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a b s t r a c t

Mutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1
variants are nonsense and are predicted to cause disease through haploinsufficiency; however,many other
mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic
lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants. We
characterized a subset of these: p.G217R, p.R357X, and p.C471Y. Here, we show that the p.R357X and
p.G217R both abolish the ability of TBK1 to phosphorylate 2 of its kinase targets, IRF3 and optineurin, and to
undergo phosphorylation. They both inhibit binding to optineurin and the p.G217R,within the TBK1 kinase
domain, reduces homodimerization, essential for TBK1 activation and function. Finally, we show that the
proportion of TBK1 that is active (phosphorylated) is reduced in 5 lymphoblastoid cell lines derived from
patients harboring heterozygous missense or in-frame deletion TBK1 mutations. We conclude that
missense mutations in functional domains of TBK1 impair the binding and phosphorylation of its normal
targets, implicating a common loss of function mechanism, analogous to truncation mutations.
� 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
euroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour
7 848 0974; fax: þ44 207 848 5190.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is an adult onset and pro-
gressive neurodegenerative disorder that targets the upper and
lower motor neurons in the brain and spinal cord. Death usually
occurs within 3 to 5 years from the symptom onset, and treatment
is largely palliative (Morgan and Orrell, 2016). ALS is often associ-
ated with cognitive changes linked to mild frontotemporal de-
mentia (FTD) (Gijselinck et al., 2015), and up to 50% of the FTD cases
develop signs of motor neuron disease (van der Zee et al., 2017).

Approximately 10% of ALS cases have a familial history of ALS or
FTD (fALS, fALS/FTD) (Tiwari et al., 2005). To date, more than 40
genes have been identified to be associated with ALS through
linkage studies, genome-wide association studies, whole exome
sequencing, and whole genome sequencing. Four genes account for
over 50% of fALS cases: SOD1, C9ORF72, TARDBP, and FUS/TLS in
population of European ancestry, and most other genes are rare,
each accounting for w1% of the cases (Taylor et al., 2016).

TANK binding kinase 1 (TBK1, NAK, T2K) codes for a protein ki-
nase involved in many pathways including the immune response
and autophagy (Weidberg and Elazar, 2011). TBK1 is composed of 4
domains: a kinase domain (KD), responsible for its kinetic activity,
an ubiquitin-like domain (ULD), a scaffold dimerization domain
(SDD), and a C-terminal domain, involved in TBK1 association with
binding partners such as optineurin (OPTN), an important auto-
phagy receptor (Tu et al., 2013) (Fig. 1). TBK1 has been shown to
homodimerize through a central axis formed by the 2 SDD domains
interacting with each other (Fig. 1C). This structure is stabilized by
the ULD and the KD that interact with each other and with the SDD
axis, forming a globular head that stabilizes the whole structure (Tu
et al., 2013). The interactions between the ULD, the SDD, and their
linker region are highly hydrophobic and prevent the homodimer
from being dissociated when carrying out its functions. On the
other hand, interactions of the KD within this structure are mainly
polar (Tu et al., 2013). TBK1 activation has been demonstrated to be
a multistep process that begins with the Lys-63-linked poly-
ubiquitination, which is required for Ser172 phosphorylationwithin
the activation loop. This causes a critical change in the protein
conformation promoting the active position of the C-helix in the
SDD domain and facilitating the final step of homodimerization,
essential for mature kinase activity (Ma et al., 2012; Tu et al., 2013).

Mutations inTBK1havebeenrecently linkedwithALSandFTDby2
independent whole exome sequencing/whole genome sequencing
studies (Cirulli et al., 2015; Freischmidt et al., 2015). Many ALS-
linked TBK1 mutations generate premature stop codons, leading to
nonsense-mediated mRNA decay and haploinsufficiency that is pre-
dicted to impair autophagy (Freischmidt et al., 2016). However, the
pathogenicity and mechanism of missense mutations are unclear
(Freischmidt et al., 2016). Here, we describe 16 novel or extremely
rare, potentially deleterious variants in TBK1 and demonstrate that
missense mutations can lead to a loss of TBK1 kinase activity by
possibly disrupting homodimer formation, phosphorylation of itself
and its targets OPTN and interferon regulatory factor 3 (IRF3), impli-
cating a loss of function pathogenic mechanism.

2. Material and methods

2.1. Patients and DNA samples

All patients and controls gave full patient consent for research
purpose. DNA was extracted from 932 patient samples primarily of
European ancestry of which 757 were index cases and 175 were
affected relatives. All patients had a diagnosis of ALS following
revised El Escorial criteria (Brooks et al., 2000) with at least 1 family
member affected by ALS and/or FTD. Any sample positive for
mutations in known ALS genes (e.g., SOD1, C9orf72, TARDBP, FUS,
PFN1, UBQLN2, OPTN, VCP, and ANG) were excluded from further
analysis, resulting in a final cohort of 699 probands. Exome
sequence data for 102 FALS cases in this cohort were obtained, with
permission, from the dbGAP (database of Genotypes and Pheno-
types) repository (National Institutes of Health Exome Sequencing
of FALS, National Institute of Neurological Disorders and Stroke,
phs000101. v4.p1, Traynor).

2.2. Exome sequencing and variant analysis

Exomes were captured from the UK samples using the Roche-
Nimblegen SeqCap EZ Exome probe library and sequenced on an
Illumina HiSeq 2000 producing 100-bp paired-end reads. All other
exomes were provided as FASTQ files, captured with a variety of
probe sets, and sequenced to produce 50-, 75-, or 100-bp Illumina
paired-end reads. Novocraft NovoAlignwas used to align the FASTQ
files to the hg19 human reference, and variants were called with
SAMtools v1.1 mpileup then normalized with bcftools v1.1 norm.
Individual variant call files were filtered by the following
criteriadDP� 10, QUAL>20, GQ� 50, and MQ� 50dthen merged
to a single-cohort variant call file. Common ancestry between
samples was taken from existing familial annotation where avail-
able and also deduced from inheritance by descent analysis in
vcftools (Yang et al., 2011) and King (Manichaikul et al., 2010), using
only variant positions covered to a depth>10 in>85% of FALS cases,
and recoding all missing data to a heterozygous reference genotype
(0/0). Functional annotation, pathogenicity predictions, AdaBoost &
Random Forest splicing predictions (Jian et al., 2014), and matches
to 1000 genomes were added with table_annovar.pl (Wang et al.,
2010), whereas all other annotations, including variant fre-
quencies in Exome Sequencing Project (http://evs.gs.washington.
edu/EVS), Exome Aggregation Consortium (ExAC, http://exac.
broadinstitute.org) and UK10K (www.uk10k.org), were added via
custom perl scripts. Variants were removed if they had a carrier
frequency of greater than 1 in 20,000 in the non-Finnish European
(NFE) subset of ExAC (MAF>0.0025%) or were predicted benign by
at least 15 of the 20 pathogenicity prediction algorithms. Synony-
mous and intronic variants were assessed by NetGene2 and Gen-
eSplicer and excluded if no changes in scores were observed
compared with the reference allele at locations matching to known
Refseq acceptor or donor splice sites. 50 and 30 UTR variants were
excluded from consideration in this analysis. To assess the relative
abundance of TBK1 variants in our cohort compared with ExAC, a
burden test (Fisher’s Exact, 2 tailed) was performed between the
number of FALS and ExAC NFE variants remaining after annotation
and filtering by the aforementioned criteria.

2.3. Plasmid and cloning

HA-tagged TBK1wild-type (WT) and FLAG-tagged OPTN pCMV3
expression vectors were purchased from Creative Biogene
Biotechnology. Single amino acid changes (p.G217R, p.R357X,
p.C471Y) were introduced in the HA-tagged TBK1 WT plasmid by
using Q5 Site-Directed Mutagenesis Kit according to the manufac-
turer’s protocol (New England Biolabs). All constructs were verified
by Sanger sequencing.

2.4. Antibodies

Mouse and rabbit HA-tag monoclonal antibodies were used at a
dilution of 1/1000 for Western blot and 1/500 for immunocyto-
chemistry (ICC) (cat no. 2367 and 3724, Cell Signaling Technology).
Rabbit anti-TBK1 monoclonal antibody was used at a dilution of 1/
1000 (cat no ab40676, Abcam). Rabbit anti-phospho-TBK1 (S172)

http://evs.gs.washington.edu/EVS
http://evs.gs.washington.edu/EVS
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://www.uk10k.org


Fig. 1. TBK1 mutations identified to date and their location in TBK1 structure. (A, B) Schematic representation of TBK1 protein structure (Tu et al., 2013) showing a map of nonsense
(A) and missense (B) variants found in the literature and in our cohort. For more details on the variants found in this study see Table 1. (C) TBK1 homodimer crystal structure (PDB
4IM0) mapping the mutations found in our study excluding premature stop codons and frameshift deletions. Abbreviations: CTD, C-terminal domain (light blue); KD, kinase domain
(green); SDD, scaffold dimerization domain (pink); TBK1, TANK binding kinase 1; ULD, ubiquitin-like domain (purple). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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monoclonal antibody was used at a dilution of 1/500 for Western
blot and 1/50 for ICC (cat no. 5483, Cell Signaling Technology).
Rabbit anti-IRF3 polyclonal antibody was used at a dilution of 1/200
(cat no. A022993, Bioassay Technology Laboratory). Rabbit anti-
phospho-IRF-3 (Ser396) monoclonal antibody was used at a dilu-
tion of 1/200 for ICC and Western blot (Cat no. ab76493, Abcam).
Mouse anti-DYKDDDDK (FLAG) monoclonal antibody was used at
a dilution of 1/3000 (Cat no. TA5001, Origene). Mouse
antieglyceraldehyde 3-phosphate dehydrogenase monoclonal
antibody was used at a dilution of 1/6000 (Cat no. G8795, Sigma-
Aldrich).

2.5. Culture of lymphoblastoid cell lines

Lymphoblastoid cell lines (LCLs) derived from FALS patients and
healthy controls were obtained from the European Collection of
Authenticated Cell Cultures. LCLs were grown in RPMI media
(Gibco; Life Technologies) complemented with 10% Fetal Bovine
Serum (Life Technologies), 5% PenStrep (penicillin 100 U/mL and
streptomycin 100 U/mL; Life Technologies), and 5% L-glutamine
(Life Technologies). These cells grow in suspension and were,
therefore, kept in upright T25 flasks (Nunc; Life Technologies) in a
water-jacketed 5% CO2 incubator.

2.6. Culture and transfection of HEK293T cells

HEK293T cells were cultured in Dulbecco’s modified Eagle’s
medium with 10% Fetal Bovine Serum, 5% PenStrep (penicillin 100
U/mL and streptomycin 100 U/mL), 5% glutamine (Life Technolo-
gies) in a water-jacketed 5% CO2 incubator. For Western blot, native
gel and immunoprecipitation (IP) analysis cells were plated in 6-
well plates (Life Technologies) and transfected with 1 mg of
plasmid DNA, 2 mL of Lipofectamine 2000 (Life Technologies) and
100 mL of Opti-MEM (Life Technologies) per well according to
manufacturer’s instructions. For immunofluorescence (ICC),
HEK293T cells were plated in 24-well plates (Life Technologies) on
13-mm-diameter coverslips (VWR) precoated with poly-D-lysine
(Sigma-Aldrich) and transfected with 250 ng of plasmid DNA,
0.5 mL of Lipofectamine 2000 (Life Technologies), and 25 mL of Opti-
MEM (Life Technologies) per well, according to manufacturer’s in-
structions. Cells were processed for Western blot, IP, native gel, or
ICC after 48 hours of transient transfection.

2.7. RNA extraction and RT-PCR

Total RNAwasextractedusingRNeasyMiniKit (Qiagen) according
to the manufacturer’s protocol. The extracted RNA was used as a
template for the synthesis of complementary DNA (cDNA) through
reverse transcription, usingSuperScript III ReverseTranscriptase (Life
Technologies) following the manufacturer’s protocol. Oligo dT were
used to synthesize cDNA. cDNAwas amplified using the PCR primers
ATGCAGAGCACTTCTAATCATCTGTGGC and CTAAAGACAGTCAACGTT
GCGAAG and Sanger sequenced using the sequencing primers
TTGAAGGGCCTCGTAGGAAT and TCAGCCATCGTATCCCCTTT.

2.8. Immunocytochemistry (ICC)

Forty eight hours after transfection cells were fixed with 4% PFA
at room temperature for 15 minutes, permeabilized with 0.2%
Triton-X-100 for 30 minutes and blocked with 5% Goat Serum
(Sigma) for 1 hour at room temperature. Samples were incubated
with primary antibody (anti-HA tag 1/500, anti-pTBK1 1/50, anti-
pIRF3 1/200) in 1% Goat Serum overnight at 4 �C. Fluorescent-
tagged secondary antibodies (Alexa Fluor 488 Goat IgG Antibody,
Alexa Fluor 568 Goat IgG Antibody, 1/500 Life Technologies) were
used for fluorescence detection according to manufacturer’s in-
structions. As a negative control samples were incubated with
primary antibody only or secondary antibody only (data not
shown), DAPI (40,6-diamidino-2-phenylindole) was used to detect
the nuclei. Coverslips were mounted on microscope slides (Thermo
Scientific) and imaged using the Leica confocal SP5 microscope
(Leica).

2.9. Western blot analysis

HEK293T cells were harvested 48 hours after transfection in
Phosphate-Buffer Saline (PBS; Severn Biotech LTD) complemented
with phosphatase inhibitors (PhoSTOP; Roche) and proteinase in-
hibitors (COMPLETE; Roche). LCLs were harvested by collecting cells
in 15 mL tube (Falcon), centrifuged to form a pellet and resus-
pended in PBS complemented with phosphatase inhibitors (PhoS-
TOP; Roche) and proteinase inhibitors (COMPLETE; Roche). Cells
were then lysed and processed as previously described (Scotter
et al., 2014). Membrane imaging was conducted using goat anti-
rabbit and anti-mouse IgG (HþL) DyLight 680 Conjugate (cat. no.
35568 and 35521, Thermo Life Sciences) and an LI-COR Odyssey or
using horseradish peroxidase secondary antibodies for mice (Mil-
lipore, 12-349) or rabbits (Millipore, 12-348) and developed
through an Enhanced Chemiluminescence System using Medical
Film Processor SRX-101A (Konica Minolta). Western blot quantifi-
cation was performed using the image analysis software, ImageJ
(http://imagej.nih.gov/ij/(Schindelin et al., 2012)).

2.10. Native gel electrophoresis

Cells were harvested in PBS complemented with phosphatase
inhibitors and proteinase inhibitors. Samples were then processed
using the NativePAGE Novex Bis-Tris Gel System according to
manufacturer’s protocol. Proteins were transferred on a poly-
vinylidene difluoride membrane, previously activated in methanol,
using thewet transfer system (300mA,1 hour). Themembranewas
then incubated in 8% acetic acid, air-dried, andwashed inmethanol.
A blocking solution of 5% bovine serum albumin was used to block
the membrane for 30 minutes prior incubation with 1% bovine
serum albumin and primary antibody (anti-HA tag 1/200) at 4 �C
overnight. Membrane imaging was conducted using goat anti-
rabbit and anti-mouse IgG (HþL) DyLight 680 Conjugate (cat. no.
35568 and 35521, Thermo Life Sciences) and an LI-COR Odyssey.

2.11. Cotransfection IP assay

Cells were transfected with TBK1 WT and mutant plasmids
together with OPTN WT plasmids. Additional controls untrans-
fected and transfected with either TBK1 WT or OPTN WT only were
used. After 48 hours, cells were harvested in IP buffer (50 mM tris
[pH 7.4], 150 mM NaCl, 1% Triton-X-100, and 100 mM CaCl2 with
protease and phosphatase inhibitors). Lysates were partly har-
vested and diluted in loading buffer complemented with 250 mM
1,4-dithiothreitol (DTT; Thermo Scientific). The lysates were pre-
cleaned through incubation with Dynabeads Protein G for IP (Life
Technologies) at 4 �C for 2 hours. The beads were then discarded
and the lysate was incubated with Dynabeads Protein G and anti-
HA tag antibody (1/100) at room temperature for 2 hours. As an
additional negative control, 2 samples transfected with OPTN WT
only or TBK1 WT only were incubated with beads and no antibody,
to reveal any unspecific binding. The beads were separated from the
flow-through by magnetic separation and washed with IP buffer 6
times before elution in loading buffer complemented with DTT.
Lysates and IP fractions were analyzed by Western blot.

http://imagej.nih.gov/ij/
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2.12. Phosphatase assay

Cells were transfected with TBK1 WT and mutant plasmids
together with OPTN WT plasmids. Additional controls including
untransfected and transfected with either TBK1 WT or OPTN WT
only were used. After 48 hours, transfected cells were harvested in
RIPA buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% so-
dium deoxycholate, 0.1% sodium dodecyl sulfate with protease in-
hibitor) and sonicated for 10 seconds. Six microgram of protein per
sample was added to 3 mL of CIP buffer (100 mM NaCl, 50 mM Tris-
HCl, 10 mMMgCl2, 1 mM dithiothreitol, pH to 7.9 at 25 �C), and 3 mL
of alkaline phosphatase (Roche) was added to the phosphatase
positive samples, according to the Abcam protein dephosphoryla-
tion protocol (http://www.abcam.com/protocols/protein-
dephosphorylation-protocol). All the samples were incubated
for 30 minutes at 37 �C and ran on NuPAGE Novex 3%e8% Tris-
Acetate Midi Protein Gels (Life Technologies). Membrane imaging
was conducted with fluorescent secondary antibodies and an LI-
COR Odyssey.

2.13. Statistical analysis

Statistical analysis ofWestern blot datawas performed using the
GraphPad Prism software. One-way ANOVA analysis followed by
Dunnett’s post test was applied to data sets. A t-test was used to
compare the mean of 2 groups of data; t-tests were unpaired, 2
tailed with 95% confidence intervals.

3. Results

3.1. Exome Sequencing in familial ALS detects 16 protein-changing
TBK1 variants

We exome sequenced 699 index cases from a cohort of fALS from
eleven countries, negative for mutations in all known ALS genes
Table 1
TBK1 mutations identified in ALS patients by this study and their clinical phenotype

Type of
variant

Exon Nucleotide
variationa

Residue change Number
of cases

Control
frequen

Nonsense
variants

2 c.4C>T p.Gln2Ter 1 0/82,513

9 c.1069C>T p.Arg357Ter 1{1} 0/82,519
18 c.1869_1875del p.Met623IlefsdTer9 1 0/82,359
18 c.1887_1890del p.Gln629HisfsTer4 1 0/82,445

In-frame
deletions

4 c.236_238delCAA p.Thr79del 1 0/82,314
- 992þ1 G>A p.Gly272_Thr331del 1{1} 0/80,635
18 c.1928_1930delAAG p.Glu643del 1{1} 0/82,323

Missense
variants

2 c.64A>C p.Asn22His 1{1} 0/82,490
2 c.92A>G p.Thr31Ala 1 0/80,639
5 c.385A>G p.Asn129Asp 1 0/82,599
6 c.649G>A p.Gly217Arg 1 (1b) 0/82,595
9 c.1070G>A p.Arg357Gln 1 {1} 1/82,519

9 c.1073G>A p.Arg358His 1(1b) 7/82,519
9 c.1180T>G p.Tyr394Asp 1{1#} 0/82,080

12 c.1412G>A p.Cys471Tyr 1 1/79,400
15 c.1694A>C p.Gln565Pro 1 {1} 0/75,603

The number in brackets ({}) represents the cases reported in ALSdb (http://alsdb.org/ind
{#} represents duplicated sample found in ALSdb.
Key: ALS, amyotrophic lateral sclerosis; B, bulbar; L, limb; LL, lower limb; R, respiratory;

a Mutation nomenclature as recommended by the Human Genome Variation Society w
b Affected relative from the present cohort. Cases number¼ 699.
(including SOD1, TDP43, C9ORF72, FUS, PFN1, UBQLN2, OPTN, VCP,
and ANG) and the intronic C9ORF72 repeat expansion.

We identified 16 potentially deleterious protein-changing vari-
ants in TBK1, which were novel, or had an ExAC NFE carrier fre-
quency of<1:20,000 individuals. A similar filtering strategy applied
to the NFE subset of ExAC identified 54 variants from a total of
33,075 individuals, revealing a significant overabundance of
protein-changing TBK1 variants in our familiar cohort (p¼1.02e�10,
Fisher’s 2-tailed test). Thirteen of these variants were absent from
the following databases: 1000 genomes, UK10K, Exome Variant
Server, and ExAC databases (n > 72,000). Two variants (p.R357Q,
p.C471Y) were found once, and 1 variant (p.R358H) was found 7
times. Of the 16 variants identified, 4 were nonsense, 3 in-frame
deletion, and 9 were missense variants (Table 1). The p.G217R
variant is present in 2 Dutch cases predicted to be first-degree
relatives (King kinship coefficient¼ 0.314, vcftools Ajk¼ 0.451)
and is their only shared novel variant in a gene or pathway previ-
ously linked to ALS. The variant p.R357X is also present in a single
FALS case in the ALS data browser (ALSdb); however, this is unlikely
to be closely related to the p.R357X carrier identified in this study as
they lack any other shared rare variants. Among the previously
excluded FALS samples, another novel missense variant (p.Y394D)
was identified in a patient who harbors the known pathogenic
TARDBP mutation, p.M337V, which segregated in their affected
sibling. However, the available exome data did not have sufficient
coverage to determine if the sibling also shared the TBK1 variant
and DNA was not available to determine segregation by Sanger
sequencing. Furthermore, the TBK1 variant p.R358H was present in
both first-degree relatives of a kindred, but both were also carriers
for the particularly aggressive FUS p.R521C mutation.

By mapping TBK1 missense separately from nonsense variants,
we observed difference in their distribution (Fig. 1A and B). While
nonsense variants were spread across the whole protein, missense
variants tended to cluster within the KD and ULD. Interestingly, the
ULD has been reported to interact with both the SDD and the KD.
cy
Gender Clinical

diagnosis
Site of
onset

Age of
onset
(y)

Disease
duration
(mo)

Reference

F ALS S 60 - (Cirulli et al., 2015;
Gijselinck et al., 2015)

F ALS UL 76 - (Cirulli et al., 2015)
F ALS - 43 20.4 -
F ALS - - - -
M ALS R 67.8 7.3 (van der Zee et al., 2017)
M ALS - 46 24 -
M ALS UL 64 48 (Cirulli et al., 2015;

Freischmidt et al., 2015;
Gijselinck et al., 2015;
van der Zee et al., 2017)

F ALS - 49 12 (Cirulli et al., 2015)
M ALS - - - -
M ALS L 68 - (Cirulli et al., 2015)
M,M ALS - - - (Cirulli et al., 2015)
M ALS LL 50 94 (Freischmidt et al.,

2015;
Pozzi et al., 2017)

- - - - - -
F ALS B 40 - (Cirulli et al., 2015)
F ALS - - - (Cirulli et al., 2015)
F ALS UL 50 36 (Cirulli et al., 2015)

ex.jsp).

S, spinal; TBK1, TANK binding kinase 1; UL, upper limb.
ww.hgvs.org, utilizing þ1 as the A of the initiator Met codon, translation start site.

http://www.abcam.com/protocols/protein-dephosphorylation-protocol
http://www.abcam.com/protocols/protein-dephosphorylation-protocol
http://alsdb.org/index.jsp
http://www.hgvs.org
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These interactions play a vital role in the correct folding and
dimerization of TBK1 (Li et al., 2012; Tu et al., 2013).
3.2. Selection of variants likely to be pathogenic

To focus our functional characterization of TBK1 variants iden-
tified in our cohort, we concentrated on 3 variants. We firstly chose
the missense p.G217R variant as 2 related individuals carried this
mutation and only 1 TBK1 missense mutation had previously been
shown to segregate with disease (van der Zee et al., 2017). The
second nonsense variant p.R357X was selected as it was present in
ALSdb. Three variants (p.G217R, p.R357X, and p.C471Y) all scored
highly using algorithms that predicted the variant to be damaging,
and they appeared to bewithin functional domains according to the
TBK1 homodimer crystal structure (PDB 4IM0) (Fig. 1C). The
p.G217R mutation is located in the KD and was predicted to be
damaging by 17/20 of applied algorithms. The p.R357X mutation is
located in the ULD and found to remove the entire SDD. The
p.C471Y is located in the SDD and may therefore impair TBK1
homodimerization (Fig. 1A and B).
3.3. ALS-linked TBK1 variants decrease the phosphorylation of the
TBK1 target IRF3

Some ALS- and FTD-associated TBK1 variants have previously
been shown to diminish or abolish phosphorylation of the TBK1
target IRF3 (Freischmidt et al., 2015; Kim et al., 2016; Pozzi et al.,
2017; Tsai et al., 2016). To test the efficiency of p.G217R, p.R357X,
and p.C471Y on IRF3 phosphorylation, we transiently transfected
Fig. 2. TBK1 p.G217R and p.R357X impair IRF3 phosphorylation as well as TBK1 binding with
(B left) Quantitative analysis of blot in (A) left showing a similar expression level of endoge
significant decrease of expression of endogenous pIRF3 in cells transfected with TBK1-p.G2
p< 0.0001). (C) Qualitative immunocytochemistry of HEK293T transfected with TBK1-WT, p
analysis (scale bar ¼ 50 mm). (D) Co-IP with HA-tag pull down (TBK1) showing no binding of O
were transiently cotransfected with Flag-OPTN WT and HA-TBK1 WT, p.G217R, p.R357X, or p
of OPTN phosphorylation in all mutated samples a part from p.C471Y. Abbreviations: IRF3, in
type. **** p � 0.0001.
HEK293T cells with WT or mutant TBK1 and quantified IRF3 phos-
phorylation by Western blot. The expression levels of total IRF3
were comparable for WT and mutant constructs (Fig. 2A and B);
however, levels of phospho-IRF3 (pIRF3) were significantly reduced
in p.G217R and p.R357X variant compared with the WT byWestern
blot (Fig. 2A and B) and immunocytochemistry (Fig. 2D). Interest-
ingly, the p.C471Y variant, predicted to be pathogenic by our bio-
informatic tools, showed no difference from WT. Thus, both
missense p.G217R and nonsense p.R357X mutations, but not the
p.C471Y variant, abolished TBK1 kinase activity on its target IRF3.
3.4. ALS-linked TBK1 variants decrease binding to OPTN and its
phosphorylation

TBK1 is known to phosphorylate and regulate the activity of
OPTN, a key receptor for polyubiquitinated proteins and mito-
chondria in autophagy pathways (Richter et al., 2016). TBK1 binds
to the N-terminal region of OPTN (26e119), via its C-terminal
domain (residues 677e729) (Li et al., 2016) and phosphorylates it
on Ser177 (Wild et al., 2011) and Ser473 (Heo et al., 2015; Richter
et al., 2016). Because mutations in OPTN are also linked to ALS,
we tested whether our ALS-associated TBK1 variants affected its
ability to bind to OPTN and phosphorylate it. Co-IP of HA-tagged
WT and p.C471Y TBK1 consistently pulled down flag-tagged OPTN
(Fig. 2C); however, p.G217R and p.R357X dramatically reduced
TBK1 binding to OPTN. This finding was validated by the observa-
tion that the same 2 mutants also failed to phosphorylate OPTN.
Although TBK1 WT and p.C471Y generated a higher band on
Western blot that disappeared in the presence of alkaline
OPTN and its phosphorylation. (A) Western blot analysis of IRF3 (left) and pIRF3 (right).
nous IRF3 in cells (n¼ 3). (B right) Quantitative analysis of blot in (A) right showing a
17R and p.R357X (n¼ 3, analyzed by one-way ANOVA followed by Dunnett’s post test
.G217R, p.R357X, and probed for p-IRF3 confirming the result obtained by Western blot
PTN in any of the mutated samples with the exception of p.C471Y (n¼ 3). (E) HEK293T
.C471Y, treated with alkaline phosphatase and analyzed by Western blot showing lack
terferon regulatory factor 3; OPTN, optineurin; TBK1, TANK binding kinase 1; WT, wild
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phosphatase, the higher band is absent following cotransfection
with OPTNWTand TBK1 p.G217R or p.R357X (Fig. 2E). We conclude
that both missense p.G217R and nonsense p.R357X mutations, but
not p.C471Y, impair TBK1 binding to and phosphorylation of OPTN.

3.5. ALS-linked TBK1 variants decrease the phosphorylation of TBK1

TBK1 is activated by the phosphorylation of Ser172, which
causes a critical change in protein conformation promoting the
active position of the C-helix (Tu et al., 2013). We therefore tested
Fig. 3. TBK1 p.G217R and p.R357X impair TBK1 phosphorylation and autophosphorylation a
levels (left) and pTBK1 (right). (B left) Quantitative analysis of blot in (A) left showing a simi
right showing a significant decrease of expression of pTBK1 in p.G217R and p.R357X (n
Immunocytochemistry of HEK293T transfected with TBK1-WT, p.G217R, p.R357X, and prob
bar ¼ 10 mm). (D) Native gel showing the dimer and monomer (indicated by black arrows) in
no dimer or monomer in the R357X sample. (E) Quantitative analysis of gel in (D) showin
TBK1 WT treated with DTT, n¼ 3, analyzed by one-way ANOVA followed by Dunnett’s post
*** p ¼ 0.0006; **** p � 0.0001.
whether the ALS-associated TBK1 variants affect the phosphoryla-
tion and autophosphorylation of TBK1 itself. Western blots of
HEK293T cells, transfected with each variant, were probed with an
antibody specific for phospho-S172. Total TBK1 expression was
similar forWTand all of the ALS-associated variants (Fig. 3A and C).
Robust levels of phospho-S172-TBK1 were evident in WT and
p.C471Y transfected cells but were absent in cells expressing
p.G217R and p.R357X (Fig. 3A and B). Similarly, transfected
HEK293T cells stained for phospho-S172-TBK1 by immunocyto-
chemistry confirmed that TBK1 phosphorylationwas absent in cells
nd might reduce TBK1 homodimerization. (A) Western blot analysis of TBK1 expression
lar expression level of TBK1 in cells (n¼ 4). (B right) Quantitative analysis of blot in (A)
¼ 4 analyzed by one-Way ANOVA followed by Dunnett’s post test p< 0.0001). (C)
ed for p-TBK1 confirming the result obtained by Western blot analysis (Fig. 3B) (Scale
TBK1-WT and TBK1-C471Y, the weaker dimer and monomer in the p.G217R sample, and
g significant reduction in dimer formation for p.G217R (positive control on the right
test p< 0.05). Abbreviations: TBK1, tank binding kinase 1; WT, wild type. * p ¼ 0.0306;
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expressing p.G217R and p.R357X mutants (Fig. 3E). This indicates
that the missense p.G217R and nonsense p.R357X but not the
p.C471Y variant abolished the capacity of TBK1 for
autophosphorylation.
3.6. ALS-linked variant p.G217R disrupts TBK1 homodimerization

TBK1 has to homodimerize to be functional and does so via a
central axis formed by aligning the 2 SDD domains in a parallel
orientation. The ULD and KD domains interact with each other at
one end of the dimer creating a globular structure and stabilizing
the homodimer (Tu et al., 2013) (Fig. 1C). We, therefore, investi-
gatedwhether any of our variants affected the homodimerization of
TBK1 by transfecting HEK293T cells with TBK1 WT, p.G217R,
p.R357X, and p.C471Y and ran the lysates on nondenaturing gels
(Fig. 3B). Native blots revealed 2 strong highe and lowemolecular
weight bands for WT and p.C471Y TBK1, indicating that a similar
proportion exists as a homodimer and monomer. Little dimeriza-
tion, however, was evident for the p.G217R mutant, and no band
was visible for the p.R357X truncation mutant (Fig. 3B and D).
Quantification of the dimer/monomer ratio confirmed that the
missense p.G217R KD mutation showed a significantly lower level
of TBK1 homodimerization compared with WT (p< 0.05) (Fig. 3D).
3.7. TBK1 phosphorylation in ALS patient LCLs

To assess whether TBK1 activation is altered in ALS, we
measured total TBK1 and phospho-TBK1 in patients’ LCLs hetero-
zygous for TBK1 variants: p.T31A, c.992þ1G>A (p.G272-T331del),
p.R358H, p.Q565P, p.E643del, and 7 control LCLs. First, we sought to
determine whether the c.992þ1G>A causes an in-frame deletion of
exon 8 within the ULD. cDNA was amplified by PCR from the
patient-derived LCL harboring the c.992þ1G>A variant using
primers flanking the whole of TBK1 and run an agarose gel
(Supplementary Fig. 1). We observed a lower band reflecting a
w200 bp deletion, corresponding to the size of exon 8 and similar
to the previously reported c.992þ1G<T (Gijselinck et al., 2015) and
(c.992þ4_992þ7delAGTA) mutations (van der Zee et al., 2017). The
skipping of exon 8 was confirmed by Sanger sequencing.

Quantification of Western blots confirmed that total TBK1 was
expressed at a similar level in all of the LCLs. Probing the same blots
for phospho-S172-TBK1 revealed that the ratio between pTBK1 and
Fig. 4. Patient-derived LCLs harboring TBK1 variants show a reduced level of TBK1 phosphor
TBK1 variants, showing the level of total TBK1. (A bottom) Western blot showing phospho-
significant difference in the ratio of phospho-TBK1 and total TBK1 between control- and pati
lymphoblastoid cell line; TBK1, tank binding kinase 1. * p ¼ 0.0229.
total TBK1 is significantly different between patient- and control-
derived LCLs (p ¼ 0.0229, Fig. 4). Therefore, missense TBK1 muta-
tions lead to reduced phosphorylation by self-interaction or with
other kinases.
4. Discussion

In this study, we systematically analyzed samples from 699 in-
dex fALS patients and identified 16 TBK1 variants including 4
nonsense mutations, predicted to cause haploinsufficiency by
nonsense-mediated RNA decay or to be translated as truncated
proteins. Three were in-frame deletions and 9 missense mutations,
which appear to cluster in the functional kinase and ULDs known to
play a role in TBK1 homodimerization (Li et al., 2012; Tu et al.,
2013). Five of these variants have never been published before:
p.M623fs, p.Q629fs, p.T31A, p.R358H, and c.992þ1G>A (predicted
to splice out the whole of exon 8 resulting in an in-frame deletion
within the ULD). The c.992þ1G>A variant was reported once in
ALSdb. Of the other variants, only p.R357Q, p.E643del, and p.T79del
have been functionally investigated (Freischmidt et al., 2015;
Gijselinck et al., 2015; van der Zee et al., 2017). Interestingly, dis-
ease onset in the patient harboring both the TBK1 p.Y394D and
TARDBP p.M337V mutations was 40 years (Table 1), which is
20 years earlier than the average age of onset described in literature
(Pozzi et al., 2017). This double-hit phenomenonwas also described
by Freischmidt et al. in the patients (all 3 affected relatives)
harboring TBK1 p.Y185X and FUS p.R524G (Freischmidt et al., 2015).

We characterized the functional impact of 3 ALS-linked variants
selected on the basis of their predicted disruption to key functional
domains within TBK1 (Fig. 1C). We chose p.G217R as it lies within
the KD and was found in a putative affected sibling, p.R357X as it
lies within the ULD, and was found in an unrelated case in ALSdb
and p.C471Y, which lies within the SDD. Only p.G217R and p.R357X
TBK1 variants, but not p.C471Y, abolished the phosphorylation of
IRF3. This has previously been described for other ALS-associated
mutations (Freischmidt et al., 2015; Kim et al., 2016; Tsai et al.,
2016). The same TBK1 variants, p.G217R and p.R357X, also abol-
ished TBK1 binding to OPTN and prevented its phosphorylation.
The inhibition of TBK1 binding to OPTN has been previously
observed in ALS-linked TBK1 variants, mainly located in the C-ter-
minal region of the protein (Freischmidt et al., 2015; Kim et al.,
2016; Pozzi et al., 2017; Tsai et al., 2016). However, the inhibition
ylation. (A top) Western blot of control- and patient-derived LCLs, harboring 5 different
TBK1 expression in patient- and control-derived lymphoblasts. (B) Dot plot showing a
ent-derived LCLs (analyzed by unpaired t-test, 2 tailed, p ¼ 0.0229). Abbreviations: LCL,
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OPTN phosphorylation due to TBK1 mutations has never been
shown before. A reduction in active OPTN phosphorylation would
impair its function as a receptor for polyubiquitinated proteins and
result in the accumulation of TDP-43, which has been observed in
patients harboring TBK1 mutations (Gijselinck et al., 2015; Pottier
et al., 2015; van der Zee et al., 2017).

To become activated, TBK1 must form a homodimer and be
phosphorylated either by itself or by other kinases (Tu et al., 2013).
Here, we show that the p.G217R and p.R357X variants impair TBK1
autophosphorylation and its ability to be phosphorylated. This
observation is consistent with a recent study that showed dimin-
ished TBK1 phosphorylation in ALS-associated TBK1 in-frame de-
letions (p.T79del, p.D167del, p.E643del) (van der Zee et al., 2017).
We have also shown that p.G217R, although located in the KD, af-
fects TBK1 ability to homodimerize. In contrast, the p.C471Y variant
within the SDD is able to phosphorylate and homodimerize at
equivalent levels to the WT TBK1 protein and shows no evidence of
pathogenicity.

Finally, we demonstrated that there is a significant difference
between phospho-TBK1 and total TBK1 ratio in patient- compared
with control-derived LCLs. This supports the hypothesis that
disease-linked TBK1 variants might impair TBK1 autophosphor-
ylation, disrupting its ability to bind and phosphorylate multiple
partners including OPTN.

5. Conclusions

We have identified 4 novel and 12 previously described TBK1
variants in ALS patients. Our functional studies demonstrated that
the missense mutation p.G217R in the KD has an almost identical
profile as the truncation p.R357X in the ULD and dramatically im-
pairs the ability of TBK1 to form homodimers, autophosphorylate,
and function as a kinase. Furthermore, the proportion of TBK1 that
is activated is significantly reduced in 5 lymphoblast ALS patient
lines carrying missense or in-frame deletion mutations. Thus,
missense mutations in critical functional domains may cause dis-
ease through a loss of TBK1 function supporting functional hap-
loinsufficiency as a common TBK1 disease mechanism (Cirulli et al.,
2015; Freischmidt et al., 2015, 2016). Further investigation of how
ALS-linked TBK1 variants alter TBK1 structure, phosphorylation,
and dimerization will help unravel the disease pathogenesis and
identify novel therapeutic targets.
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