 3.2, the second step is further divided
into agent injection into hooks and agent execution when these hooks are reached. We
now explain how this process is implemented in Neverlang. We begin from a more
abstract description of the agent injection process, which in Neverlang is called agent
registration. Later, we dig into details by explaining how occurrences are identified.

Agent Registration and Notification. The agent registration process is illustrated in
Figure 4.3(a), beside which we put the architecture representation from Figure 4.1. The
numbers in both figures correspond to the same steps. This should help the reader
grasp the whole picture of the architecture. The reflection on linguistic component

43



4. Open Interpreters in Neverlang

Neverlang VM

Legend:
O registration
C | ® notification
\ agent n E application @ intrOSpeCtiOn
! o < ® intercession
i g NI ~
0,0 .g agent . interpreter |
[3) o e (X X2
: ' | Specification & L ) -
L T JVM  TE 2l VWM
anguage Interpreter | | T too-Rjeguo e S
0,6
a) Runtime representation of open interpreter’s b) Component interaction in open interpreters
P P P p P P

execution

Figure 4.3.: Neverlang’s architecture for open interpreters.

occurrences is based on the listener-notifier schema. As was illustrated in Listing 4.3,
the agent must first acquire a reference to the interpreter. Then, the agent can register
itself at the desired hooks (@), represented by small squares in Figure 4.3(a), in order
to be notified when such hooks are reached during the tree visit. The registration is
asynchronous, i.e., it can be done at any moment of the interpreter execution. However,
once the process of agent registration starts, the interpreter execution stops until the
registration is finished. In other words, the registration is an atomic operation which
avoids unexpected behavior that could have arisen from uncontrolled or incomplete
registration. With respect to the model in Section 3.2, agent registration corresponds to
agent injection and agent notification matches the agent execution. Depending on the
hook position with respect to a node, the notification (®) corresponds to calling through
RMI either the before or after method of the IAgent interface shown in Listing 4.1.
This call implicitly triggers the shift-up operation as it transfers the execution from
the interpreter to the agent, i.e., from base- to meta level. At this point, the agents
can use the NVM'’s reflection API to introspect and/or modify (®) the language
specification, component instances and the execution state of the interpreter. The
shift-down operations is implicitly performed when the agent returns from the before
or after method.

Neverlang enables one to inject agents into hooks at applications load time, i.e.,
when the interpreter loads an application, but before it is actually interpreted. All
Neverlang-based interpreters accept an optional parameter to list agents that are to be
injected after the parse tree is built. The user can also specify the semantic phase before
which the agent injection must take place.

Occurrence ldentification. As per model described in Section 3.2, occurrences of a
linguistic component correspond to portions of a parse tree. These subtrees are built
from grammar rules defined in the specification of linguistic components. Therefore, to
identify subtrees of interest we can use tree patterns expressed in terms of grammar

44



4.3. Reflection on Open Interpreters

s
[; )

a ‘ \2/ ‘
o
[ )

° e \4/ e
~-

(a) Nodes matched by the pattern in line 3 in (b) Nodes matched by the qualifier after in
Listings 4.4. Listing 4.9.

Figure 4.4.: Node selection with pattern matching. To simplify node identification, nodes are labeled
with arithmetic symbols and numbers, instead of nonterminals of their original grammar
production.

productions and/or nonterminals. Neverlang provides developers with a library for
selecting nodes with tree patterns.

We illustrate the approach on the parse tree in Figure 4.4(a), parts of which were built
by the grammar rule E <~ E "+" E. Please notice that, in Figure 4.4, we labeled nodes
with arithmetic symbols (+ and —) and numbers, instead of with the nonterminals of
their original grammar productions. This notation should simplify node identification.
With the provided reflection API the developer ask the Neverlang VM to identify
subtrees that were built by the grammar rule for the addition operation (E < E "+"
E). The NVM would identify nodes that in Figure 4.4(a) are colored blue, where "+"
nodes corresponds to the head nonterminal of the production and children nodes
correspond to the two E nonterminals in the production body. Listing 4.4 illustrates
how an agent can express tree patterns. Line 3 expresses a simple pattern in terms of
the production labeled Add which is defined in module mylang.AddSyntax in Listing 2.3.
Once passed to the NVM for node identification, this pattern would match the blue
nodes in Figure 4.4(a), as described above. Neverlang provides binary operators to
support complex patterns. For example, in lines 4-6 we express a complex pattern that
would match portions of the tree where the addition operation precedes the subtraction
operation. Writing patterns in terms of Java objects organized into hierarchies can
quickly become cumbersome and error-prone. For this reason, we developed a platform
DSL, called yDA, which allows one to express complex patterns in a more user friendly
way. The DSL is explained in Section 4.4.

Hook selection Before an agent can interact with the interpreter, it has to register itself
for hook notifications. We explain the process of hook selection and of the subsequent
agent registration with reference to the example we introduced in Listing 4.4. The agent
can request to be registered by invoking the register method as in line 8. The register
method takes in input four parameters. The first is a reference to the agent itself. The
NVM will use this reference to invoke the before and/or after RMI methods on the

45



16

4. Open Interpreters in Neverlang

public class MyAgent implements IAgent {
public void register() {
ITreePattern simplePattern = new ProductionPattern("Add", "mylang.AddSyntax");
ITreePattern complexPattern = new PrecedesPattern(
new ProductionPattern("Add", "mylang.AddSyntax"),
new ProductionPattern("Sub", "mylang.SubSyntax")
)i
interpreter.register(this, simplePattern, Hook.BEFORE, "evaluation");

}

@Override

public void before(IPatternMatch __pmCtx) throws RemoteException {

// use Neverlang API here

}
@Override
public void after(IPatternMatch __pmCtx) throws RemoteException {
// use Neverlang API here
}
}

Listing 4.4: Sample agent class.

agent object (agent notification). The second parameter is a tree pattern which will
be used by the NVM to match the nodes of interest. The third parameter specifies
the hook at which the agent should be registered. The final parameter specifies the
role (semantic phase) of interest, for example, type-checking, evaluation, etc. Indeed,
agent registration and notification is done per role, i.e., an agent will be notified when
selected hooks are reached only during the role for which it registered. By invoking
the register method in line 8, the agent would register itself at the before hook of all
nodes involved in the addition operation. The register method proceeds in two steps:
1) it selects all nodes that match the pattern and 2) it registers the agent at the specified
hook of the nodes that were selected in step 1. Consider the already discussed tree
in Figure 4.4(a). The pattern in line 3 would match the six colored nodes. The NVM
would then register the agent at the before hook of these nodes. Hence, before any of the
selected nodes is visited, the NVM would invoke the before method of the registered
agent.

Dynamic Constraints. Neverlang additionally supports dynamic constraints that
allow one to specify optional conditions that must be satisfied in order for an agent
to be notified. This mechanism is useful for developing context-aware interpreters,
debuggers, etc., as we will illustrate in Chapter 5.

Dynamic constraints are an optional parameter of tree patterns, although they do
not influence the selection of hooks. Instead, they affect the notification of agents when
these hooks are reached, i.e., if provided, a constraint determines whether the registered
agent should be notified. If the constraint is not provided or it is satisfied, the agent is
notified, otherwise, the notification for that agent is skipped.

A dynamic constraint is a class that implements the interface in Listing 4.5. The

46



(o)) I SOV S I

OO 0O\ Ul &~ W R

[

4.3. Reflection on Open Interpreters

import java.rmi.Remote;
import java.io.Serializable;

public interface IDynamicConstraint extends Remote {
public boolean isSatisfied(IPatternMatch __pm) throws RemoteException;

}

Listing 4.5: IDynamicConstraint interface.

import java.rmi.Remote;
import java.io.Serializable;

public class ConstraintsExample implements IDynamicConstraint {
public boolean isSatisfied(IPatternMatch __pm) throws RemoteException {
NodeInfo currentNode = __pm.getCurrentNode();
AttributeInfo leftChildAttr = currentNode.getChild(0).getAttribute("value");
return (int)leftChildAttr.value == 2;

}
}

Listing 4.6: Example of using dynamic constraints.

isSatisfied method must implement the constraint logic which returns a boolean
value depending on whether the constraint holds or not. This is an RMI method that
the interpreter will invoke to verify if the agent should be notified about the reached
hook. The method takes in input an object holding the information about the nodes
that match the specified pattern. This information can be used to introspect the tree
structure and its state, in addition to other reflection methods that are provided by the
reflection APL

Since dynamic constraints are specified in tree patterns, one can express complex
conditions on a tree pattern to trigger agent notification. Listing 4.6 shows a constraint
that will be evaluate to true only when the left operand of the addition operation has
the value attribute set to 2. With reference to Figure 4.4(a), the constraint would trigger
the agent notification only on the root node and its immediate children. The bottom
three nodes would fail to satisfy the constraint since the left operand is 4, instead of 2
as required by the constraint.

4.3.3. Reflection API

Depending on the object it targets, the reflection API can be used in two ways. If we
target the language specification or non-grammatical components (endemic slices), we
can simply obtain a reference to the interpreter (see Listings 4.2 and 4.3) and invoke
the desired methods on the interpreter object. On the other hand, if the agent targets
linguistic component occurrences it must first register at the desired hooks and, once
those hooks are reached, the agent is notified and obtains the execution control. At this
point, it can use the framework-level API to introspect and intercede the interpreter.
A subset of the API methods is shown in Tab. 4.2. We only show the most in-
teresting methods, especially those that are relevant for the examples discussed in

47



4. Open Interpreters in Neverlang

Introspection
Execution State
NodeInfo getTree() throws RemoteException

Returns the tree representation of the entire input program.

NodeInfo getCurrentNode() throws RemoteException

Returns the tree representation of the subtree rooted at the current node.

SemanticActionInfo getAction() throws RemoteException

Returns information on the action which, depending on the hook position, will be or
was executed.

ProductionInfo getProduction() throws RemoteException

Return the information on the production use to build the subtree rooted at the current
node.
RoleInfo getRole() throws RemoteException

Returns information on the current semantic phase.

Interpreter Implementation
ProductionInfo[] getGrammar() throws RemoteException

Return all productions of the language grammar.

RoleInfo[] getRoles() throws RemoteException
Returns the information on roles, i.e., semantic phases.

SliceInfo[] getSlices() throws RemoteException
Returns the information on language slices.

EndemicSliceInfo[] getEndemicSlices() throws RemoteException
Returns the information on language endemic slices.

Intercession
void setSpecializedAction(NodeInfo node, SemanticActionInfo action, String role)
throws RemoteException

For a given node sets the provided action as a specialized action in a given role. For a
given node, the specialized action overrides the default action in the language specifica-
tion.

void resetNode(NodeInfo node, String role) throws RemoteException

A given node is reset to its original state, i.e., any specialized action is removed and a
possibly removed action is restored.

void redoRole(String role) throws RemoteException
Re-executes the specified role from the root node.

void replaceSlice(String oldSlice, String newSlice) throws RemoteException

Replaces oldSlice with newSlice. Slice are provided with their canonical name.

Various
ITreePattern compilePattern(String mdaPatern)

Accepts a uDA pattern as a string and transforms it to an instance of ITreePattern.

Table g4.2.: A subset of the Neverlang’s API interface.

Chapter 5. The reflection API provides the “get-” methods for all constituent parts
(as per Definition 2) of a Neverlang-based interpreter. These methods return -Info
objects (introduced in Section 4.3.1) with meta information about the queried object.
For example, getCurrentNode returns a NodeInfo object with information about the
node that is currently being visited by the interpreter. The API exposed by the NVM
satisfies the first requirement in Section 3.2.

48



4.4. uDA: a Platform DSL for Open Interpreters

Compile time Load time Run time

Java .class
sources sources files
Agent
\ * BN R A Gova ) 1
D B

Figure 4.5.: Agent compilation process: from uDA code to a running agent.

4.4. uDA: a Platform DSL for Open Interpreters

The Neverlang’s built-in library for tree patterns is quite powerful and enables one to
write complex patterns, that may include dynamic constraints, however, expressing
patterns in terms of Java objects organized into hierarchies can quickly become cumber-
some and error-prone. Hence, on top of the Neverlang’s API we developed a special
DSL, called uDA?, for expressing patterns in a user-friendly and intuitive way.

Listing 4.7(a) shows an example of an agent written in yDA. The code translates
to the already discussed Java code shown in Listing 4.3 which for easier reference is
put below the example yDA code. The process of building an agent through yDA is
illustrated in Figure 4.5. A uDA file is first compiled by the yDA compiler to Java code
similar to the one in Listing 4.3. Then the standard process of Java compilation and
execution follows. The running agent can then communicate with the interpreter as
illustrated and shown in Figure 4.3.

The DSL, summarized in Tab. 4.4, is best introduced by an example. With reference
to listing Listing 4.7, we see that an agent is given a name and an optional namespace or
Java package. In our example, the agent LangSpecAgent belongs to the reflection.test
package. uDA agents can declare custom variables (line 2) which are translated to
class fields (line 11). The agent body can define three types of blocks: before, after
and system-wide (lines 3-7). before and after will be explained later when discussing
Listing 4.8. These blocks can contain arbitrary Java code which can use the reflection
API provided by the Neverlang framework. The interpreter variable (line 5) is
reserved and always references the interpreter with which the agent is communicating
through RMI. The system-wide qualifier is used for the code that is not meant to be
executed before or after specific tree nodes but, instead, it is meant to be executed once,
i.e., when the agent is instantiated and obtains a reference to an interpreter. Typically,
this is used for (but not limited to) reflection on the language specification or the
runtime state of the interpreter and its non-grammatical components. As illustrated
in Figure 4.5, the uDA compiler will translate the example DA code into Java code
shown in Listing 4.7(b). Notice that any code defined in the system-wide code block is
simply put in the main function of the generated agent and will be executed after the
agent successfully obtains a reference to a running interpreter. The before and after
methods are automatically generated to implement the IAgent interface. The comments

'The name DA comes from “microlanguage dynamic adaptation”. Microlanguages are discussed in
Section 4.5.

49



Oy AU B~ W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

4. Open Interpreters in Neverlang

a) Example uDA code.

agent reflection.test.LangSpecAgent {
int customVariable = 1;
system-wide {
// use Neverlang’s API to introspect/intercede the interpreter
SliceInfo[] slices = interpreter.getSlices();

b) Corresponding auto-generated Java code.

package reflection.test;
public class LangSpecAgent extends Agent {
int customVariable = 1;
public static void main(String[] args) throws RemoteException, NotBoundException {
OpenNeverlang interpreter = Agent.init(args);
if (interpreter == null) {
System.out.println("Error connecting to the interpreter instance.");
System.exit(1);
}

// use Neverlang’s API to introspect/intercede the interpreter
SliceInfo[] slices = interpreter.getSlices();

}

@Override

public void before(IPatternMatch __pmCtx) throws RemoteException {
// use Neverlang’s API to introspect/intercede the interpreter

}

@Override

public void after(IPatternMatch __pmCtx) throws RemoteException {
// use Neverlang’s API to introspect/intercede the interpreter

}
}

Listing 4.7: uDA agent translation to Java.

in the code are manually added to the listings as documentation for the reader.

After an agent is compiled to a .class object file, it can be executed to perform
reflection on a running interpreter. Notice that neither the DA nor the Java code
contain any name of a particular interpreter instance. The target interpreter will be
determined at agent load time based on the command line arguments passed to the
agent (stored in args). Furthermore, in the specific example, neither the DA nor the
Java code are specifically related to any target language developed with Neverlang.
Indeed, the reflection code targets the Neverlang’s framework-level concepts, instead of
concepts of the language being interpreted. Consequently, an agent can potentially be
shared across different language implementations. In combination with the Neverlang’s
ability to share slices across different language implementations, this feature presents
a powerful approach to language engineering. Think, for example, of an endemic
slice that represents a symbol table. If the behavior of a symbol table is the same for
languages I'l; and Il,, we can develop one endemic slice and use it in both language

50



R R R R R R
U WNKHROWOWN UL WNR

15
16
17
18
19
20
21
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36

37
38

4.4. uDA: a Platform DSL for Open Interpreters

a) uDA code for an agent with before and after qualifiers.

// import custom libraries
import mylang.HelperMethods;
// define bindings
production addition : Add from module mylang.AddSyntax;
nt additionHead,left,_ : Add from module mylang.AddSyntax;
agent reflection.test.BeforeAfter {
before addition {
// can use custom imported libraries
System.out.println("Before: " + addition);
}
after additionHead {
// can use custom imported libraries
System.out.println("After: " + additionHead);
}
}

b) Corresponding auto-generated Java code.

package reflection.test;
import mylang.HelperMethods;
public class BeforeAfter extends Agent {
public static void main(String[] args) throws RemoteException, NotBoundException {
// interpreter initialization code omitted

String semanticRole = args[l]; // e.g., evaluation, type-checking
ITreePattern patternl = new ProductionPattern("Add", "mylang.AddSyntax");
ITreePattern pattern2 = new NonterminalPattern("additionHead", "mylang.AddSyntax",
"Add", 0);

interpreter.register(this, patternl, Hook.BEFORE, semanticRole);
interpreter.register(this, pattern2, Hook.AFTER, semanticRole);

}

@Override

public void before(IPatternMatch __pmCtx) throws RemoteException {
// can use custom imported libraries

NodeInfo[] addition = __pmCtx.getNodesInfo("addition");
System.out.println("Before: " + addition);

}

@Override

public void after(IPatternMatch __pmCtx) throws RemoteException {
// can use custom imported libraries
NodeInfo additionHead = __pmCtx.getNodeInfo("additionHead");
System.out.println("After: " + additionHead);

}

Listing 4.8: Translation of tree patterns from uDA to Java.

implementations. Suppose that someone develops a more efficient symbol table for
IT;. To perform a runtime replacement of the old symbol table with a new one, the
developer can write an agent. Since, the two languages I1; and I, share the same
implementation of the original symbol table and supposed that the more efficient
implementation is also compatible with I, one can use the same agent to deploy the

51



4. Open Interpreters in Neverlang

change to the interpreter for I'.

The uDA DSL provides constructs for expressing tree patterns in a more user-friendly
way with respect to writing them directly in Java. Listing 4.8(a) shows an yDA agent
whose translation results in the Java code shown in Listing 4.8(b). The yDA code
presents a few features that are worth to be emphasized. An uDA script can import
custom Java classes that can be used the agent code (e.g., mylang.HelperMethods in
line 2 in Listing 4.8(a)). After the “import” section we can bind identifiers to language
concepts, like grammar productions or nonterminals. The binding will be explained
in reference to the grammar production labeled Add in the mylang.AddSyntax module
from Listing 2.3. The statement in line 4 would bind the identifier addition to the
whole production labeled Add in the mylang.AddSyntax module. The statement in line 5
would instead “unpack” single nonterminals and bind them to the respective identifiers.
For example, head would be bound to the head nonterminal Expr of the addition
production, while left would be bound to the first Expr nonterminal in the production
body. The underscore has the accustomed meaning of “ignore”. The bound identifiers
are then used to express patterns to identify nodes at which to perform reflective
operations. For example, before addition (line 7) would match all “before” hooks
on all nodes involved in the addition operation. With reference to Figure 4.4(a), the
pattern would match the blue-colored nodes. Instead, after additionHead (line 11)
would match only the nodes that correspond to the head nonterminal of the addition
operations.

Listing 4.8(b) shows the generated Java code. The code that in Listing 4.8(a) is
enclosed by the before and after qualifiers goes into the respective methods of the
IAgent interface. The identifiers used in the pattern can be used in the code as they are
automatically bound to the relative NodeInfo descriptors of matched nodes (lines 30
and 36). For example, the additionHead identifier used by the after qualifier (line 11)
is translated into a NodeInfo object whose value is obtained from the pattern match
context variable __pmCtx (line 36). The addition identifier (line 7), instead, is bound
to a production which is made of many nonterminals and, hence, it matches several
nodes. Therefore, in line 30, it is bound to an array of NodeInfo objects. The patterns
are translated into suitable classes that implement the ITreePattern interface, namely
to ProductionPattern for the before qualifier (line 22) and to NonterminalPattern for
the after qualifier (line 23). The patterns are then use to register the agent at the
before and after hooks of the matched nodes (lines 24 and 25). When these hooks are
reached, the agent will get the execution control at either the before or after method,

nts head, left, _ : Add from module mylang.AddSyntax;

agent reflection.test.ComplexPatterns {
after head < left[val==4] | head {

}
}

Listing 4.9: uDA code with complex patterns that include dynamic constraints.

52



OO O\ Ul A~ W N R

B L e
N Ul W N R

4.4. uDA: a Platform DSL for Open Interpreters

depending on the hook position with respect to the node.

So far it seems that yDA does not bring much benefit over writing agents directly in
Java. The strength of yDA becomes evident when it is necessary to express complex
patterns which potentially include dynamic constraints. Writing such patterns in Java
is cumbersome and error-prone. Consider, for example, the uDA code in Listing 4.9.
The pattern expression is composed of a tree pattern (after head < left[val==4]

| head), a dynamic constraint (left[val==4]) and of a filter (| head). The first uses
the < matching operator (see Tab. 4.4 for the description) and would match all colored
nodes in Figure 4.4(b). However, the filter would filter out the dashed nodes and retain
only those matched by head. Hence, the agent would be registered at after hooks of
all “+” nodes. However, during the tree visit, the NVM would notify the agent only
when the dynamic constraint is satisfied. For example, at the after hook of the root (“+”)
node, the NVM would check if the node referred to by the identifier left satisfies the
constraint. Since the val attribute of the left node equals to 2 the constraint would not
be satisfied and the agent would not be notified. The execution would proceed until
the second “+” node is reached. This time, the NVM will notify the agent since the
constraint [val==4] on the node’s left child is satisfied. Expressing such patterns in
Java is time-consuming and can quickly become human-unreadable and in, the long
term, unmaintainable.

The before and after qualifiers can list more than one pattern to register the same
agent at nodes of different type. The comma (“,”) operator is used to separate patterns
from each other. Listing 4.10 shows an example in which the same agent is registered
before the addition and the subtraction nodes (line 6). The listing shows how the
agent can verify at which node it was notified (line 8). The current node is checked
against the add identifier which, as explained above, is bound to the NodeInfo object

with the same name. Therefore, if add and current point to the same object, the agent

import neverlangl]S.utils.StackTrace;
nt addition,_,_ : Add from module mylang.AddSyntax;
nt subtraction,_,_ : Sub from module mylang.SubSyntax;
agent adapt.AddSub {
CustomData data = new CustomData();
before add, sub {
NodeInfo current = interpreter.getCurrentNode();
if (current == add) {
// addition specific behavior
customData.setValue("someValue", 1);
} else {
// subtraction specific behavior
int someValue = customData.getValue("someValue");
}
// common behavior
}
}

“u oy

Listing 4.10: The comma “,” operator.

53



4. Open Interpreters in Neverlang

was notified at the node identified by add. This kind of patterns are useful when an
agent must gather some information at one type of node (e.g., as in line 10) and use
it at another type of node (e.g., as in line 13). We will illustrate this by an example in
Section 5.5.

As we will illustrate in Section 5.1, sometimes it is useful to generate tree patterns
dynamically. To this purpose, open interpreters define the compilePattern API method
(see Table 4.2). The method takes in input an uDA pattern as a string and dynamically
generates an object that implements the ITreePattern. This is especially useful when
we need to identify tree nodes without registering at a particular hook. For example,
we can use this method in the system-wide block to obtain a reference to linguistic
component occurrences on which we want to perform some reflection operations.

4.5. Microlanguages

The usage of open interpreters is somehow hindered by the challenge to identify
components of the interpreter that should be changed in order to achieve the desired
behavior. This is especially difficult since a behavior to be modified is in most cases
implemented in terms of many linguistic constructs. To face this challenge, Chitchyan
et al. [36] introduced the concept of microlanguages. Later, Cazzola et al. [19] presented
the architecture of a support framework to use microlanguages in a user friendly way.

Recall from Section 2.1.2 that a language feature represents the minimal distinguish-
able meaningful concept of a language (e.g., variable declaration, method invocation,
etc.). Similarly, from the application user’s point of view, an application feature presents
the minimal distinguishable meaningful concept. Czarnecki and Eisenecker [39] define
an application feature as “a distinguishable characteristic of a concept (e.g., system,
component, and so on) that is relevant to some stakeholder of the concept.” In simple
terms, application features describe the various functionality that are meaningful for
the application user. The challenge is expressed in the question: what language features
must be changed in order to modify one or more application features so that the
application as whole have the desired behavior? This is where microlanguages come
into play.

A microlanguage is a logical concept that associates an application feature with the
language features (or constructs) that are used to implement it. In simple terms, a
microlanguage identifies the set of linguistic constructs that were used by the developer
to develop the portion of the application one wants to modify. Listing 4.11 shows a
Java class that implements a bank account. We can identify several application features
which for simplicity in this example coincide with class methods. Table 4.3 show how
application features are related to language features. For example, the application
feature for opening a bank account coincides with the BankAccount constructor. The
constructor uses two language features of the Java language: object field assignment
(e.g., this.balance = ...) and reference (or variable) access (e.g, balance on the right-
hand side of the field assignment in this.balance = balance). Changing the semantics
of any of these language features will affect the behavior of the associated applica-

54



4.5. Microlanguages

public class BankAccount

{
private double balance;
private double interest;

public BankAccount(double balance, double interest)

{
this.balance = balance;
this.interest = interest;

}
public void deposit(double amount)
{
balance = balance + amount;
}
public void withdraw(double amount)
{
balance = balance - amount;
}
public void addInterest()
{
balance = balance + balance * interest;
}

}

Listing 4.11: Bank account class.

No. | Application Feature | Language Features

1 Open account field assignment, reference access

2 Deposit money field assignment, reference access, addition

3 Withdraw money tield assignment, reference access, subtraction

4 Add interest field assignment, reference access, addition, multiplica-
tion

Table 4.3.: Microlanguages for the BankAccount class.

tion feature. Notice that application features might not coincide with class methods.
They are implementation-dependent, although ideally they will correspond to some
modularization unit of the programming language used to develop the application.

As explained by Cazzola et al. [19], microlanguages have a two-fold purpose: 1)
they identify language features used to implement an application feature and 2) with
a proper framework support they help the developer to confine the effects of the
language feature modification to a specific application feature. In simple terms, they
allow one to modify languages in a controlled way to achieve the desired application-
level behavior. In [19] we introduced a framework for dynamic software updating
through microlanguages whose architecture is shown in Figure 4.6. The foundations of
the architecture are represented by the framework for modular language development
(@) which provides the necessary modularization support for microlanguages. This
framework is used to build an interpreter (@) which runs an application (®) whose

55



4. Open Interpreters in Neverlang

event l l relationship l %;gggyz’egn’?age micro-language
triggered event micro-language application feature .
event manager suag: analysis
[5) context (1) adapter e
language component language
replacement
executing

components
. P — o

) language interpreter 5 COMpOnent o application
pendent injecrip, D running

represent.

® |

application
features

(1] framework for modular language development

Figure 4.6.: Architecture for Micro-Language Based Adaptation of a Running Application.

application features one wants to modify. The analysis activity () is responsible for
identifying microlanguages, i.e., for associating language- and application features. At
the current state, the analysis activity is manually done by the developer itself, although
an automatic mechanism is currently under investigation. Once the microlanguages are
defined, the application can be modified by changing the appropriate language features.
This task is entrusted to the microlanguage adapter (@). The adaptation process is
triggered by the event manager (©).

Microlanguages greatly assist the developer in using open interpreters as they bridge
the gap between the application- and language features. For further details the reader
is referred to [19].

4.6. Discussion

Open interpreters, as implemented in Neverlang, bring several advantages over tra-
ditional reflection. However, as with any approach, advantages come at a cost and
often have limits. The main advantage of the approach is that the reflection capabilities
are provided for free to any Neverlang-based interpreter. This is possible since the
reflection API targets framework-level concepts (tree nodes, semantic actions, grammar
productions, slices, etc.) which are unaware of (or non-specific to) the target language
they implement. As separate software entities, agents are reusable and can be poten-
tially shared across different language implementations. For example, if languages IT;
and I, share the same language component ¢, and an agent is written to act upon ¢ in
Iy, then it can also be used to introspect/intercede ¢y in I'l,. Agents can also be reused
even when there is no shared component among the two languages. In Listing 4.3 we
showed an agent that can introspect slices independently of the developed language.
However, these advantages comes at a cost: in order to introspect and/or modify
the running interpreter, the developer should be a language engineer familiar with
Neverlang. This drawback is somehow mitigated by the fact that developers that use
reflection usually do and must have some knowledge about the language they try to
intercede. Furthermore, once familiar with Neverlang, the developer can introspect/in-
tercede any Neverlang-based language interpreter, instead of learning reflection for

56



4.6. Discussion

each one of them, as done with traditional reflection approaches. The microlanguages
framework further mitigates this drawback as it assists the developer in the interpreter
adaptation process, which becomes more transparent and smooth.

Another drawback is that developers should have to adopt, in the specific case,
Neverlang, which as many young academic projects lacks community support. Tooling
support (IDE, debugger) are under development to make Neverlang more attractive for
language developers.

The major drawback which is not Neverlang-specific, but related to open interpreters,
is the feature interaction problem. Indeed, an agent might modify the interpreter in
such a way that another agent, registered at the same hook, will not work as expected.
To alleviate this problem, an agent can ask to be notified when the interpreter is
modified by another agent. That allows agents to check if conditions still hold for them
to be registered and act accordingly (unregister, change hooks, etc.). Nevertheless, there
is a need for further studies to alleviate the feature interaction problem.

Also, dynamic modifications of the language implementation could lead to a broken
interpreter. For example, a semantic action might be replaced with an action that
does not define all the needed grammar attributes. Fortunately, Neverlang’s type-
and inference system is able to capture missing or wrong attribute definitions. Thus,
to some degree it is able to prevent modifications that would lead to an incomplete
interpreter implementation. However, it is currently unable to capture dynamic aspects,
like a missing symbol table update, a problem scheduled to be solved in the future.

Counter-intuitive adaptation can harden the understanding and maintenance of the
running application. Furthermore, in the long-term, continuous runtime language
evolution might augment the gap between the original- and the modified application
semantics. There is no technical solution to this problem but, instead, it is expected
that the language engineer make sane modifications that maintain the expected and
intuitive semantics. In Section 5.3, we show an example in which we dynamically
change a for loop from sequential to parallel execution, which has clear performance
benefits, while maintaining the expected results and semantics.

57



4. Open Interpreters in Neverlang

58

Context Definition

[endemic] slice «idy» [, «ido», ...] : «slc» ;

To bind the (endemic) slice «slc» to a name «1d»; if multiple names are provided they
are all aliases for the same (endemic) slice.

production «idy» [, «idy», ...] : «rule» from module «mod» ;

To bind a production «rule» from a slice/module «mod» to a name «idy»; if multiple
names are provided they all refer to the same production.

nt «idy» [, «idy», ...] : «rule» from module «mod» ;

To unpack into «idy», «idz», ..., «idn» the first n nonterminals in «rule» from the
slice/module «mod».

action «id» : «nonterminal» from module «mod» role «name» ;

To bind the action associated to the «<nonterminal» from the slice/module «mod» to the
name «id».

Matching Operations

«id»[[«cond;(attri1)» [, «condz(attry)», ...]111

Matches the AST node identified by «id» whose attributes verify the condition;
«attri» is the name of an attribute of the node and «cond;()» is a relational oper-
ator that compares the current value of the attribute against a constant.

«idi»[[«cond(attr)»]] < «idy»[[«cond(attr)»]1]]

Matches the AST node identified by «id;» when one of its children is identified by
«idy»; it is possible to express conditions on the node attributes as in the above kind of
match.

«idi»[[«cond(attr)»]] << «idy»[[«cond(attr)»]1]]

Matches the AST node identified by «id;» when the node «idy» can be reached from
it ; it is possible to express conditions on the node attributes as in the other kind of
matches.

Behavior Specification

before | after «matching-operations» { «code» }

Registers the agent code enclosed between the “{” and “}” symbols at either the before
or after hook of the nodes matched by the matching operations.

system-wide { «code» }

The agent will execute the code enclosed between the “{” and “}” once, irrespectively
of the execution control flow. This is typically used for changes that have system-wide
effects, like slice replacement, etc.

Agent Definition

agent «canonical-name» { «behavior-specifications» }
Defines an agent named «canonical-name» that has the behavior specified by «behavior-
specifications», i.e., it defines code that is attached before or after specific tree nodes
or code that has a system-wide effect.

Table 4.4.: Summary of the uDA DSL.




U W N R

Applicability of Open Interpreters

In this Chapter, we illustrate how open interpreters can be used to support backward
compatibility, dynamic software updating and adaptation, context-aware variability,
interpreter optimization, debugging and sandboxing. Some examples were developed
in Neverlang.JS [22]: a Neverlang implementation of the Javascript language.

5.1. Backward Compatibility

As discussed in Chapter 1, backward compatibility is an important factor that heavily
influences the adoption rate of evolved languages. A typical example is that of Python
3 which was not readily adopted by masses, although it has been released as far back
as in 2008. There were many incompatibilities between Python 2.x and Python 3. In this
section we show how open interpreters can be used to mitigate the migration issues
due to backward incompatibility. The example we use is rather simple and by itself
would not present a real migration challenge. However, the simplicity of the example
helps us better grasp the principles behind our approach.

Consider the Python 2.x code in Listing 5.1(a) which in line 2 has an occurrence of
the division operator. The latter is backward incompatible in Python 3; in Python 2 it
performs division on integers, while in Python 3 it divides floats. In the considered
example, this incompatibility would create issues with pivot_index function which in
Python 3 would yield a floating point number. But, Python does not accept floats as
list index and would, thus, yield the following error:

Traceback (most recent call last):
File "python", line 5, in <module>
TypeError: list indices must be integers or slices, not float

There are, of course, several ways how one could rewrite the program to circumvent

def pivot_index(length):
return length / 2

lst = [4, 1, 3, 10, 4]

index = pivot_index(len(lst))

print(lst[index])

Listing 5.1: Valid Python 2.x code for concatenating two lists.

59



N U~ W N R

Uk~ WO N R

5. Applicability of Open Interpreters

slice intDiv : Div from module neverlangPy2.Div;
slice floatDiv : Div from module neverlangPy3.Div;
agent adapt.IntegerDivision {
system-wide {
interpreter.replaceSlice(floatDiv, intDiv);
}
}

Listing 5.2: Agent that replaces the new division semantics with the old one to preserve the original
application semantics.

the incompatibility. But, we focus on the principle behind the issue which is not easily
remedied in more complex applications. Suppose we want to exploit all the Python
3 enhancements, except for the division operator which would break our application.
With an open Python interpreter, we are able to modify the semantics of the division
operator to maintain its original integer division semantics. There are several ways
one can achieve this, depending on the moment when the modification is applied and
on the scope of the change. For example, one might want to apply the change at load
time, i.e., before the application is executed. Or, the developer might discover the
incompatibility only when the application is already being executed and cannot shut it
down; in this case, the update must be performed at runtime. Also, one might want to
change the semantics of all occurrences of the division operation. Or, she might prefer
to modify only specific occurrences that cause issues.

Listing 5.2 shows an agent that replaces the new (Python 3) division slice with the
old (Python 2) slice. The effects of such a change would be global and all occurrences of
the division operation would perform the integer division. However, open interpreters
allow one to selectively modify the problematic occurrence of the division operator,

a) def construct semantics

module neverlangPy2.Def {
reference syntax {
Def: Stmt < "def" Id "(" ExprList "™)" ":" Body;
}
}

b) Agent for replacing float- with integer division

nt def,id, ,body : Def from module neverlangPy3.Def;
nt div,_,_ : Div from module neverlangPy3.Div;
action intDiv : Div from module neverlangPy2.Div;
agent adapt.IntegerDivision {
before def < id[name=="pivot_index"] && body << div | div {
div.setSpecializedAction(division, intDiv, "evaluation");
interpreter.unregister(this);
}
}

Listing 5.3: def syntax definition and the uDA agent for changing the division operator semantics.

60



5.1. Backward Compatibility

without affecting other non-problematic occurrences. This would allow one to partially
migrate from Python 2 to Python 3. There are two solutions to this problem, however,
one would work only if the agent is executed at the interpreter load time, i.e., before
the application run. To understand both solutions, let us first analyze the def construct.
Listing 5.3(a) shows the syntax definition of the def construct in Neverlang. The Id
nonterminal holds the function name, ExprList will hold a list of function arguments
and Body represents the function body. Figure 5.1 shows the tree structure of the
pivot_index function declaration. The nodes are labeled with abbreviated nonterminals
(S stands for Stmt, EL for ExprList, B for Body, E for Expr and the division symbol “/”
represents the division expression, therefore replaces the Expr nonterminal). Beside the
Id node we put a list of attributes it defines. We would like to identify the gray node
that represents the division operator and change its semantics to integer division.

Listing 5.3(b) shows a solution that would work only if the agent is executed at the
interpreter load time. The solution consists in registering the agent in the parse tree
before the declaration of pivot_index. In line 10, we use a pattern that identifies the
desired node. The pattern is best explained with reference to Figure 5.1. Keep in mind
that x < y matches nodes where x is the immediate parent of y, while x << y matches
nodes where x is an ancestor of y and y is not necessarily the immediate child of x.
Therefore, def < id[name=="pivot_index"] will match the green nodes in Figure 5.1,
i.e.,, nodes that represent the function definition where function name is “pivot_index”.
Once we identify the subtree that defines our function, we need to identify the division
operation in its body. The << operator comes in handy; body << div would match
the node B and the (gray) division node in Figure 5.1. Once these nodes are selected,
we filter out all but the node matched by div. On the remaining node we set as a
specialized action the action that we previously bound to the intDiv identifier (line 8).
This action is defined in neverlangPy2 module, therefore implements the old integer
division semantics. As already emphasized, the solution would only work if the agent
is registered in the parse tree at load time. Indeed, if the agent is executed when the
application is already running, the function declaration might have already taken place
and the hook where the agent is registered might never be reached again. Therefore,
the modification would never be applied.

To overcome the limitations of the above solution, we define our agent as in Listing 5.4.
Instead of registering the agent on a particular tree node and applying the modification
once the node is notified, we modify the desired node without prior registration. There-
fore, we put the reflection code in the system-wide code block. Once the agent is exe-
cuted, we identify the division node by using the same pattern as in Listing 5.3(b), just
that now we dynamically generate it by using interpreter.compilePattern(pattern)
(line 6). The pattern that is generated by compilePattern (line 7) is then passed to
interpreter.getNodes() which will return all the nodes that match the pattern. In
our case, it should match one single node, i.e., the gray node in Figure 5.1. Indeed,
there is just on function named pivot_index with one single division operation. On
the obtained node we set a specialized action (line 9) that we previously bound to the
intDiv name (line 3). This solution would work irrespectively of the moment in which
the agent was executed.

61



AUl B~ W N R

O O N\

=

5. Applicability of Open Interpreters

nt def,id,_,body : Def from module neverlangPy3.Def;
nt div, ,_ : Div from module neverlangPy3.Div;
action intDiv : Div from module neverlangPy2.Div;
agent adapt.IntegerDivision {
system-wide {
ITreePattern pattern = interpreter.compilePattern("def < id[name==\"pivot_index\"]
&& body << div | div");
NodeInfo[] nodes = interpreter.getNodes(pattern);
NodeInfo pivotIndex = nodes[0];
pivotIndex.setSpecializedAction(division, intDiv, "evaluation");

Listing 5.4: Agent for replacing float- with integer division.

The illustrated example shows that open interpreters can effectively be used to
mitigate the issues that arise from backward incompatibility. In particular, they enable
one to partially migrate from the old to the new version of the language. Indeed, one
is able to choose which legacy constructs she wants to keep. Sometimes, an updated
construct might depend on another updated construct, in which case one should either
keep or migrate both of them. Kiihn et al. [78] describe a tool that traces language
feature dependencies and can potentially assist the developer in language migration.

An alternative solution, which does not rely on open interpreters, would be to
directly tailor the updated interpreter. This would imply the modification of the
interpreter’s source code and its subsequent recompilation. However, it is unreasonable
to believe that the developer posses this kind of knowledge. Also, many language

[name: "pivot_index"] @ e °

Figure 5.1.: Tree structure of a function definition in Python.

62



5.2. Dynamic Software Updating

implementations are monolithic [121] which makes their evolution and updating harder.
Alternatively, in the specific case of Python, one could use the special (also called
“magic”) methods' to overload the existing operators. However, this solutions strongly
depends on the overloading support from the underlying language and is hardly
applicable to a broader set of problems. Open interpreters, instead, provide a general
and a fine-grained mechanism that can be applied to a wide range of problems, not
limited to simple operators.

5.2. Dynamic Software Updating

Many software systems must provide continues, uninterrupted services, e.g., telephone
switches, air traffic control systems, nuclear power plant monitors, human body activity
regulators, etc. The interruption of such services might lead to a non-negligible
economic loss, an ecological disaster or even to tragic consequences like death. Such
problems led to the development of a variety of techniques for dynamic software
updating, e.g., code injection, class reloading and dynamic/multiple method tables.
Although progress was made in the field of DSU, the existing approaches still suffer
from long-term performance decay (e.g., JavAdaptor [99, 100] and DUSC [93]) or impose
limitations on what can or cannot be updated (e.g., JRebel [65]) These deficiencies urge
researches to continuously seek for better solutions. Yet, little was done to support DSU
through language evolution. Recently, we showed that software can be dynamically
adapted through runtime language evolution [26, 29, 19, 28]. The key concept behind
DSU through language evolution is the semantic propagation principle which relies on the
following facts. The behavior of application modules is governed by the semantics of the
language constructs used to write the application. Therefore, changing the semantics of
a language construct affects the way a module behaves. With an appropriate framework
support and under specific conditions, the semantic propagation principle can be used
to evolve the software by changing how the underlying language behaves. Neverlang’s
support for open interpreters paves the way for dynamic software updating through
interpreter adaptation. There is room for improvement, especially in making interpreter
adaptation more user-friendly. Yet, we provide a proof of concept: the behavior of an
application can be updated through interpreter adaptation.

Consider the example, originally discussed by Chiba [34], whose code is shown in
Listing 5.5(a). The problem consists in adding a posteriori the ability to store objects
of type Node into a persistent storage. Chiba’s presents a compile-time metaobject
protocol which obviously does not pretend to and cannot be a DSU approach, however,
examining his solution helps us better understand how open interpreters can be used
to address this problem. Therefore, for simplicity, we first consider the case in which

1

http://web.archive.org/web/20171108074402/https://www.python-course.eu/python3_magic_
methods.php

http://web.archive.org/save/http://www.diveintopython3.net/special-method- names.html


http://web.archive.org/web/20171108074402/https://www.python-course.eu/python3_magic_methods.php
http://web.archive.org/web/20171108074402/https://www.python-course.eu/python3_magic_methods.php
http://web.archive.org/save/http://www.diveintopython3.net/special-method-names.html

5. Applicability of Open Interpreters

class Node { class Node : public PersistenObject {

public: public:
Nodex next; Nodex next;
double value; double value;

}i }i

Node get next_of_next(Nodex p) { Node get next_of _next(Nodex p) {
Nodex q = p->next; Nodex q = (p->Load(), p->next);
return g->next; return (g->Load(), g->next);

} }

a) Original code b) Manually modified code to support object
persistence

Listing 5.5: Manually implementing object persistence in C++.

the already deployed application can be shut down. The most obvious way to introduce
object persistence would be to directly update the Node class. However, that would also
be the most invasive way and software design principles suggest that inheritance could
be used to achieve the same goal with less changes to the original code. Listing 5.5(b)
shows a possible solution where class Node inherits from PersistentObject which
implements persistence through the Load method responsible for retrieving object data
from a persistent storage (the actual implementation is omitted as it is irrelevant).
However, as discussed by Chiba, the inheritance mechanism by itself does not suffice
to smoothly introduce object persistence. In fact, the developer must further ensure
that the usage of Node objects is correct across the entire application code. This implies
that all occurrences of object access must be preceded by a call to the Load method as
illustrated in the get_next_of_next method in Listing 5.5(b). If we better analyze the
above problem, we see that the object persistence is closely related to the language
features for object field (read and write) access. Indeed, if the “read object field” feature
(implemented by the -> operator in C++) would implicitly load the object from a
persistence storage, the original application could remain untouched. Similarly, the
field assignment operator (o->f = v in C++) would have to implicitly store the object
state after it changes. Chiba then proposes a solution with OpenC++, a compile-time
metaobject protocol, to extend the application with object persistence through compile-
time code injection. The solution consists in marking Node as a subclass of a metaclass
which automatically calls Load before an object field is accessed. Similarly, the metaclass
will automatically save the object state when it changes. The OpenC++ compiler will
then generate pure C++ code where Node will have the extension for object persistence.
In other words, OpenC++ frees the developer from having to edit all source code,
although it still requires to make small annotations on class definitions in order to
instruct the OpenC++ compiler on how to perform the translation.

Conceptually, Chiba’s solution injects persistence behavior before a field access and
after a field assignment, which is exactly what we can do with open interpreters either
at interpreter load- or runtime. Listing 5.6(a) shows how the Javascript’s new construct

64



OO N Ul A~ W N R

=

14
15
16
17
18

5.2. Dynamic Software Updating

a) Neverlang modules implementing the new construct syntax and prototype-based object
instantiation

module neverlang]S.NewSyntax {
reference syntax {
New: Expr <— "new" PrototypeName " (" ArgList ")";
}
}

module neverlangJS.New {
imports { neverlanglS.util.ObjectInstance; }
role (evaluation) {
New: .{
$New.val = new ObjectInstance($New[1l].name, $New[2].args);
}.
}
}

b) Sample Javascript code with prototype instantiation

function Node(next, value) {
this.next = next;
this.value = value;

}

var nodel = new Node(null, 7);

Listing 5.6: Neverlang implementation of the Javascript’s prototype-based instantiation and a Javascript
instantiation example.

is implemented. The new construct is an expression that returns a reference to the
instantiated object (line 10). It’s syntax is defined as the keyword new followed by a
prototype name and a list of constructor arguments (line 3). Thanks to Neverlang’s
modularity support, nonterminals Expr, PrototypeName and ArgList can be defined
elsewhere. Their specific implementation is irrelevant. We only have to know that
PrototypeName defines the name attribute which stores the prototype name, and ArgList
has the args attribute which stores a list of expressions. Module neverlangJS.New
defines the semantics. The ObjectInstance class, imported in line 7, is a Java class that
is internally used by the interpreter to represent Javascript objects. It stores relevant
information, such as object identity, object prototype and object fields.

Listing 5.6(b) shows an example of Javascript prototype-based object instantiation.
When Neverlang.JS encounters “new Node (null, 7)” (line 18) it will execute the seman-
tic action defined in module neverlangJS.New (lines 9-11). The $New[1].name would
store "Node", i.e., the prototype name of the object being instantiated, and $New[2].args
would store a Java List object with elements null and 7.

To persistently store objects of type Node, we need to identify tree nodes that represent
objects instantiation of Nodes and modify their behavior to persistently store their state.
However, depending on the moment in which we trigger the interpreter adaptation,
some objects might have already been instantiated with the standard non-persistent
behavior. Figure 5.2 illustrates this on a simplified parse tree in which colored nodes
(leaves) represent object instantiation of Node objects. Suppose that the left subtree of

65



5. Applicability of Open Interpreters

Symbol Table

Identifier Type
ol ObjectInstance

-

,
\VE
VS
)
‘3
‘&
3
\ 2
S

e
N2

\

Symbol Table \*

Sp eCiaIizg

Identifier Type

ol PersistentObjectInstance

Figure 5.2.: Transformation of Node instances into persistent objects.

the root node was already visited. Therefore, the node instantiation represented by the
green node was performed and the object was instantiated as a standard non-persistent
object (as showed in the symbol table in the upper left corner?). On the other hand,
the gray nodes in the right subtree were not visited yet, therefore no instantiation took
place. The two situations require different modifications of the interpreter and its state
as we discuss in the following.

Let us first consider the necessary modifications to make all future instantiations
produce persistent objects. To this purpose, we first define a new framework-level class,
PersistentObjectInstance, that will be used to represent application-level objects
which are able to persist their state. This class ensures that before each access to
object members the object state is loaded from a persistent store. Similarly, after an
object member is modified the object’s state must be stored in a persistent store. The
actual implementation of PersistentObjectInstance is irrelevant. Then, we define
a new module that implements the semantic action which uses the new class and
hence implements the new, persistent behavior (see Listing 5.7(a)). Next, we have to
trace all instantiation occurrences (tree nodes that represent instantiation) of Node and
update them to use the new behavior defined in Listing 5.7(a). The agent is shown in
Listing 5.7(b). In lines 9-11 we bind some variables to language concepts that we will
use in the agent for the adaptation purpose. In line 24 we use a tree pattern that will
identify all object instantiations of the prototype named Node. With | newExpr we filter
out unnecessary nodes. On the collected nodes we set a specialized action with the

*Notice that the instantiation by itself does not insert the object in the symbol table. Indeed, this is done
by the assignment operator which binds the instantiated object to a name. In Figure 5.2 we assume
that the binding is done by some node hidden in the cloud node, which represents a portion of the
tree irrelevant to the discussion.

66



O U1 A~ W N R

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28

29

5.2. Dynamic Software Updating

a) instantiation construct for persistent objects

module neverlangJS.PersistentNew {
imports { neverlanglS.util.PersistentObjectInstance; }
role (evaluation) {
New: .{
$New.val = new PersistentObjectInstance($New[1l].name, $New[2].args);
}.

}

}

b) uDA code to selectively introduce object persistence

nts newExpr, protoName, _ : New from module neverlangl]S.NewSyntax;
action persistenNew : New from module neverlangJS.PersistentNew;
endemic slice st : SymbolTable from module neverlangJS.SymTable;
agent adapt.Persistent {
system-wide {
// transform any Node that was instantiated as non-persistent
for (String id : st.getVariables()) {
ObjectInstance oldObj = (ObjectInstance)st.get(id);
if (oldObj.getName("Node") && !(oldObj instanceof PersistentObjectInstance)) {
// PersistentObjectInstance constructor copies application-level identity
properties}
ObjectInstance newObj = new PersistentObjectInstance(old0Obj);
// update the symbol table
st.replaceAll((var,obj)-> obj.equals(oldObj) ? newObj : oldObj);
b
}
before newExpr < protoName[name == "Node"] | newExpr {
// change "new Node" to use persistent objects
interpreter.setSpecializedAction(newExpr, persistentNew);
interpreter.unregister(this);

}

Listing 5.7: Persistent objects.

new behavior defined in module neverlanglS.PersistentNew (see Figure 5.2). This
specialized action will override the one defined in the original language implementation
as was explained in Section 2.2.4. Once the change is made, the agent unregisters itself
from the node hook. This change affects all future Node instantiations. Indeed, after the
modification, whenever the interpreter will encounter the Javascript expression “new
Node”, it will run the specialized action which instantiates persistent objects. Notice
that we also modify the behavior of the green node (left-most leaf) that was already
visited. This is because we do not know if the same node will be revisited in the future
and therefore would instantiate a new object of type Node for which we want it to be
persistent.
To transform the already instantiated non-persistent objects we need to reinstantiate
them with the PersistentObjectInstance. Lines 13-23 in Listing 5.7(b) shows the
code snippet that performs the necessary reinstantiation. The code traverses the symbol

67



5. Applicability of Open Interpreters

table to find all referable objects and for each one of them it checks if its type (prototype)
is Node and whether it was instantiated with PersistentObjectInstance class (line
17). If the object is not persistent, we reinstantiate it with PersistentObjectInstance
(line 19). Please notice that reinstantiating objects will change their JVM object identity.
However, we preserve their application-level identity (as seen from Javascript code) by
copying the identity-related properties to newly instantiated objects. In other words,
application-level object identity is something handled by the interpreter not by the
underlying JVM. The constructor of PersistentObjectInstance is responsible for the
identity preservation. Next, in line 21 we update the symbol table so that all references
to the old non-persistent object now point to the new one. The symbol table is a
subclass of a Java HashMap therefore we use the HashMap’s replaceAll method for the
purpose. In the bottom left corner of Figure 5.2 we show the state of the symbol table
after reinstantiation.

The presented example illustrates how open interpreters can be used to dynamically
adapt the behavior of a system by changing the behavior of the underlying interpreter.
The approach is especially appropriate when the application behavior that one wants
to modify is well-aligned with one or more language constructs. In the presented
example, object persistence is perfectly aligned with the instantiation construct and the
field “read” and “write” constructs. The greater the misalignment between application-
level concepts and the underlying language features the more difficult it becomes to
use open interpreters for this purpose. The concept of microlanguages discussed in
Section 4.5 can greatly assist the developer in the process of interpreter adaptation.
Intuitively, this approach is especially appropriate for dynamically updating domain-
specific languages in which, by definition, domain concepts are aligned with language
constructs [122, 87, 49]. One of the main strengths of this approach is that, if feasible,
the solution can be shared among different applications and, in some cases, even to
different language implementations.

5.3. Context-Aware Variability

Dynamic adaptation to the execution context is a desirable feature in software that
operates in an evolving environment. In [19] we described how open interpreters can
be used to support context-aware variability to provide accessibility support. In [28]
we extended the Neverlang’s model to support the concept of layers borrowed from
context-oriented programming (COP). In the following we describe two examples of
context-aware variability provided through open interpreters.

5.3.1. Accessibility

In [28] we used open interpreters to provide accessibility support in an HTML viewer
whose visualization behavior is adapted according to the user’s eyesight conditions3.

3A demo application, based on a proof-of-concept prototype implementation of open interpreters,
was demonstrated at the Modularity’16 demo track [26] and is illustrated in the video at

68



5.3. Context-Aware Variability

Language feature Description

print Expr prints Expr to screen

set font size Expr  sets the font size to Expr
points

set font color Expr sets the font color to Expr

Table 5.1.: The linguistic constructs added to Neverlang.JS.

function view(element) {
var parsed = parse(element);
set font color parsed.color;
set font size parsed.size;
print parsed.text;

Listing 5.8: JavaScript snippet of the view application feature.

The viewer supports four different modes of visualization depending on whether the
user has or does not have eyesight problems. For non-impaired users, the viewer
renders the page as specified by the underlying HTML code. For users suffering from
color vision deficiency (color blindness), any text color is substituted with black. For
users suffering from long-sightedness (hyperopia), the viewer uses a larger font than the
one specified in the HTML code. Finally, for blind users, the displayed text is read aloud
by a text-to-speech engine. This simple example demonstrates how dynamic software
updating through interpreter adaptation can facilitate development for accessibility,
which is normally a very resource- and time-intensive task*.

The HTML viewer was developed in Neverlang.JS which, for the purpose of concept
illustration, was extended with a small domain-specific language for text visualization.
This extension better aligns the evolving domain concepts (user eyesight condition)
with the concerned language concepts. Consequently, this simplification facilitates the
discussion and the proof of concept, while in no way limits the general application
of the approach to dynamic software updating. Table 5.1 shows the three linguistic
constructs that affect the page visualization. Listing 5.8 shows their usage in the HTML
viewer. First, an HTML element (e.g., <a>, <p>, etc.) is parsed by the parse function.
Then, given the attributes of the parsed element, set font size and set font color
set the font color and size which are then used by the print statement. By changing the
behavior of print, we can change how the page is visualized without modifying the

http:/ /cazzola.di.unimi.it/ y-dsu/u-dsu-demo.mp4.
4See discussions on cost of accessibility at
— https://web.archive.org/web/20170925081419/https://www.viget.com/articles/
an-uncomfortable-missing-part-of-the-accessibility-discussion
— http://web.archive.org/web/20160825194414/http://accessites.org/site/2007/11/
does-accessibility-cost-more/


https://web.archive.org/web/20170925081419/https://www.viget.com/articles/an-uncomfortable-missing-part-of-the-accessibility-discussion
https://web.archive.org/web/20170925081419/https://www.viget.com/articles/an-uncomfortable-missing-part-of-the-accessibility-discussion
http://web.archive.org/web/20160825194414/http://accessites.org/site/2007/11/does-accessibility-cost-more/
http://web.archive.org/web/20160825194414/http://accessites.org/site/2007/11/does-accessibility-cost-more/

5. Applicability of Open Interpreters

This is a sample HTML page showing stylized
HTML headings.

Heading 1 (hl) -
red

Heading 2 (h2) -
green

Heading 3 (h3) - blue

Heading 5 (h3) - black
Heading 6 (hE) - magenta

Accessibility is rarely taken in consideration
because it is considered expensive and
requires a large work time investment with
small or none revenue. 3 And although it is a
desirable and noble objective, not many
developers are willing to spend time and
energy to achieve it.

The source HTML code is parsed by an HTML
parser written in JavaScript. The sdaptation is
supported by the Neverlang's runtime system

This is a sample
HTML page

showing stylized
HTML headings.

Headi

1 (h1)
- red

This is a sample HTML page showing stylized
HTML headings.

Heading 1 (hl) -
red

Heading 2 (h2) -
green

Heading 3 (h3) - blue

Heading 4 (h4) - yellow

Heading 5 (h3) - black
Heading & (h6) - magenta

Accessibility is rarely taken in consideration
because it is considered expensive and
requires a large work time investment with
small or none revenue. 3 And although it is a
desirable and noble objective, not many
developers are willing to spend time and
energy to achieve it.

The source HTML code is parsed by an HTML
parser written in JavaScript. The adaptation is
supported by the Neverlang's runtime system

(a) normal (b) long-sighted (c) color-blind

Figure 5.3.: A sample page displayed according to 3 of the possible profiles.

source code of the HTML viewer. Moreover, new visualization behavior can be added a
posteriori according to the emerging needs (e.g., users with new eyesight conditions).

Figure 5.3 shows how a sample page is visualized to normal, long-sighted and
color-blind users. The page rendering differs, although the underlying HTML code
is the same for all three page visualizations. This is achieved by providing different
behaviors of the language construct responsible for visualization. Depending on the
user profile, the interpreter is updated to use the most suitable semantics for the
linguistic construct that is responsible for visualization (print). Listing 5.9 shows four
different implementations of the print statement. Basically, the “healthy” print simply
prints the expression (line 8); the “blind” print statement both prints (line 17) and reads
(line 18) the text aloud (the speak method uses a text-to-speech engine); the “colorblind”
print prints the text with the black color (line 28); the “longsighted” print increases the
font size (line 39) before printing the text (line 40).

Listing 5.10(a) shows the yDA code of the agent that replaces the -Print slices
according to the user profile. Remember that the code enclosed by the system-wide
qualifier goes in the main method of the class that extends the Agent abstract class.
Therefore, in the system-wide code we can use the args variable provided by the main
method. In line 3 we retrieve a reference to the already loaded slice for printing, whose

70



5.3. Context-Aware Variability

1 | module Print { 12 | module BlindPrint {
2 reference syntax { 13 reference syntax from Print
3 Print: Stm < "print" Exp; 14 role (evaluation) {
4 } 15 Print: @{
5 role (evaluation) { 16 JSType t = (JSType)$Print[1].value;
6 Print: @{ 17 view.print(t.stringValue());
7 JSType t = (JSType)$Print[1].value; 18 view.speak(t.stringValue());
8 view.print(t.stringValue()); 19 }.
9 }. 20 }
10 } 21 | }
11 | } 22
a) Print variation for healthy users b) Print variation for blind users
23 | module ColorBlindPrint { 34 | module HyperopicPrint {
24 reference syntax from Print 35 reference syntax from Print
25 role (evaluation) { 36 role (evaluation) {
26 Print: @{ 37 Print: @{
27 JSType t = (JSType)$Print[1].value; 38 JSType t = (JSType)$Print[1].value;
28 view.print(t.stringValue(), 39 int size = view.getCurrentSize()=*3;
Color.BLACK); 40 view.print(t.stringValue(), size);
29 I 41 }.
30| } 2|}
31 |} 43 | }
¢) Print variation for color-blind users d) Print variation for longsighted users

Listing 5.9: Four variations of the print language feature.

name we pass to the agent from command line. Instead, in line 4 we load a slice whose
canonical name is stored in args[3] because the new slice is not yet loaded by the
interpreter, hence we cannot simply use getSlice. Once we have references to both
the old and the new slice, we call replaceSlice which intuitively replaces the old slice
with the new one. To reload the page we invoke redoRole which forces the tree to be
revisited by the “evaluation” role stored in args[1]. The agent execution is governed by
a simple bash script shown in Listing 5.10(b). Whenever a profile change is detected, the
script runs the agent defined in Listing 5.10(a) which modifies the interpreter instance
named jsHTML by replacing the slices according to the provided arguments. Notice that
the original application code never changes, i.e., the application remains unaware of
the supported adaptation, and new behaviors for the print statement can be added a
posteriori.

5.3.2. Resource Usage Optimization

Software evolution is often encouraged by the desire to better exploit the available
resources. For example, network routers can update their routing algorithms to
increase the network throughput; a web server can update its caching policy to reduce
its response time; a smartphone app can be evolved to reduce battery consumption; etc.
We advocate that in certain situations resource usage can be more easily optimized if
done through language- instead of application evolution. If the evolution is implicit in a
language construct, it can achieve the same, if not better optimization rate, while leaving
the input source code untouched, what contributes to preserving the original logic

71



O CON VUl A~ W N R

U WO N

O O\ &

5. Applicability of Open Interpreters

a) uDA code for replacing -Print slices.

agent adapt.ReplacePrint {
system-wide {
SliceInfo old = interpreter.getSlice(args[2]);
SliceInfo new = interpreter.loadSlice(args([3]);
interpreter.replaceSlice(old, new);
interpreter.redoRole(args[1]);

b) bash script that governs the interpreter adaptation.

current="Healthy"
while true; do

profile=getprofile()

if ["$profile" != "$current"]; then

java -cp $NEVERLANG_ROOT/gen-src:$NEVERLANG_HOME/Neverlang.jar jsHTML evaluation
${current}Print ${profile}Print
current="¢profile"

fi

sleep 1
done

Listing 5.10: Code to modify the interpreter that is running the HTML viewer.

and to maintenance. Let us consider two example of resource optimization through
language evolution.

Class Instantiation. The following example, originally discussed by Tanter [115],
shows that developers might want to evolve the language to optimize the usage of
available resources (CPU, memory, etc.). Furthermore, the example emphasizes that
typical language implementations do not take into account valuable runtime or user-
possessed information (context). Consider the problem of how to efficiently instantiate
objects in a class-based programming language. Listing 5.11(a) shows two classes, for
simplicity written in Java. Point has two fields, namely x and y, whose values store
the point coordinates in a plane. Person has potentially hundreds of fields describing a
person. The two classes differ in the fact that a Point object will always have the two
coordinates, so the class fields will always be used, while a Person object might have
hundreds of empty fields. Depending on how the underlying runtime system stores
object fields and on the actual data with which the application is fed, the application
will either use too much memory or it will perform slower than it could. For example,
if the language implementation stores object fields in an array-like data structure, the
Point objects will perform optimally both with respect to the memory usage and the
execution speed. On the other hand, if fields are stored in a map-like data structure,
the field retrieval will be slower and the application will perform worse. In the Person
class example, the ideal solution to reduce memory usage is to use a map-like data
structure which would store only the fields that are actually used. But again, maps

72



5.3. Context-Aware Variability

a) Point and Person classes

class Point {
// point coordinates in a plane
private int x;
private int y;

}

class Person {
private String name;
private String lastName;
private int age;
private String address;
. // hundreds of fields omitted
private Color hairColor;
}

b) A possible solution to the problem of unused fields

class Person {
private String name;
private String lastName;
private int age;
private OptionalPersonInfo optional = null;

Listing 5.11: Class field implementation problem.

have undesired performance issues. On the other hand, storing fields in an array-like
data structure will perform better with respect to the execution speed, but will waste
more memory.

With no language-level support for differentiating instantiation strategies, the de-
veloper would have no other choice but to rewrite the code as, for example, in List-
ing 5.11(b). The solution consist in making the Person class store the least used fields
in an optional field instantiated on demand. However, this solution introduces the
problem (not present in the default implementation) of finding the optimal set of fields
to be stored in OptionalPersonInfo class. It is also invasive as it clutters the application
code to overcome a language weakness. Even if the language supported to different
constructs for instantiation, this would unnecessarily obscure the application logic. In
fact, instantiation optimization is a crosscutting concern which should not interfere
with application logic.

Let us consider the same issue in Neverlang.JS, where the instantiation problem is
inverted because Javascript objects, by default, store fields in a Java HashMap. Hence,
Person object would already use the ideal strategy, but the Point object would suffer
from performance issues. Being a Neverlang-based interpreter, Neverlang.JS is open in
the sense of Definition 3. Therefore, as was illustrated in Section 5.2 when discussing the
problem of object persistence, Neverlang.JS can be modified either at load- or at runtime
to optimize class instantiation. For the reader’s convenience, in Listing 5.12(a) we show
again the implementation of object instantiation in Neverlang.]JS. Class ObjectInstance,
which is used at the interpreter-level to represent application-level Javascript objects, by

73



O 0O VU1l A~ W N R

RoR
= O

12
13

14
15
16
17
18
19
20
21
22

23

24
25
26
27
28
29

5. Applicability of Open Interpreters

a) Neverlang modules implementing the new construct syntax and prototype-based object
instantiation.

module neverlang]S.NewSyntax {
reference syntax {
New: Expr <— "new" PrototypeName " (" ArgList ")";
}
}

module neverlangJS.New {
imports { neverlanglS.util.ObjectInstance; }
role (evaluation) {
New: .{
$New.val = new ObjectInstance($New[1l].name, $New[2].args);
}.
}
}

b) Interpreter-level class for representing application-level Javascript objects.

class ObjectInstance {
HashMap<String,0Object> fields;
String prototype;

public ObjectInstance(String prototype, HashMap<String,Object> fields) {
this.prototype = prototype;
this.fields = fields;
}
}

c) Neverlang module for array-based class instantiation.

module neverlangJ]S.ArrayLikeNew {
imports { neverlanglS.util.ArrayLikeInstance; }
role (evaluation) {
New: .{ $New.val = new ArrayLikeInstance($New[1l].name, $New[2].args); }.
}
}

Listing 5.12: Neverlang implementation of the Javascript’s prototype-based instantiation and a Javascript
instantiation example.

default stores fields in a Java HashMap (see Listing 5.12(b)). Therefore, we need to change
that behavior so that object fields are stored in a Java array. To this purpose, we define
a new interpreter-level class for representing Java objects. The actual implementation
is irrelevant. Next, we have to define a new Neverlang module that uses the new
class. Listing 5.12(c) shows a module called neverlanglS.ArrayLikeNew which, in
line 17, instantiates Javascript objects by using the ArrayLikeInstance class. The next
step is to replace the semantics of the existing hashmap-based Javascript construct for
instantiation with the array-based one.

As with object persistence, discussed in Section 5.2, we have to perform two modifi-
cations. First, we have to modify all future instantiations of Point objects. Listing 5.13

74



OO O\ Ul A~ W N R

R R R R R R R R
N Uk~ W N R

18
19
20
21

5.3. Context-Aware Variability

nts newExpr, protoName, _ : New from module neverlangl]S.NewSyntax;
action arrayLikeNew : New from module neverlangJS.ArraylLikeNew;
endemic slice st : SymbolTable from module neverlangJS.SymTable;
agent adapt.ArraylLikeInstantiation {
system-wide {
// transform any Point that was instantiated with ObjectInstance
for (String id : st.getVariables()) {
ObjectInstance oldObj = (ObjectInstance)st.get(id);
if (oldObj.getName("Point") && !(oldObj instanceof ArrayLikeInstance)) {
// ArraylLikeInstance constructor copies application-level identity properties}
ObjectInstance newObj = new ArraylLikeInstance(oldObj);
// update the symbol table
st.replaceAll((var,obj)-> obj.equals(oldObj) ? newObj : oldObj);
}
}
before newExpr < protoName[name == "Point"] | newExpr {
// change "new Point" to use instantiation defined in module
neverlangJ]S.ArraylLikeNew
interpreter.setSpecializedAction(newExpr, arraylLikeNew);
interpreter.unregister(this);

}

}

Listing 5.13: jtDA agent for class instantiation optimization.

PN

[name: "point"]

Figure 5.4.: Tree representation of the instantiation construct new. Nonterminal names are abbreviated: E,
PN and AL stand, respectively, for Expr, PrototypeName and ArgList (see Listing 5.12(a)).

shows the necessary code. The pattern in line 16 will match all nodes that represent
the Javascript construct for instantiation (new) of Point. Figure 5.4 shows the matched
node. The newExpr < protoName[name == "Point"] part of the pattern matches the
two green-colored nodes, but the filter removes the dotted PN node. On the remaining
node (E) the agent sets a new specialized action which, as was explained in Section 2.2.4,

75



5. Applicability of Open Interpreters

will override the original action. Consequently, the original (hashmap-based) instantia-
tion strategy will be overridden by a new (array-based) strategy. However, by the time
we apply this change, some objects of type Point might have already be instantiated
with the original hashmap-based strategy of storing fields. We need to change the be-
havior of this objects too. Listing 5.13, lines 5 to 15, shows the necessary code. Basically,
we iterate over all referable objects which are stored in the symbol table st. For each
object we check whether its prototype is Point and whether it was instantiated with the
original instantiation strategy (line 9). If yes, we reinstantiate the object (line 11) and we
make sure that the application-level identity is preserved by copying all identity-related
properties of the old object to the new one. The constructor of ArrayLikeInstance is
responsible for the preservation of object identity. Finally, in line 13 we update all
references to the old object to point to the new object.

Parallelization. The support for context variability is becoming an increasingly de-
manded feature especially in the area of ubiquitous and mobile computing. For example,
think of a software handling an electric car that switches to power saving mode while
the car is waiting at a traffic light; an app that turns off some of its functionality if the
smartphone is low on battery, etc. All these represent a family of applications that
have to adapt their behavior according to some context information with the aim of a
smarter resource usage. The traditional approach to software development has a quite
limited support for behavioral variability that mainly consists in having all the possible
variants mixed in the base code each guarded by the check for the context change
that should activate it. This clearly obstacles code extensibility, reuse and maintenance
and together with the emerging requirement for context variability support led to
the development of several approaches to support context variability; all based on
separating the context dependent behavior from the base behavior and on introducing
an activation logic that permits to (de)activate the variants according to the current
context information (context awareness). In [28] we illustrated how open interpreters
can be used to optimize resource usage without modifying the original source code.
The approach was presented in contrast to the traditional context-oriented program-
ming approaches which mostly do require one to change the application sources to
code the variability. As such, COP languages are a valid approach when developing
software from scratch. Instead, if we want to introduce context-aware variability to
an existing application written in a non-COP language, traditional COP approaches
require invasive and error-prone modifications. This is especially true when variability
is implicit in a language construct.

Think of the example shown in Listing 5.14 which shows a Javascript implementation
of the escape time algorithm for calculating the Mandelbrot set. A Mandelbrot set is a
collection of complex numbers for which a function of the form f(x) = x2 + ¢ does not
diverge. If we plot the obtained set to a plane we get a fractal. The algorithm details are
not important; we focus only on the two loops in lines 4 and 5 which are responsible
for the complete set calculation. These loops account for most of the execution time
which increases with the size of the calculated set. The algorithm is known to be

76



OO N Ul A~ W N R

H R R R R R R
AUl R~ W N R

5.3. Context-Aware Variability

var MAX_ITER=50, ZOOM=450, HEIGHT=300, WIDTH=300;
var I = create2DArray(WIDTH,HEIGHT);
var zx=0, zy=0, cX=0, cY=0, tmp=0, iter=0;
for(var y=0; y < HEIGHT; ++y) {
for(var x=0; x < WIDTH; ++x) {

zx=0; zy=0;

cX = (x - 400) / ZOOM;

cY=(y-300) / ZOOM;

iter=MAX_ITER;

while ((((zx * zx) + (zy * zy)) < 4) & (iter > 0)) {
var tmp=(zx * zx) - (zy * zy) + cX;
zy = (2.0 * (zx * zy)) + cY; zx=tmp; iter=iter - 1;
}i
I[x][yl=iter | (iter << 8);

Listing 5.14: A Javascript implementation of the escape-time algorithm.

parallelizable [53, 20, 31] since each independent stage of a loop can be run in parallel
on a different core. A parallel execution is fast, but consumes more energy and could
drain the laptop’s battery. A sequential execution is slower, but consumes less energy.
On this trade off, we would like to switch between a sequential and a parallel execution
depending on whether the laptop is plugged into the mains or it is running on battery.
The example deliberately omits algorithmic details to avoid obscuring basic ideas. At
the same time, it is representative of a wide range of context-aware applications whose
execution depends on the resource-saving context as those listed before.

The traditional COP approach would require us to heavily modify our code. For
example, if the original code is written in a language for which there is no COP
extension, we would have to adopt a new, COP language and to (largely) rewrite
the original code. Then, we would have to reorganize the code to explicitly separate
behavioral variations and add the activation logic to switch from sequential to parallel
mode (or vice versa) according to the context information. While in the specific case this
might not present a serious problem, generally this is a really invasive and potentially
error-prone change that someone could prefer to avoid. Indeed, we might achieve
the desired behavior without changing a single line of code. If we carefully analyze
the code and the parallelization problem, we see that the two behavioral variations
(i.e., sequential and parallel execution) are closely aligned with the for loop language
constructs in lines 4 and 5. In other words, the behavior of the application wrt. the
desired goal depends on whether the for loop constructs run in sequential or in parallel
mode. Thus, if we could change how the loops in lines 4 and 5 behave, we would affect
the application behavior without modifying the original application code. We could
even not adopt a COP language at all.

In traditional COP, behavioral variations are provided as partial methods grouped
into layers. When no layer is active, a call to method m triggers the standard behavior
variation defined in the body of m. If a particular layer is active, the variation of method

77



5. Applicability of Open Interpreters

. l context change
Active layers

_update | Context
‘ layer [y manager

Construct behaviour (11):

left <- left operand value

( - { Dispatcher [« - - right <- right oper. value
return left + right

[

OO |

Figure 5.5.: Multiple behavioral variations dispatched according to the current context.

m defined in that layer is executed. In a sense, the method named m is associated
with many behaviors defined in different method bodies and the right variation is
determined by active layers (context).

Our idea is to associate behavioral variations with a language feature and dispatch on
them according to some context information. In this view, a language feature and the
associated semantic action correspond respectively to COP’s partial method’s name
and body. Indeed, when a language feature is used in the code, its “name” is used to
identify the associated semantic action (“partial method”) and its “body” is executed.
In this approach, variations are implicit in a language feature and need not be explicitly
implemented in the application. The approach is illustrated in Fig. 5.5. The addition
operation (+ node) is associated with many actions and a dispatcher executes the right
action according to the context as follows. Each semantic action has a “layer” label
which determines to which layer the action belongs. Layers are implemented on top of
dynamic constraints explained in Section 4.3.2. For example, the front action in Fig. 5.5
belongs to the layer /;. When a node is visited, the dispatcher checks which layers are
active and executes the associated actions that belong to the currently active layers.

In contrast to the traditional COP, in our approach layers are not activated explicitly
in the application code. Instead, an external context manager notifies the interpreter
about the context change by (de)activating layers (see Figure 5.5). In this approach,
the interpreter handles a global list of active layers whose order determines the order
in which semantic actions are executed. Layer (de)activation is asynchronous with
respect to the application execution, i.e., it can occur at any moment of the application
interpretation. When the context changes, the interpreter pauses the interpretation,
updates the active layers according to the information provided by the context manager
and proceeds with the interpretation.

Listings 5.15(a) and 5.15(b) show the implementation of the sequential and parallel
for loop variations for the Neverlang.JS interpreter. The implementation details do
not matter and the code omits many irrelevant details. The main difference consist in
that the variation in Listing 5.15(a) visits the loop body sequentially (line 10-12), while
the variation in Listing 5.15(b) spawns a thread for each loop run (lines 24-28). Notice
that semantic actions are assigned to layers. The action in line 21 is assigned to the

78



OO O\ Ul A~ W N R

[ e e =
U~ W N R

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

5.3. Context-Aware Variability

a) Neverlang module that implements the sequential variation of the for loop language feature

module neverlangJS.ForLoop {
reference syntax {
For: Stm<« "for" "(" ForDecl ";" ForCond ";" ForStep ")" Stm;
}
role (evaluation) {
For: .{ // Action pertains to the standard layer
int start = (int)$For[1].Value; // loop start
int end = (int)$For[2].Value; // loop end
int step = (int)$For[3].Value; // loop step
for (int i=start; i < end; i=i+step) {
eval $For[4]; // evaluate loop body sequntially
}
}.
}
}

b) Neverlang module that implements the parallel variation of the for loop language feature

module neverlangJS.ParForLoop {
imports { java.util.concurrent.x; }
/* reference syntax from the sequential for loop module x*/
reference syntax from neverlangJS.ForLoop;
role (evaluation) {
For (performance): .{ // The action is grouped into the "performance" layer

ExecutorService exec = Executors.newFixedThreadPool(4);
for (int i=start; i <= end; i=i+step) {
// ThreadVisit class implements Runnable
ThreadVisit t = new ThreadVisit($For[4]);
exec.submit(thread); // Submit the thread for execution
}
}.
}
}

c) Event manager script responsible for power resource handling.

[[$(acpi -a)==x"off"x]]; plugged=$?
while true; do
[[$(acpi -a)==x"off"x]]; now=$?
if ["$plugged"!="$now"]; then
if ["$now"==true]; then
# plugged->battery
mda Mandelbrot deactivate performance
mda Mandelbrot activate standard
else
# battery->plugged
mda Mandelbrot deactivate standard
mda Mandelbrot activate performance
fi
plugged="$now"
fi
sleep 1
done

Listing 5.15: Variants of for loop implementation in Neverlang and the event handler.

79



5. Applicability of Open Interpreters

“performance” layer. On the other hand, the action in line 6 does not explicitly declare
a layer and is thus implicitly assigned to the “standard” layer. Only actions pertaining
to active layers are executed. Layers are activated and deactivated from command line
through the mda tool which uses RMI to update the layers’ state. Listing 5.15(c) shows a
context manager script that uses the acpi tool to verify whether the laptop is running
on battery or it is plugged into the mains (line 4). When a change happens (e.g., the
laptop is unplugged from the mains) the layers’ state is updated. mda takes in input
the interpreter instance name (e.g., Mandelbrot), the action to be performed (activate,
deactivate) and the layer name. For example, the command in line 8 would deactivate
the “performance” layer in the interpreter whose instance is bound to “Mandelbrot” in
the RMI registry.

The examples discussed in this section illustrate how open interpreters can be used
to dynamically adapt the application to the surrounding context by modifying the
underlying interpreter. As discussed in the previous section, the feasibility of adaptation
heavily depends on how well are the application-level concepts aligned with language
constructs. Similarly, the obtained solutions can be shared among different applications
and sometimes among different language implementations. The ability to consider the
context at the level of programming language interpreters could be used to provide
variations of language constructs that best fit in different situations. For example, an
interpreter could be shipped with construct variations that, depending on the context,
vary in energy consumption. This could be used in mobile devices to seamlessly modify
the behavior of applications without the need to explicitly program such adaptation by
the developers of mobile apps.

Alternatively, one could use traditional context-oriented programming approaches to
implement the above examples. However, as was briefly discussed in the parallelization
example, in some cases the traditional COP would unnecessarily require one to modify
the original source code. Furthermore, the behavioral variations would have to be pro-
vided a priori and adding new behavior at runtime would imply using alternative tools
for dynamic software updating to inject new code. Also, the original application code
must explicitly code the variation triggering which can obscure the basic application
logic. Instead, open interpreters allow one to separate variations and the triggering
logic from the original application code. In addition, one can inject new variations at
runtime without modifying a single line of the original code.

5.4. Interpreter Optimization

As discussed in Section 2.2.1, an interpreter is functionally decomposed in many phases,
like parsing, type checking, etc. Many interpreters implement an optimization phase
which is responsible for optimizing the input source code. Typical optimization tech-
niques include constant folding, dead code elimination, function inlining, etc. Although
valuable, these techniques are unable to take into account information that is only
available at runtime. Therefore, researchers developed several runtime optimization
techniques that include runtime tree rewriting [27, 128], partial evaluation [128], meta-

8o



1
2
3
4
5
6
7
8
9
0

1
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

5.4. Interpreter Optimization

a) Runtime dispatching on the operands’ types

package neverlanglS;
class MathHelper {

public static Object add(Object 1, Object r) {

if (1 instanceof Integer && r instanceof Integer)
return (Integer)l + (Integer)r;

else if (1 instanceof Integer && r instanceof String)
return ...;

else ...

}
}

b) Neverlang.JS module for the addition operation

module neverlangJS.AddSyntax {
reference syntax {
Add: Expr < Expr "+" Expr;
}
}
module neverlangl]S.AddSemantics {
import neverlangJS.MathHelper;
role ( evaluation ) {
Add: .{ $Add.value = MathHelper.add($Add[1].value, $Add[2].value); }.
}
}
slice neverlangJ]S.Addition {
concrete syntax from neverlangJS.AddSyntax
module neverlangJS.AddSemantics with role evaluation

}

Listing 5.16: Implementation of the Javascript addition operation.

trace just-in-time (JIT) compiling [11], polymorphic inline caching [62], etc. Although
these techniques are highly efficient, they are limited to a specific objective, namely
performance, and often need to be pre-integrated in the interpreter. Instead, open inter-
preters provide a general mechanism for interpreter adaptation which might include
application-tailored optimization.

Consider the linguistic component for the addition operation in Javascript, which
is a dynamically typed language. Listing 5.16(b) shows the Neverlang.JS implemen-
tation. The semantic action simply invokes the helper static method add defined in
Listing 5.16(a) (line 19) to which it passes the operand values. The add method tries to
cover all possible operand types through a series of if-then-else statement. The more
types are covered the easier it is for developers to write compact code. For example,
the developer can simply write 1+"a" and the plus operator will “do the magic” by
concatenating a number and a string (“1a”). If these types were not covered, the
Javascript developer would have to define her own method for the desired operand
types. However, the vast operand type coverage is traded for a computational over-

81



5. Applicability of Open Interpreters

a) Addition operation optimized for floating point numbers

module neverlangJ]S.AddFloatSemantics {
role ( evaluation ) {
Add: .{ $Add.value = (float)$Add[1l].value + (float)$Add[2].value; }.
}
}
slice neverlanglS.FloatAddition {
concrete syntax from neverlangJ]S.AddSyntax
module neverlangJS.AddFloatSemantics with role evaluation

}

b) uDA agent for optimizing the interpreter on floating point numbers

slice Add : neverlangJS.Addition;
slice FloatAdd : neverlangl]S.FloatAddition;

agent adapt.FloatAdd {
system-wide {
interpreter.replaceSlice(Add, FloatAdd);
}
}

Listing 5.17: Optimization on floating point numbers.

head > as the interpreter might often have to perform long conditional checks before
hitting the right operand combination. Suppose we have a computation-intensive
algorithm that performs repeated calculations only on floating point numbers. The
proposed implementation in Listing 5.16(a) has at least three problems. First, it will
perform type checking on types that are not present in the algorithm being interpreted.
Second, the order of type-checking might not be optimal. For example, if the operand
combination for floating point numbers is placed at the end, the interpreter will waste
a lot of time by checking other combinations which are known to be absent in the
algorithm. Third, even if the check for floating point operands were positioned in
the very beginning of the add method, it would still perform type checks and casts,
even though we know that the algorithm works only with floating point numbers.
The already mentioned techniques (runtime tree rewriting, partial evaluation, meta-
tracing with JIT, polymorphic inline caching) are able to solve this issue. However,
such optimization must be pre-integrated in the interpreter. But, it is unreasonable to
believe that a language developer will foresee every possible situation and optimize the
language implementation accordingly. Instead, with open interpreters we can plug in
an optimized semantic action a posteriori, i.e., after the interpreter has been deployed
and is already running. This is especially useful for unforeseen situations that were not
taken into account when the interpreter was built. Also, it allows one to exploit the
valuable application-specific knowledge owned by application developers.

Listing 5.17(a) shows a Neverlang module for the addition operation which is opti-
mized on floating point operands. The semantic action directly adds the operands which

5The illustrative implementation is (intentionally) quite naive, however its simplicity points out well the
need for an open implementation (see [128] for a similar choice of simplicity).

82



5.5. Aspect-Oriented Programming

are previously casted to float. The cast is necessary due to Java’s type system. The new
slice is made of the original addition syntax define in module neverlangJ]S.AddSyntax
and the new semantics defined in neverlangJS.AddFloatSyntax. Listing 5.17(b) shows
an uDA agent which replaces the original addition slice with the new one that is
optimized for floats.

The discussed example is rather simple and the existing optimization techniques
would most probably outperform our solution. However, open interpreters allow one
to apply such optimization a posteriori and to systems that cannot be shut down.
Furthermore, under specific conditions, optimization modules can be shared among
different language implementations. Combined with context-awareness discussed in
Section 5.3, open interpreters can be used to conditionally optimize the interpreter
execution depending on some context information.

5.5. Aspect-Oriented Programming

Open interpreters can be used to provide aspect-oriented programming support to any
Neverlang-based interpreter. Indeed, open interpreters borrow some AOP concepts.
Hooks are similar to joinpoints, tree patterns are analogous to pointcuts and the agents
corresponds to AOP advices. The difference is that in traditional AOP, these concepts
are applied at the target language level. Instead, in open interpreters, they are applied to
framework-level concepts. This has important implications concerning the applicability.
Traditional AOP is language-specific (e.g., Aspect] for Java, PostSharp for C# and VB),
while in open interpreters AOP can be applied to any language whose interpreter
is open according to Definition 3. In Neverlang, all interpreters are open and can
benefit from the framework-level AOP. Furthermore, AOP languages provide fixed
joinpoints at the target language concepts like method calls, method executions, object
instantiations, constructor executions, field references and handler executions. While in
open interpreters, hooks (joinpoints) are fixed (before and after each tree node), they do
not target any specific target language level concept. Indeed, tree nodes can represent
any target language concept and a single node represents a very fine-grained element
of the running application. Therefore, from the target-language perspective, open
interpreters do not impose fixed joinpoints. The developer can attach extra behavior at
whatever target-language concept and implement crosscutting concerns.

Suppose that the interpreter’s native stack tracing lacks information valuable for
the user. With a simple agent, one could attach the desired behavior before and after a
node that represents a method call is reached. Notice, however, that we cannot simply
push extra information on the existing interpreter-side stack trace since it was not
programmed to store that kind of information (i.e., we would have a type mismatch).
Therefore, we implement an agent-side stack trace as illustrated in Listing 5.18. We first
import a custom data structure StackTrace which implements a complementary stack
trace (line 1). In line 8 we initialize the stack trace. Then we register the agent before
and after each method call (lines 10 and 16). In addition, we register the agent after the
catch statement. Before each call we push the necessary information on the agent-side

83



OO N Ul A~ W N R

N NNR B R 2 3 3R =l
N m OOV N Ul W N R

N
W

5. Applicability of Open Interpreters

import neverlangJS.utils.StackTrace;
import neverlangJS.utils.StackRecord;
nt call,_,_ : Call from module neverlangl]S.Call;
nt catch,_ : Catch from module neverlanglS.TryCatch;
agent adapt.ExtendedStackTrace {
StackTrace stack;
system-wide {
stack = new StackTrace();
}
before call {
int pos = call.getSourcelLine();
String methodName = call.getAttribute("name");
// extract other information
stack.push(name, pos, /+ other info */);
}
after call, catch {
NodeInfo current = interpreter.getCurrentNode();
StackRecord rec = stack.pop();
if (current == catch) {
// do something with rec
b
}
}

Listing 5.18: uDA code for stack tracing.

stack trace (lines 11-14). In the after hooks of the concerned nodes, we first pop a
record off the stack trace (line 18). Then, if the agent was notified at the catch node,
we perform some operations on the popped stack trace record (the code is omitted as
irrelevant).

With respect to traditional AOP, open interpreters have the advantage in that they
support a more fine-grained manipulation of construct behavior. Indeed, with open
interpreters one is able to attach new behavior before and after every single node.
There is potentially no limit in how a developer can extend the application behavior by
attaching agents to tree nodes. With a rich set of introspection operations, the technique
can be used for debugging as discussed in the next section.

5.6. Debugging

Open interpreters can be used to implement target language debuggers. For example,
hooks can be used as breakpoints at which the debugger agent obtains control and
prompts the developer with several option on how to proceed. At that point, the
developer can use the reflection API to introspect the interpreter state and change it
at will. Target language debuggers will register an agent only at nodes that represent
relevant concepts for the interpreted language. For example, a Javascript debugger will
most probably allow the developer to put a breakpoint only at Javascript expressions
and statements (i.e., at nodes represented by nonterminals Stmt and Expr). Currently,

84



5.6. Debugging

Debugger
Agent

Figure 5.6.: Debugger.

we are designing and developing a model that would allow language developers to tag
constructs that are meaningful from the target language perspective. These tags would
then be used to automatically generate debuggers for target languages.

Listing 5.19 shows a simple debugger for the Neverlang.JS implementation that would
break the execution before a statement is executed. This is illustrated in Figure 5.6
where we show a tree representation of the if-then-else statement. The tree has three
statements: the if-then-else statement itself (represented by the S nonterminal) and the
“then” (S1) and “else” (S2) branches. When a hook is reached before any node represented
by the S nonterminal, the execution flow is transfered to the debugger agent. The
debugger then prompts the user for a debugging command (see Listing 5.19). The
example code is deliberately simple and omits irrelevant details, but instead focuses on

import java.util.Scanner;

production Stmt : Stmt from module neverlangJS.Statement;

agent debugger.Generic]S {

before Stmt {
System.out.println("What would you like to do? (type \"help\" for help)");
Scanner scan = new Scanner(System.in);
String input = scan.nextlLine();
switch(input) {
case ...: ...;

Listing 5.19: Simple debugger that would break the execution before each statement.



5. Applicability of Open Interpreters

action write : Write from module mydsl.Write;
agent adapt.Sandbox {
system-wide {
interpreter.replaceAction(write, interpreter.NOPAction);
}
}

Listing 5.20: Agent that implements “sandboxing” through semantic action neutralization.

the idea of using hooks as breakpoints.

We used the same approach to build a generic debugger for the Neverlang framework.
This debugger can be used to debug any interpreter by targeting framework-level
concepts. It allows one to put a breakpoint at any tree node. When a breakpoint is
reached, the agent presents the user with a command prompt where commands in a
special DSL are accepted. The DSL commands are similar to those of gdb 6 except that
they are expressed in terms of the Neverlang framework concepts. The developer can
read node attributes, get the next node to be visited, etc.

The developer can write custom ad-hoc debugging scripts for specific purposes. Such
scripts are reusable and can even be shared across different language implementation,
depending on the concepts they target.

5.7. Security

Open interpreters can be used to implement security features similar to sandboxing
and input validation and sanitization. Sandboxing is a security mechanism for isolating
running programs from resources that should be protected. Typically, it is used for
testing purposes or to execute software that originates from unverified and untrusted
sources. Such a mechanism can be implemented through open interpreters by control-
ling and limiting the effects of linguistic constructs that could potentially harm the
protected resources. For example, a construct for accessing files could be neutralized by
replacing its semantic action with an empty one. To this purpose, Neverlang provides
a “no operation” (NOP) semantic action. Listing 5.20 shows a yDA code snippet that
neutralizes the “write” semantic action by replacing it with a NOP action.

Input validation and sanitization are distinct, but normally combined mechanisms
to verify and guarantee that the input data will not break the program execution or,
worse, harm the system. A classical example is given by the SQL injection hacking
technique which consist in placing malicious code in SQL statements, typically through
a web page input. To prevent SQL injection, the input is validated and sanitized before
the SQL statement is finally executed. Validation consist in checking whether the input
data meets specific criteria, e.g., that the input string does not contain standalone single
quotation marks. If the input validation fails, sanitization tries to fix it, e.g., by inserting
the matching single quotation marks.

6https://www. gnu.org/s/gdb/

86


https://www.gnu.org/s/gdb/

5.8. Discussion

a) SQL statement subject to code injection hack

userId = getRequestString("userId");
sqlStatement = "SELECT * FROM Customer WHERE Id = " + userld;

b) Agent that performs validation and sanitization.

nt call,_,_ : Call from module neverlangl]S.Call;
agent adapt.ValidateAndSanitize {
after call [methodName == "getRequestString"] {

// validate and sanitize the input
// which is stored in the return value of the method call
}
}

Listing 5.21: Input validation and sanitization problem and solution.

Consider the code in Listing 5.21(a) that prepares an SQL statement to be executed
on an SQL engine. The getRequestString method returns the value of the specified
HTTP Request variable (e.g., userId). If getRequestString does not perform validation
and sanitization, the SQL statement will be subject to code injection. If a hacker inserts
as user id the input “99 OR 1=1" (without quotes), the WHERE condition will always be
true, since 1=1 is always true. Therefore, the SQL statement will return the data of all
customers.

An agent can extend and open interpreter in order to provide its applications with
input validation and sanitization for free. Listing 5.21(b) shows an agent that requests
to be registered after the getRequestMethod is executed. After it acquires the execution
control, the agent perform input validation and sanitization (the actual code is omitted
as it is irrelevant). By being application-independent, an agent can be reused in different
applications written in the same language.

5.8. Discussion

The examples illustrated and discussed in this chapter show that open interpreters
have real-world applicability that go beyond toy examples. Each example emphasized
a strong point in favor of open interpreters and we concluded each section with a
few comments that draw attention to the strengths of our approach which can be
summarized as follows:

— a support for fine-grained behavior extensions that allow one to attach new
behavior on single tree nodes;

- the ability to modify a posteriori the language and application behavior, even
without stopping the application or interpreter execution;

— the ability to modify application behavior without changing a single line of the
application code;



5. Applicability of Open Interpreters

— the support for partial adoption of language evolution that mitigate backward
incompatibility issues;

— the ability to share agents among different language and/or application imple-
mentations;

— the ability to take into account valuable context information and consequently
adapt the interpreter behavior.

As with any approach, open interpreters have their drawbacks which were already
discussed in Section 4.6. Here we especially emphasize the need for a support frame-
work to assist the developers in the interpreter updating process. It is clear that users of
this approach must be skilled language developers. In order to draw open interpreters
closer to a wider user basin, there is a great need for a powerful integrated develop-
ment environment (IDE). Currently, Neverlang is able to automatically generate editors
for target languages. Furthermore, we have a generic debugger for Neverlang-based
interpreters. We also have a graphical tool for language updating with a rich set of oper-
ations that enable one to adapt a running interpreter simply by using a mouse. On top
of these, we are adding more support to assist developers in language updating. Also,
there is a work in progress to provide a set of language components for mainstream
languages that could be used as black box by developers with a weak background in
language developers.

88



Related Work

6.1. Language Extensions

Ever since the birth of the first high-level programming languages, researchers sought
for ways to introduce language extensions to better fit the application needs [33].
Mixins are a mechanism that allow one to define shareable specialized behavior to
be applied to a variety of components. Although Bracha and Cook [14] are generally
attributed to be the first to have written a scientific paper on mixins, the concept
itself dates as far back as in the 1960s when Warren Teitelman introduced the mixins
extension to Lisp [120, 50]'. The Teitelman’s extension provided the functionality of
what would later be called before, after, and primary methods. The mechanism allowed
one to specify that a behavior should be executed before or after a primary method.
Later, Cannon introduced the Flavors system [16, 126, 88] with similar functionality.
Flavor’s model heavily influenced the development of Common Lisp Object System
(CLOS) which provides an almost identical programming pattern called standard method
combination [40, 71]. Later, Kiczales and his colleagues at Xerox PARC developed the
concept of aspect-oriented programming that provides a mechanism to add behavioral
extensions before and after the standard behavior in a modular way [74].

Many mainstream programming languages provide some reflection support, al-
though it is often quite limited. For example, ever since its early days, Java provides
a reach reflection library for introspection, but is rather tightfisted in providing ways
to introspect the language. With the second version, Java enriched the support for
class loaders which allow one to load classes at runtime. This enables one to introduce
new behavior which is unknown at development- and load time. To overcome the
Java’s reflection limitations, developers sometimes use dynamic code generation and
compilation [35]. Similar reasoning can be done for other mainstream programming
languages.

Scala provides a rather rich set of introspection and intercession operations with

"Notice that Bracha and Cook never claimed to be the first authors on mixins. This wrong attribution is
evident by the fact that, when citing the literature on mixins, most scientific papers point to Bracha’s
and Cook’s paper entitled “Mixin-based inheritance” [14] and rarely mention the Teitelman’s paper
entitled “PILOT: A Step Toward Man-Computer Symbiosis”. This is reflected on the number of citations
which, at the moment of writing this dissertation, is 1095 for Bracha’s paper and 44 for Teitlman’s.
Richard Gabriel’s paper “The Structure of a Programming Language Revolution” [50] presents an
interesting reading on this topic.



6. Related Work

which one can reflect on the whole AST of the input program?®. Developers can,
thus, modify the behavior of the running application. However, differently from open
interpreters, reflection in Scala is invasive as it requires the developer to modify the
source code. If Scala’s reflection API is changed due to language evolution, the original
source code would not work anymore. On the other hand, any change to the open
interpreters’ reflection API would simply imply that reflection cannot be done without
updating the agents. But, the original interpreter and the applications running on top
of it will continue to work as before.

Few programming languages, such as Racket [47] and Scala, with implicits and
embedded DSLs, provide mechanisms to support their own extension deriving a new
dialect. This approach has the advantage that the extension is done inside the language
so you do not need any new skill to develop it, but i) it is limited by the language
itself ii) it only supports language extensions and adaptations not the removal of a
language feature and iii) the extension is often part of the program that is going to
use it and the business logic gets confused in the extension logic (e.g., look at the
Racket definition for the textual adventure in [47]). Neverlang with its reflection API
clearly separates the interpreter and its adaptation from both the program running the
adaptation (the DA programs) and the program executed on the adapted interpreter;
these adaptations can be done during the program execution and the removal of
language features are supported as well. In the same category of Neverlang we
could enlist the language workbenches and frameworks such as Spoofax [67], Lisa [86],
JastAdd [58], MPS [125], LTS [37], Xtext [9] and Melange [41]. To some extent all of them
support modular development of general-purpose and domain-specific programming
languages as Neverlang does. Therefore they have the potential architecture to support
open interpreters and their dynamic adaptation but, as far as we know, none of them
implements a mechanism to support the dynamic modification of a running interpreter
nor do they provide the developer with a reflective API to drive the adaptation as we
describe in this dissertation.

Instead of providing language extensions, one can extend the VM to introduce reflec-
tional features. This is what was done by metaXa [54], Guarand [91] and Iguana/]J [103]
for the JVM. The main disadvantage of this approach is that it sacrifices the porta-
bility and if the maintenance of non-standard VM-based MOPs is discontinued, the
applications relying upon them will have to be modified. Instead, in open interpreters
application and interpreter code are completely separated from the agent adaptation
code. Therefore, any discontinuity in the maintenance of the Neverlang’s VM does not
break the original application, even if without the extra behavior.

6.2. Metaobject Protocols

A lot of research was done to overcome overcome the limited support for intercession in
mainstream programming languages. Chiba [34] developed OpenC++, a compile-time
MOP that allows one to extend the behavior of a program written in C++. Following

*http:/ /docs.scala-lang.org/ overviews/reflection/symbols-trees-types.html

90


http://docs.scala-lang.org/overviews/reflection/symbols-trees-types.html

6.2. Metaobject Protocols

Chiba’s idea, Tatsubori et al. [119] developed a compile-time MOP for Java, called
OpenJava. Both solutions share the same idea and principles: on per-class basis
metaobjects instruct the meta-compiler on how to translate language components
(classes, methods, etc.) before the application is finally compiled to either byte- or
machine code. These compile-time translations can inject extension code to add
new behavior to existing language constructs. Both OpenC++ and OpenJava require
modifications to the source code in form of special comments to instruct the meta-
compiler about which metaobjects to use for the translation. Differently, our approach
requires no modification of the source code and provides reflection for free to all
interpreters built with Neverlang. Furthermore, open interpreters support runtime
interpreter intercession and can, thus, take advantage of valuable runtime information
not available at compile-time. Also, our approach does not require recompilation and
the reflection code can be reusable under specific conditions.

Jinline [118] is a load-time MOP, integrated in the integrated to the Javassist [35]
framework, for altering Java semantics through bytecode manipulation. There are
many similarities between Jinline and open interpreters. For example, jinlers, which
correspond to our agents, have to register for notifications about language mechanism
occurrences (e.g., message send, cast, etc.). When notified, a jinler can inline a method
before, after or instead of the language mechanism. Inlined methods can also be
provided with dynamic information. The main difference between Jinline and open
interpreters is that Jinline is defined only for Java, while open interpreters target
framework-level concepts and thus provide reflection support to every language built
on top of that framework (e.g., on top of Neverlang).

Kava [127] and Reflex [116] are runtime MOPs that allow one to change the behavior
of Java classes. With open interpreters they share the idea of hooks to transfer the
execution from base- to meta-level. Again, open interpreters provide reflection support
on framework-level concepts and thus provide reflection for free to every interpreter
build on top of that framework. As stated by Tanter et al. [116], a reflective control
over method invocation is all what is needed in a large range of applications. However,
Kiczales et al. [73] outline the 9o/ 10 principle according to which a there is always a
small group of off-the-charts developers (10%) which seek for non-standard behavior
which, applied to this context, would mean that they might need control over other
events, like object creation, arithmetic operations or others. Open interpreters provide
a fine-grained reflection support for every language feature.

GEPPETTO [105] supports the adaptation of applications at runtime through an unan-
ticipated partial behavioral reflection. In many aspects, it is similar to open interpreters.
It's a runtime MOP with the concept of hooks, support for fine-grained selection of
language concerns and dynamic predicates. GEPPETTO’s spatial and temporal patterns
correspond, respectively, to our tree patterns and dynamic constraints. In GEPPETTO,
hooks are installed dynamically, which is faster but requires the BYTESURGEON
bytecode manipulator. On the other hand, the proposed model of open interpreters
have fixedly positioned hooks which have to be checked, this is slower, but does not
require external tools. However, the definition of open interpreters does not impose
how extended behavior should be provided. GEPPETTO is designed for Smalltalk,

91



6. Related Work

while open interpreters target framework-level concepts and, hence, work on every
language built on top of the that framework.

One of the main disadvantages of runtime MOPs is the runtime overhead. To
overcome this issue, researches proposed several solutions which include partial evalu-
ation [106, 83, 112], partial behavioral reflection [117], trace-based compilation [6, 51],
inlining, dispatch chains [82, 32] and others. A multi-stage technique as the one
presented in MetaOCaML [3] and applied to the Black reflective programming lan-
guage could be used to drive out some complexity and performance penalties from
the Neverlang runtime in the future. The main difference (that applies also to the
other techniques) is that Asai [3] applies its optimization technique to a language
(Black) that provides reflective facilities to its programs whereas in our case, the
open interpreter could implement a language without any support to reflection: to
be clear, the reflective tower is separate from the execution model of the application
(NVM~interpreter—application).

6.3. Runtime Software and Interpreter Adaptation

Some language development frameworks provide support for adaptation, usually
restricted to specific objectives. For example, Truffle uses runtime tree rewriting to
specialize tree nodes with the aim of optimizing execution performance [128]. The
developer writes a priori the possible specializations based on the types the interpreter
will support. The best specialization is then automatically chosen by the runtime
according to manually specified coercion rules. Specialized tree is then further compiled
by a JIT. To our knowledge, Truffle does not support (without recompilation and re-
execution) the addition of specializations once an interpreter is deployed and running.
Open interpreters, instead, allow a posteriori runtime interpreter manipulation. Also,
reflection is defined in terms of framework-level concepts which can be shared across
different language implementations.

Kollar and Forgac [76] investigated on the possibility of adapting a programming
language interpreter during its execution. The proposed approach is based on abstract-
syntax-tree rewriting—as implemented by Truffle [128]—and code injection at the
parse tree nodes. Except for working on parse trees, their approach differs from
ours in that their solution uses code injection, while we use self-contained agents
that are dynamically hooked either before or after the parse tree node. Moreover,
open interpreters are able to confine the effects of the language evolution to a specific
application features thanks to microlanguages. In addition, our yDA DSL provides
a more user-friendly way to specify the language evolution whereas the approach
proposed by Kollar and Forga¢ does not foresee any facility to deal with these aspects.

The research in the area of adaptive systems produced solutions that can be catego-
rized as either architectural [92, 77] or linguistic [109, 52], or a combination of both [107].
With architectural approaches one can adapt an application by either adding, remov-
ing, or substituting one of its components. Traditional dynamic software updating
approaches (such as JavAdaptor [100, 99], DUSC [93], Rubah [98] and JRebel [65]) are

92



6.4. Interpreter Composition

a variant of architectural approaches in which evolution does not simply reconfig-
ure the system, but also supports changes in the code. However, these approaches
suffer from performance decay (due to indirections introduced by table forwarding
and object proxies) [100, 93], limited program adaptation (no class re-positioning [65],
either limited—Upgrade] [10]—or no support for schema changes—HotSwap [44]),
misalignment between design and executable code [89, 24] and a general difficulty in
maintaining the evolved code [43, 45].

Linguistic approaches to software adaptation provide means to change both the
application code and its behavior. Supporting adaptation (or evolution) through ad hoc
linguistic constructs was first introduced by Mens et al. [85]. This approach focuses
on the introduction of non-functional features. We can roughly classify linguistic
approaches to software adaptation in three categories: aspect-oriented programming [74],
reflection/meta-programming [81] and context-oriented programming [60]. Both aspect-
oriented programming and reflection provide means to inject new behavior into an
application while keeping the new and the original code separated. In aspect-oriented
programming the new code can be completely decoupled from the rest of the application
code. Very few aspect-oriented languages—e.g., Caesar] [2] and Aspect]’s load-time
weaving [72]—have any (or limited) support for dynamic weaving to update a running
system. Despite the poor support for dynamic updating, a few dynamic software
updating approaches were developed on top of aspect-oriented programing [129, 56,
130]. Open interpreters can be used as a mechanism to implement dynamic aspect-
oriented weaving at the language-level [29] as was already illustrated in this dissertation.

Context-oriented programming allows one to specify behavioral variations through
specific language-level abstractions. In context-oriented programming, context is a
first-class construct of a programming language [68, 60, 55]. The system dynamically
selects the best behavior or a combination of behaviors based on contextual information
and selection conditions. Context-oriented programming enables one to separate
context-dependent crosscutting concerns. A drawback of this approach is that the
computation and coordination aspects are often interleaved and behavioral variations
must often be explicitly activated [108]. Moreover, the adaptation is implemented on a
per-application basis. Mixins [14, 48] and traits [110] are other linguistic approaches
to software adaptation and evolution. These approaches enable one to extend a class
with extra methods and override/enrich the existing methods. Matriona [111] is a
framework that uses mixins to support dynamic adaptation.

Meta-programming approaches rely on the reflective features support of the pro-
gramming language and its runtime system. Reflection is used to observe and adapt
the underlying program [9o]. Example frameworks that use Java’s reflection facilities
to support software adaptation are Chisel [69], PKUAS [63] and mChaRM [17].

6.4. Interpreter Composition

Interpreter composition enables language interoperability through cross-language APIL.
The feasibility and the difficulty of composition depend on several factors. Consider

93



6. Related Work

composing interpreters Y 1 and Y. If the interpreters are written in the same language
then, e.g., Y1 can import Y, and use the functionality exposed by Y z>. In the best case
scenario, the two interpreters will share the same data structures. In a more realistic
scenario, some glue code will be necessary to ensure correct data type conversion. If
interpreters are not written in the same language, glue code is necessary to enable the
execution control to flow from one interpreter to the other. Often, the interpreters must
invasively be modified to achieve composition. Examples of interpreter composition
are: Python and Prolog (Unipycation) [8]; Java and tuProlog [42]; Icon and Prolog [79];
Lisp and Prolog (LOGLISP) [104]; Smalltalk and SOUL [57].

Due to implementation misalignments, gluing two or more interpreters can negatively
impact the execution performance. Techniques like partial evaluation [106, 83, 112,
128] and trace-based just-in-time compilation [12, 11, 13] can greatly alleviate the
performance decay.

Although the main objective of open interpreters is not the composition of different
languages, open interpreters are enablers for runtime composition. Agents could act
as glue code and perform control flow pass from one interpreter to the other, convert
data types, etc. The same performance and feasibility concerns discussed above are
valid in this case. Ideally, both interpreters will be written in the same language or
framework (e.g., Neverlang). However, the primary aim of open interpreters is not
the composition of different interpreters, but rather to enable dynamic adaptation of
existing interpreters without affecting the application code.

6.5. Quantification

The problem of quantification in the context of aspect-oriented programming was
extensively discussed by Filman and Friedman [46]. In AOP, the developer uses a sort
of regular expressions (pointcut descriptions or PCDs) to declaratively register handlers
(advices) with a set of events. Events are expressed in terms of joinpoints. In open
interpreters terminology, PCDs correspond to uDA tree patterns, advices correspond to
agents and joinpoints correspond to hooks. Due to its fine-grained event model, with
hooks positioned before and after every single node in the parse tree, open interpreters
are not subject to quantification failure [114, 101] although, at the current state, the
expressiveness of yDA might limit somehow the range of hook selection. Rajan and
Leavens [101] introduce quantified, typed events that enable a programmer to add
event announcement for an arbitrary statement in the base module, although such
events must be explicitly triggered.

The problem of querying and mining graph-structured data, in our case the program
parse tree, is well-known to be challenging. Several approaches can be found in the
literature, to cite the closest to our yDA DSL we have: Blueprint [23], CARMA [70]. The
aspect-oriented Blueprint language [23] to capture fine-grained definition of join points
exploits parsing over graph-grammars to match an incomplete graph-pattern—the
description of where a join point should be—on the application control flow graph [25].
CARMA [70] exploits intensional views [84] to describe some structural properties of a

94



6.5. Quantification

program and the logic metaprogramming language Soul to gather all the points of
a program call graph satisfying the provided intensional view (Soul behavior does
not differ much from the way Prolog and Datalog calculate their knowledge base).
Fortunately, the path queries that we have to express in yDA are much easier than
those supported by Blueprint and CARMA or other graph query languages as G [38, 7]
and it can rely on the Neverlang VM architecture that provides several hooks that ease
the matching task. Anyway, we are planning to extend yDA with a richer matching
language closer to the one used in CARMA.

95






Conclusions

This dissertation presented the concept of open interpreters and a possible tree-based
model that can be integrated in development frameworks for building tree-based
interpreters. Our prototype implementation in Neverlang shows that the idea is feasible
and has real-world applications that go beyond toy examples, as shown in Chapter 5.
The prototype fully supports introspection and intercession of interpreter components.
Open interpreters allow one to modify and extend language and application behavior in
a fine-grained manner through adaptation agents that are software entities completely
separated from the interpreter or the application code. Therefore, open interpreters
enable one to modify the application behavior without modifying a single line of its code.
Modifications can be applied a posteriori, i.e., after the interpreter is deployed, and there
is no need to stop the interpreter execution. With open interpreters, one can selectively
modify the behavior of specific occurrences of language constructs in the application.
Also, the adaptation of open interpreters can be guided by valuable context information.
By targeting framework-level concepts, the reflection can be used on any language
whose interpreter is open according to the definition provided in this dissertation. The
illustrated examples showed that language evolution through open interpreters can
be successfully used in different domains. We illustrated their usage on preserving
backward compatibility, on building linguistic tooling (e.g., debuggers), on optimizing
resource usage, on providing accessibility support, etc, all these without modifying
the original application code. Indeed, language evolution through open interpreters
is completely non-invasive for the application. Consequently, if the development and
maintenance of the reflection API should one day be interrupted, that would not affect
existing interpreters and applications running on top of them. Since the reflection
code is separated from the interpreter or the application code, they would continue
to work, although without the extra behavior. In Appendix A we showed the formal
foundations that to some degree guarantee that the reflection operations will not break
the interpreter.

97






Composition Soundness

Since modularization fosters development in isolation, grammar attributes could be
undefined or used inconsistently due to the lack of coordination. In this Appendix we
present the 1) operational semantics for tree-based interpreters, 2) a type system that
permits to trace attributes and statically validate the composition against attributes lack
or misuse and 3) a correct and complete type inference algorithm for this type system.
The proofs are provided in [21].

A.1. Syntax Formalization

In this section, we provide a formalization of the syntax, similar to the one introduced
in Section 2.1.1, except that we provide some extra definitions for easier discussion on
composition soundness. For simplicity, we consider as the minimal unit of modularity
a component which defines both syntax and semantics®. Furthermore, components may
define only one semantic phase (e.g., type checking, execution, etc.). A component, thus,
defines a portion of a grammar as a set of productions and a the corresponding semantic
actions. In the following, we refer to the language we are defining as target language. In
this Appendix, we will use the terms “slice” and “component” interchangeably.

Productions and grammars. As discussed in Section 2.1.1, a grammar is a quadruple
(£,N, S,IT) where X is the set of terminals, N the set of nonterminals, S the start
nonterminal, and IT the set of productions. To the purpose of language composition,
terminals are of no importance, therefore we will not include them in the component
formalization. A production is a pair of a nonterminal and a sequence of nonterminals,
denoted by Xy — Xi---X,;, where g > 0. The empty sequence is denoted by €. We
use the metavariable X with subscripts and superscripts to range over nonterminals.
Moreover, with P we denote a subset of the productions of the grammar (not necessarily all).
Productions are uniquely identified by labels, p, with subscript or superscript if needed.

Definition 4. Let p be the label for Xo — X1---X,,

1. p[i] with i = 0,...,q refers to X; where i represents the nonterminal position in the
production p, p[0] refers to the left-side nonterminal of the production

2. [pl=q

"In Neverlang, this would correspond to slices, although Neverlang goes a little further in decomposition
by allowing both syntax and semantics to be separately defined and as reusable modular units.

99



A. Composition Soundness

3. NT(p,i)=X;, fori=0,...,q and
4. NT(p) = Vo<icg{NT(p, 1)}

Definition 5. Given a sequence of productions P=p,...p,,
1. Lp the set of labels of the production in P,

N

NT(P) = U1k« NT (py) is the set of nonterminals in P,

3. Def(P) = U1k {NT(pk,0)} is the set of nonterminals defined in P and
4. P X ={pe|NT(px,0) = X} is the subset of P whose productions have X as the left-side
nonterminal.

In the following we give a definition of a grammar, which is slightly more restrictive,
of the standard one.

Definition 6 (Grammar). A sequence of productions P is a grammar, if NT(P) = Def (P)
and there is a start nonterminal which occurs only on the left-side of a production, that we call
the start production. We denote grammars with G.

In other words, a sequence of productions P is considered a grammar only if all it’s
nonterminals are defined, i.e., they all appear at least once on the left-hand side in one
of the productions.

Components and Language for Semantic Actions. As mentioned above, components
are formalized with a single semantic phase and one action per production. Actions
are defined in terms of statements of the language defined by the following grammar.

unit | if e then s else s | s;s | p[i].a =e | eval p[i]

vl|plilalop(ey,... en)
tr| fls | n Ve u=unit | v

0

A statement can be the null statement unit, a conditional, a sequence of statements,
an expression, an attribute update and/or definition, p[i].a = ¢, or the execution of
a semantic action, eval p[i] where p[i] specifies the nonterminal at position i in the
production labeled p in P. Expressions can be integer or boolean constants, the value of
an attributes of instances of nonterminals (p[i].a), or the application of some operators
to expressions. In the examples, we will use operators such as + and ==. Values are the
results of the evaluation of expressions and can be assigned to attributes. Extended
values v, include unit, which is the value resulting from the execution of a statement
and therefore also of an action.

Definition 7 (Components and Component Composition).  — Given a sequence of pro-
ductions P, a component Sp on P is a set of semantic actions labeled by the productions
in P denoted by {p: {s}. | p e P}.

— Let the labels of productions in P and P’ be disjoint. The composition of components Sp
and Spr, Sp o Sps, denotes the component, Sp u Spr on P P'.

100



A.2. Operational Semantics

Notice that this is a refinement of the definitions provided in Section 2.3 where
semantic actions were simply denoted with a;, while here we define them in terms of
the language introduced above. In other words, a; = .{s}.

In the component definition we require that each production is associated with a
semantic action. Notice, however, that we can always associate a production with
the null statement unit to cover situations where a production requires no action.
Composition of components is associative and commutative and since, in a component,
productions and the corresponding semantic actions can be relabeled, we can always
define the composition of two components.

A.2. Operational Semantics

We provide the small-step semantics for semantic actions by describing how the
execution of its statements affects the attributes associated with a syntax tree for a
given source code. The evaluation of semantic actions does not affect the tree structure.
Attributes are conceptually separated from the syntax-tree.

Syntax-tree and Attributes. We begin by formalizing the syntax tree which is a data
structure that represents the input source code as a result of parsing. Any subtree of
a syntax tree is associated with a production p of G and contains subtrees for strings
generated by the nonterminals on the right-hand-side of p. If p has an empty sequence
of nonterminals on the right-hand-side the node is a leaf. Subtrees are assigned a
unique identifier.

Let I be a denumerable set of identifiers with id being a metavariable ranging on
elements of I.

Definition 8 (Syntax-tree). Let G be a grammar.
- n=id:(p,m--ny) is a syntax-tree for the production p if p: Xo - Xy---X,; € G and
Vil<i<q3p':X;— - €G such that y; is a syntax-tree for p’.
- 171 is a syntax-tree for a string of G, written G = 1, if i is a syntax-tree for the start
production of G and all the ids in y are distinct.
- Given a syntax tree 1],
- n(id) =n"if 3p,n1,...,1q such that y' = id:(p,n1---n4) occurs in y. If id does not
occur in 1, y(id) is undefined.
— The domain of #, dom(n) = {id | n(id) is defined},

Example 1. Consider the productions IF, INT and DBL in Listing 2.9 along with the start
production S: S < Exp;, where S is the start symbol, which is added to transform the
productions into a grammar according to Definition 6. This production is associated
with the action:

S: .{ eval $S[1]; $S[O].val = $S[1].val; }.

The input string "if 1 then 2 else 3" would generate the following tree #:

101



A. Composition Soundness

idl : (S,idZI(IF, idgl(INT,G) id4:(INT,€) id5!(INT,€)))
Therefore, dom(n) = {id; | 1 <i <5}, y(id1) =y and 5 (id3) = id3:(INT,€).

Mappings are used to associate attributes with nodes of syntax trees. A mapping,
m, from the set B to C is a partial function from B to C with finite domain. We
write m = [by = c1,...,b, = ¢,] and m(b;) = ¢;. The empty map is denoted by [ ]. If
m = [by v~ cy,...b, = cy] the domain of m, dom(m) = {by,...,b,}. The mapping m[b'—c’]
is such that m[b'~c"|(b") = ¢ and m[b'—c"](b") = m(b) for b # b'.

Definition 9 (Attribute store). Given a syntax-tree 1, to represent the values of the attributes
associated with nodes of 1, we define attribute stores, denoted by y, which are mappings from
I to mappings from A to values, such that dom(1n) = dom(p).

Consider the syntax tree 77 of Example 1. The attribute store [id; — [val — 2],idy —
[val — 2],id3 = [val = 1],idy — [val — 2],ids ~ [ ]] says that the node associated with
the condition part of the if-then-else construct (idz) has the attribute val with value
1. For the nodes associated with the start symbol (id;), the if construct (id,) and the
then condition (id4) the attribute val is defined and has value 2. And, finally, there no
attribute is defined for the node ids associated with the else condition. This attribute
store is the result of the evaluation of the action associated with the production S
starting with an attribute store in which all nodes have no defined attributes. Note that,
for ids the attribute val is undefined because toBool(1) is true and consequently the
node ids is never evaluated.

Run-time Terms and Configurations. To define the small-step execution of the lan-
guage for semantic actions, we need to refer to:

- a (generic) syntax tree 7,
— the attribute store associated with # which stores the attributes and their values
that are currently defined for 7,

— the term t (which can either be a statement or an expression), that is currently
evaluated.

One-step of evaluation produces a new term and may modify the attribute store .
We define the judgment of the reduction relation as follows:

netip—>ty

The syntax-tree 7 is put on the left of = because it never changes during evaluation.

Run-time configurations are pairs of terms and attribute store denoted by f |y, but in
order to understand p we also need to refer to the specific 7.

In the language for semantic actions, the nodes of syntax-trees are referenced to by
labels of nonterminal instances in productions (p[i]). In the run-time configuration,
these labels are substituted by the identifiers of the node they denote (given the node on
which the current action is executed). The run-time terms, i.e., the terms in the run-time
configuration, are defined by rewriting the language for semantic actions in which we
substitute:

102



A.2. Operational Semantics

niop(®) |p—vlp if op() =7 (B-OP)  plunitis|p—s|p (E-SEQ)
n[=if tr thenselse s’ |y — s|p  (E-IFTRUE) n = if fls thenselses' |y — s’ |p  (E-IFFALSE)
nEid.alp— p(id)(a) | (E-GETA) N = id.a=v | p — unit | plid—p(id)[a—v]] (E-SETA)

n(id) = id:(p,idr:(---) - -~ idp:(--+) p: s} € Sg s' = (s[p[0] := 4d])[p[i] := idil1<i<|p|

(E-EVAL)
nEevalid|pu— s |p
neEelu—e |y nEs|u— sy
s Y (gcom) Eolnll g ghg)
n k= op(v,e,€) | n— op(v, €', e) | N sis2|p— syl
elp—e |y elp—e |y
nEelp [ (EC-IF) nkEelu | (EC-SETA)
n | if e then s; else so | — if ¢/ then s; else sy |y nEida=c|lp—ida=c |y

Figure A.1.: Rules of operational semantics.

- pli].a with id.a,
- pli].a = e with id.a = e and
- eval p[i] with eval id.

Operational Semantics Rules. Operational semantics rules, shown in Fig. A.1, define
how the execution of a language construct uses/modifies a run-time configuration. In
the rule (e-0r) with ¥ we mean that the integer or boolean value corresponds to the
numerals or tr and fls tokens of the language respectively, and similarly op denotes
the function that corresponds to the symbol op of the language. The interesting rules
are those dealing with attributes. Rule (E-GerA) returns the value of the attribute a of
id. The term is “stuck” if a is not defined for id. Rule (B-serA) modifies the attribute
store u by defining (or overriding the value of) the attribute a2 to v. The evaluation,
being a statement, returns unit. Finally, rule (E-Evar) replaces eval id with the action
associated with the production, p, generating the id node. In the action, instances of
nonterminals p[i] are substituted by the identifiers corresponding to the child node
i, and p[0] is substituted by id. This starts the visit of the node corresponding to id.
The last four rules specify the evaluation order, which is the standard evaluation of
imperative/functional programming languages.

Let id, be the root node of 1 and 7 (id,) = (py,idy--id), |). The initial configuration of
the evaluation of 77 in Sg is sin | in Where:

Sin = (5:[p,[0] = id])[p,[i] == idi Jrcicp,) and  pin = [idj = [ J1jen
For instance, for the Ex. 1, let i, = [id; = [ ]]i<j<s the initial configuration is:
evalidy;idy.val = idy.val | piy
Applying the rule (EC-Seq) with the application of (E-Evar) over the line we get:

n & evalidy;idy.val = idy.val | pi, — s';idy.val = idy.val | pip

103



A. Composition Soundness

where s’ is the action associated with the production labeled by IF in Listing 2.9 with
IF[i] replaced by id;, fori=1,...3.

A.3. Type System

We now introduce a type system that traces attribute definitions and prevents their
erroneous usage. The tracing of definitions is done compositionally by type-decorating
semantic actions which, in turn, are used to decorate components. Given this type
information, we are able to type check and decorate the composition of two or more
components.

We define A = {a} as a set of attributes with a fixed type. Fixing a type allows us to
focus on the “definedness” of attributes rather than on their effective type, which is an
orthogonal problem with a wide range of solutions. T, denotes the type of the attribute
a.

Definition 10. A typed component, 7Sp, is a set of decorated actions which are labeled by
the productions in P denoted by {p : (R,D).{s}.|pe PAR,Dc A}. Givena p: (R,D).{s}. €
TSp
— R, called the required set of attributes, is a set of attributes of the nonterminal p[0] that
ensure the correct execution of s, and
— D, called the defined set of attributes, is the set of attributes that are surely defined for
p[0] by the execution of s.

To type check semantic actions, we trace attribute definitions through attribute
contexts which are defined as follows.

Definition 11 (Attribute context). An attribute context Y for p is a subset of the pairs of
nonterminals in p and their attributes. That is, ¥ ¢ {(p[i],a) |0<i<|p| A ae A}.

Given ¥, we define ¥ (p[i]) = {a | (p[i],a) e ¥}. We say that ¥ refers to p if ¥ is an attribute
context for p.

To collect information about attributes that are required and/or defined by the
execution of semantic actions we define the nonterminal environment as follows.

Definition 12 (Nonterminal Environment). A nonterminal environment I" for a set of
production P is a set

{X1:(Ry, D1), ..., Xp:(Ry,Dy) | X; € NT(P) AR;,D; € A(1 <i<n)).

We assume that all nonterminals X; are distinct. If X:(R, D) €T, then the successful
execution of any semantic action associated with a production defining X depends
on the definedness for the node associated with X of some of the attributes in R. On
the other hand, the execution of any of these semantic actions guarantees that, at
the end, at least the attributes in D will be defined. Given a set of nonterminals M:
I-M={X:(R,D) | X:(R,D) eTAX ¢M}and I''M = {X:(R,D) | X:(R,D) eT' A X € M}.

104



A.3. Type System

For simplicity, and given the language definition for semantic actions defined in
Section A.1, we consider just the following small set of primitive types:

T = Unit | Int | Bool

where Unit is the type of statements, whereas Int and Bool are the types for expressions.
The type judgment for terms ¢ that represent a semantic action is

LYr,t:T,9

where T is a nonterminal environment, ¥ and ¥’ are attribute contexts and T is a
type. The judgment should be read as: in the nonterminal environment I" and attribute
context ¥, the term t has type T and its evaluation defines the attributes for the
occurrences of the nonterminals of p conforming to ¥'. The judgment is relative to
a production p, since we have to check the correctness of instances of nonterminals.
For uniformity, we use the same judgment for statement and expressions, even though
expressions will always have ¥’ = @, since their evaluation cannot define attributes.

The type rules for the judgment I';'Y +,, t : T; ¥’ are given in Fig. A.2. Rule (T-sup)
is a standard weakening of both required and defined attributes. It says that, if from
an attribute context ¥, we derive that t is correct, then we can derive the result also
assuming a bigger attribute context. On the other hand, we derive that, if the execution
of t defines the attributes in the attribute context ¥, its execution also defines a subset
of ‘I’{ The rules for expressions, excluding access to attributes, are obvious. Rule (T-Seq)
says that, for a sequence of statements s;;s;, the attributes defined by the execution
of s; are available during the execution of s,. Since both s; and sy must be statements
their type must be Unit. For a conditional statement, rule (1), the condition is a
boolean expression, both branches are statements, so they must have type Unit and
they must define the same set of attributes. This is not a restriction because using the
rule (T-Sus) we can weaken the attribute contexts and make them equal. For an access to
an attribute, a, of a nonterminal instance p[i] to be correct, rule (T-Gerarr), the attribute
context must contain the pair (p[i],a). This could be for i # 0 only when the execution
of the statements of the action associated with p preceding the evaluation of the current
expression has defined a for p[i]. When i = 0, the attribute could have been in the
required set of attributes of the action associated with p, i.e., it has been defined for
p[0] before the execution of the action. In rule (1-Gerarr), the type of the expression
has to be equal to the type of the attribute to which it is assigned. Since these are
statements their type is Unit and they define the attribute a of p[i]. Finally, to check
eval p[i] we have to refer to the nonterminal environment I'. Let X = NT(p[i]) and
I'(X) = (R, D), the attribute in R must be defined before the execution of a semantic
action associated with a production defining X. Since eval p[i] will cause the execution
of one of such actions, the attributes in R must be defined for p[i]. The attributes in D
are defined for the head nonterminal by the execution of a semantic action associated
with a production defining X, therefore after the execution of eval p[i] the attributes in
D will be defined for p[i].

105



A. Composition Soundness

UV CW, U, CU T30 b, t: T30
(T-SuB)
00 by, ¢ T 0

I'; ¥ b, tr/fls : Bool; () (T-TR/FLS) I; ¥ b, unit : Unit; @ (T-UNIT) ;0 b, n: Int; @ (T-INT)

I;UF,e:T;0 type0f(op) = (T,T ;0 bk, s:Unit; ¥ I;0UW, B, 8 Unit; Uy
P ype0£ (op) = ( ) (T-OP) P 1 1p (T-SEQ)
;9 b, op(e) : 750 ;0 b, 558" 0 Unit; U U Uy

T; ¥+, e : Bool; ()

[0k, s:Unit; U T30 B, 8" Unit; O (pli]l,a) e T 0<1i<|p|

(T-IF) (T-GETATT)
T; VU k-, if e then s else s’ : Unit; ¥’ ;0 by plila: To; 0
Uh,e:T; ¥ 0<i<]|p NT(pli]):(R,D)el’ R C¥(pli
. 7 emarn (pli):(. D) N
;W b, pli].a = e : Unit; {(p[i], a)} I'; W+, eval p[i] : Unit; {(p[i],a) | a € D}

Figure A.2.: Rules of the type system for terms.

[;{(p[0],a) |a € R} Fp s : Unit; ¥

(T-AcCT)
I'ip s (R, ¥(p[0]))

I'rulp l_Pk Sk:(Rk,Dk) (lgkgm) dom(FR)ﬂdom(FD):@
Pp={X:(Up, epix) Rk, Np,epix)Dr) | X € Def(P)}

PrETSp ={p1:(R1,D1){s1}.,...,pm : (Bm, Dm){sm}.} : I'D

(T-COMPONENT)

(FRUFD)—Def(P) FTSp:I'p [Def(P) (FRUFD)—Def(P/) [ TSP’ :I'p [Def(P’)

(T-Comp)

FRFTSPOTSP/ :FD

Figure A.3.: Well typed semantic actions, components and component composition..

Figure A.3 shows the typing for semantic actions and typed components. Rule (T-Acr)
says that an action has the correct decoration (R, D) in the nonterminal environment I
if from I' and the attribute context in which the nonterminal instance p[0] has all the
attributes in R, the execution of the action defines for p[0] all the attributes defined
for p[0] in the final attribute context ¥. In typing a component, rule (T-Comronent) We
distinguish two disjoint sets of nonterminals, the defined nonterminals, X € Def (P) and
the required nonterminals, X € NT(P) — Def (P). The slice 7Sp has type I'p from I'g if the
domain of I'z does not contain assumptions for nonterminals defined in P and all the
actions in the slice have the correct decoration in the nonterminal environment I'g, I'p,
where I'p associates nonterminals X € Def (P) with the set of attributes compatible with
all the semantic actions associated with productions defining X in the slice. That is,
it requires the union of the set of attributes required by any action and ensures the
intersection of the set of attributes defined by an action. Rule (T-Comr) says that the
composition of slices 7Sp and 7Spr has type I'p from the nonterminal environment I'g
if 7Sp can be derived from the restriction of I'p to the nonterminals defined in P from
the nonterminal environment I'r extended with the assumptions on the nonterminals
in I'p which are not defined in P. Similarly for 7Sp:. This ensures that the assumptions

106



A.q. Type Inference

on nonterminals in typing the actions of 7Sp and 7Sp/ are consistent. Requiring
exactly the same assumptions is not a restriction, since we have subtyping on the
typing of actions. We can show that, if P” is the sequence of productions P P’, then
I'r+TSpoTSp : I'pif and only if (g + TSpr : I'p where TSpr = TSp U TSp:. Note that,
from definition of composition, Def. 7, the labels of productions in P and P’ are disjoint.

Finally we say that the composition of slices, 7S10---0TS,, where 7S; (1 <i<n)is
the slice associated with the productions P;, is a well-typed language implementation when
Py ... P, is a grammar with p, as start production and, for some I and D, we have that
=TS10-0T7S,: T and I'(NT(p,[0]))=(2, D).

Soundness. Consider a grammar G = P; ... P, and a well-typed language implemen-
tation 7Sj0--0TS,. We know that the slice 7Sg = U1, 7S; is also a well-typed
language implementation. Let 77 be a syntax tree derived from the grammar G, i.e.,
G E 1. Soundness is stated by Theo. 1 where s, | yi, is the initial configuration as
defined in Section A.2 for 7 in 7Sg.

Theorem 1 (Soundness). If 17 = sy | fin = 5| i, then either s = unit or = s|p —s" |’ for
some s' and y'.

Moreover, we can prove that the syntax-tree is correctly decorated with attributes in
accordance with the type system.

A.4. Type Inference

In this section we give an informal definition of the type inference function for slices,
Ts, describing the constraints returned by this function, and showing how constraints
are checked for consistency and combined. Then, we state the results of correctness
and completeness of type inference w.r.t. the type system of Section A.3.

Type inference is defined by a partial function Ts from slices, Sp, to the requirements
on nonterminals that are used but not defined in the slice, NT(P) — Def(P), and the
properties of the nonterminals defined in P derived by the analysis of the associated
semantic actions of the slice. The function Ts is defined in terms of a partial function
T, that does the analysis of the actions associated with the productions of the slice.

The type inference function for slices Ts if defined is such that Ts(Sp) = 7y, I’ where:

- 7 is a set containing the constraints on the nonterminals X, such that X e
NT(P) — Def (P), derived by the actions of the slice. In particular, v is a set
of associations between nonterminals and triples, written X:(A1, Ap, A,), whose
tirst two components are sets of attributes and the third is either a set of at-
tributes or 1L meaning that the set is undefined. The attributes in A; and A; are
requirements on slices in which these nonterminals are defined. Namely,

- attributes in A; must be in the required set of the actions associated with
productions defining X;

- attributes in A, must be in the defined set of the actions associated with
productions defining X.

107



A. Composition Soundness

— attributes in A, are the attributes that are defined, in actions of Sp, before
evaluating an eval of an instance of the nonterminal X. If there is no eval of
an instance of the nonterminal X then A, = 1

— I' has the meaning of I'p in the type-system, i.e., associates the nonterminal
X € Def (P) with their required and provided attributes derived from the analysis
of the actions of Sp.

Ts is defined in terms of the type inference function for actions T,, which takes as input a
statement s and the associated production p : X - X;---X,; and, if defined, is such that
Ta(s,p) = v, (R, D). The set 7y has the same meaning as for T, i.e., the constraints on
NT(p)-{X}. The sets R and D are the required and defined attributes for X derived
from the action s.

We now show, through a simple example, how type inference of slice composition is
performed. Let P contain the single production px : X - XY and let P’ contain the
single production py : Y - XY. Therefore NT(P) = NT(P') = {X,Y}, Def(P) = {X}
and Def (P) = {Y}. Consider the slices Sp and Sp: containing semantic actions for the
corresponding productions. Assume that

- Ts(Sp) = {Y:(A{, A}, A])},{X:(R¥,D¥)} and

- Ts(Spr) = {X:(Af, AF, A)}, {Y:(RY,D")}.
The constraints generated by the type inference about the two given slices must be
consistent so that the two slices can be composable. That is, the requirements on the
nonterminal Y made by its use in Sp, Y:(A], AY, AY) and those provided by the the

semantic action associated with the production py in Sp/, Y:(RY, DY). These constraints
are consistent if
— all the attributes required by an instance of the nonterminal Y in the action
associated to X are defined by the action associated Y, i.e., AY c DY, and
— if there are eval of an instance of the nonterminal Y in the action associated to X,
i.e. AY # 1, then all the attributes required by Y by the action associated Y are
defined before the eval in the action associated to X, i.e. RY ¢ AZ.
(This should hold also for X, i.e., the requirement made for X in Sp» must be satisfied
by the semantic action associated with the production px in Sp.)

If the constraints returned by Ts(Sp) and Ts(Spr) are consistent, then Ts(Sp o Spr) =
@, {X:(RXu A, DX),Y:(RY U A}, DY)}.

The type inference function for slices, in addition to returning the constraints on
nonterminals produces also a typed version of the input slice, by attaching to the
actions s of the slice the pairs (R, D) such that T,(s, p) = v, (R, D).

Correctness of the inference is stated by the following theorem.

Theorem 2 (Correctness). Let Ts(Sp) =, I and let TSp be the typed version of the slice.
Then {X:(A1,As) | A, X:(A1, Ay, A) eqt - TSp:T

To state completeness we have to relate typed slices with their underlying untyped
version. Therefore, we introduce the erasure of a typed slice, erase(7Sp), which is the

108



A.q. Type Inference

slice obtained by erasing the decoration of actions in 7Sp. Note that, the typed slice
TSp returned by Ts(Sp) is such that erase(7Sp) = Sp.

Theorem 3 (Completeness). Let Sp be a slice. If Ts(Sp) is not defined, then for no typed
slice TSp such that erase(TSp) = Sp there are T and T’ such that T' + TSp: T.

Conclusions. The type and inference system described in this Appendix can be used
to prevent erroneous modifications of the interpreter by enforcing constraints when
interpreter elements, as per Definition 2, are altered. This would guarantee that
removing, adding or replacing semantic actions will always produce an interpreter that
provides all the necessary attributes that are needed by other components. Although it
can guarantee that the execution will not get stuck, the type system, however, is unable
to guarantee that the final behavior will correspond to the expected behavior which is
the responsibility of the language developer

109






Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison Wesley, Reading, Massachusetts, 1986.

[2] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An Overview
of Caesar]. Transaction on Aspect-Oriented Software Development, 1(1):135-173,
March 2006.

[3] Kenichi Asai. Compiling a Reflective Language Using MetaOCaML. In Matthew
Flatt, editor, Proceedings of the 13th International Conference on Generative Program-
ming: Concepts and Experiences (GPCE'14), pages 113-122, Visterds, Sweden,
September 2014. ACM.

[4] Kevin Backhouse. A Functional Semantics of Attribute Grammars. In Joost-Pieter
Katoen and Perdita Stevens, editors, Proceedings of the 8th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 02),
pages 142-157, Grenoble, France, April 2002.

[5] Mehdi Bagherzadeh, Hridesh Rajan, Gary T Leavens, and Sean Mooney. Translu-
cid contracts: Expressive specification and modular verification for aspect-
oriented interfaces. In Proceedings of the tenth international conference on Aspect-
oriented software development, pages 141-152. ACM, 2011.

[6] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation, PLDI "oo, pages 1—-12, New
York, NY, USA, 2000. ACM.

[7] Pablo Barceld. Querying Graph Patterns. In Wenfei Fan, editor, Proceedings of the
ACM Symposium on Principles of database Systems (PODS’13), pages 175-188, New
York, NY, USA, June 2013. ACM.

[8] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Approaches to Interpreter
Composition. Computer Languages, Systems & Structures, 44(Part C):199-217,
December 2015.

[o] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
PACKT Publishing Ltd, August 2013.

[10] Gavin Bierman, Matthew Parkinson, and James Noble. Upgrade]: Incremental
Typechecking for Class Upgrades. In Jan Vitek, editor, Proceedings of the 22nd
European Conference on Object-Oriented Programming (ECOOP’08), Lecture Notes in
Computer Science 5142, pages 235-259, Paphos, Cyprus, July 2008. Springer.

[11] Carl Friedrich Bolz. Meta-Tracing Just-in-Time Compilation for RPython. Phd thesis,
Heinrich-Heine-Universitat Diisseldorf, Diisseldorf, Germany, September 2013.

111



Bibliography

[12] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing
the meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th workshop
on the Implementation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems, pages 18-25. ACM, 2009.

[13] Carl Friedrich Bolz and Laurence Tratt. The Impact of Meta-Tracing on VM
Design and Implementation. Science of Computer Programming, 98(3):408—421,
February 2015.

[14] Gilad Bracha and William Cook. Mixin-Based Inheritance. In Akinori Yonezawa,
editor, Proceedings of the European Conference on Object-Oriented Programming on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA/E-
COOP’90), pages 303—311, Ottawa, Canada, October 1990. ACM.

[15] Martin Biichi and Wolfgang Weck. The greybox approach: When blackbox
specifications hide too much. Technical report, Citeseer, 1999.

[16] Howard I. Cannon. Flavors: A non-hierarchical approach to object-oriented pro-
gramming. In Technical Report. MIT Artificial Intelligence Laboratory Cambridge,
Mass, 1980.

[17] Walter Cazzola. Remote Method Invocation as a First-Class Citizen. Distributed
Computing, 16(4):287-306, December 2003.

[18] Walter Cazzola. Domain-Specific Languages in Few Steps: The Neverlang Ap-
proach. In Thomas Gschwind, Flavio De Paoli, Volker Gruhn, and Matthias
Book, editors, Proceedings of the 11" International Conference on Software Composition
(5C’12), Lecture Notes in Computer Science 7306, pages 162-177, Prague, Czech
Republic, 31st of May-1st of June 2012. Springer.

[19] Walter Cazzola, Ruzanna Chitchyan, Awais Rashid, and Albert Shaqiri. #-DSU:
A Micro-Language Based Approach to Dynamic Software Updating. Computer
Languages, Systems & Structures, 2017.

[20] Walter Cazzola, Antonio Cisternino, and Diego Colombo. Freely Annotating C#.
Journal of Object Technology, 4(10):31—48, December 2005.

[21] Walter Cazzola, Paola Giannini, and Albert Shaqiri. Formal Attributes Traceability
in Modular Language Development Frameworks. Electronic Notes In Theoretical
Computer Science, 322:119-134, April 2016.

[22] Walter Cazzola and Diego Mathias Olivares. Gradually Learning Programming
Supported by a Growable Programming Language. IEEE Transactions on Emerging
Topics in Computing, 4(3):404—415, September 2016. Special Issue on Emerging
Trends in Education.

[23] Walter Cazzola and Sonia Pini. On the Footprints of Join Points: The Blueprint
Approach. Journal of Object Technology, 6(7):167-192, August 2007.

112



Bibliography

[24] Walter Cazzola, Sonia Pini, Ahmed Ghoneim, and Gunter Saake. Co-Evolving
Application Code and Design Models by Exploiting Meta-Data. In Proceedings of
the 22" Annual ACM Symposium on Applied Computing (SAC’07), pages 12751279,
Seoul, South Korea, on 11th-15th of March 2007. ACM Press.

[25] Walter Cazzola and Stefano Salvotelli. Recognizing Join Points from their Context
through Graph Grammars. In Proceedings of the 13" Aspect-Oriented Modeling
Workshop (AOM'09), pages 37—42, Charlottesville, Virginia, USA, on 2nd of March
2009. ACM.

[26] Walter Cazzola and Albert Shagqiri. Dynamic Software Evolution through Inter-
preter Adaptation. In Proceedings of the 15th International Conference on Modularity
(Modularity’16), pages 16—-19, Mdalaga, Spain, 14th-17th of March 2016. ACM.

[27] Walter Cazzola and Albert Shaqiri. Modularity and Optimization in Synergy. In
Don Batory, editor, Proceedings of the 15th International Conference on Modularity
(Modularity’16), pages 70-81, Méalaga, Spain, 14th-17th of March 2016. ACM.

[28] Walter Cazzola and Albert Shaqiri. Context-Aware Software Variability through
Adaptable Interpreters. IEEE Software, 2017. Special Issue on Context Variability
Modeling.

[29] Walter Cazzola and Albert Shaqiri. Open Programming Language Interpreters.
The Art, Science, and Engineering of Programming Journal, 1(2):5-1-5-34, April 2017.

[30] Walter Cazzola and Edoardo Vacchi. Neverlang 2: Componentised Language
Development for the JVM. In Walter Binder, Eric Bodden, and Welf Lowe, editors,
Proceedings of the 12" International Conference on Software Composition (SC'13),
Lecture Notes in Computer Science 8088, pages 1732, Budapest, Hungary, 19th
of June 2013. Springer.

[31] Walter Cazzola and Edoardo Vacchi. @Java: Bringing a Richer Annotation Model
to Java. Computer Languages, Systems & Structures, 40(1):2-18, April 2014.

[32] Guido Chari, Diego Garbervetsky, and Stefan Marr. Building Efficient and
Highly Run-Time Adaptable Virtual Machines. In Roberto Ierusalimschy, editor,
Proceedings of the 12th Symposium on Dynamic Languages (DLS’16), pages 6071,
Amsterdam, Netherlands, November 2016.

[33] Thomas E Cheatham Jr. Motivation for extensible languages. ACM SIGPLAN
Notices, 4(8):45—49, 1969.

[34] Shigeru Chiba. A Meta-Object Protocol for C++. In Proceedings of the 10th Annual
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’95), volume 30 of Sigplan Notices, pages 285-299, Austin, Texas, USA,
October 1995. ACM.

113



Bibliography

[35]

[36]

[371

[38]

[39]

[40]

[44]

114

Shigeru Chiba. Load-Time Structural Reflection in Java. In Elisa Bertino, ed-
itor, Proceedings of the 14th European Conference on Object-Oriented Programming
(ECOOP’2000), LNCS 1850, pages 313-336, Cannes, France, June 2000. Springer-
Verlag.

Ruzanna Chitchyan, Walter Cazzola, and Awais Rashid. Engineering Sustainabil-
ity through Language. In Proceedings of the 37th International Conference on Software
Engineering (ICSE’15), pages 501-504, Firenze, Italy, 16th-24th of May 2015. IEEE.
Track on Software Engineering in Society.

Thomas Cleenewerck. Modularizing Language Constructs: A Reflective Approach.
PhD thesis, Vrije Universiteit Brussel, Brussel, Belgium, July 2007.

Isabel E. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A Graphical Query
Language Supporting Recursion. In Umeshwar Dayal, editor, Proceedings of the
13th International Conference on Management of Data (SIGMOD’87), pages 323-330,
San Francisco, CA, USA, May 1987. ACM.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools and Applications. Addison-Wesley, June 2000.

Linda De Michiel and Richard P. Gabriel. The Common Listp Object System:
An Overview. In Jean Bézivin, Jean-Marie Hullot, Pierre Cointe, and Henry
Lieberman, editors, Proceedings of the 1st European Conference on Object-Oriented
Programming (ECOOP’87), Lecture Notes in Computer Science 276, pages 151170,
Paris, France, June 198y. Springer.

Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-
Marc Jézéquel. Melange: a Meta-Language for Modular and Reusable Develop-
ment of DSLs. In Davide Di Ruscio and Markus Vélter, editors, Proceedings of the
8th International Conference on Software Language Engineering (SLE'15), pages 25-36,
Pittsburgh, PA, USA, October 2015. ACM.

Enrico Denti, Andrea Omicini, and Alessandro Ricci. tuprolog: A light-weight
prolog for internet applications and infrastructures. In International Symposium on
Practical Aspects of Declarative Languages, pages 184-198. Springer, 2001.

Theo D’'Hondt, Kris De Volder, Kim Mens, and Roel Wuyts. Co-Evolution of
Object-Oriented Software Design and Implementation. In Mehmet Aksit, editor,
Proceedings of the International Symposium on Software Architectures and Component
Technology, pages 207—224, Twente, The Netherlands, January 2000. Kluwer.

Mikhail Dmitriev. Towards Flexible and Safe Technology for Runtime Evolution
of Java Language Applications. In Vinny Cahill, Siobhan Clarke, Simon Dobson,
and Robert Filman, editors, Proceedings of the 1st Workshop on Engineering Complex
Object-Oriented Systems for Evolution (ECOOSE’01), pages 14—-18, Tampa Bay, FL,
USA, October 2001.



Bibliography

[45] Peter Ebraert, Yves Vandewoude, Theo D’Hont, and Yolande Berbers. Pitfalls in
Unanticipated Dynamic Software Evolution. In Walter Cazzola, Shigeru Chiba,
Gunter Saake, and Tom Tourwé, editors, Proceedings of ECOOP 2005 Workshop
on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’05), pages 3-8,
Glasgow, Scotland, July 2005.

[46] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is
Quantification and Obliviousness. In Proceedings of OOPSLA 2000 Workshop on
Advanced Separation of Concerns, Minneapolis, USA, October 2000.

[47] Matthew Flatt. Creating Languages in Racket. ACM Queue, 9(11):1-15, November
2011.

[48] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and
Mixins. In David B. MacQueen and Luca Cardelli, editors, Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(PoPL’98), pages 171-183. ACM, January 1998.

[49] Martin Fowler and Rebecca Parsons. Domain Specific Languages. Addison Wesley,
September 2010.

[50] Richard P. Gabriel. The Structure of a Programming Language Revolution. In
Jonathan Edwards, editor, Proceedings of the ACM international Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward! 2012),
pages 195—214, Tucson, AZ, USA, October 2012.

[51] Andreas Gal, Christian W Probst, and Michael Franz. Hotpathvm: an effective jit
compiler for resource-constrained devices. In Proceedings of the 2nd international
conference on Virtual execution environments, pages 144—153. ACM, 2006.

[52] Letterio Galletta. Adaptivity: Linguistic Mechanisms and Static Analysis Techniques.
PhD Thesis, Universita degli Studi di Pisa, Pisa, Italy, May 2014.

[53] Benoit Gennart and Roger D. Hersch. Computer-Aided Synthesis of Parallel
Image Processing Applications. In Proceedings of the Conference on Parallel and
Distributed Methods for Image Processing, pages 48-61, Denver, USA, 1999.

[54] Michael Golm. Design and implementation of a meta architecture for Java. PhD thesis,
Master’s thesis, Friedrich-Alexander-University, Erlangen-Nurenburg, 1997.

[55] Sebastidan Gonzalez, Kim Mens, Marius Colacioiu, and Walter Cazzola. Context
Traits: Dynamic Behaviour Adaptation through Run-Time Trait Recomposition.
In Jorg Kienzle, editor, Proceedings of the 12th International Conference on Aspect-
Oriented Software Development (AOSD’13), pages 209—220, Fukuoka, Japan, 24th-
29th of March 2013. ACM.

[56] Phil Greenwood and Lynne Blair. A Framework for Policy Driven Auto-adaptive
Systems Using Dynamic Framed Aspects. Transactions on Aspect-Oriented Software
Development, 2:30-65, 2006.

115



Bibliography

[57] Kris Gybels. Soul and smalltalk-just married. In Draft Proceedings of the Workshop
on Declarative Programming in the Context of Object-Oriented Languages, page 1.
Citeseer, 2003.

[58] Gorel Hedin. An Introductory Tutorial on JastAdd Attribute Grammars. In Jodo M.
Fernandes, Ralf Lammel, Joost Visser, and Jodo Saraiva, editors, Generative and
Transformational Techniques in Software Engineering III, LNCS 6491, pages 166—200.
Springer, 2011.

[59] Charlotte Herzeel, Pascal Costanza, and Theo D’Hondt. Reflection for the Masses.
In Robert Hirshfeld and Kim Rose, editors, Self-Sustaining Systems, LNCS 5146,
chapter 6, pages 87—122. Springer, 2008.

[60] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-Oriented
Programming. Journal of Object Technology, 7(3):125-151, March-April 2008.

[61] Christoph M. Hoffmann and Michael J. O’'Donnell. Pattern Matching in Trees.
Journal of ACM, 29(1):68-95, 1982.

[62] Urs Holzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed
Object-Oriented Languages with Polymorphic Inline Caches. In Pierre America,
editor, Proceedings of the 5th European Conference on Object-Oriented Programming
(ECOOP’91), LNCS 512, pages 2138, Geneve, Switzerland, July 1991. Springer.

[63] Gang Huang, Hong Mei, and Fu-Qing Yang. Runtime Software Architecture
Based on Reflective Middleware. Journal of Information Science, 47(5):555-576,
October 2004.

[64] Stephen C. Johnson. YACC: Yet Another Compiler-Compiler. Technical Report
CS-TR-32, Bell Laboratories, Hill, NJ, USA, July 1975.

[65] Jevgeni Kabanov and Varmo Vene. A Thousand Years of Productivity: The JRebel
Story. Software: Practice and Experience, 44(1):105-127, January 2014.

[66] Ted Kaminski and Eric Van Wyk. Modular Well-Definedness Analysis for At-
tribute Grammars. In Krzysztof Czarnecki and Gorel Hedin, editors, Proceedings
of the sth International Conference on Software Language Engineering (SLE’13), Lecture
Notes in Computer Science 7745, pages 352—371, Dresden, Germany, September
2013. Springer.

[67] Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs. In Martin Rinard, Kevin ]J.
Sullivan, and Daniel H. Steinberg, editors, Proceedings of the ACM International
Conference on Object-Oriented Programming Systems Languages and Applications
(OOPSLA’10), pages 444—463, Reno, Nevada, USA, October 2010. ACM.

[68] Roger Keays and Andry Rakotonirainy. Context-Oriented Programming. In Sujata
Banerjee and Mitch Cherniack, editors, Proceedings of the 3rd ACM International

116



Bibliography

Workshop on Data Engineering for Wireless and Mobile Access (MobiDe’03), pages
9-16, San Diego, CA, USA, September 2003. ACM.

[69] John Keeney and Vinny Cahill. Chisel: A Policy-Driven, Context-Aware, Dynamic
Adaptation Framework. In Proceedings of the 4th International Workshop on Policies
for Distributed Systems and Networks (POLICY 03), pages 3—-14, Como, Italy, June
2003. IEEE.

[70] Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing the Evolu-
tion of Aspect-Oriented Software with Model-based Pointcuts. In Proceedings of
the 20th European Conference on Object-Oriented Programming (ECOOP’06), Nantes,
France, July 2006. Springer.

[71] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, Massachusetts, 1991.

[72] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeff Palm, and Bill
Griswold. An Overview of Aspect]. In Jorgen Lindskov Knudsen, editor, Proceed-
ings of the 15th European Conference on Object-Oriented Programming (ECOOP’01),
LNCS 2072, pages 327-353, Budapest, Hungary, June 2001. Springer-Verlag.

[73] Gregor Kiczales, John Lamping, Christina Videira Lopes, Chris Maeda, Anurag
Mendhekar, and Gail Murphy. Open implementation design guidelines. In
Proceedings of the 19th international conference on Software engineering, pages 481—
490. ACM, 1997.

[74] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Program-
ming. In 11th European Conference on Object Oriented Programming (ECOOP’g7),
Lecture Notes in Computer Science 1241, pages 220242, Helsinki, Finland, June
1997. Springer-Verlag.

[75] Donald E. Knuth. Semantics of Context-Free Languages. Mathematical Systems
Theory, 2(2):127-145, 1968.

[76] Jan Kollar and Michal Forga¢. Combined Approach to Program and Language
Evolution. Computing and Informatics, 29(6):1103-1116, 2010.

[77] Jeft Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge.
In Lionel C. Briand and Alexander L. Wolf, editors, Proceedings of 29™ Interna-
tional Conference on Software Engineering (ICSE’07): Future of Software Engineering
(FoSE’07), pages 259—268, Minneapolis, MN, USA, May 2007. IEEE Computer
Society.

[78] Thomas Kiithn, Walter Cazzola, and Diego Mathias Olivares. Choosy and
Picky: Configuration of Language Product Lines. In Goetz Botterweck and
Jules White, editors, Proceedings of the 19th International Software Product Line

117



Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

(86]

[87]

(88]

[89]

118

Conference (SPLC’15), pages 71-80, Nashville, TN, USA, 20th-24th of July 2015.
ACM.

Guy Lapalme and Suzanne Chapleau. Logicon: an integration of prolog into icon.
Software: Practice and Experience, 16(10):925-944, 1986.

John R Levine, Tony Mason, and Doug Brown. Lex & yacc. " O’Reilly Media, Inc.",
1992.

Pattie Maes. Concepts and Experiments in Computational Reflection. In Nor-
man K. Meyrowitz, editor, Proceedings of the 2nd Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), volume 22 of
Sigplan Notices, pages 147-156, Orlando, Florida, USA, October 1987. ACM.

Stefan Marr, Chris Seaton, and Stéphane Ducasse. Zero-Overhead Metaprogram-
ming: Reflection and Metaobject Protocols Fast and without Compromises. In
Steve Blackburn, editor, Proceedings of the 36th Conference on Programming Language
Design and Implementation (PLDI'15), Portland, OR, USA, June 2015.

Hidehiko Masuhara, Satoshi Matsuoka, Kenichi Asai, and Akinori Yonezawa.
Compiling away the meta-level in object-oriented concurrent reflective languages
using partial evaluation. In ACM Sigplan Notices, volume 30, pages 300-315. ACM,

1995.

Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-evolving Code
and Design Using Intensional Views - A Case Study. Journal of Computer Languages,
Systems and Structures, 32(2):140-156, July/October 2006.

Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert
Hirschfeld, and Mehdi Jazayeri. Challenges in Software Evolution. In Proceedings
of the Eighth International Workshop on Principles of Software Evolution (IWPSE05),
pages 13—22, Lisbon, Portugal, September 2005. IEEE Press.

Marjan Mernik. An Object-Oriented Approach to Language Compositions for
Software Language Engineering. Journal of Systems and Software, 86(9):2451-2464,
September 2013.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain Specific Languages. ACM Computing Surveys, 37(4):316—344, December
2005.

David A. Moon. Object-Oriented Programming with Flavors. In Daniel Ingalls,
editor, Proceedings of the 1st Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’86), pages 1-8, Portland, OR, USA,
September/October 1986. ACM.

Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Software Reflexion Models:
Bridging the Gap between Design and Implementation. IEEE Transactions on
Software Engineering, 27(4):364—380, April 2001.



[90]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Bibliography

Oscar Nierstrasz and Tudor Girba. Lessons in Software Evolution Learned by
Listening to Smalltalk. In Jan Leeuwen, Anca Muscholl, David Peleg, Jaroslav
Pokorny, and Bernhard Rumpe, editors, Proceedings of the 36th Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM’10), LNCS 5901,
pages 77-95, Spindlerttv Mlyn, Czech Republic, January 2010. Springer.

Alexandre Oliva, Islene Calciolari Garcia, and Luiz Eduardo Buzato. The reflexive
architecture of guaran a. Technical report, Citeseer, 1998.

Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-Based
Runtime Software Evolution. In Proceedings of the 20" International Conference on
Software Engineering (ICSE'98), pages 177-186, Kyoto, Japan, April 1998. IEEE
Computer Society.

Alessandro Orso, Anup Rao, and Mary Jean Harrold. A Technique for Dynamic
Updating of Java Software. In Proceedings of the International Conference on Software
Maintenance (ICSM’02), pages 649-658, Montréal, Canada, October 2002. IEEE
Press.

David L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053-1058, December 1972.

David Lorge Parnas. Information distribution aspects of design methodology.
1971.

Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.
The Pragmatic Bookshelf, May 2007.

Terence ]. Parr and Russell W. Quong. ANTLR: A Predicated-LL(k) Parser
Generator. Software—Practice and Experience, 25(7):789-810, July 1995.

Luis Pina, Luis Veiga, and Michael Hicks. Rubah: DSU for Java on a Stock JVM.
In Todd Millstein, editor, Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA’14), pages
103-119, Portland, OR, USA, October 2014. ACM.

Mario Pukall, Alexander Grebhahn, Reimar Schroter, Christian Kastner, Walter
Cazzola, and Sebastian Gotz. JavAdaptor: Unrestricted Dynamic Software
Updates for Java. In Proceedings of the 33™ International Conference on Software
Engineering (ICSE’11), pages 989—991, Waikiki, Honolulu, Hawaii, on 21st-28th of
May 2011. IEEE.

Mario Pukall, Christian K&stner, Walter Cazzola, Sebastian Gotz, Alexander
Grebhahn, Reimar Schoter, and Gunter Saake. JavAdaptor — Flexible Runtime
Updates of Java Applications. Software—Practice and Experience, 43(2):153-185,
February 2013.

119



Bibliography

[101] Hridesh Rajan and Leavens Gary T. Ptolemy: A Language with Quantified, Typed
Events. In Jan Vitek, editor, Proceedings of the Proceedings of the 22nd European
Conference on Object-Oriented Programming (ECOOP’08), LNCS 5142, pages 155-179,
Paphos, Cyprus, July 2008. Springer.

[102] Ramana Rao. Implementational Reflection in Silica. In Pierre America, editor,
Proceedings of ECOOP’91, pages 251-266, Geneva, Switzerland, July 1991. Springer-
Verlag.

[103] Barry Redmond and Vinny Cahill. Iguana/]J: Towards a Dynamic and Efficient
Reflective Architecture for Java. In Walter Cazzola, Shigeru Chiba, and Thomas
Ledoux, editors, Proceedings of ECOOP Workshop on Reflection and Metalevel Archi-
tectures (RMA’00), June 2000.

[104] John Alan Robinson and EE Silbert. LOGLISP: an alternative to PROLOG. School
of Computer and Information Science, Syracuse University, 1980.

[105] David Rothlisberger, Marcus Denker, and Eric Tanter. Unanticipated Partial
Behavioral Reflection: Adapting Applications at Run-Time. Computer Languages,
Systems & Structures, 34(2/3):46—65, 2008.

[106] Erik Ruf. Partial evaluation in reflective system implementations. In Workshop on
Reflection and Metalevel Architecture, 1993.

[107] Mazeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape and
Research Challenges. ACM Transactions on Autonomous and Adaptive Systems,
4(2):14:1-14:42, May 2009.

[108] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-Oriented Pro-
gramming: A Software Engineering Perspective. Journal of Systems and Software,
85(8):1801-1817, August 2012.

[109] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. An Analysis of Language-
Level Support for Self-Adaptive Software. ACM Transactions on Autonomous and
Adaptive Systems, 8(2):7:1-7:29, July 2013.

[110] Nathanael Schérli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable Units of Behaviour. In Luca Cardelli, editor, Proceedings of
the 17" European Conference on Object-Oriented Programming (ECOOP’03), Lecture
Notes in Computer Science 2743, pages 248-274, Darmstadt, Germany, July 2003.
Springer.

[111] Matthias Springer, Fabio Niephaus, Robert Hirschfeld, and Hidehiko Masuhara.
Matriona: Class Nesting with Parametrization in Squeak/Smalltalk. In Don
Batory, editor, Proceedings of the 15th International Conference on Modularity (Modu-
larity’16), pages 118-129, Malaga, Spain, March 2016. ACM.

120



Bibliography

[112] Gregory T Sullivan. Dynamic partial evaluation. In Programs as Data Objects,
pages 238-256. Springer, 2001.

[113] Kevin Sullivan, William G Griswold, Hridesh Rajan, Yuanyuan Song, Yuanfang
Cai, Macneil Shonle, and Nishit Tewari. Modular aspect-oriented design with
xpis. ACM Transactions on Software Engineering and Methodology (TOSEM), 20(2):5,
2010.

[114] Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Cai, Macneil
Shonle, Nishit Tewari, and Hridesh Rajan. Information Hiding Interfaces for
Aspect-Oriented Design. In Proceedings of the 10th European Software Engineering
Conference (ESEC’13), pages 166—175, Lisbon, Portugal, September 2005. ACM.

[115] Eric Tanter. Reflection and Open Implementation. Technical Report TR-DCC-
20091123-013, DCC, University of Chile, November 2009.

[116] Eric Tanter, Noury MN Bouraqadi-Saadani, and Jacques Noyé. Reflex—towards
an open reflective extension of java. In International Conference on Metalevel
Architectures and Reflection, pages 25—43. Springer, 2001.

[117] Eric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial Behavioral
Reflection: Spatial and Temporal Selection of Reification. In Guy L Steele,
Jr, editor, Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA’03), pages
27-46, Anaheim, CA, USA, October 2003. ACM.

[118] Eric Tanter, Marc Ségura-Devillechaise, Jacques Noyé, and José Piquer. Altering
Java Semantics via Bytecode Manipulation. In Don S. Batory, Charles Consel,
and Walid Taha, editors, Proceedings of Generative Programming and Component
Engineering (GPCE’02), LNCS 2487, pages 283-298, Pittsburgh, PA, USA, October
2002. Springer.

[119] Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier Killijian, and Kozo Itano. Open-
Java: A Class-based Macro System for Java. In Walter Cazzola, Robert J. Stroud,
and Francesco Tisato, editors, Reflection and Software Engineering, Lecture Notes in
Computer Science 1826, pages 119-135. Springer-Verlag, Heidelberg, Germany,
June 2000.

[120] Warren Teitelman. PILOT: A Step Toward Man-Computer Symbiosis. Phd thesis,
Massachusetts Institute of Technology, September 1966.

[121] Edoardo Vacchi and Walter Cazzola. Neverlang: A Framework for Feature-
Oriented Language Development. Computer Languages, Systems & Structures,
43(3):1—40, October 2015.

[122] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: An
Annotated Bibliography. ACM SIGPLAN Notices, 35(6):26—36, June 2000.

121



Bibliography

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

122

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an Extensible
Attribute Grammar System. Science of Computer Programming, 75(1-2):39-54,
January 2010.

Harald H. Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. Higher Order
Attribute Grammars. In Richard L. Wexelblat, editor, Proceedings of the Conference
on Programming Language Design and Implementation (PLDI'89), pages 131-145,
Portland, OR, USA, June 1989.

Markus Volter and Vaclav Pech. Language Modularity with the MPS Language
Workbench. In Proceedings of the 34th International Conference on Software Engineer-
ing (ICSE’12), pages 1449-1450, Ziirich, Switzerland, June 2012. IEEE.

Daniel Weinreb and Moon David A. Flavors: Message Passing in the Lisp
Machine. Technical Report 602, Massachusetts Institute of Technology, November
1980.

Ian Welch and Robert ] Stroud. Kava-a reflective java based on bytecode rewriting.
In Workshop on Reflection and Software Engineering, pages 155-167. Springer, 1999.

Thomas Wiirthinger, Andreas Wof3, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. Self-Optimizing AST Interpreters. In Alessandro Warth,
editor, Proceedings of the 8" Symposium on Dynamic languages (DSL'12), pages 73-82,
Tucson, AZ, USA, October 2012. ACM.

Zhenxiao Yang, Betty H. C. Cheng, R. E. Kurt Stirewalt, ] Sowell, Seyed Masoud
Sadjadi, and Philip K. McKinley. An Aspect-Oriented Approach to Dynamic
Adaptation. In David Garlan, Jeff Kramer, and Alexander L. Wolf, editors,
Proceedings of the 1st Workshop on Self-Healing Systems (WOSS’02), pages 85-92,
Charleston, SC, USA, November 2002. ACM.

Guangquan Zhang and Mei Rong. A Framework for Dynamic Evolution Based
on Reflective Aspect-Oriented Software Architecture. In Proceedings of the 4"
International Conference on Computer Sciences and Convergence Information Technology
(ICCIT09), pages 7-10, Seoul, South Korea, November 2009.



	1 Introduction
	2 Background
	2.1 Programming Languages and Interpreters
	2.1.1 Defining the Syntax: Context-free Grammars
	2.1.2 Defining the Semantics: Syntax-Directed Definitions
	2.1.3 Interpretation
	2.1.4 Development of Programming Language Interpreters

	2.2 Modular Development of Programming Languages
	2.2.1 Language Decomposition
	2.2.2 Language Composition
	2.2.3 Composition Soundness
	2.2.4 Neverlang

	2.3 The Structure of Programming Language Interpreters

	3 Open Interpreters
	3.1 Implications and Requirements for Open Interpreters
	3.2 A Model for Open Interpreters
	3.2.1 Reflection on Language Specification
	3.2.2 Reflection on Language Feature Instances
	3.2.3 Reflection on Non-Grammatical Language Feature Instances

	3.3 Intercession Operations
	3.4 Semantics Adaptation Implications

	4 Open Interpreters in Neverlang
	4.1 Definition Mapping
	4.2 The Architecture
	4.3 Reflection on Open Interpreters
	4.3.1 Reflection on Language Specification and Non-grammatical Components
	4.3.2 Reflection on Linguistic Component Occurrences
	4.3.3 Reflection API

	4.4 DA: a Platform DSL for Open Interpreters
	4.5 Microlanguages
	4.6 Discussion

	5 Applicability of Open Interpreters
	5.1 Backward Compatibility
	5.2 Dynamic Software Updating
	5.3 Context-Aware Variability
	5.3.1 Accessibility
	5.3.2 Resource Usage Optimization

	5.4 Interpreter Optimization
	5.5 Aspect-Oriented Programming
	5.6 Debugging
	5.7 Security
	5.8 Discussion

	6 Related Work
	6.1 Language Extensions
	6.2 Metaobject Protocols
	6.3 Runtime Software and Interpreter Adaptation
	6.4 Interpreter Composition
	6.5 Quantification

	7 Conclusions
	A Composition Soundness
	A.1 Syntax Formalization
	A.2 Operational Semantics
	A.3 Type System
	A.4 Type Inference


