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Introduction

Spatial Logic Reloaded

The present work is framedwithin the field of spatial logic. According to the definition
contained in the influential collective work that traced the boundaries of this field,
detaching it from other declinations of logic, spatial logic means «any formal language
interpreted over a class of structures featuring geometrical entities and relations,
broadly construed» (Aiello, van Benthem, and Pratt-Hartmann 2007). The formal
language in question can utilize any logical syntax: for example, one may employ the
language of first order logic or some of its fragments. By contrast, the structures on
which those languages are interpreted can inhabit any class of “geometrical” spaces:
for example, classes of topological spaces, affine spaces, metric spaces, even single
spaces such as the sphere or the three-dimensional Euclidean space can be considered.
The non-logical primitives of the language can be interpreted as geometrical properties
or relations defined on specific domains. For example, they can be interpreted in
terms of connection between spatial regions, parallelism of lines or equidistance of
two points from a third.

The essential feature of these logics lies in the fact that the notion of validity depends
on the underlying geometry of the structures over which their spatial primitives
are interpreted. According to the just outlined perspective, spatial logic is therefore
simply the study of the family of spatial logics so defined (see Aiello, van Benthem, and
Pratt-Hartmann 2007). This definition is clearly modeled on the example of temporal
logic. In fact, a temporal logic is a formal language interpreted on a class of structures
based on frameworks of temporal relations. However, even if the definition of spatial
logic so conceived is insightful, it only tells us half of the story.

The examination of some early historical examples of logical treatment of space that are
considered, according to Aiello, van Benthem, and Pratt-Hartmann (2007), founding
moments for this field problematizes this perspective. We refer here not only to Alfred
Tarski’s work on the formalization of elementary and solid geometry, but above all to
the one that constitutes the starting point of the present thesis, that is, Tarski’s paper
on the topological interpretation of intuitionistic and classical logic (Tarski 1938).

Aswe shall see in the following, according to the underlying perspective of this ground-
breaking work, spatial logic becomes more properly the study of the interrelationship that

exists between geometric structures and logical languages, including the relation between
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logical languages and geometric structures which “interpret” them. Logic of space is
therefore properly understood both as a genitive-object case and a genitive-subject case.
On the one hand, a formalization of space as suggested by the above definition of Aiello,
van Benthem, and Pratt-Hartmann (2007); on the other hand, a geometrization of logic

– a movement that can hardly be framed in the explanatory prism of the “linguistic
turn” adopted by Aiello, van Benthem, and Pratt-Hartmann (2007).1 Actually, in light
of the developments of logic within the burgeoning of twentieth-century mathematics,
the linguistic turn co-occured with a “spatial turn”.2

As iswell documented3, the historical period inwhich Tarski’s work flourished saw the
rapid development of the methods of general topology, universal algebra, and lattice
theory, and witnessed an increasingly active interaction between these disciplines.
The mathematical climate and the general attitude of the 1930s may be summarized
by Marshall Stone’s aphorism that we find in his survey article – deeply connected to
the one of Tarski4 – on topological representation of Boolean algebras: «a cardinal
principle of modern mathematical research may be stated as a maxim: one must
always topologize» (Stone 1938).

The present work fits into this broader perspective on spatial logic that has its roots in
Tarski’s and Stone’s work mentioned above as well as in Garrett Birkhoff’s pioneering
work on universal algebra and lattice theory and the more recent generalisations of
Stone’s representation to other classes of lattices by Leo Esakia and Hilary Priestley.5

These researches are all pervaded by the idea of a deep duality between geometry
and logic that manifests itself as dualities between classes of topological spaces or
their generalizations, such as ordered topological spaces, and logics appropriately
algebraized. This reconfiguration of spatial logic in this broader perspective is not an
idle question, but rather a meaningful one. In fact, starting from this more general

1«Tarski’s discovery illustrates the most distinctive feature of logic in the wake of the model-theoretic
revolution of the previous century: its fundamentally linguistic orientation» (Aiello, van Benthem,
and Pratt-Hartmann 2007). The turning point of model theory (and universal algebra) in the previous
century and its influence on logic could hardly be grasped solely in terms of “linguistic orientation”.
For more on the contemporary connection between logic and algebraic or real semi-algebraic geometry,
see Bouscaren (1998) and van den Dries (1998).

2The overlooking of this aspect in the book of Aiello, van Benthem, and Pratt-Hartmann (2007)
is further showed by the emphasis on areas such as mereology (or mereotopology), characterized by
a top-down approach that seeks to find a general logic of parthood relation (or connection relation)
suitable for any geometric shape. A well-known blindspot of this approach is the notion of boundary. By
superimposing an implicit boolean framework for abstract reasons disconnected from the consideration
of specific spaces, mereology is prevented “by construction” from grasping this notion that, from a
cointuitionistic perspective – i.e., from a perspective of a more suitable logic for topological spaces –, is
immediately grasped. (For further details, see Mormann 2013. It is worth to note that Mormann himself
falls into the wrong path of absolutizing intuitionistic logic as a kind of mereology, that is, as a logic of
space in general. On the limits of mereology and mereotopology, see Tsai 2005).

3See for instance the historical notes in Johnstone (1982), McKenzie et al. (1987) and Adams and
Dziobiak (1996).

4In Tarski (1938) there are several references to Stone’s articles devoted to his celebrated topological
representation theory.

5Birkhoff (1935), Esakia (1974) and Priestley (1970).
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framework it is possible to grasp the crucial feature of this field of research: that is,
“bridge” results.

Bridge Theorems

Suppose that a framework has been established in which a general procedure has been
adopted to associate to each logic (appropriately algebrized) a classK of topological
spaces, or space-based models, as its geometric counterpart. In such a framework, a
bridge theorem is a mathematical result stating that for a certain property P concerning
a logic and a certain property P′ concerning a class of topological spaces, if L is a logic
andK it is the corresponding geometric counterpart, then

L satisfies P if and only if K satisfies P′.

The term “bridge theorem” can be traced back at least to Andréka et al. (2001) in a
more algebraic context, but it can be analogously rephrased in terms of geometry.
Results of this type establish a bridge between two different realms, that of logic and
that of geometry, and allow to transform the problems of a logic into problems related
to a class of topological spaces. Then one can use powerful tools from geometry to
solve the problem, and then go back (crossing the bridge again) and get a solution to
the original logical problem. Of course, it can be just as useful to do the opposite, that
is, to transform the problems related to a class of topological spaces into problems of
a logic. In a way, this method allows us to approach logical and geometrical problems
as a whole.

In the present work, especially from Chapter 3 onwards, we shall see several instances
of such bridge theorems.

Tarski’s Topological Interpretation of Intuitionistic Logic

Our starting point is Tarski’s topological interpretation of intuitionistic logic, which
we state in a different form than the original one.

In his article “Sentential Calculus and Topology” (Tarski 1938), whose main results
were obtained by him in 1935, Tarski develops such an interpretation of intuitionistic
propositional calculus. On this Tarski’s reading, the syntax of propositional logic is
interpreted in terms of open sets of a given topological space X and operations with
these open sets, so a formula ϕ designates a certain open set of the space constructed
from other open sets. A formula is true under this interpretation precisely when it
evaluates to X. Tarski demonstrated that intuitionistic logic is complete with respect
to this semantics.

More precisely, given a set L of propositional atoms, an interpretation is a map ~−�
from the set of sentences in intuitionistic propositional logic over L to (the collection
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of open sets of) a topological space X, such that ~α� is an arbitrary open set of X for
each atomic proposition α, and which satisfies the following conditions for sentential
connectives and propositional constants.6

~>� � X

~ϕ ∧ ψ� � ~ϕ� ∩ ~ψ�
~⊥� � ∅

~ϕ ∨ ψ� � ~ϕ� ∪ ~ψ�
~ϕ⇒ ψ� � int({~ϕ� ∪ ~ψ�)

~¬ϕ� � int({~ϕ�)

An interpretation (X, ~−�)models a sentence if the sentence is “true” under ~−�, i.e.:

(X, ~−�) |� ϕ if and only if ~ϕ� � X

Thus the correspondence between the rules of the topological operations and the rules
of the sentential operators, immediately implies that intuitionistic propositional logic
is sound with respect to this topological semantics.
Theorem (Tarski 1938, Lemma 4.9). For any sentence ϕ in intuitionistic propositional

logic over L,

` ϕ implies every topological interpretation (X, ~−�) satisfies ~ϕ� � X.

Tarski showed also that intuitionistic logic is complete with respect to the topological
semantics, in the following strong form.
Theorem (Tarski 1938, Second Principal Theorem). For any sentence ϕ in intuitionistic

propositional logic over L,

0 ϕ implies there exists a topological interpretation (X, ~−�) such that ~ϕ� , X.

Tarski’s Theorem on Intuitionistic Logic for Polyhedra

The result of Tarski has opened a research area that continues to thrive to this day.
The closest descendants of Tarski (1938) are the influential articles McKinsey and
Tarski (1944) and (1946), in which they offer a different proof of the Second Principal
Theorem in the dual language of closed sets.

In 2015, N. Bezhanishvili et al. (2018) returns to Tarski’s Second Principal Theorem.
At the margins of his main results, Tarski showed that the class C of topological
spaces under examination can be considerably reduced without compromising its
completeness’ result. In particular, one can takeC :� {Rn}, n ≥ 1, orC :� {2N}, where

6The int operator that transforms sets into open sets is needed since, in general, the set theoretic
complement {U of an open set U is not open (for further details, see Chapter 1).
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2N denotes the Cantor space. As pointed out in N. Bezhanishvili et al. (2018), Tarski’s
result shows that in all those cases the corresponding logic is always intuitionistic logic
– regardless of the fact that Rn , R, 2N have different topological dimensions (n, 1 and 0,
respectively).

Moreover, intuitionistic logic has the finite model property, that is, any non-valid
formula α has a finite counter-model. In other words, there exists a finite model Y
together with a valuation ~−� such that ~α� , Y. (See Jaśkowski 1936. A proof of
this result reformulated in algebraic terms can be also found in McKinsey and Tarski
1944.) As observed in N. Bezhanishvili et al. (2018), Tarski’s Theorem does not expose
the finite model property of intuitionistic logic. In fact, McKinsey and Tarski (1946)
showed that, for instance, counter-models to formulae that are not intuitionistically
provable always exist in R or 2N, but there is no guarantee that they are automatically
finite (for further details, see N. Bezhanishvili et al. 2018).

Starting from these limitations of Tarski’s work and considering the polyhedra rather
than topological spaces tout court, the main result of N. Bezhanishvili et al. (2018)
is to provide a completeness theorem quite similar to that of Tarski, which however
manages to capture the topological dimension of spaces logically. This ismadepossible
by the fundamental fact that, as N. Bezhanishvili et al. (2018) shows, the logic of the
class Pd of polyhedra of a given dimension d is the intermediate logic of bounded
depth d.
Theorem (N. Bezhanishvili et al. 2018). For each d ∈ N, the logic of the class Pd is

intuitionistic logic extended by the axiom schema formulas bdd defined as follows:

bd0 � p0 ∨¬p0,

bdd � pd ∨ (pd ⇒ bdd−1).

Further, due to the geometric structure of Polyhedra, this Theorem exposes the finite
model property of this logic.7

Main Results of the Present Work, Limits and Further Developments

At the last remarkofN.Bezhanishvili et al. (2018), it is suggested that throughpolyhedra
it is possible to logically express geometric properties of spaces other than their
dimension. In fact, polyhedra enjoy another peculiar property: every geometric shape
with a certain “regularity” – in specific terms, certain classes of (closed) topological
manifolds – can be captured by a polyhedron via triangulation, that is, by subdividing
the geometric shapes into appropriate “triangles”, called simplices (which, in the
1- and 0-dimensional case, are simply edges and vertices, respectively). Therefore,
one might well wonder: what is the intermediate logic of the class of triangulable
topological manifolds of a given dimension d?

7For further details on N. Bezhanishvili et al. 2018, see Chapter 5 and 6.
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As pointed out in N. Bezhanishvili et al. (2018), a clue to how this intermediate
logic should be is given by a classical polyhedral geometry theorem stating that, for
every triangulation of a given topological manifold of dimension d, each simplex of
dimension d − 1 is a face of exactly two simplices of dimension d. For example, in the
1-dimensional case this means that, for every inscribed polygon of the circle, each
vertex is incident on exactly two edges.

The main result of the present work was to give substance to this intuition. In fact, we
provided a completeness theorem in the style of Tarski that allows us to understand
logically the above property of triangulations in the case of 1-dimensional manifolds,
that is, the circle S1 and the closed interval [0, 1].8
Theorem (Theorem 7.3.3). The logic of 1-dimensional manifolds is intermediate logic of

bounded depth 1 extended by the axiom schema of bounded branching bb2 defined as follows:

bb2 �

2∧
i�0
((pi ⇒

∨
i, j

p j) ⇒
∨
i, j

p j) ⇒
2∨

i�0
pi .

This result immediately opens the way to corroborating the intuition above even in
the case of dimension greater than one. Moreover, in accordance with the two axes
of the perspective delineated at the beginning of this Introduction, namely that of
formalization of space and that of geometrization of logic, other possible developments
of thiswork are the following: Given any class of polyhedraC, what is the intermediate
logic of C? Is this logic (finitely, or recorsively) axiomatizable? Viceversa, given any
intermediate logic L, is there a class of polyhedra C whose logic is L?

It is also necessary to observe some of the limits arising from this interrelationship
between intermediate logics and polyhedra. First of all, the Theorem above immedi-
ately shows that it is not possible to grasp the homotopy class of topological manifolds.
In fact, the closed interval [0, 1], which is contractible to a point, has the same logic of
the circle S1 which it is not contractible (due to the topologically unavoidable “hole”).

Much less evident from the Theorem above, but emerging during and through the
proof, is the fact that actually the circle S1 has the same logic as a disjoint union of
circles (the same applies to the closed interval [0, 1]). This means that it is not possible
to grasp another important topological property, namely the connectedness of spaces.

Naturally, it is not ruled out that these limitations suggest better combinations between
intermediate logics (or their generalizations) and polyhedra (or their generalizations).

Contents

The present thesis consists of seven chapters. In Chapter 1, we introduce the intuition-
istic and intermediate logics as sets of formulae closed under inference rules.

8For further details see Chapter 7.
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In Chapter 2, we deal with the main mathematical objects studied in this work, i.e.
ordered sets. Those structures are the most common models of intuitionistic and
intermediate logics. They will be studied not only as such but also as categories
and topological spaces. On the one hand, this will allow us to deal with important
concepts such as adjoint functors and closure (and interior) operators. On the other
hand, it will allow us to introduce generalizations of ordered sets (and topological
spaces) – i.e., the ordered topological spaces, which are essential for developing the
representation theory of lattices.

In Chapter 3, we deal with the main algebraic structures studied in this thesis, that
is lattices. In particular, we will focus on Heyting algebras, since they provide the
algebraization of intuitionistic and intermediate logics. Lattices will be studied both as
ordered sets andalgebraic structures. Themain representation theorem fordistributive
lattices andHeyting algebras – theEsakia andPriestleydualities –will also bediscussed
carefully.

In Chapter 4, our main concern is to reconstruct a suitable model theory for the
algebraic structures introduced in the previous chapter that applies to intuitionistic
and intermediate logics. After introducing generalities on algebraic languages and
their classes of models, the chapter culminates in the discussion of Birkhoff’s The-
orem, which will allow us to construct appropriate semantics for intuitionistic and
intermediate logics. Many facts about the algebraic approach to those logics are well
known. However, these results are scattered in the literature. A central point of the
Chapter is to give a coherent exposition of this approach.

In Chapters 5 and 6, the main results of N. Bezhanishvili et al. (2018) are discussed in
depth. In particular, in Chapter 5, after introducing general facts on polyhedra, we
shall show that the algebra of sub-polyhedra of a polyhedron is a locally finite Heyting
algebra. In Chapter 6, on the other hand, we shall see the main fact of N. Bezhanishvili
et al. (2018): the logic of the class of polyhedra of a given dimension d is intuitionistic
logic extended by the axiom schema of bounded depth d.

Finally, in Chapter 7, after characterizing triangulations of the circle S1 and the closed
interval [0, 1], we shall prove that their logic is given by the intermediate logic of
bounded depth 1 extended by the axiom schema of bounded branching bb2.
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1 Intermediate Logics

In this chapter, we shall introduce intuitionistic and intermediate logics. In order to
characterize those logics, two components are to specify: a language, which contains
formal expressions called formulae and built up using various logical operators; and
a relation of derivation, which should be a relation between sets of formulae and
formulae.

Historically, intuitionistic logic was introduced by Arend Heyting in 1930 as a formal-
ization of Luitzen Brouwer’s ideas about intuitionism and constructive mathematics.
For a detailed discussion of the relationship between intuitionistic logic and construc-
tive mathematics we refer to Troelstra and van Dalen 1988.

1.1 Intuitionistic Logic

Just as classical propositional logic, intuitionistic propositional logic is designed to
study a set of simple statements, and the compound statements built up from them. As
we shall see in the following, intuitionistic propositional logic are useful for describing
subsets of a given structure with particular properties.

We first set up intuitionistic propositional logic as a formal language. The symbols of
our language are as follows:

• a set C of connectives of different arities, ∧,∨,⇒,>,⊥, and parentheses (, );

• a nonempty set L of sentence symbols.

Intuitively, the sentence symbols stand for simple statements, and the connectives
∧,∨,⇒ stand for the words used to combine simple statements into compound state-
ments. In a more formal way, we can say that, taking C and L together, they give
rise to a free monoid (L ∪ C)∗ whose elements are all the finite sequences (or strings)
of zero or more elements from those sets, with string concatenation as the monoid
operation and with the unique sequence of zero elements as the identity element. Of
course, not every finite sequence of symbols in (L ∪ C)∗ is a sentence: for instance
(α ∧ β) is a sentence, but ∧∧)γ is not. In order to distinguish a sentence from what is
not, the sentences’ language SL is defined inductively as follows:
Definition 1.1.1.

(i) >,⊥ is a sentence, ⊥ ∈ SL.
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(ii) Every sentence symbol α ∈ L is a sentence, L ⊆ SL.

(iii) If α, β are sentences, then (α ∧ β), (α ∨ β), (α⇒ β) are sentences.

(iv) A finite sequence of symbols is a sentence only if it can be shown to be a sentence
by a finite number of applications of (i)-(iii).

Remark 1.1.2. Let us pause briefly for a notational remark on Greek letters. In the
above paragraphs we have used the lower case Greek letters α, β, γ, . . . as names for
arbitrary finite sequences of symbols of SL. The situation is similar to arithmetic,
where we study natural numbers 0, 1, 2, 3, . . . but much of the time we write down
letters like m, n, x, y, . . . as names for arbitrary natural numbers. In the following
we shall also use capital Greek letters Γ,∆, . . . as names for arbitrary set of finite
sequences of symbols of SL. It is worth noting that the symbols α, β,Γ, . . . are not in
our list of formal symbols of our language – they are merely informal symbols which
we use to talk more easily about SL.

We shall introduce abbreviations to our language in the usual way, in order to make
sentences more readable. The symbols ¬ and⇔ are abbreviations defined as follows:

• ¬α for p ⇒ ⊥,

• α⇔ β for (α⇒ β) ∧ (β⇒ α).

Once fixed SL, we can define a binary relation `⊆ 2SL ×SL on families of formulae
Γ ⊆ SL and formulae α ∈ SL. We can write (Γ, α) ∈ ` or, in a customary way, Γ ` α.
Syntactically, Γ can be seen as a set of hypothesis that we take for granted, as the
axioms for the propositional theories that we wish to consider. In order to give a
more precise idea of what is meant by a theory, we have to provide an appropriate
definition of the binary relation Γ ` α.

Nevertheless, before giving a precise definition of this formal expression, we have to
choose a set of axioms Ax ⊆ SL for the intuitionistic propositional logic. To make the
presentation of this logic more convenient from a theoretical point of view, we use a
Hilbert-style calculus for ipl. As is well known, the first Hilbert proof system (Hilbert-
style formalization) of the intuitionistic logic is due to Heyting. We present here a
Hilbert style proof system that is equivalent to the Heyting’s original formalization
(see N. Bezhanishvili 2006).
Definition 1.1.3. The intuitionistic propositional logic is given by the smallest set of
formulas containing the axioms (Ax):

(1) α⇒ (β⇒ α),

(2) (α⇒ (β⇒ γ)) ⇒ ((α⇒ β) ⇒ (α⇒ γ)),

(3) α ∧ β⇒ α,

(4) α ∧ β⇒ α,

(5) α⇒ (β⇒ (α ∧ β))
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(6) α⇒ α ∨ β,

(7) β⇒ α ∨ β,

(8) (α⇒ γ) ⇒ ((β⇒ γ) ⇒ ((α ∨ β) ⇒ γ)),

(9) ⊥ ⇒ α,

and closed under the inference rules:

α, α⇒ β
(modus ponens),

β

and

ϕ(α1, . . . , αn) (substitution).
ϕ[β1/α1, . . . , βn/αn]

We are now in a position to give the intended definition to the above formal binary
relation and, accordingly, the proper definition of propositional theory.
Definition 1.1.4. Given a family of formulae Γ ⊆ SL and a formula α ∈ SL, there is
a Γ-derivation of α

Γ ` α

if exists a finite sequence of formulae α1, . . . , αN such that:

(i) αN � α

(ii) αi ∈ Ax∪ Γ or ∃α j , αk , with j, k ≤ i, such that αi is obtained from α j and αk by
applying modus ponens.

Definition 1.1.5. By a propositional theory we mean a family Γ ⊆ SL of formulae,
whose elements are called the non-logical axioms of Γ, closed under modus ponens,
namely such that Γ ` α implies α ∈ Γ. The set of theories of is denoted by T h(INT)
and a theorem of the intuitionistic logic is a formula α such that ∅ ` α (usually written
` α).

It is easy to see that the set of theorems is the smallest theory of the intuitionistic logic,
and that there is always a smallest theory containing a given family Γ of formulas,
namely the set∇Γ :� { α ∈ SL | Γ ` α }, called the theory generated byΓ. Bydefinition of
the relation of derivation, the setSL of all formulas is always a theory, the inconsistent
one.
Remark 1.1.6.

1. Even if we have just ascribed the term “intuitionistic propositional logic” to a
set of formulas closed under modus ponens and substitutions, there is always
the relation of derivation in the background. This notion of intuitionistic logic
actually corresponds to the set of theorems of intuitionistic logic. A more
appropriate definition would be as the pair (SL, `). However, the notion of
intuitionistic logic as a set of formulas closed under inference rules is proper
enough for our scope.
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2. Observe that the relation of derivation `⊆ 2SL × SL satisfies the following
properties, for all Γ∪ {α} ⊆ SL.

(a) If α ∈ Γ, then Γ ` α (Identity).

(b) If Γ ` α and Γ ⊆ ∆, then ∆ ` α (monotonicity).

(c) If Γ ` α and ∆ ` β every β ∈ Γ, then ∆ ` α (transitivity)

(d) If Γ ` α, then Γ[β1/α1, . . . , βn/αn] ` ϕ[β1/α1, . . . , βn/αn] for every substitu-
tions (structurality).

The last condition correspond to the closure under substitutions of intuitionistic
logic. It is also and more broadly the rendering of the idea that logical conse-
quence is formal, which means that, in some sense, it should depend only on
the “form” of the sentences. It allows elements of the set L to behave as real
variables, that is, to represent arbitrary formulas in the same sense that variables
in real analysis represent arbitrary elements of the domain of a function. For
instance, when saying that the consequence α ∧ β ` α holds, these “α” and “β”
may be viewed as representing arbitrary formulas because, by structurality, this
implies that also the consequence ϕ ∧ ψ ` ϕ holds for any two formulas ϕ and
ψ.

Intuitionistic logic satisfies the Deduction theorem, namely
Theorem 1.1.7 (Deduction Theorem). For all Γ ⊆ SL,

Γ,ϕ ` ψ if and only if Γ ` ϕ⇒ ψ.

Proof. See Chagrov and Zakharyaschev (1997). �

The proof is well known: starting from the assumption that Γ,ϕ ` ψ, it works by
induction on the length of a proof of ψ from Γ∪ {ϕ}, showing that for each step ϕi in
such a proof, there is a proof of ϕ⇒ ϕ from Γ. For this, one only uses axioms (1) and
(2) and the rule of modus ponens.

1.2 Intermediate Logics

Let CL denote classical propositional logic. It is very well known (see Chagrov and
Zakharyaschev 1997) that CL ⊆ INT: indeed, we have that the formulae α ∨¬α and
¬¬α⇒ α belong to CL, but they do not belong to INT. As a consequence, we can have
the following equivalent definitions of CL starting from INT:
Theorem 1.2.1. The classical propositional calculus is given by the smallest set of formulae

that contains INT, the formula α ∨¬α, and is closed under modus ponens and substitutions.

Equivalently, it is given by the smallest set of formulae that contains INT, the formula¬¬α⇒ α,

and is closed under modus ponens and substitutions.
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Proof. See Chagrov and Zakharyaschev (1997). �

Definition 1.2.2. A set of formulae L ⊆ SL closed under modus ponens and substi-
tutions is called an intermediate logic if CL ⊆ L ⊆ INT.

Thus, the intermediate logics are “in between” of classical and intuitionistic proposi-
tional logics. We briefly introduce now a class containing all the intermediate logics.
We shall come back on this class in Subsection 4.3.5.
Definition 1.2.3. A set of formulas L ⊆ SL closed under modus ponens and substi-
tutions is called a superintuitionistic logic if L ⊇ INT.

As a consequence of axiom (9) and modus ponens, a superintuitionistic logic L is
inconsistent if and only if L � SL. The next proposition tells us that not only every
intermediate logic is superintuitionistic, but also, for consistent logics, the converse is
true.
Proposition 1.2.4. For every consistent superintuitionistic logic L ( SL we have L ⊆ CL.
Namely, L is intermediate.

Proof. See Chagrov and Zakharyaschev (1997). �

Therefore, every consistent superintuitionistic logic is intermediate and vice versa.
However, we refrain to consider only intermediate logics. Aswe shall see in Subsection
4.3.5, it can be very useful to consider also superintuitionistic logics as a whole.
Definition 1.2.5. Let L1 and L2 be superintuitionistic logics. We say that L2 is an
extension of L1 if L1 ⊆ L2.

For every intermediate logic L and a formula α ∈ SL, we shall adopt the additive
notation L + α for the smallest intermediate logic containing L∪ {α}. Hence, we can
write, for instance, as a reformulation of Theorem 1.2.1:

CL � INT + (α ∨¬α) � INT + (¬¬α⇒ α).

The theorem of Deduction is also satisfied by all intermediate logics.
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2 Categories of Models

In this chapter we introduce some crucial mathematical objects which will be investi-
gated within this work, such as ordered sets and ordered topological spaces. They are
structures that not only provide a basis for our subsequent algebraic conceptualization
of intuitionistic and intermediate logics but also, and mostly, they are the models for
those logics.

2.1 Ordered Sets

A partially ordered set (poset, for short) is a set P equipped with a reflexive, transitive
and antisymmetric binary relation ≤.
Definition 2.1.1. Let P be a set. An order (or partial order) on P is a binary relation on
P such that, for all x, y, z ∈ P,

(i) x ≤ x,

(ii) x ≤ y and y ≤ x imply x � y,

(iii) x ≤ y and y ≤ z imply x ≤ z.

These conditions are referred to, respectively, as reflexivity, antisymmetry and tran-
sitivity. As we have already said, a set P equipped with an order relation is a poset.
UsualIy we say simply “P is an ordered set”. Where it is necessary to specify the order
relation overtly we write (P,≤). On any set, � is an order, the discrete order. A relation
on a set P which is reflexive and transitive but not necessarily antisymmetric is called
a pre-order. A pre-order relation on P gives rise to an order relation by quotienting
the set P by the equivalence relation determined by the pre-order on P: if x ≤ y and
y ≤ x, then we write x ' y and say that x and y are isomorphic elements. Clearly the
binary relation ' is an equivalence relation. The resulting set P�� � {[x] | x ∈ P} of
equivalence classes has a well-defined partial order on it given by

[x] ≤ [y] if and only if x ≤ y.

The poset X�� is called the poset reflection of the preorder X. Also, an order relation ≤
on P gives rise to a relation < of strict order: x < y in P if and only if x ≤ y and x , y.
It is possible to re-state conditions i-iii above in terms of <, and so to regard < rather
than ≤ as the fundamental relation.
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We begin with introducing a basic construction of a new ordered sets from existing
ones. Let P be an ordered set and let Q be a subset of P. Then Q inherits an order
relation from P; given x, y ∈ Q, x ≤ y in Q if and only if x ≤ y in P. We say in these
circumstances that Q has the induced order, or the order inherited from P.
Definition 2.1.2. Let P be an ordered set. Then P is a chain if , for all x, y ∈ P, either
x ≤ y or y ≤ x. At the opposite side from a chain is an antichain. The ordered set P is
an antichain if x ≤ y in P only if x � y. Clearly, with the induced order, any subset of
a chain (an antichain) is a chain (an antichain). Instead, a chain (an antichain) in P is a
subset C ⊆ P that is a chain (an antichain) when equipped with the order inherited
from P.

With this couple of definitions of chain and antichain in mind we can also introduce
the notions of depth and width of a poset. We define the depth of P to be

depP :� sup{|C | − 1 | C ⊆ P is a chain in P} ∈ N∪ {∞}

In a similar way, the width of a poset can be defined as the size of the largest antichain
in it. We define the width of P to be

widP :� sup{|A| |A ⊆ P is a antichain in P} ∈ N∪ {∞}

Let P be the n-element set {0, 1, . . . , n − 1}. We write n to denote the chain obtained by
giving P the order in which 0 < 1 < · · · < n − 1 and n for P regarded as an antichain.
Any set S may be converted into an antichain S by giving S the discrete order.
Definition 2.1.3. We say that two ordered sets, P and Q, are (order-)isomorphic, and
write P ' Q, if there exists a map φ from P onto Q such that x ≤ y in P if and only
if φ(x) ≤ φ(y) in Q. Then φ is called an order-isomorphism. Such a map φ faithfully
mirrors the order structure. It is necessarily bĳective (that is, one-to-one and onto):
using reflexivity and antisymmetry of ≤ first in Q and then in P,

φ(x) � φ(y) ⇔ x � y.

On theotherhand, not everybĳectivemapbetweenordered sets is anorder-isomorphism:
consider, for example, P � Q � 2 and define φ by φ(0) � 1 and φ(1) � 0.

We present some important orderings carried by fundamentalmathematical structures
that will be useful in the following.
Examples 2.1.4. Let X be any set. The powerset P(X), consisting of all subsets of X, is
ordered by set inclusion: for A, B ∈ P(X), we define A ≤ B if and only if A ⊆ B. Any
subset of P(X) inherits the inclusion order. More commonly, families of sets such as
the powerset arise where X carries some additional structure. For instance, X might
have an algebraic or a geometrical structure – it might be a group or a topological
space. Each of the following is an ordered set under inclusion:

• the set of all subgroups of a group G denoted SubG;
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• the set of all subspaces of a vector space V denoted SubV ;

• Let X be a topological space. We may consider either the family of open subsets
O(X) or the family of closed subsets C(X) as ordered sets under inclusion. For
more on this, see section 2.2.

2.1.1 Diagrams of Posets

One of themost useful and attractive features of ordered sets is that, in the finite case at
least, they can be ’drawn’. To describe how to represent ordered sets diagrammatically,
we need the idea of covering.
Definition 2.1.5. Let P be an ordered set and let x, y ∈ P. We say x is covered by y
(or y covers x), and write x −−≺ y, if x < y and x ≤ z < y implies z � x. The latter
condition is demanding that there be no element z of P strictly between x and y, that
is with x < z < y.

Observe that, if P is finite, x < y if and only if there exists a finite sequence of covering
relations x � x0 −−≺ x1 −−≺ · · · −−≺ xn � y. Thus, in the finite case, the order relation
determines, and is determined by, the covering relation.
Definition 2.1.6. Let P be a finite ordered set. We can represent P by a configuration
of circles (representing the elements of P) and interconnecting lines (indicating the
covering relation). The construction goes as follows:

(1) To each point x ∈ P, associate a point p(x) of the Euclidean plane R2, depicted by
a small circle with centre at p(x).

(2) For each covering pair x −−≺ y in P, take a line segment l(x, y) joining the circle at
p(x) to the circle at p(y).

(3) Carry out (1) and (2) in such a way that

(a) if x −−≺ y , then p(x) is ’lower’ than p(y) (that is, in standard Cartesian coordi-
nates, has a strictly smaller second coordinate),

(b) the circle at p(z) does not intersect the line segment l(x, y) if z , x and z , y.

It is easily proved by induction on the size, |P |, of P that (3) can be achieved. A
configuration satisfying (1)-(3) is called a diagram (or Hasse diagram) of P. In the
other direction, a diagram may be used to define a finite ordered set; an example is
given below. Of course, the same ordered set may have many different diagrams.

a

d

b

c

a

db
c

Figure 2.1: Two alternative diagrams for the ordered set P � {a, b, c, d}.
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Figure 2.1 shows two alternative diagrams for the ordered set {a, b, c, d} in which
a < c, a < d, b < c and b < d.

The diagrammatic approach to finite ordered sets is made fully legitimate by the
following Proposition.
Proposition 2.1.7. Two finite ordered sets P and Q are order-isomorphic if and only if they

can be drawn with identical diagrams.

Proof. See Davey and Priestley (2002). �

2.1.2 Constructions on Ordered Sets

This section collects together a number of ways of constructing new ordered sets from
existing ones. Where we refer to diagrams, it is to be assumed that the ordered sets
involved are finite.

Given any ordered set P we can form a new ordered set Pop (the dual of P) by defining
x ≤ y to hold in Pop if and only if y ≤ x holds in P. For P finite, we obtain a diagram
for Pop simply by “turning upside down” a diagram for P.

To each statement about the ordered set P there corresponds a statement about Pop.
In general, given any statementΨ about ordered sets, we obtain the dual statement
Ψop by replacing each occurrence of ≤ by ≥ and vice versa.

The formal basis for this observation is the Duality Principle below.
Proposition 2.1.8 (Conceptual Duality). Given a statementΨ about ordered sets which is

true in all ordered sets, the dual statementΨop
is also true in all ordered sets.

In what follows we shall make several applications of this principle. By way of
illustration,
Definition 2.1.9. Let P be an ordered set. We say P has a bottom element if there exists
⊥ ∈ P with the property that ⊥ ≤ x for all x ∈ P. A bottom element, when it exists, is
unique by the anti-symmetric property ≤. Dually, P has a top element if there exists
> ∈ P such that x ≤ > for all x ∈ P. By the above Principle of Duality, we can assert
immediately that a bottom element, when it exists, is unique.
Examples 2.1.10. In (P(X);⊆), we have ⊥ � ∅ and > � X. A finite chain always has
bottom and top elements, but all infinite chain need not have.

In Chapter 3 we shall introduce other important examples of duality. We present now
an important construct for building new ordered sets.

There are several different ways to join two ordered sets together. Here we focus on
the sum of two ordered sets. In this construction we require that the sets being joined
are disjoint (this is no real restriction since we always find isomorphic copies of the
original ordered sets which are disjoint).
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Definition 2.1.11. Suppose that P and Q are (disjoint) ordered sets. The disjoint union
P

∐
Q of P and Q is the ordered set formed by defining x ≤ y in P

∐
Q if and only if

either x, y ∈ P and x ≤ y in P or x, y ∈ Q and x ≤ y in Q. A diagram for P
∐

Q is
formed by placing side by side diagrams for P and Q.

There is also the (dual) notion of cartesian product among ordered sets.
Definition 2.1.12. Let P1, . . . , Pn be ordered sets. The Cartesian product P1 × · · · × Pn

can be made into an ordered set by imposing the coordinatewise order defined by

(x1, . . . , xn) ≤ (y1, . . . , yn) ⇔ (∀i)xi ≤ yi in Pi .

2.1.3 Downsets and Upsets

Associated with any ordered set are two important families of sets. They play a central
role in the representation theory of distributive lattices developed in the next Chapter.
Definition 2.1.13. Let P be an ordered set and Q ⊆ P.

(i) Q is a downset if, whenever x ∈ Q, y ∈ P and y ≤ x, we have y ∈ Q.

(ii) Dually, Q is an upset if, whenever x ∈ Q, y ∈ P and x ≤ y, we have y ∈ Q.

Given an arbitrary subset Q of P and x ∈ P, we define

↓Q :� {y ∈ P | (∃x ∈ Q)y ≤ x}and ↑Q :� {y ∈ P | (∃x ∈ Q)y ≥ x},
↓x :� {y ∈ P | y ≤ x}and ↑x :� {y ∈ P | y ≥ x}.

It is easily checked that ↓ Q is the smallest downset containing Q and that Q is a
downset if and only if Q �↓Q, and dually for ↑Q. Clearly ↓{x} �↓ x, and dually.
Downsets (upsets) of the form ↓x (↑x) are called principal.

The family of all down-sets of P is denoted byDo(P). It is itself an ordered set, under
the inclusion order.
Examples 2.1.14.

1. Figure 2.2 showsDo(P) in a simple case.

2. If P is an antichain, thenDo(P) � P(P).

3. If P is the chain n, thenDo(P) consists of all the sets ↓x for x ∈ P, together with
the empty set. HenceDo(P) is an (n + 1)-element chain.

The following lemma connects the order relation to down-sets and up-sets.
Lemma 2.1.15. Let P be an ordered set and x, y ∈ P. Then the following are equivalent:

(i) x ≤ y;

(ii) ↓x ⊆↓ y;

(iii) ↑ y ⊆↑x;
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a

c

d

b

P

∅

{d}

{a,d}

{a}

{c,d}

{a,b,d} {a, c,d}

{a,b, c,d}

Do(P)

Figure 2.2: The ordered sets P andDo(P).

(iv) (∀Q ∈ Do(P))y ∈ Q ⇒ x ∈ Q;

(v) (∀Q ∈ Up(P))x ∈ Q ⇒ y ∈ Q.

Proof. See Davey and Priestley (2002). �

From definition 2.1.13 and lemma 2.1.15 we can easily observe that an up-set of P is
nothing more that a down-set of Pop and defineUp(P) to be the set of up-sets of P
ordered by reverse inclusion. It follows that

Up(P) � Do(Pop)op. (2.1)

Besides being related by duality, down-set and up-sets are related by complementation:
Q is a down-set of P (equivalently, an up-set of Pop) if and only if P\Q is an up-set of
P (equivalently, a down-set of Pop). For subsets A, B of P, we have A ⊆ B if and only
if P\A ⊇ P\B. It follows that

Do(P)op ' Do(Pop) and Up(P)op ' Up(Pop),

the order-isomorphism being the complementation map. The next proposition shows
howDo(P) andUp(P) can be analysed for compound ordered sets P.
Proposition 2.1.16. Let P be an ordered set. Then

Do(P1
∐

P2) ' Do(P1) × Do(P2) and Up(P1
∐

P2) ' Up(P1) ×Up(P2).

Proof. See Davey and Priestley (2002). �

2.1.4 Maps Between Ordered Sets

Wehave alreadymade use of maps of a very special type between ordered sets, namely
order isomorphisms. In this section, structure-preserving maps are considered more
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generally.
Definition 2.1.17. Let P and Q be ordered sets. A map φ : P → Q is said to be

(i) a monotone or order-preserving if x ≤ y in P implies φ(x) ≤ φ(y) in Q;

(ii) an order-embedding (and we write φ : P ↪→ Q) if x ≤ y in P if and only if
φ(x) ≤ φ(y) in Q;

(iii) an order-isomorphism if it is an order-embedding which maps P onto Q.

Of course, the composite map of order preserving maps is order preserving.
Examples 2.1.18.

1. Two basic example of order preserving maps are inverse and direct image
functions. Let f : X → Y be a function between sets, we get a monotone
function f −1 : P(Y) → P(X) by taking inverse images of subsets: for B ⊆ Y

f −1(B) � {x ∈ X | f (x) ∈ B}.

Also, we get a monotone function f [−] : P(Y) → P(X) by taking direct images
of subsets: for A ⊆ X

f [A] � {y ∈ Y | y � f (x) for some x ∈ A}.

2. On the basis of definition ii and 2.1.15, the map x 7→↓ x sets up an order-
embedding from P intoDo(P).

Remark 2.1.19. Ordered sets P and Q are order isomorphic if and only if there exist
order preserving maps φ : P → Q and ψ : Q → P such that φ ◦ ψ � 1Q and
ψ ◦ φ � 1D (where 1S : S→ S denotes the identity map on S given by 1S(x) � x for
all x ∈ S). This definition is more abstract in the sense that it is given without any
reference to elements of the ordered sets. This is the our first example of a category
theoretic way of defining important notion. In the following subsections we shall
introduce some basic elements of this important subject.

But before we turn on category theory, there is another important kind of order
preserving maps between ordered sets to consider for our purpose, i.e. p-morphims.
Definition 2.1.20. Let P and Q be ordered sets. A map f : P → Q is said to be a
p-morphim if, for all x ∈ P

f [↑x] �↑ f (x),

or, equivalently, for all A ⊆ P
f [↑A] �↑ f [A].

We shall see the topological meaning of this peculiar order preserving map in Section
2.2 while, in Section 3.3, we shall recognize its logical relevance.

In conclusion, we can also collect maps in an ordering of maps.
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Definition 2.1.21. Suppose X is any set and Y an ordered set. We may order the set
YX of all maps from X to Y as follows. We put f ≤ 1 if and only if f (x) ≤ 1(x) in Y,
for all x ∈ X.

Any subset Q of YX inherits the pointwise order. When X is itself an ordered set,
we may take Q to be the set of all order preserving maps from X to Y. Hopefully
without generating any confusion, the resulting ordered set is denoted in the same
way, i.e. YX . We write sometimes (X → Y) in place of YX . As an example, we note
that (X → 2) ' Do(X)op.

2.1.5 Categories of Posets, Posets as Categories

In the previous sections, we introduced a class of structures, partial orders, and the
associated class of morphisms that preserve these structures, monotone functions. In
Chapter 3 we will see other classes of structures of a certain type such as distributive
lattices, Heyting algebras, and their classes of morphisms. These pairs of classes, a
class of objects together with its maps that preserve the structures, are those that in
modern mathematics are called categories.

So, we are forced to introduce some category-theoretic concepts. Our aim is not to
to provide a comprehensive introduction to category theory; rather to delineate the
territory we shall regard as familiar, by giving the statements of the major results we
shall be assuming later on, and providing references for their proofs. We begin with
the definitions of the fundamental concepts.
Definition 2.1.22. A category C consists of:

• A class of objects: A, B, C, . . .

• A class of morphisms: f , 1, h, . . .

• For each morphism f , there are given objects

dom( f ), cod( f )

called the domain and codomain of f . which are objects of C; we write

f : A→ B

to indicate that dom( f ) � A and cod( f ) � B.

• To each pair of morphisms f : A→ B e 1 : B→ C with

cod( f ) � dom(1),

there is given a morphism

1 ◦ f : A→ C,
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called the composite of f and 1 such that

dom( f ◦ 1) � dom( f ) and cod( f ◦ 1) � cod(1). (2.2)

• For each object A, there exists a morphism,

1A : A→ A.

called the identity of A such that

dom(1A) � A � cod(1A). (2.3)

Moreover, these data are required to satisfy two axioms:

Associativity: for all f : A→ B, 1 : B→ C, h : C→ D,

(h ◦ 1) ◦ f � h ◦ (1 ◦ f ) (2.4)

Unit: for all f : A→ B,

1A ◦ f � f � f ◦ 1B (2.5)

We write Ob(C) for its class of objects and Mor(C) for its collection of morphisms.
For two objects C and D, the class of morphisms with domain C and codomain D is
denoted by HomC(C, D).

We should consider also themorphisms between categories. Amorphism of categories
is called functor.
Definition 2.1.23. A functor between categories C and D,

F : C→ D

is a mapping of objects to objects and maps to maps, in such a way that:

1. for all f : A→ B, F( f ) : F(A) → F(B),

2. F(1A) � 1F(A),

3. F( f ◦ 1) � F(1) ◦ F( f ).

In otherwords, F preservesdomains and codomains, identity arrows and compositions.
A functor F : C → D thus gives a sort of “picture” of C in D. For example, to the
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diagram in C

A B

C

f

1 ◦ f 1

corresponds the following one in D

F(B)

F(A) F(C)

F( f )

F(1 ◦ f )

F(1)

Now, we can easily see that functors compose in the expected way, and that every
category C has an identity functor 1C : C→ C.
Definition 2.1.24. For categories C, D and functors

F, G : C→ D

a natural transformation θ : F→ G is a family of arrows in D

(θC : FC→ GC)C∈Ob (C)

such that, for any f : C→ C′ in C, one has θ′C ◦ F( f ) � G( f ) ◦ θC , that is, the following
square commutes:

FC GC

FC′ GC′

θC

F f G f ′

θC′

Given such a natural transformation θ : F→ G, the D-arrow θC : FC→ GC is called
the component of θ at C. If every component of θ is an isomorphism, θ is said to be a
natural isomorphism. Of course, we say that functors F and G are naturally isomorphic
if there exists a natural isomorphism from F to G and we write F ' G.
Definition 2.1.25. Given functors F, G : C→ D, we say that

F(A) ' G(A)

naturally in A if F and G are naturally isomorphic.

If you think of a functor F : C→ D as a “picture” of C in D, then you can think of a
natural transformation θC : FC→ GC as a “cylinder” with such a picture at each end.

We shall be concerned mainly with concrete categories whose objects are sets with
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some kind of structure and whose morphisms are structure-preserving functions, the
composition law being the usual composition of functions. The usual convention will
be to name such a category by (an abbreviation of) the common name of its objects;
thus we have:

• Set, the category of sets and functions;

• Top, the category of topological spaces and continuous maps;

• Pos, the category of partially ordered sets and order-preserving maps;

• DL, the category of distributive lattices and homomorphisms;

• Bool, the category of Boolean algebras and homomorphisms;

• He yt, the category of Heyting algebras and homomorphisms.

Further examples will occur frequently as we go along. We shall have to consider
pairs of categories having the same objects but different morphisms; in this case we
shall adopt the custom of giving two different names to the objects, which are entirely
synonymous when we refer only to objects, but mean different things when applied
to morphisms.

We note that a concrete category C is always locally small; that is, for each pair of
objects A, B, the collection of morphisms Hom(A, B) in C form a set rather than a
proper class.

The other class of categories which we shall frequently meet is that consisting of
categories arising from partially ordered sets themselves. If (P,≤) is a poset, we can
make it into a category P whose objects are the elements of P and whose morphisms
are the instances of the order-relation – i.e. there is just one morphism a → b if
and only if a ≤ b. It is clear that transitivity of ≤ ensures the existence of a unique
composition law for P, and reflexivity ensures the existence of identities; thus we can
consider posets as a special case of categories. It turns out that many of the basic
concepts of category theory become, when we specialize them to posets, concepts
already familiar in lattice theory – for example, a functor between posets is just an
order-preserving map.

2.1.6 Adjoint Functors and Closure Operators on Posets

Adjoints Between Categories, Reflections and Equivalences

The central concept of category theory is the notion of adjunction. Consider two
functors in opposite directions, F : C → D and G : D → C. Roughly speaking, F
is said to be left adjoint to G if, whenever C ∈ C and D ∈ D, maps F(C) → D are
essentially the same thing as maps C→ G(D).
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Definition 2.1.26. Let C and D be two categories and

C D
G

F

two functors between them. We say that F is left adjoint to G, G is right adjoint to F,
and write F a G, if

Hom(FC, D) ' Hom(C, GD) (2.6)

naturally in C ∈ C and D ∈ D.

Given objects C ∈ C and D ∈ D, the correspondence between maps can be denoted
by a horizontal bar, in both directions:

FC
1

−−−→ D ,

C
1

−−−→ GD

C
f
−−−→ GD .

FC
f
−−−→ D

Thus, the naturality axiom satisfied by the specified bĳection 2.6 can be split in two
parts and stated in the following way:

FC
1

−−−→ D
q
−−−→ D′ , for all 1 and q,

C
1

−−−→ GD
G(1)
−−−−−→ GD′

that is, q ◦ 1 � G(q) ◦ 1, and

C′
p
−−−→ C

f
−−−→ GD , for all p and f ,

FC′
F(p)
−−−−−→ FC

f
−−−→ D

that is, f ◦ p � F(p) ◦ f . There is another way of stating the above definition of
adjunction that it can be useful for our purposes.
Definition 2.1.27. For each C ∈ C and, dually, for each D ∈ D, we have two maps

FC
1−−−→ FC ,

C
ηC−−−−→ GFC

GD
1−−−→ GD .

FGD
εD−−−−→ D

These define natural transformations

η : 1C → G ◦ F, ε : F ◦G→ 1D

called the unit and counit of the adjunction, respectively.
Lemma 2.1.28. Given an adjunction F a G with unit η and counit η, the triangles

FC FGFC GD GFGD

FC GD

F(ηC) ηGD

1FC 1GD
εFC G(εD)
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commutes for all C ∈ C and D ∈ D.

Proof. See Leinster (2014). �

Amazingly, the unit and counit determine the whole adjunction, even though they
appear to know only the transposes of identities. This is the main content of the
following pair of results.
Lemma 2.1.29. Let be an adjunction, with unit η and counit ε. Then

1 � G(1) ◦ ηC

for any 1 : FC→ D, and

f � εD ◦ F( f )

for any f : C→ GD.

Proof. See Leinster (2014). �

Theorem 2.1.30. Let C and D be two categories and

C D
G

F

two functors between them. Then F a G if and only if there exist natural transformations

η : 1C → G ◦ F and ε : F ◦G→ 1D such that the above triangles commute.

Proof. See Leinster (2014). �

Definition 2.1.31. A reflection is an adjunction for which the counit map εD is an
isomorphism for all D. This is equivalent to saying that G induces a bĳection between
morphisms D → D′ and morphisms GD → GD′ for each pair (D, D′) (see Mac Lane
1998). In such case, D is called reflective subcategory of C. Dually, a coreflection

is an adjunction for which the unit map ηC is an isomorphism for all C (and this
is equivalent to saying that F induces a bĳection between morphisms C → C′ and
morphisms GC → GC′ for each pair (C, C′)). In such case, C is called coreflective
subcategory of D.

If both η and ε are isomorphisms, we call the adjunction an equivalence (see Mac Lane
1998), and say that the categories C and D are equivalent. We say C and D are
dual if is equivalent to the opposite category Dop of D. At first glance, the notion of
equivalence might seem weaker than that of isomorphism between categories (which
may be regarded as an adjunction for which the unit and counit maps are identities),
but instead it is the right notion of sameness between to categories, able to ensure that
C and D share the same categorical properties.
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Order Adjoints

As we have said before, If (P,≤) is a poset, we can make it into a category P whose
objects are the elements of P and whose morphisms are the instances of the order-
relation - i.e. there is just one morphism a → b if and only if a ≤ b. Thus it turns out
that we can consider poset as a special case of category: a category in which there is
at most one arrow x → y between any two objects. Let P be such a category. Given
another such category Q, suppose we have adjoint functors:

P Q
F

G
F a G.

Then the correspondence Hom(Fa, x) ' Hom(a, Gx) comes down to the simple con-
dition Fa ≤ x if and only if a ≤ Gx. Thus, an adjunction on ordered consists simply
of order-preserving maps F, G satisfying the two-way rule or “bicondition”:

Fa ≤ x .
a ≤ Gx

For each p ∈ P, the unit is therefore an element p ≤ GFp that is least among all x
with p ≤ Gx. Dually, for each q ∈ Q the counit is an element FGq ≤ q that is greatest
among all x with Fx ≤ q. Such a setup on ordered sets is sometimes called a Galois
connection.
Examples 2.1.32.

1. An important example is the adjunction on powersets induced by any function
f : A→ B, between the inverse image operation f −1 and the direct image f [−],

P(A) P(B)
f −1

f [−]

Here we have an adjunction f [−] a f −1 as indicated by the bicondition

f [U] ⊆ V .
U ⊆ f −1(V)

which is plainly valid for all subsets U ⊆ A and V ⊆ B. The inverse image
operation f −1 : P(B) → P(A) also has a right adjoint, sometimes called the dual
image, given by

f∗(U) � {b ∈ B | f −1(b) ⊆ U}.

2. Let 1 denote the singleton poset {∗} with ∗ ≤ ∗. For each ordered set X, the
unique map X

!−→ 1 is clearly order preserving. If it has a right adjoint then it is
a map > : 1→ X satisfying, for all x ∈ X, x ≤ >. Thus, the existence of a top
element in X provides the right adjoint of !. Dually, X

!−→ 1 has a left adjoint if
and only if there is a ⊥ : 1→ X with ⊥ ≤ x, for all x ∈ x, which is to say if and
only if X has a bottom element.
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3. Let P be an ordered set and let S ⊆ P. An element x ∈ P is an upper bound of
S if s ≤ x for all s ∈ S. A lower bound is defined dually. The set of all upper
bounds of S is denoted by Su and the set of all lower bounds by Sl :

Su :� {x ∈ P | (∀s ∈ S)s ≤ x} and Sl :� {x ∈ P | (∀s ∈ S)s ≥ x}.

Since ≤ is transitive, Su is always an upset and Sl a downset. It is easy to see
that it turns out to be another example of adjunction (Isbell conjugation)

P(A) P(A)op
l

u

between P(A) and P(A)op for which (↓x)u �↑x and (↑x)l �↓x.

4. Another characteristic way in which adjoints can arise is the following. Let R
be a binary relation between members of the set X and members of the set Y.
We define F : P(X) → P(Y)op by putting

F(A) � { b | (∀a ∈ A)aRb }

for A ⊆ X. Similarly, define G : P(Y)op → P(X) by putting

G(B) � { a | (∀b ∈ B)aRb }

for B ⊆ Y. It is easy to see that F a G. We just have to prove that for any
A ⊆ X, B ⊆ Y , F(A) ⊇ B if and only if A ⊆ G(B). But simply by applying
definitions we see F(A) ⊇ B if and only if (∀b ∈ B)(∀a ∈ A)aRb if and only if
(∀a ∈ A)(∀b ∈ B)aRb if and only if A ⊆ G(B). Let us say that adjoints produced
in this way is relation-generated. We shall see in Section 4.2.1 a fundamental
example of this kind of adjoints relation-generated.

Corollary 2.1.33. Let

P Q
F

G

be order-preserving maps between posets, and regard them as a functors. Then F a G if and

only if for all x ∈ P and a ∈ Q

Fa ≤ x if and only if a ≤ Gx

Equivalently, in terms of unit and counit, F a G if and only if for all x ∈ P and a ∈ Q

FGx ≤ x if and only if a ≤ GFa

Moreover, if these hold, then FGF � F and GFG � G and F and G restrict to a bĳection

between the subset {a | a � GF(a)} and {x | x � FG(x)} of Q and P, respectively.

Proof. See Johnstone (1982), Mac Lane (1998). �
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Remark 2.1.34.

1. Given ordered sets and order preserving maps

P Q Z
F

G

K

H

if F a G and H a K, then H ◦ F a G ◦ K.

2. Remember that an order preserving map F : P → Q also determines an order
preserving map from Qop from Pop, which we denote by Fop : Qop → Pop. If
F a G then Gop a Fop as a consequence of duality principle.

3. If an order preserving map has a right adjoint then it is essentially unique: for
F : P → Q, if F a G and F a H then G ' H.

4. Let

P Q
F

G

be a couple of posets and order preservingmaps such that F a G. Since GFG � G,
if G is injective, FG � 1P ; if G is surjective, GF � 1Q . Since FGF � F, if F is
injective, GF � 1Q ; if G is surjective, FG � 1P .

Closure Operators and Reflections on Posets

Closely related to adjunction, we have the important concept of closure operator and
dually of interior operator. As we have just said, for any adjunction F a G it holds

FGF � F and GFG � G.

Therefore, setting

cl :� GF : P → P and int :� FG : Q → Q,

we see immediately that, for all x, y ∈ P, we obtain two order preserving maps
cl : P → P and int : Q → Q such that

cl cl � cl, 1P ≤ cl and int � int int, int ≤ 1Q .

Any such map cl is called a closure operator on X, and any such int is called an interior

operator on X. With cl and int induced by f a 1 as discussed, the last part of the
above corollary 2.1.33, which is to say that f and 1 can be restricted to an equivalence
between the subsets {a | a � GF(a)} and {x | x � FG(x)} of Q and P, can be rephrased
as an equivalence between subsets

Fix(cl) :� {x ∈ X | cl(x) � x} and Fix(int) :� {y ∈ Y | int(y) � y},
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of closed and open elements, also referred to as fixpoints of c and d, respectively. The
following diagram summarizes this situation:

X Y

Fix(cl) Fix(int)

F

G

F

G

For any closure operator cl on X we can easily recover an adjunction as well. Let
i : Fix(cl) ↪→ X be the inclusion and p the factorization of cl through Fix(cl). It can be
proved that p a i:

X Fix(cl)
p

i

In particular, since i is injective, it follows from remark 2.1.34(4) that p ◦ i(k) � k for
all k ∈ Fix(cl). Hence, a closure operator induces a reflection (see definition 2.1.31).

We give now a definition and a lemma that delineate the notion of reflection in the
specific case of posets and its relation with closure operator.
Definition 2.1.35. An order embedding i : X ↪→ A is said to be reflective (coreflective)
if the inclusion i has a left (right) adjoint. The left (right) adjoint is called the reflector
(coreflector).
Lemma 2.1.36. An order embedding i : X ↪→ A is reflective with reflector p,

A X
p

i

if and only if pi � 1X or, equivalently, ip : A→ A is a closure operator.

Proof. See Wood (2004). �

Of course, the dual result holds for coreflective order embedding that, instead of being
associated with a closure operator, is given by an interior operator.

It can be easily observed that a closure operator is determined by its image, i.e. its
fixsets.
Corollary 2.1.37. For any ordered set X, there are a bĳection between the following sets:

(i) The set of closure operators on X;

(ii) The set of fixsets Q ⊆ X, i.e. the set of reflective order embeddings.

Proof. It follows from Lemma 2.1.36. �

In the following, it is convenient to suppress the difference of notation between reflector
and closure operator insofar the reflector is basically the same map, just restricted to
the fixset on the codomain.
Examples 2.1.38.
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1. A fundamental example of closure operator, which we have already met, is the
downward closure operator. For any ordered set X, the map

x 7−→↓x,

which is an order embedding, induces a closure operator

↓: P(X) −→ P(X)

where the set Fix(↓) is nothing but the poset of downsets ofDo(X).

2. Observe that for any ordered set X, the order embedding i : Do(X) ↪→ P(X) is
also coreflective, i.e. provided with an interior operator

⇓: P(X) −→ P(X)

given by ⇓S �
⋃{↓ a | ↓ a ⊆ S}. The set Fix(⇓) is again the poset of downsets

of Do(X). We can say that the downward closure operator gives us back the
smallest downset generated by a set, while the interior operator ⇓ just defined
gives us back the largest downset included (cogenerated) in a set.

3. Dually, another fundamental example of closure operator, which we shall be
heavily exploited in the following, is the upward closure operator. For any
ordered set X, the map

x 7−→↑x,

induces a closure operator

↑: P(X) −→ P(X)

where the set Fix(↑) is nothing but the poset of upsets ofUp(X).

4. Observe that for any ordered set X, the order embedding i : Up(X) ↪→ P(X) is
also coreflective, i.e. provided with an interior operator

⇑: P(X) −→ P(X)

given by ⇑ S �
⋃{↑ a | ↑ a ⊆ S}. The set Fix(⇑) is again the poset of upsets of

Do(X). We can say that the upward closure operator gives us back the smallest
upset generated by a set, while the interior operator ⇑ just defined gives us back
the largest upset included (cogenerated) in a set.

Remark 2.1.39. In anticipation of Section 3.3, it can be useful to express the downward
and upward interior operators in terms of upward and downward closure operators,
respectively.

For the properties of closure operators, {S ⊆↓{S, for all S ∈ P(X). Then S ⊇ {↓{S.
As a consequence, ↑ y ⊆ { ↓ {S implies ↑ y ⊆ S. Vice versa, ↑ y ⊆ S if and only
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if { ↑ y ⊇ {S. For the properties of closure operators and for the fact that { ↑ y
is a downset, { ↑ y ⊇ {S implies { ↑ y ⊇↓{S, which implies ↑ y ⊆ { ↓{S. As a
consequence, ⇑� {↓{. Analogously, it is easy to see that ⇓� {↑{.

2.2 Topological Spaces, Specialization Order on Topological
Spaces, Ordered Set as Topology

Deeply connectedwith the notion of closure operator, even for historical reasons, there
is the notion of topological space. The notion of topological space aims to axiomatize
the idea of a space as a collection of points that hang together in a continuous way.
As we shall see in the following, topological spaces equipped with extra properties
and structures are models for intuitionistic and intermediate logics. We present first
the standard definition and then a list of different equivalent definitions in order to
connect our discussion with Section 2.1.
Definition 2.2.1. A topological space is a set X equipped with τ, a collection of subsets
of X which are closed under

(1) finite intersections;

(2) arbitrary unions.

The elements of τ are called open sets and the collection τ is called a topology on X.
Remark 2.2.2. Since X itself is the intersection of zero subsets, it is open, and since
the empty set ∅ is the union of zero subsets, it is also open. Moreover, every open
subset U of X contains the empty set and is contained in X

∅ ⊂ U ⊂ X ,

so that the topology of X is determined by a poset of open subsets O(X) with bottom
element ⊥ � ∅ and top element > � X.
Definition 2.2.3. Amorphisms between topological spaces f : X → Y is a continuous
function: a function f : X → Y of the underlying sets such that the inverse image of
every open set of Y is an open set of X. We can also have the notion of open morphism:
that is, a function f : X → Y such that the direct image of every open set of X is an
open set of Y. Likewise, a closed morphism is a function which maps closed sets to
closed sets.

Topological spaces with continuous maps between them form a category, usually
denoted Top.
Remark 2.2.4. The definition of continuous function f : X → Y is such that it induces
a morphism of the corresponding collections of opens the other way around

f −1 : O(Y) → O(X).
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And this is not just a morphism of posets but even of (complete) lattices. For more on
this see in Chapter 3.

There are many equivalent ways to define a topological space. A non-exhaustive list
follows:

• A set X with a collections of closed sets (the complements of the open sets)
satisfying dual axioms.

• A set X with any collection of subsets whatsoever, to be thought of as a subbase
for a topology.

• A pair (X, int), where int : P(X) → P(X) is an interior operator on the power set
of X. The open sets are exactly the fixed points of int.

• A pair (X, cl) where cl : P(X) → P(X) is a closure operator satisfying axioms
dual to those of int. The closed sets are the fixed points of cl.

Let us introduce the the fundamental topological concept of compactness that may
be regarded as a substitute for finiteness. All topological spaces we shall use in the
Chapter 3 are compact.
Definition 2.2.5. Let (X, τ) be a topological space and let U :� {Ui}i∈I ⊆ τ. The
family U is called an open cover of Y ⊆ X if Y ⊆ ⋃

i∈I Ui . A finite subset of U whose
union still contains Y is a finite subcover. We say Y is compact if every open cover of Y
has a finite subcover.

In Example 1 we have seen that for any map f : A→ B, there are the induced left and
right adjoints of the inverse image f −1 on powersets, the direct image f [−] and the
dual image f∗,

P(B) P(A)
f [−]

f −1
P(A) P(B)

f −1

f∗

Note that if A and B are topological spaces and f : A → B is continuous, then f −1

restricts to the open sets f −1 : O(B) → O(A). Now the left adjoint f [−] need not exist
on open sets, but the right adjoint f∗ still does.

O(A) O(B)
f −1

f∗

Also, the condition of continuity can be equivalently written in terms of closure
operator in the following ways. A map f : X → Y is continuous if

f [cl(A)] ⊆ cl( f [A]), ∀A ⊆ X (closed if f [cl(A)] ⊇ cl( f [A]))
cl( f −1(B)) ⊆ f −1[cl(B)], ∀B ⊆ Y (open if cl( f −1(B)) ⊇ f −1[cl(B)])
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Moreover, any closure operator cl on P(X) gives rise to an interior operator int on
P(X) by complementation

{ clA � int{A.

Therefore the continuity condition can be equivalently written via interior operator:

int( f [A]) ⊆ f [int(A)] ∀A ⊆ X (open if int( f [A]) ⊇ f [int(A)])
f −1[int(B)] ⊇ int( f −1(B)) ∀B ⊆ Y (open if f −1[int(B)] ⊇ int( f −1(B)))

Separation Axioms, Specialization Order and Alexandrov Topologies

The plain definition of topological space happens to allow examples where distinct
points or distinct subsets of the underlying set appear as more-or-less unseparable as
seen by the topology on that set. In many circumstances, it can be useful to exclude at
least some of such degenerate examples from the discussion. The relevant conditions
to be imposed on top of the plain axioms of a topological space are hence known as
separation axioms.

These axioms are all of the form of saying that two subsets (of certain forms) in the
topological space are ‘separated’ from each other in one sense if they are ‘separated’
in a (generally) weaker sense. For example the weakest axiom (called T0) demands
that if two points are distinct as elements of the underlying set of points, then there
exists at least one open subset that contains one but not the other.

In this fashion, one may impose a hierarchy of stronger axioms. For example de-
manding that given two distinct points, then each of them is contained in some open
subset not containing the other (T1) or that such a pair of open subsets around two
distinct points may in addition be chosen to be disjoint (T2). This last condition, T2,
also called the Hausdorff condition is the most common among all separation axioms.
Often (but by far not always) this is considered by default. We focus our attention on
these separation axioms (see table 2.1).

Table 2.1: Separation Axioms

T0-axiom If a, b ∈ X, there exists an open set V ∈ O(X) such that either a ∈ V
and b < V , or a < V and b ∈ V .

T1-axiom If a, b ∈ X, there exists open sets V , W ∈ O(X), containing a and b
respectively, such that b < V and a < W .

T2-axiom If a, b ∈ X, there exists disjoint open sets V , W ∈ O(X), containing a
and b respectively.

We may define a partial order on the points of any T0 topological space X by x ≤ y iff
x is in the closure of {y} (equivalently, cl{x} ⊆ cl{y}). If this relation holds we say
x is a specialization of y. It is clear that the relation ≤ is reflexive and transitive; its
antisymmetry is precisely the T0 axiom. Note also that any continuous map between
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T0 topological spaces is necessarily order-preserving, and that the order is discrete
(i.e. satisfies x ≤ y iff x � y) if and only if X is a T1 topological space.

In the converse direction, suppose we are given a poset (X,≤). Can we find a topology
on X for which ≤ is the specialization ordering? We define the Alexandrov topology
to be justUp(X), the collection of all upper sets in X; this is clearly a topology, since it
is closed under arbitrary unions and intersections. Thus a map between two ordered
sets is monotone if and only if it is a continuous map according to the corresponding
Alexandrov topologies. Note also that every finite topological space is a topological
space with such a topology.

In category-theoretic terms, Let Pos be the category of orders and monotone maps
between them and let Top0 be the category of T0 topological spaces and monotone
maps between them. We have a functor LPos : Pos → Top0 sending an order (P,≤) to
the couple (P, Up(P)), whereUp(P) is the Alexandrov topology on P, and sending a
monotone map f : (P,≤P) → (Q,≤Q) to the continuous function f : (P, Up(P)) →
(Q, Up(Q)) of Top0. It can be possible to define a functor RPos : Top0 → Pos which
is right adjoint to LPos as follows. RPos sends an object (X, τX) of Top0 to (X,≤), where
≤ is the order on X given by the specialization order on X induced by the topology
τX , and an arrow f : (X, τX) → (Y, τY) to the monotone map f : X → Y.
Proposition 2.2.6. The functor LPos : Pos → Top0 is left adjoint to the functor RPos :
Top0 → Pos, and identifies Pos with a full coreflective subcategory of Top0.

Proof. See Caramello (2016). �

Corollary 2.2.7. If we restrict to a finite underlying set, the coreflection between the categories

Posf and Top0 f of finite posets and finite T0-topological spaces becomes an equivalence of

categories.

As a consequence of the above proposition, if we restrict our consideration on the
Alexandrov topology, the previous continuity conditions given in terms of closure
and interior operators simply assert the monotonicity of a given map. Since we have
definedAlexandrov topology by choosing the open sets to be the upper sets, we obtain
the monotonicity condition stated via upward map. A map f : X → Y is monotone if

↑ f [A] ⊆ f [↑A] ∀A ⊆ X (open if ↑ f [A] ⊇ f [↑A])
f −1[↑B] ⊆↑ f −1(B) ∀B ⊆ Y (open if f −1[↑B] ⊇↑ f −1(B)).

Hence we can infer that, from a topological point of view, a p-morphism is an open
continuous map with respect to Alexandrov topology.

2.2.1 The Category of Ordered T0 Topological Spaces

In the light of giving a glance to the general case, we introduce the category of ordered
T0 topological spaces that will be essential for the representation theory of Heyting
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Algebras. They are a sort of generalization of the previous examples inwhich, however,
the order relation and the topology are not inextricably intertwined.
Definition 2.2.8. We define a ordered T0 topological space as a triple (X, τ,≤), where
X is a set, τ is a topology on X and ≤ is a order relation on X. Ordered T0 topological
spaces form a category, which we denote Ptop0, whose arrows f : (X, τX ,≤X) →
(Y, τY ,≤Y) are the maps f : X → Y which are order-preserving and continuous;
composition and identities inPtop0 aredefinedby composing theunderlying functions
set-theoretically.

LetPos be the categoryof orders andmonotonemapsbetween them. Wehave a functor
LPos : Pos → Ptop0 sending a order (P,≤) to the triple (P, Up(P),≤), whereUp(P) is
the Alexandrov topology on P, and sending a monotone map f : (P,≤P) → (Q,≤Q) to
the arrow f : (P, Up(P),≤P) → (Q, Up(Q),≤Q) of Ptop0. It can be possible to define
a functor RPos : Ptop0 → Pos which is right adjoint to LPos as follows. RPos sends an
object (X, τ,≤) of Ptop0 to (X,≤), where ≤ is the order on X given by the intersection
between ≤ and the specialization order on X induced by the topology τ, and an arrow
f : (X, τX ,≤X) → (Y, τY ,≤Y) to the monotone map f : (X,≤X) → (Y,≤Y).
Proposition 2.2.9. The functor LPos : Pos → Ptop0 is left adjoint to the functor RPos :
Ptop0 → Pos, and identifies Pos with a full coreflective subcategory of Ptop0.

Proof. See Caramello (2016). �

Corollary 2.2.10. If we restrict to a finite underlying set, the coreflection between the categories
Posf and Ptop0 f of finite posets and finite T0-topological spaces becomes an equivalence of

categories.

Among ordered T0 topological spaces, we are especially interested in ones satisfying
a further separation condition guaranteeing that the spaces in question are extremely
scattered, contrary to topological spaces encountered in elementary analysis and
geometry.
Definition 2.2.11. Suppose that (X,≤, τ) is a ordered T0 topological space. It is said
to be a totally order-disconnected if, given x, y ∈ X with x � y, there exists a clopen
upset U such that x ∈ U and y < U. We call a compact totally order disconnected
space a Priestley space.

We shall denote by CU(X) the family of clopen upset of a Priestley space X. When X
is finite, CU(X) coincides withUp(X). As we shall see in the following these spaces
have many nice properties from a logical point of view. This is illustrated by the
following lemma.
Lemma 2.2.12. Let (X,≤, τ) be a Priestley space.

(i) x ≤ y in X if and only if x ∈ U implies y ∈ U for every U ∈ CU(X).

(ii) (a) Let Y be a closed upset in X and let x < Y. Then there exists a clopen upset U such

that Y ⊆ U and x < U.
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(b) Let Y and Z be disjoint closed subsets of X such that Y is a upset and Z is an downset.

Then there exists a clopen upset U such that Y ⊆ U and Z ∩U � ∅.

Proof. See Davey and Priestley (2002). �

We shall consider the category PS of Pristeley spaces, where maps are continuous
and order preserving maps, and also the category ES of Esakia spaces (see Section
3.3.6).
Examples 2.2.13.

1. Denote by N∞ the set of natural numbers with an additional point,∞, adjoined.
We define τ as follows: a subset U of N∞ belongs to τ if either

(a) ∞ < U, or

(b) ∞ ∈ U and N∞\U is finite.

It is easy to see that τ is a topology and a subset V of N∞ is clopen if and only if
both V and N∞\V are open. It follows that the clopen subsets of N∞ are the
finite sets not containing∞ and their complements. It ican be proved that N∞
is compact and totally disconnected. It is also Hausdorff because, given distinct
points x, y ∈ N∞, we may assume without loss of generality that x , ∞; then
{x} is clopen and contains x but not y.

Also, we define an order as follows: order N∞ as the chain Nop with∞ adjoined
as bottom element, as in Figure 2.3(i). Take x � y. Then y < x and ↑x, which is
clopen because it is finite and does not contain∞, contains x but not y. Hence
we have a Priestley space; its collection of clopen up-sets is isomorphic to the
chain 1 + Nop.

1

2

3

∞

(i)

1

2

3

4

5

6

7

∞

(ii)

Figure 2.3: Priestley spaces obtained from N∞.

2. Alternatively, consider the ordered space Y obtained by equipping N∞ with
the order depicted in Figure 2.3(ii). We have n − 1−−≺ n and n + 1−−≺ n for each
even n.
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For each n ∈ N, the upset ↑n is finite and does not contain∞ and so is clopen.
Given x � y in Y, we claim that there exists U ∈ CU(Y) such that x ∈ U and
y < U. Either x , ∞, in which case y <↑x and we may take U �↑x, or x � ∞, in
which case we may take U � Y\{1, 2, . . . , 2y + 1}. Hence Y is a Priestley space.

3. Let C be the Cantor set, regarded as a subset of [0, 1]. Then C is compact, since
C is obtained from [0, 1] by removing open intervals. Also, if x � y in C, i.e.
y < x, there exists u such that y < u < x and u < C. Then C∩ ↑ u is clopen
because C

⋂ ↑u � [u, 1]⋂ C � (u, 1]⋂ C, and contains x without containing y.
Hence, with the order inherited from [0, 1], C it is a Priestley space.
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3 Lattices and Heyting Algebras

In this Chapter we shall introduce the main algebraic structures which will be in-
vestigated within this work. Lattices and Heyting algebras, namely those lattices
that provide the algebraic conceptualization of intermediate logics, are obtained by
enriching posets by some algebraic operations. We shall also deal with representa-
tion theorems for distributive lattices and Heyting algebras which reveal the deeply
connection of those algebraic structures with Priestley spaces.

3.1 Lattices

Many important properties of an ordered set P are expressed in terms of the existence
of certain upper bounds or lower bounds of subsets of P. Two of the most important
classes of ordered sets defined in this way are lattices and complete lattices. Here we
present the basic theory of such ordered sets, and also consider lattices as algebraic
structures.

3.1.1 Lattices as Ordered Sets

Definition 3.1.1. Let P be an ordered set and let S ⊆ P. An element x ∈ P is an upper

bound of S if s ≤ x for all s ∈ S. A lower bound is defined dually: an element x ∈ P is
an lower bound of S if x ≤ s for all s ∈ S.

Moreover, x is the least upper bound of S if

(i) x is an upper bound of S, and

(ii) x ≤ y for all upper bounds y of S.

The least upper bound of S exists if and only if there exists x ∈ P such that

(∀y ∈ P)[((∀s ∈ S)s ≤ y) ⇔ x ≤ y],

and this characterizes the least upper bound of S.

Dually, x is the greatest lower bound of S if

(i) x is a lower bound of S, and

(ii) y ≤ x for all lower bounds y of S.
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The antisymmetry axiom in the poset definition ensures that the least upper bounds
and greatest lower bounds are unique when they exists. The least upper bound of S
is also called the supremum of S and is denoted by

∨
S; the greatest lower bound of S

is also called the infimum of S and is denoted by
∧

S.

In the two extreme cases, where S is empty or S is P itself, it is easily seen that if P has
a top element, then

∨
P � >. By duality,

∧
P � ⊥ whenever P has a bottom element.

Now let S be the empty subset of P. Then every element x ∈ P satisfies s ≤ x for all
s ∈ S. Thus, if P has a bottom element

∧ ∅ � ⊥. Dually,
∨ ∅ � > whenever P has a

top element. Also, we write x ∨ y in place of
∨{x, y} when it exists and x ∨ y in place

of
∧{x, y} when it exists.

We shall focus on ordered sets in which x ∨ y and x ∧ y exist for all x, y ∈ P.

Let P be a non empty ordered set.
Definition 3.1.2.

(i) If x ∨ y and x ∧ y exist for all x, y ∈ P, then P is called a lattice.

(ii) If
∨

and
∧

S exist for all S ⊆ P, then P is called a complete lattice.
Proposition 3.1.3. Let P be a lattice. Then for all a, b, c, d ∈ P,

(i) a ≤ b implies a ∨ c ≤ b ∨ c and a ∧ c ≤ b ∧ c,

(ii) a ≤ b and c ≤ d imply a ∨ c ≤ b ∨ d and a ∧ c ≤ b ∧ d.

Proof. �

Examples 3.1.4.

1. For any set X, the ordered set (P(X);⊆) is a complete lattice in which∨
i∈I

Ai �
⋃
i∈I

Ai ,∧
i∈I

Ai �
⋂
i∈I

Ai .

We verify the assertion aboutmeets; that about joins is proved dually. Let {Ai}i∈I

be a family of elements of P(X). Since ⋂
i∈I Ai ⊆ A j for all j ∈ I, it follows that⋂

i∈I Ai is a lower bound for {Ai}i∈I . Also, if B ∈ P(X) is a lower bound of
{Ai}i∈I , then B ⊆ Ai for all i ∈ I and hence B ⊆ ⋂

i∈I Ai . Thus
⋂

i∈I Ai is indeed
the greatest lower bound of {Ai}i∈I in P(X).

2. Let ∅ , K ⊆ P(X). Then K is a lattice of subsets if it is closed under finite
unions and intersections and a complete lattice of subsets if it is closed under
arbitrary unions and intersections. IfK is a lattice of subsets, then (K ;⊆) is a
lattice in which A ∨ B � A ∪ B and A ∧ B � A ∩ B. Similarly, if L is a complete
lattice of subsets, then (K ;⊆) is a complete lattice with join given by set union
and meet given by set intersection.
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Let P be an ordered set and consider the ordered setDo(X) of all down-sets of
P introduced in . If {Ai}i∈I ⊆ Do(X), then ⋃

i∈I Ai and
⋂

i∈I Ai , both belong to
Do(X). HenceDo(X) is a complete lattice of subsets, called the down-set lattice
of P.

3.1.2 Lattices as Algebraic Structures

In the previous subsection we view a lattice as an ordered set. In this one we view it
as an algebraic structure. Given a lattice L, we may define binary operations join and
meet on the non-empty set L by

a ∨ b :�
∨
{a, b} and a ∧ b :�

∧
{a, b} (a, b ∈ L).

Observe that Proposition 3.1.3 ii says precisely that the operations ∨ : L2 → L and
∧ : L2 → L are order-preserving. In the following we explore the properties of these
binary operations. We first emphasize the connection between ∨,∧ and ≤.
Lemma 3.1.5. Let L be a lattice and let a, b ∈ L. Then the following are equivalent:

(i) a ≤ b;

(ii) a ∨ b � b;

(iii) a ∧ b � a.

Proof. See Davey and Priestley (2002). �

Theorem 3.1.6. Let L be a lattice. Then ∨ and ∧ satisfy, for all a, b, c ∈ L,

(a ∨ b) ∨ c � a ∨ (b ∨ c) (3.1)

(a ∧ b) ∧ c � a ∧ (b ∧ c) (3.2)

a ∨ b � b ∨ a (3.3)

a ∧ b � b ∧ a (3.4)

a ∨ a � a (3.5)

a ∧ a � a (3.6)

a ∨ (a ∧ b) � a (3.7)

a ∧ (a ∨ b) � a (3.8)

Proof. See Davey and Priestley (2002). �

Note that the dual of a statement about lattices phrased in terms of∨ and∧ is obtained
simply by interchanging ∨ and ∧ (this is the Duality Principle for lattices).

We now turn things round and start from a set carrying operations ∨ and ∧which
satisfy the identities given in the preceding theorem.
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Theorem 3.1.7. Let (L;∨,∧) be a non-empty set equipped with two binary operations which

satisfy 3.2-3.8 from 3.1.6.

1. For all a, b ∈ L, we have a ∨ b � b if and only if a ∧ b � a.

2. Define ≤ on L by a ≤ b if a ∨ b � b. Then ≤ is an order relation.

3. With ≤ as in (ii), (L;≤) is a lattice in which the original operations agree with the

induced operations, that is, for all a, b ∈ L,

a ∨ b � sup{a, b} and a ∧ b � in f {a, b}.

Proof. See Davey and Priestley (2002). �

Remark 3.1.8.

1. We have shown that lattices can be completely characterized in terms of the join
and meet operations. The above theorems say that the notion of lattice can be
defined either in terms of the order relation or in terms of the join and meet
operations.

2. Also, associativity of ∨ and ∧ allows us to write iterated joins and meets unam-
biguously without brackets. An easy induction shows that these correspond to
sups and infs in the expected way:∨

{x1, . . . , xn} � a1 ∨ · · · ∨ an ,

for a1, . . . , an ∈ L, and dually. Consequently,
∨

F and
∧

F exist for any finite,
non-empty subset F of a lattice.

Definition 3.1.9. A lattice (L;∨,∧) possessing ⊥ and > is called bounded. A finite
lattice is automatically bounded, with > �

∨
L and ⊥ �

∧
L.

Remark 3.1.10. We can also define meet and join operations entirely in terms of order
adjoints in the following way.

For X and Y posets, define (x, y) ≤ (u, v) if and only if x ≤ u and y ≤ v. It follows
that this is an order on X × Y, that the projection functions are order-preserving and
that X × Y together with the projections is a product of posets. It then follows that
the diagonal function ∆x : X → X ×X is order-preserving too. Assume that ∆x has
a right adjoint. Call it ∧ and write x ∧ y for ∧(x, y). The defining property is this:
z ≤ x ∧ y if and only if z ≤ x and z ≤ y. Taking z � x ∧ y we see that x ∧ y < x and
x ∧ y < y, so that x ∧ y is a ’lower bound’ for the set that one would like to write as
{x, y}. The defining property says that among all such lower bounds, z, x ∧ y is the
’greatest’. So ∧ is a greatest lower bound operation, often called ’meet’. Any other
such greatest lower bound operation is isomorphic to ∧.

Dually, ∆x : X → X ×X has a left adjoint if and only if for each pair of elements (x, y)
there is prescribed an element x ∨ y with the property that, for all z, x ∨ y ≤ z if and
only if x ≤ z and y ≤ z. Thus ∨ is a least upper bound operation, often called ’join’.
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3.1.3 Sublattices, Products and Homomorphisms

This Subsection presents methods for deriving new lattices.
Definition 3.1.11. Let L be a lattice and ∅ , M ⊆ L. Then M is a sublattice of L if

a, b ∈ M implies a ∨ b ∈ M and a ∧ b ∈ M

We denote the collection of all sublattices of L by Sub L and let Sub0 L � Sub L ∪ {∅}.
They are both ordered by inclusion.
Definition 3.1.12. Let L and K be lattices. Define ∨ and ∧ coordinate-wise on L × K,
as follows:

(l1, k1) ∨ (l2, k2) � (l1 ∨ l2, k1 ∨ k2),
(l1, k1) ∧ (l2, k2) � (l1 ∧ l2, k1 ∧ k2).

It is easy to check that L × K satisfies the identities 3.2-3.8 and therefore is a lattice.
Also

(l1, k1) ∨ (l2, k2) � (l2, k2) ⇔ (l1, k1) ≤ (l2, k2).

with respect to the order on L ×K defined in 2.1.12. Hence the lattice formed by taking
the ordered set product of lattices L and K is the same as that obtained by defining ∨
and ∧ coordinatewise on L × K.

Iterated products and powers are defined in the obvious way.

From the viewpoint of lattices as algebraic structures it is natural to regard as canonical
thosemaps between latticeswhich preserve the operations join andmeet. Since lattices
are also ordered sets, we need to discuss the relationship between these classes of
maps and order-preserving maps. We begin with some definitions.
Definition 3.1.13. Let L and K be lattices. A map f : L → K is said to be a lattice
homomorphism if f is join-preserving and meet-preserving, that is, for all a, b ∈ L,

f (a ∨ b) � f (a) ∨ f (b) and f (a ∧ b) � f (a) ∧ f (b).

A bĳective homomorphism is a (lattice) isomorphism. If f : L → K is a one-to-one
homomorphism, then the sublattice f (L) of K is isomorphic to L. We refer to f as an
embedding (of L into K) and we write L� K.
Remark 3.1.14. For bounded lattices L and K it is often appropriate to consider
homomorphisms f : L→ K such that f (⊥) � ⊥ and f (>) � >. Such maps are called
{⊥,>}-homomorphisms.

In general an order-preserving map may not be a homomorphism. However, as the
proposition below shows, there is no demarcation between order-isomorphism and
lattice isomorphism.
Proposition 3.1.15. Let L and K be lattices and f : L→ K a map.
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(i) The following are equivalent:

(a) f is order-preserving;

(b) (∀a, b ∈ L) f (a ∨ b) ≥ f (a) ∨ f (b);

(c) (∀a, b ∈ L) f (a ∧ b) ≤ f (a) ∧ f (b).

In particular, if f is a homomorphism, then f is order-preserving.

(ii) f is a lattice isomorphism if and only if it is an order-isomorphism.

Proof. See Davey and Priestley (2002). �

Also, It follows from this proposition that a lattice embedding L � K implies an
order embedding L ↪→ K. In Section 3.1.5, we shall discuss a condition for which the
converse is true.
Remark 3.1.16. Let f : L → K be a lattice homomorphism. If M ∈ Sub L then
f (M) ∈ Sub K. Also, if N ∈ Sub K then f −1(N) ∈ Sub0 L.

3.1.4 Ideals and Filters

Ideals and Filters are of fundamental importance in algebra, logic and topology. Filters,
specifically prime filters, which we consider after, form the basis for the representation
theory that we are going to present in the following sections. We start with the notion
of ideal.
Definition 3.1.17. Let L be a lattice. A non-empty subset J of L is called an ideal if

(i) a, b ∈ J implies a ∨ b ∈ J,

(ii) a ∈ L, b ∈ J and a ≤ b imply a ∈ J.

The definition can be also stated by declaring an ideal to be a non-empty down-set
closed under join. Clearly, every ideal J of a lattice L is a sublattice, since a ∧ b ≤ a for
any a, b ∈ L. A dual ideal is called a filter.
Definition 3.1.18. Specifically, a non-empty subset G of L is called a filter if

(i) a, b ∈ G implies a ∧ b ∈ G,

(ii) a ∈ L, b ∈ G and a ≥ b imply a ∈ G.

The set of all ideals of L is denoted by I(L) and carries the usual inclusion order; while
the set of all filters of L is denoted by F (L) and carries the opposite order.

An ideal or filter is called proper if it does not coincide with L. It can be easily shown
that an ideal J of a lattice with > is proper if and only if > < J, and dually, a filter G of
a lattice with ⊥ is proper if and only if ⊥ < G. For each a ∈ L, the set ↓a is an ideal; it
is known as the principal ideal generated by a. Dually, ↑a is a principal filter.
Examples 3.1.19.
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(1) In a finite lattice, every ideal or filter is principal: the ideal J equals ↓ ∨
J, and

dually for a filter.

(2) Let L and K be bounded lattices and f : L→ K a {⊥,>}-homomorphism. Then
f −1(⊥) is an ideal and f −1(>) is a filter in L (see Johnstone 1982).

(3) The following are ideals in P(X):

(a) all subsets not containing a fixed element of X;

(b) all finite subsets (this ideal is non-principal if X is infinite).

(4) Let (X, τ) be a topological space and let x ∈ X. Then the set {V ⊆ X | (∃U ∈ T)x ∈
U ⊆ V} is a filter in P(X).

3.1.5 Complete Lattices

We now return to complete lattices, which were briefly introduced at the start of
this section. Recall from Definition 3.1.2 that a complete lattice is defined to be a
non-empty, ordered set P such that the join (supremum),

∧
S, and the meet (infimum),∨

S, exist for every subset S of P.

We first collect together in a sequence of elementary lemmas useful information for
computing with arbitrary joins and meets, extending the results for binary joins and
meets presented earlier. The first lists some immediate consequences of the definitions
of least upper bound and greatest lower bound.
Lemma 3.1.20. Let P be an ordered set, let S, T ⊆ P and assume that

∨
S,

∨
T,

∧
S and∧

T exist in P.

(i) s ≤ ∨
S and s ≥ ∧

S for all s ∈ S.

(ii) Let x ∈ P; then x ≥ ∨
S if and only if x ≥ s for all s ∈ S.

(iii) Let x ∈ P; then x ≤ ∧
S if and only if x ≤ s for all s ∈ S.

(iv)

∨
S ≤ ∧

T if and only if s ≤ t for all s ∈ S and all t ∈ T.

(v) If S ⊆ T, then
∨

S ≤ ∨
T and

∧
S ≥ ∧

T.

A straightforward application of Lemma 3.1.20 yields the next one, which shows that
join and meet behave well with respect to set union.
Lemma 3.1.21. Let P be a lattice, let S, T ⊆ P and assume that

∨
S,

∨
T,

∧
S and

∧
T

exist in P. Then∨
(S ∪ T) � (

∨
S) ∨ (

∨
T) and

∧
(S ∪ T) � (

∧
S) ∧ (

∧
T)

An easy induction nowyields the following results, previously noted in remark 3.1.8(2),
but worth reiterating. The corollary follows easily from the definition of top and
bottom elements.
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Lemma 3.1.22. Let P be a lattice. Then

∨
F and

∧
F exist for every finite, non-empty subset

F of P.
Corollary 3.1.23. Every finite lattice is complete.

To show that an ordered set is a complete lattice requires only half as much work as
the definition would have us believe.
Lemma 3.1.24. Let P be an ordered set such that

∧
S exists in P for every non-empty subset

S of P. Then
∨

S exists in P for every subset S of P which has an upper bound in P; indeed,∨
S �

∧
Su

.

Proof. See Johnstone (1982), Davey and Priestley (2002). �

Theorem 3.1.25. An ordered set P is a complete lattice if and only if

∧
S exist for every

subset S of P.

Proof. See Davey and Priestley (2002). �

Adjoint Functor Theorem on Posets

We now describe how joins and meets interact with order-preserving maps and
order-isomorphisms. First we need a definition.
Definition 3.1.26. Let P and Q be ordered sets and φ : P → Q a map. Then we say
that φ preserves existing joins if whenever

∨
S exists in P then

∨
φ(S) exists in Q and

φ(∨ S) � ∨
φ(S). Preservation of existing meets is defined dually.

Lemma 3.1.27. Let P and Q be an ordered sets and φ : P → Q be an order preserving map.

(i) Assume that S ⊆ P is such that

∨
S exists in P and

∨
φS exists in Q. Then φ

∨
S ≥∨

φS. Dually, φ
∧

S ≤ ∧
φS if both meet exists.

(ii) Assume now that φ : P → Q is an order isomorphism. Then φ preserves all existing

joins and meets.

Proof. See Davey and Priestley (2002). �

Of course, there is a more general condition for preservation of joins and meets,
given in category-theoretic terms by the existence of adjunctions. Conversely, another
important result from category theory, the Adjoint Functor Theorem restricted to
ordered sets, establishes the preservation of joins and meets as a condition for the
existence of adjunctions.
Theorem 3.1.28. Let f : X → Y be a monotone function between ordered sets.

(i) If f has a right adjoint then it preserves all joins which exists in X. Dually If f has a

left adjoint then it preserves all meets.

(ii) Conversely, provided X has joins of all subsets, f has a right adjoint if it preserves them.

Dually, f has a left adjoint if X has and f preserves all meets.
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Proof. See Johnstone (1982), Pitts (1989). �

As a consequence, given a morphism f : X → Y such that f a 1, the right adjoint 1 is
easily seen to be given by the following formula:

1(y) �
∨
{x | f (x) ≤ y}. (3.9)

Dually, given a morphism 1 : Y → X such that f a 1, the left adjoint f is given by:

f (x) �
∧
{y | x ≤ 1(y)} (3.10)

Yoneda Embedding for Posets

Remember that for X any ordered set the map x 7→↓x is an order embedding. It is
useful to think of X as being contained inDo(X) and it can be useful to think about
adjoints for ↓: X → Do(X). A right adjoint would provide, for each downset S of X, a
largest element x with the property that ↓x ⊆ S. Since this must apply in particular to
S � ∅, the empty subset, and the ↓x are not empty, it follows that ↓ never has a right
adjoint.

The possibility of a left adjoint for ↓: X → Do(X) is a quite different matter. Recall
(the dual of) Proposition 3.1.28. Let S be a subset of X and assume that

∧
S exists. It

is characterized by the requirement 3.1.20(iii), x ≤ ∧
S if and only if, for all s in S,

x ≤ s. We have the comparison inequality ↓(∧ S) ≤ ∧{↓ s |s ∈ S}, provided the right
side exists, merely because ↓ is order-preserving.
Lemma 3.1.29. For any subset S of X,

∧{↓ s | s ∈ S} exists inDo(X) and if ∧ S exists in

X then the comparison inequality ↓(∧ S) ≤ ∧{↓ s |s ∈ S} is necessarily an equality.

Proof. See Wood (2004). �

Said otherwise, the order embedding ↓: X → Do(X) preserves any infima that exists
and can be useful to rephrasing the definition of completeness in a categorical manner.
Definition 3.1.30. An ordered set X is said to be complete if ↓: X → Do(X) has a left
adjoint.

Sometimes the order embedding ↓: X → Do(X) is called Yoneda embedding for
posets in analogy with the categorical one.

Now we can actually determine, with the help of the formulas 3.10, the left adjoint
of the order embedding ↓: X → Do(X). We have to find an order preserving F map
such as to satisfy, for every downset S of X,

F(S) �
∧
{x | S ⊆↓x}.
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It follows easily that the expression on the right is equal to
∧

Su , i.e. another instance
of

∨
S for S inDo(X).

Theorem 3.1.31. For an ordered set X, the following are equivalent:

(1) X is complete.

(2) For every downset S of X,

∧{x | S ⊆↓x} exists.

(3) For every downset S of X,

∨
S exists.

(4) For every subset S of X,

∨
S exists.

Proof. See Wood (2004). �

Reflective Embeddings and Completeness, Closure System

In Subsection 3.1.3 we mention to the fact that, if i : X ↪→ A is an order embedding
and A is a lattice, it does not follow that X is a sublattice of A. However, if the order
embedding is reflective (see Lemma 2.1.36), we have the following result:
Proposition 3.1.32. Reflective order embeddings of lattices are sublattices. In particular, the

embedding preserves arbitrary meets. Also, reflective order embeddings of complete lattices

are complete sublattices.

Proof. See Wood (2004). �

Note that ⊥ and joins in X are typically different from their counterparts in A. It can
be easily proved that they are given in terms of the reflector:∨

X

:� p(
∨

A

). (3.11)

Remember that left adjoints preserve bottom elements and joins but typically do not
preserve top elements andmeets. For i : X ↪→ A reflective with reflector p, one should
observe that nevertheless p preserves top elements. It is an important extra property
however for p to preserve meets (see Section 3.3).
Definition 3.1.33. IfK ⊆ P(X) is a non-empty family of subsets of X which satisfies
the conditions:

1. X ∈ K , and

2.
⋂

i∈I Ai ∈ K for every non-empty family {Ai}i∈I ⊆ K ,

thenK is called a topped meet structure on X. An alternative term is closure system.

It is easy to see that, as a consequence of a closure system gives rise to a complete
lattice.
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Proposition 3.1.34. Let X be a set and K be a closed system on X. Then K is a complete

lattice in which∧
i∈I

Ai �
⋂
i∈I

Ai and

∨
i∈I

Ai �
⋂
{B ∈ K |

⋃
i∈I

Ai ⊆ B}.

Proof. See Davey and Priestley (2002). �

The connection between closed set systems and closure operators is much like the
connection between lattice orderings and lattices, discussed in Subsection 3.1.1. Given
a closed set system on X, one may define a closure operator on P(X); given a closure
operator on P(X), one may define a closed set system on X. Moreover, these two
processes are inverses of each other. More precisely, let K ⊆ P(X) be a closed set
system on X. Define the function C on P(X) by

C(Y) �
⋂
{A ∈ K | Y ⊆ A}

for all Y ⊆ X. C turns out to be a closure operator on P(X). For the reverse definition,
let C be any closure operator on X. Define

K � {Y | C(Y) � Y}.

This correspondence also holds in general, not only for complete lattices of sets.
Proposition 3.1.35. For any complete lattice P, there is a bĳection between the following

sets:

(i) The set of closure operators on P;

(ii) The set of fixsets in P, i.e. subsets which are closed under arbitrary meets.

�

Examples 3.1.36.

1. Each of the following is a meet-structure and so forms a complete lattice under
inclusion:

• the subgroups, SubG, of a group G;

• the equivalence relations on a set X;

• the subspaces, SubV of a vector space V ;

• the convex subsets of a real vector space;

• Sub0 L, the sublattices of a lattice L, with the empty set added (note that
SubL is not closed under intersections, except when |L | � 1);

• the ideals of a lattice L with ⊥ (or, if L has no zero element, the ideals of L
with the empty set added), and dually for filters.
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2. The closed subsets of a topological space are closed under finite unions and
finite intersections and hence form a lattice of sets in which A ∨ B � A ∪ B
and A ∧ B � A ∩ B. In fact, the closed sets form a topped meet-structure and
consequently the lattice of closed sets is complete. The formulae for arbitrary
(rather than finite) joins and meets given in 3.1.34 and 3.11 show that, in general,
meet is given by intersection while the join of a family of closed sets is not their
union but is obtained by forming the closure of their union.

3. Since the open subsets of a topological space are closed under arbitrary union
and include the empty set, the dual of 3.1.31 shows that they form a complete
lattice under inclusion. The dual version of 3.1.34 and 3.11 shows that join and
meet are given by ∨

i∈I

Ai �
⋃
i∈I

Ai and
∧
i∈I

Ai � int(
⋂
i∈I

Ai)

where int(A) denotes the interior of A.

3.2 Distributive Lattices and Prime Filters

In Subsection 3.1.2 we began to introduce the algebraic theory of lattices, armed with
enough axioms on∨ and∧ to ensure that each lattice (L;∨,∧) arose from a lattice (L;≤)
and vice versa. Nowwe introduce distributivity identities linking join andmeet which
are not implied by the laws 3.2-3.8 defining lattices (see Theorem 3.1.6). These hold in
many of our examples of lattices, in particular in powersets and downsets/uppersets
lattices.

Also distributive lattices provide our first example of propositional theory, namely
the coherent theory of prime filters.

3.2.1 Distributive Lattices

Before formally introducing distributive lattices we prove two lemmas which will
put the definition of distributivity into perspective. The import of these lemmas is
discussed after.
Lemma 3.2.1. Let L be a lattice and let a, b, c ∈ L. Then a ∧ (b ∨ e) ≥ (a ∧ b) ∨ (a ∧ e),
and dually.

Proof. See Davey and Priestley (2002). �

Lemma 3.2.2. Let L be a lattice. Then the following are equivalent:

(∀a, b, c ∈ L) a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c); (3.12)

(∀a, b, c ∈ L) p ∨ (q ∧ r) � (p ∨ q) ∧ (p ∨ r). (3.13)
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Proof. See Davey and Priestley (2002). �

Definition 3.2.3. Let L be a lattice. L is said to be distributive if it satisfies the dis-
tributive law,

(∀a, b, c ∈ L) a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c).

Remark 3.2.4.

1. Lemma 3.2.1 shows that any lattice is “half-way” to being distributive. To
establish distributivity it suffices to check an inequality.

2. Distributivity can be defined either by 3.12 or by 3.13. Thus the apparent asym-
metry between join and meet in the above definition is illusory. In other words,
L is distributive if and only if Lop is.

Examples 3.2.5.

1. Any powerset lattice P(X) is distributive. More generally, any lattice of sets is
distributive. In Section 3.2.3 we prove the striking result that every distributive
lattice is isomorphic to a lattice of peculiar sets (see below Theorem 3.2.12).

2. Any chain is distributive.

⊥

p q r

>

Figure 3.1: The lattice M3.

3. Consider the lattice M3 (the diamond) shown in Figure 3.1. It is not distributive.
To see this, note that in the diagram of M3

p ∧ (q ∨ r) � p ∧> � p , ⊥ � ⊥∨⊥ � (p ∧ q) ∨ (p ∧ r).

This example turns out to play a crucial role in the Birkhoff’s characterisation of
distributive lattices (for further details see Davey and Priestley 2002).

As we saw in Subsection 3.1.3, new lattices can be manufactured by forming sub-
lattices, products and homomorphic images. Distributivity are preserved by these
constructions (see Davey and Priestley 2002).

3.2.2 Prime Filters

In Subsection 3.1.4, we introduced lattice ideals and filters as part of the development
of the algebraic theory of lattices. But we did not take the theory far enough to reveal
the importance of ideals, or of their order duals, filters. We now turn our attention to a



54 Chapter 3. Lattices and Heyting Algebras

class of ideals and filters which will serve very well as building blocks for distributive
lattices in order to yield a representation theorem. We need Zorn Lemma (zl) to show
that such ideals and filters exist.
Definition 3.2.6. Let L be a lattice. Recall from Definition 3.1.17 that a non-empty
subset J of L is called an ideal if

(i) a, b ∈ J implies a ∨ b ∈ J,

(ii) a ∈ L, b ∈ J and a ≤ b imply a ∈ J;

it is proper if J , L.

A proper ideal J of L is said to be prime if a, b ∈ L and a ∧ b ∈ J imply a ∈ J or b ∈ J.
The set of prime ideals of L is denoted Ip(L). It is ordered by set inclusion.
Definition 3.2.7. Let L be a lattice. Recall from 3.1.18 that a non-empty subset G of L
is called a filter if

(i) a, b ∈ G implies a ∧ b ∈ G,

(ii) a ∈ L, b ∈ G and a ≥ b imply a ∈ G.

it is proper if J , L.

A proper filter G of L is said to be prime if a, b ∈ L and a ∨ b ∈ G imply a ∈ G or b ∈ G.
The set of prime filters of L is denoted Fp(L). It is ordered by reverse set inclusion.
Proposition 3.2.8. A subset J of a lattice L is a prime ideal if and only if L \ J is a prime filter.

A subset J of a lattice L is a prime ideal if and only if J is the kernel of a {⊥,>}-homomorphism

f : L → 2. A subset J of a lattice L is a prime filter if and only if J is the cokernel of a

{⊥,>}-homomorphism f : L→ 2.

Proof. See Johnstone (1982). �

According to the last proposition above, there is a bĳection between the set of prime
ideals and the set of prime filters, namely Ip(L) ' Fp(L)op. Thus it is easy to switch
between Ip(L) and Fp(L). In the sequel we work predominantly with prime filters,
for logical reasons.

The question of the existence of prime elements has closer affinities with set theory
than with lattice theory. The statements (dfp) introduced below assert the existence of
certain prime filters. On one level, (dfp) may be taken as axiom, whose lattice-theoretic
implications we pursue. At a deeper level, it can be shown how (dfp) may be derived
from (zl) (See Davey and Priestley 2002).

We consider the following assertion, which embody the existence statements we shall
require.

(dfp) Given a distributive lattice L and an ideal J and a filter G of L such that J ∩G � ∅,
there exist F ∈ Fp(L) and I � L \ F ∈ Ip(L) such that J ⊆ I and G ⊆ F.
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In the remainder of the chapter we employ (zl). The following result for distributive
lattices is often referred to as the Prime Ideal Theorem.
Theorem 3.2.9. (zl) implies (dfp).

Proof. See Davey and Priestley (2002). �

3.2.3 Representation of Distributive Lattices: Priestley Duality

We now move to representation of distributive lattices. Let L be a distributive lattice
and let X � Fp(L) be its set of prime filters ordered, as usual, by order inclusion. We
shall obtain representations for L in two cases, finite and infinite. When L is finite, we
shall prove that L is isomorphic to the lattice Up (X) of up-sets of X.

In order to represent L in general we should equip X with the inclusion order and a
suitable topology. A candidate for a lattice isomorphic to L would then be the lattice
of all clopen up-sets of X. Our remarks above imply that this lattice coincides with
Up (X) when L is finite. Indeed, we shall prove in theorem 3.2.12 that a bounded
distributive lattice L is isomorphic to the lattice of clopen up-sets of Fp(L), ordered by
order inclusion and appropriately topologized.

Let L be a distributive lattice with ⊥ and > and for each a ∈ L let

Xa :� {F ∈ Fp(L) | a ∈ F},

as before. Let X :� Fp(L). We want a topology τ on X so that each Xa is clopen.
Accordingly, we want every element of

S :� {Xb | b ∈ L} ∪ {X\Xc | c ∈ L}

to be in τ. The family S contains sets of two types and it is also not closed under finite
intersections. We let

B :� {Xb ∩ (X\Xc) | b, c ∈ L}.

Since L has ⊥ and >, the set B contains S. Also B is closed under finite intersections.
Finally, we define τ as follows: U ∈ τ if U is a union of members of B. Then τ is the
smallest topology containing S; in the topological terminology, S is a subbasis for τ
and B a basis.
Theorem3.2.10. Let L be a bounded distributive lattice. Then the prime filter space (Fp(L), τ)
is compact.

Proof. See Davey and Priestley (2002). �

We can now characterize clopen up-sets in the dual space (Fp(L),⊇, τ) of a bounded
distributive lattice L.
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Lemma 3.2.11. Let L be a bounded distributive lattice with dual space (X,⊇, τ), where
X � Fp(L). Then X is a Priestley space and the clopen up-sets of X are exactly the sets Xa for

a ∈ L.

Proof. See Davey and Priestley (2002), Morandi (2005). �

If (X,⊇, τ) is a Priestley space, we denote by CU(X,⊇, τ) its lattice of clopen upsets.
Theorem 3.2.12 (Priestley’s representation theorem for distributive lattices). Let L be

a bounded distributive lattice. Then the map

ηL : a 7−→ Xa ∈ CU(Fp(L),⊇, τ)

is an isomorphism of L onto the lattice of clopen up-sets of the dual space (Fp(L);⊇, τ) of L.

Proof. See Davey and Priestley (2002), Morandi (2005). �

Our next task is to give a generalization in categorical terms of this result.

Denote the category of bounded distributive lattices and lattice homomorphisms by
DL and the category of Priestley spaces (compact totally order-disconnected spaces)
and continuous order-preserving maps by PS. We now define functors from DL to
PS and viceversa. Define maps Spec : DL→ PS and Clup : PS→ DL on objects by

Spec : L 7−→ Fp(L)(L ∈ DL) and Clup : X 7−→ CU(X)(X ∈ PS).

On maps, let f : L → M be a lattice homomorphism. Define Spec ( f ) : Fp(M) →
Fp(L) by Spec ( f )(Q) � f −1(Q). It is easy to see that this is a well-defined function,
since it is order preserving and the pullback of a prime filter under a lattice homo-
morphism is a prime filter. Moreover,

Spec ( f )−1(Xb) � {Q ∈ Fp(M) : b ∈ f −1(Q)} � {Q ∈ Fp(M) : f (b) ∈ Q} � X f (b).

Thus, Spec ( f ) is continuous. It is elementary to see that Spec does define a functor.

Next, we have defined Clup : PS → DL on objects. On maps, if 1 : X → Y is a
Priestley morphism, define Clup (1) : CU(Y) → CU(X) by Clup (1)(V) � 1−1(V).
Since a continuous map pulls back clopen up-sets to clopen up-sets, it is easy to see
that this is well-defined, and that Clup is a functor.

Theorem 3.2.12 asserts that, for all L ∈ DL, L ' Clup Spec(L). It is also necessary to
prove that, for all X ∈ PS, Spec Clup(X) ' X.
Proposition 3.2.13. Let X be a Priestley space. The the map

εX : x 7−→ εX(x) :� {U ∈ CU(X) | x ∈ U}

is an isomorphism of Priestley spaces between X and Fp(CU(X)).
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Proof. See Davey and Priestley (2002), Morandi (2005). �

This proposition, together with Theorem 3.2.12, can be lifted to a dual equivalence of
categories between distributive lattices and Priestley spaces.
Theorem 3.2.14. The functors Spec and Clup give controvariant equivalence of categories

between DL and PS.

Proof. See Davey and Priestley (2002), Morandi (2005). �

Let X, Y be Priestley spaces. It is easy to see that X
∐

Y is also a Priestley space. Hence,
we have the following useful “translation rules”.
Corollary 3.2.15. If X, Y ∈ PS, then

Clup(X
∐

Y) ' Clup(X) ×Clup(Y).

Moreover, if L, K ∈ DL, then

Spec(L × K) ' Spec(L)
∐

Spec(K).

In the finite case of interest in the following, topology can be dispensed with. In
fact, as a consequence of Proposition 2.2.9, the category of finite Priestley spaces
and continuous order-preserving maps is equivalent to the category of finite posets
and monotone maps via the equivalence between the categories of finite ordered T0

topological spaces and finite posets (see Corollary 2.2.10). So the clopen up-sets are
simply the upper sets, as we have noticed before.

Let now DL f and Pos f denote the categories of finite distributive lattices and their
homomorphisms, and of finite posets and monotone maps, respectively.

Let L be a finite distributive lattice. Then p ∈ L is said to be a join prime if p ≤ a ∨ b
implies that p ≤ a or p ≤ b. Let Jp(L) be the set of join prime elements of L. We
orderJp(L) by p v q if q ≤ p. Then (Jp(L),v) is a poset. Note that p v q if and only if
↑p ⊆↑q.
Lemma 3.2.16. Let L be a finite distributive lattice. If P is a filter of L, then P is prime if

and only if P �↑p for some p ∈ Jp(L).

Proof. See Davey and Priestley (2002), Morandi (2005). �

As a consequence, Fp(L) � {↑ x | x ∈ Jp(L)}. So, we (re)define functors from DL f

to Pos f and viceversa. Define maps Spec : DL f → Pos f and Up : Pos f → DL f on
objects by

Spec : L 7−→ Fp(L)(L ∈ DL f ) and Up : X 7−→ Up(X)(X ∈ Pos f ).
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On maps, let f : L → M be a lattice homomorphism. Define Spec ( f ) : Fp(M) →
Fp(L) by Spec ( f )(Q) � f −1(Q). It is easy to see that this is a well-defined function,
since it is order preserving and the pullback of a prime filter under a lattice homo-
morphism is a prime filter. Thus, Spec does define a functor.

Next, we have defined Up : Pos f → DL f on objects. On maps, if 1 : X → Y is a
monotone morphism, define Up (1) : Up(Y) → Up(X) by Up (1)(V) � 1−1(V). Since
a monotone map pulls back up-sets to up-sets, it is easy to see that this is well-defined,
and that Up is a functor.

Restricted to the finite case, Theorem 3.2.12 and Proposition 3.2.13 assert that, for all
L ∈ DL f , L ' Up Spec(L) and, for all X ∈ Pos f , Spec Up(X) ' X. Hence, likewise the
general case, these results can be lifted to a dual equivalence of categories between
finite distributive lattices and finite posets.
Theorem 3.2.17 (Birkhoff’s representation theorem). The functors Spec and Up give

controvariant equivalence of categories between DL f and Pos f .

Proof. See Davey and Priestley (2002), Morandi (2005). �

3.3 Heyting Algebras

For X a lattice and x an element of X, observe that x ∧− : X → X, the function whose
value at y is x ∧ y, is order-preserving. Suppose that x ∧− has a right adjoint which
we will call x ⇒ −. Then for any pair of elements y, z the definition of adjunction
gives x ∧ y ≤ z if and only if y ≤ x ⇒ z. It follows that x ⇒ z is a largest element
whose meet with x is less than or equal to z

x ⇒ z �

∨
{a | a ∧ x ≤ z}.

Given an arbitrary pair x, z in an arbitrary lattice, an element with this property may
or may not exist. Saying that x ∧− has a right adjoint ensures that x ⇒ z exists, for
all z.
Definition3.3.1. AHeytingAlgebra is a lattice inwhich, for each x, the order-preserving
x ∧− has a right adjoint (which we will denote by x ⇒ −).

Since we can define a lattice in terms of operations and equations without reference
to a previously given order, it is natural to ask if the same holds for Heyting algebras.
It does, as the next lemma shows.
Lemma3.3.2. For X an lattice with a further binary operation,− ⇒ −, (not a priori satisfying
any order conditions) the resulting structure is a Heyting algebra if and only if for all x, y, z
in X we have:

(i) x ⇒ x � >;

(ii) x ∧ (x ⇒ y) � x ∧ y;
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(iii) y ∧ (x ⇒ y) � y;

(iv) x ⇒ (y ∧ z) � (x ⇒ y) ∧ (x ⇒ z).

Proof. See Johnstone (1982), Borceux (1994), Wood (2004). �

One should immediately take special note of x ⇒ ⊥, a largest element whose meet
with x is less than or equal to ⊥. Since ⊥ is less than or equal to all elements we have
x ∧ (x ⇒ ⊥) � ⊥.
Proposition 3.3.3. In a Heyting algebra, putting ¬b � b ⇒ ⊥ yields the greatest element

such that ¬b ∧ b � ⊥, i.e.

(i) ¬b �
∨{a | a ∧ b � ⊥},

(ii) ¬b ∧ b � ⊥.

The element ¬b is called the pseudo-complement of b.

Proof. See Borceux (1994). �

Proposition 3.3.4. In a Heyting algebra, the following conditions hold:

(1) ¬⊥ � >, ⊥ � ¬>,

(2) a ≤ b implies ¬b ≤ ¬a,

(3) ¬a � ¬¬¬a,

(4) ¬(a ∧ b) ≤ ¬a ∨¬b

(5) ¬(a ∨ b) � ¬a ∧¬b,

(6) ¬a ∨ b ≤ a ⇒ b.

for all elements a, b.

Proof. See Borceux (1994), Wood (2004). �

We can also see pseudocomplementation as a special case of the following adjunction.
Proposition 3.3.5. For any y in a Heyting algebra X, − ⇒ y : Xop → X is order-preserving

and (− ⇒ y)op : X → Xop
is left adjoint to − ⇒ y.

Proof. See Wood (2004). �

Corollary 3.3.6. For any x, y in a Heyting algebra X, (− ⇒ ⊥)op a (− ⇒ ⊥). In other

words, x ≤ ¬y if and only if y ≤ ¬x.

Proof. See Wood (2004). �
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When the inequality (4) in Proposition 3.3.4 above is an isomorphism we say that de
Morgan’s law holds. A Heyting algebra satisfying the De Morgan laws, which may be
considered a weak form of the law of excluded middle (see the proposition below), is
called a De Morgan or Stone algebra.
Proposition 3.3.7. For a Heyting algebra H the following conditions are equivalent:

1. For all a, b ∈ H: ¬(a ∧ b) � ¬a ∨¬b;

2. For all a ∈ H: ¬a ∨¬¬a � >; (weak excluded middle law)

3. For all a, b ∈ H: ¬¬(a ∨ b) � ¬¬a ∨¬¬b;

4. X is a De Morgan algebra.

Proof. See Borceux (1994). �

Now, in the light of these observations, one is naturally tempted to ask if to be an
Heyting algebra implies to be a distributive lattice. That is the case and will be
established suddenly. Moreover, finite distributiveness implies Heyting.
Proposition 3.3.8. If X is a Heyting algebra then X is distributive.

Proof. See Borceux (1994), Wood (2004). �

In a Heyting algebra, since each x ∧− preserves any suprema that exist we also have
x ∧ (∨ S) � ∨{x ∧ s | s ∈ S} whenever

∨
S exists. As immediate consequence, we

have the following.
Proposition 3.3.9. A finite distributive lattice is a Heyting algebra.

Proof. See Wood (2004). �

Next we consider the even more special case of a boolean algebra.
Proposition 3.3.10. For a Heyting algebra X, the following are equivalent:

1. (− ⇒ ⊥)op : X → Xop
is also right adjoint to (− ⇒ ⊥) : Xop → X,

2. for all x, ¬¬x � x,

3. for all x, x ∨¬x � >,

4. X is a Boolean algebra.

Proof. See Wood (2004). �

There are several ways of passing back and forth between Boolean algebras and
Heyting algebras, often having to do with the double negation operator. A useful
lemma in this regard is the following.
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Proposition 3.3.11. Let H be a Heyting algebra. The double negation mapping

¬¬ : H → H, a 7→ ¬¬a,

satisfies the following conditions:

(i) a ≤ b implies ¬¬a ≤ ¬¬b;

(ii) a ≤ ¬¬a;

(iii) ¬¬⊥ � ⊥, ¬¬> � >;

(iv) ¬¬¬¬a � ¬¬a;

(v) ¬¬(a ∧ b) � ¬¬a ∧¬¬b;

(vi) ¬¬(a ⇒ b) � ¬¬a ⇒ ¬¬b.

Proof. See Borceux (1994). �

Corollary 3.3.12. The double negation ¬¬ : L→ L is a reflector that preserves finite meets.

Now let L¬¬ denote the poset of regular elements of L, namely those elements x ∈ L
such that ¬¬x � x. With the help of the proposition 3.3.11 above, the next one follows
easily.
Proposition 3.3.13. the poset H¬¬ of regular elements of a Heyting algebra H constitutes a

boolean algebra (though it is not in general a sublattice of H).

Proof. See Borceux (1994), Johnstone (1982). �

3.3.1 Nuclei on Heyting Algebras

We have just seen that double negation is an example of reflector that preserves finite
meets, sowe take nowa closer look to the properties of nuclei or local operators, namely
closure operators that preserve finite meets as well, that can be always associated to
meet-preserving reflectors (see Lemma 2.1.36 and Proposition 3.1.32).
Definition 3.3.14. Let L be a lattice. A nucleus on L is a map j : L→ L that satisfies
the following identities:

(1) a ≤ j(a),

(2) j( j(a)) � j(a),

(3) j(a ∧ b) � j(a) ∧ j(b).

In other words, a nucleus on L is a meet-preserving closure operator on L.

Note that the following properties of a nucleus might be included in the definition,
but they follow from the above:

(1’) j(>) � >,
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(2’) a ≤ b implies j(a) ≤ j(b).

Let L be a lattice. Since a nucleus j on L is a kind of closure operator on a poset, we
say that an element a of L is j-closed if j(a) � a. Further, a nucleus j is determined by
its image or, equivalently, by (2), its fixset L j � {a ∈ L | j(a) � a}, since conditions (2)
and (3) plus the fact that j is order-preserving say that the corresponding reflector is
left adjoint to the inclusion i : L j ↪→ L.

We begin with a simple but important result.
Proposition 3.3.15. If i : X ↪→ L is a reflective embedding with left adjoint l and L is a

Heyting algebra then l preserves finite meets if and only if, for all x ∈ X and a ∈ L, a ⇒ x is

in X.

Proof. See Wood (2004). �

Corollary 3.3.16. If i : X ↪→ L is a reflective embedding with meet-preserving reflector and

L is a Heyting algebra then X is a Heyting algebra.

Hence, in the context defined by the proposition above, condition (3) on j is equivalent
to the assertion that A j is an exponential ideal, namely that (a ⇒ b) ∈ A j whenever
b ∈ A j , where ⇒ is the Heyting implication in A. We have thus established the
following proposition which is a restatement of Proposition 3.1.35 for (complete)
Heyting algebras and nuclei.
Proposition 3.3.17. For any (complete) Heyting algebra H, there are bĳections between any

two of the following sets:

1. the set of nuclei on A;

2. the set of fixsets inA, i.e. subsets which are exponential ideals (and closed under arbitrary

meets).

Proof. See Johnstone (2002). �

As a consequence, wemay equivalently define a nucleus on a completeHeyting algebra
H to be a subset J of H that satisfies certain conditions, namely these identities:

(1)
∧

A ∈ J whenever A ⊆ J (using that H is a complete lattice),

(2) a ⇒ b ∈ J whenever b ∈ J (using that H is a Heyting algebra).

Then we recover j : H → H by

j(a) :�
∧
{b ∈ H | b ∈ J, a ≤ b}

and we have
J � {a ∈ H | j(a) � a}.
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3.3.2 The Categories He yt and Bool

In Subsction 3.2.3 we have introduced the category DL of distributive lattices and
their homomorphisms. At this point we can define another category which will be
useful.

Let He yt be the category whose objects are Heyting algebras and whose morphisms
are lattice homomorphismswhich preserve implication; thesemaps are calledHeyting
morphisms. The following result concerning Heyting morphims is crucial.
Proposition 3.3.18. Suppose that f : X → Y is a monotone, binarymeet preserving function

between ordered sets with binary meets and implications. Suppose also that f has a left adjoint

l : Y → X. Then f preserves implications if and only if l a f satisfies the following condition

(“Frobenius Reciprocity”): for all x ∈ X and y ∈ Y,

l(y ∧ f (x)) � l(y) ∧ x.

Proof. See Pitts (1989). �

Corollary 3.3.19. Suppose that f : X → Y is a monotone, binary meet preserving function

between ordered sets with binary meets and implications. Suppose also that f has a left adjoint

l : Y → X.

(1) If f preserves implications and l preserves >, then f is an order embedding;

(2) If f is an order embedding and l preserves finite meets, then f preserves implications.

Proof. See Johnstone (2002). �

Point (2) is basically a restatement of Corollary 3.3.16.

Also, let Bool be the category whose objects are boolean algebras and whose mor-
phisms are lattice homomorphisms; these maps preserve boolean negation. It can be
proved the following theorem.
Theorem 3.3.20. The assignment H → H¬¬ gives rise to a reflection

He yt Bool
b

i

In particular, Bool is a reflective subcategory of He yt.

Proof. See Balbes and Dwinger (2011). �

Examples 3.3.21.

(1) Any powerset lattice P(X) is a Heyting algebra, with implication defined by
A⇒ B :� {A ∪ B. For every element C ∈ P(X), we must prove that

C ∩A ⊆ B if and only if C ⊆ {A ∪ B.
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Since P(X) is a distributive lattice C ∩A ⊆ B implies

C � C ∩ (A ∪{A) � (C ∩A) ∪ (C ∩{A) ⊆ B ∪{A.

Conversely from C ⊆ {A ∪ B we deduce

C ∩A ⊆ ({A ∪ B) ∩A � ({A ∩A) ∪ (B ∩A) � B ∩A ⊆ B.

In particular P(X) is boolean and, for every A in P(X), ¬A � {A. Moreover,
if f : X → Y is a function then f −1 : P(Y) → P(X) as a lattice morphism is a
boolean algebra morphism as well (since it has both left and right adjoints, hence
preserves all meets and joins, and f −1({A) � { f −1(A)).

(2) Any (bounded) chain A is a Heyting algebra, with implication defined by:

a ⇒ b �


>, if a ≤ b,

b, otherwise.

However A is not boolean, in fact every a , ⊥ in A satisfies ¬¬a � >. Since
¬a � ⊥, for every a , ⊥, it turns out that A is a De Morgan algebra.

3.3.3 Do(X),Up(X) and O(X) as Heyting Algebras

Do(X) andUp(X) are Heyting algebras for any ordered set X; however, it does not
follow from Corollary 3.3.16 because the reflectors ↓: P(X) → Do(X) and ↑: P(X) →
Up(X) do not preserve meets. For instance, suppose that in X we have distinct x and
y with a lower bound b. Now ↓({x} ∩ {y}) � ∅ but b is in ↓{x}∩↓{y} so that the binary
meet comparison inequality for ↓ is strict.

As we shall see more generally from the next Proposition, for a topological space X we
have that O(X) is a Heyting algebra. Actually, for a topological space X, the inclusion
i : O(X) ↪→ P(X) is a coreflective order embedding with the coreflector given by the
interior operator (see Subection 3.1.5), and it is not difficult to see that i preserves
finite meets.
Proposition 3.3.22. If i : X ↪→ L is coreflective embedding with coreflector r and L is

a Heyting algebra, then r(ix ⇒ i y) provides a Heyting implication for X if and only if i
preserves meets.

Proof. See Wood (2004). �

So, for a given topological space X, the lattice of open sets O(X) is enriched with a
Heyting structure via the interior operator int : P(X) → O(X), that preserves the top
element and meets. For an ordered set X, downward and upward interior operators
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⇓,⇑provide such interior operators onP(X), with the extra property that they preserve
arbitrary infima (see examples 2.1.38(2) and 2.1.38(4)).
Corollary 3.3.23. For any topological space X, O(X) is a Heyting algebra and, in particular,

for any ordered set X,Do(X) andUp(X) are Heyting algebras.

Examples 3.3.24.

(1) As we have already said, if X is any topological space, O(X) is a complete distribu-
tive lattice, bounded above by X and below by ∅, with joins given by set-theoretic
unions and meets given by ∧

i∈I

Ai � int(
⋂
i∈I

Ai)

for any familyK of open subsets of X. Therefore O(X) has exactly one structure
of Heyting algebra compatible with its distributive-lattice structure; namely, for
any U, V ∈ O(X) the Heyting implication is given by

U ⇒ V :� int((X\U) ∪V)). (3.14)

In particular, the Heyting negation is given by

¬U :� int(X\U).

(2) As we have already seen, if X is an ordered set,Do(X) andUp(X) are complete
distributive lattices, bounded above by X and below by ∅, with joins given by
set-theoretic unions and meets. Therefore each of them have exactly one structure
of Heyting algebra compatible with their distributive-lattice structure; namely, for
any U, V ∈ Do(X) the Heyting implication is given by

U ⇒ V :� { ↑ {((X\U) ∪V)) � { ↑ (U ∩{V).

And for any U, V ∈ Up(X) it is given by

U ⇒ V :� {↓{((X\U) ∪V)) � {↓(U ∩{V).

In particular, their corresponding Heyting negations are given by

¬U :� {↓U and ¬U :� {↑U.

(See Remark 2.1.39).

3.3.4 Relation Between Openness and Heyting Implication

We shall need the following result from topology.
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Lemma 3.3.25. For a continuous map f : X → Y of topological spaces, the following are

equivalent:

(1) f is an open map.

(2) The lattice homomorphism f −1 : O(Y) → O(X) has a left adjoint f , which satisfies the
Frobenius reciprocity condition that

f [U ∩ f −1(V)] � f [U] ∩V .

for all U ∈ O(X), V ∈ O(Y).

(3) f −1 : O(Y) → O(X) is a homomorphism of complete Heyting algebras; i.e. it preserves

arbitrary meets and the Heyting implication operation.

Proof. See Johnstone (2002). �

Corollary 3.3.26. For a monotone map f : X → Y of posets, the following are equivalent:

(1) f is an p-morphism.

(2) The lattice homomorphism f −1 : Up(Y) → Up(X) has a left adjoint f , which satisfies

the Frobenius reciprocity condition that

f [U ∩ f −1(V)] � f [U] ∩V .

for all U ∈ Up(X), V ∈ Up(Y).

(3) f −1 : Up(Y) → Up(X) is a homomorphism of complete Heyting algebras; i.e. it

preserves arbitrary meets and the Heyting implication.

Note also that the last Corollary can be restated equivalently in terms ofDo(X).

3.3.5 Co-Heyting Algebras

Just like the lattice of open subsets of a topological space is the primeval example
of a Heyting algebra, its dual lattice of closed subsets is the primeval example of a
co-Heyting algebra.

In general, co-Heyting algebras are dual to Heyting algebras and, like them, they are
equipped with non-Boolean logical operators that make them very interesting.
Definition 3.3.27. A co-Heyting algebra is a bounded distributive lattice L equipped
with a binary subtraction operation⇐: L × L→ L such that x ⇐ y ≤ z iff x ≤ y ∨ z.

Existence of⇐ as left adjoint implies that y ∨− preservesmeets, hence the assumption
of distributivity in the definition is redundant and has been put in for emphasis only.
Co-Heyting algebras were initially called Brouwerian algebras.

Also a bi-Heyting algebra is a boundeddistributive lattice L that carries aHeyting algebra
structure with implication⇒ and a co-Heyting algebra structure with subtraction⇐.
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Clearly, there is also an alternative equational definition for co-Heyting algebras. It is
dual to the equational definition for Heyting algebras given by Lemma 3.3.2 above.
Examples 3.3.28.

(1) The lattice of closed subsets of a topological space is a co-Heyting algebra with
X ⇐ Y � cl(X ∩{Y).

(2) A Boolean algebra provides a (degenerate) example of a bi-Heyting algebra by
setting x ⇒ y :� ¬x ∨ y and x ⇐ y :� x ∧¬y.

Remark 3.3.29.

(a) a ⇐ b � ⊥ iff a ⇐ b ≤ ⊥ iff a ≤ b ∨⊥ iff a ≤ b. In particular, a ⇐ a � ⊥.

(b) As − ⇐ x has a right adjoint it preserves joins hence: (a ∨ b) ⇐ x � (a ⇐
x) ∨ (b ⇐ x).

(c) a ⇐ ⊥ ≤ a ⇐ ⊥ iff a ≤ ⊥∨ (a ⇐ ⊥) iff a ≤ a ⇐ ⊥. On the other hand, a ≤ ⊥∨ a
and the adjunction yield a ⇐ ⊥ ≤ a, hence a ⇐ ⊥ � a.

(d) Suppose a ≤ b ∨ x then a ⇐ b ≤ x. As from a ⇐ b ≤ a ⇐ b follows a ≤ b ∨ (a ⇐
b), hence a ⇐ b �

∧{x |a ≤ b ∨ x}.
Definition 3.3.30. The subtraction operation permits to define the co-Heyting negation

�: L→ L by setting
� a :� > ⇐ a.

Co-Heyting nagation � a is thus characterized as the smallest element in the lattice
for which � a ∨ a � >. It always holds � (a ∧ b) �� a∨ � b, but it can happen that
� (a ∨ b) ,� a∧ � b; however, �� (a ∨ b) ��� a∨ �� b always holds. More in general,
all the conditions obtained by dualizing the ones in Proposition 3.3.4 and 3.3.11 are
always valid in a co-Heyting algebras. For instance, �� a ≤ a.
Definition 3.3.31. Co-Heyting negation operator � in turn can then be used to define
the co-Heyting boundary operator ∂ : L→ L by

∂a :� a∧ � a.

That ∂a is not necessary trivial is dual to the non-validity of the tertium non datur, or
its equivalent conditions given by Proposition 3.3.10, for general Heyting algebras.

A great many useful identities can be proved in general for any co-Heyting algebra
(see Lawvere 1986, Reyes et al. 2004). For example

a ��� a ∨ ∂a,

for all a ∈ L, and
∂(a ∧ b) � (∂a ∧ b) ∨ (a ∧ ∂b),
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for all a, b ∈ L (Leibniz rule). Also evident and valid in any co-Heyting algebra is

∂(a ∨ b) ∨ ∂(a ∧ b) � ∂a ∨ ∂b.

The boundary elements x � ∂a can be characterized as those x with ∂x � x or,
equivalently, with � x � >. In particular, ∂2a � ∂a.

Similarly to Heyting algebras, co-Heyting algebras constitute a category by defining a
co-Heyting morphism to be a lattice morphism which preserves subtraction operation
⇐.

Let coHe yt be the category of co-Heyting algebras and theirmorphisms. By dualizing
Proposition 3.3.13 and Theorem 3.3.20, it can be proven that Bool is a coreflective
subcategory of coHe yt.

3.3.6 Representation of Heyting Algebras: Esakia Duality

In this section we extend Priestley duality to the category of Heyting algebras. Let
He yt be the category whose objects are Heyting algebras and their homomorphisms.
We wish to restrict Priestley duality to the category He yt; we thus need to determine
which Priestley spaces are duals of Heyting algebras, and which morphisms of such
spaces are dual to Heyting morphisms.

An Esakia space is a Priestley space (X,≤) such that if U is clopen in X, then ↓U is
clopen. Alternatively, (X,≤) is a Esakia space if for every open set U, then downset
↓U is open. The equivalence of these conditions follows from the Lemma below. A
morphism of Esakia spaces is a continuous p-morphism. The category ES consists
of all Esakia spaces and their morphisms. In this section we will see that Esakia
spaces are exactly those Priestley spaces which are dual to Heyting algebras, and that
Priestley duality restricts to a duality between He yt and ES. We start with some
preliminary lemmas.
Lemma 3.3.32. Let (X,≤) be a Priestley space.

1. The set ≤ is a closed subset of X ×X.

2. If C is closed in X, then ↑C and ↓C are closed in X.

Proof. See Morandi (2005). �

Lemma 3.3.33. Let H be a Heyting algebra. If a, b ∈ H, then ↓ (ηH(a) ∩ {ηH(b)) �
{η(a ⇒ b), where η is given by ηH(a) � {F ∈ Fp(H) | a ∈ F}, for all a ∈ H.

Proof. See Morandi (2005). �

We now consider the functor Spec : DL→ ES, but restricted to He yt.
Lemma 3.3.34. If H is a Heyting algebra, then (Spec(H),⊆) is an Esakia space.
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Proof. See Morandi (2005). �

Lemma 3.3.35. Let f : H → H′ be aHeytingmorphism. ThenSpec( f ) : Fp(H′) → Fp(H)
is a p-morphism.

Proof. See Morandi (2005). �

The last two lemmas show that Spec is a functor from He yt to ES. We now consider
the restriction of the functor Clup : ES→ DL restricted to ES.
Lemma 3.3.36. Let (X,≤) be an Esakia space. Then CU(X,≤) is a Heyting algebra, where

implication is defined by U ⇒ V � { ↓(U ∩{V).

Proof. See Morandi (2005). �

Lemma 3.3.37. Let 1 : (X,≤) → (Y,≤) be a morphism of Esakia spaces. Then 1−1 :
CU(Y,≤) → CU(X,≤) is a Heyting morphism.

Proof. See Morandi (2005). �

Thus, Clup is a functor from ES to He yt. We now see that these categories are dual
to each other. Much of the work involved we did verifying Priestley duality.
Proposition 3.3.38 (Esakia Representation Theorem). Let H be a Heyting algebra. Then

there is a Heyting isomorphism ηH : H → CU(Fp(H)), given by ηH(h) � {P ∈ Fp(H) :
h ∈ P}.

Proof. See Morandi (2005). �

Proposition 3.3.39. Let (X,≤) be an Esakia space. Then there is an isomorphism of Esakia

spaces εX : (X,≤) → Fp(CU(X,≤),⊆), given by εX(x) � {U ∈ CU(X,≤) : x ∈ U}.

Proof. See Morandi (2005). �

Theorem 3.3.40. The functors Clup and Spec give a co-equivalence of categories between

He yt and ES.

Proof. See Morandi (2005). �

As we have noticed before, in the finite case of interest in the following, topology can
be dispensed with. In fact, as a consequence of Proposition 2.2.9, the category of finite
Esakia spaces and continuous p-morphisms is equivalent to the category of finite
posets and p-morphism via the equivalence between the categories of finite ordered
T0 topological spaces and finite posets (see Corollary 2.2.10). So the clopen up-sets
are again the upper sets as in the case of distributive lattices.

Let now He yt f and pPos f denote the categories of finite Heyting algebras and their
homomorphisms, and of finite posets and p-morphisms, respectively. Remember
from Proposition 3.3.9 that finite Heyting algebras are nothing but finite distributive
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lattices. As a consequence, given a finite Heyting algebra H, we have that Fp(H) � {↑
x | x ∈ Jp(H)}, where Jp(H) is the set of join prime elements of H. So, we (re)define
functors from He yt f to pPos f and viceversa. Define maps Spec : He yt f → pPos f

and Up : pPos f →He yt f on objects by

Spec : H 7−→ Fp(H)(H ∈ He yt f ) and Up : X 7−→ Up(X)(X ∈ pPos f ).

On maps, let f : H → M be a Heyting homomorphism. Lemma 3.3.35 assures once
more that Spec ( f ) : Fp(M) → Fp(H) is a p-morphism. Thus, Spec does define a
functor.

Next, we have defined Up : pPos f →He yt f on objects. On maps, if 1 : X → Y is a
p-morphism, from Lemma 3.3.37 or Corollary 3.3.26 it follows that Up (1) : Up(Y) →
Up(X) is a Heyting morphism and so Up is a functor.

Restricted to thefinite case, Propositions 3.3.38 and3.3.39 assert that, for allH ∈ He yt f ,
H ' Up Spec(H) and, for all X ∈ pPos f , Spec Up(X) ' X. Hence, likewise the general
case, these results can be lifted to a dual equivalence between the category of finite
Heyting algebras and the category of finite posets and p-morphisms.
Theorem 3.3.41. The functors Spec and Up give controvariant equivalence of categories

between He yt f and pPos f .

3.3.7 Relevant Consequences of Esakia Duality

A straightforward consequence of Esakia duality is the following result that spells out
the connection between homomorphisms, subalgebras and finite products of Heyting
algebras with closed up-sets, continuous p-morphisms and finite disjoint unions of
Esakia spaces. These “translation rules” between algebras and spaces turn out very
useful in the applications to logic that we shall see in Chapter 4.
Theorem 3.3.42. Let A and B be Heyting algebras and F and G be Esakia spaces. Let also

{Ai}i∈I and {Fi}i∈ J be finite families of Heyting algebras and Esakia spaces, respectively. Then

(1) (a) A is a homomorphic image of B if and only if Spec A is a closed up-set of Spec B.

(b) A is a subalgebra of B if and only if Spec A is a continuous p-morphic image of

Spec B.

(c) Spec
∏

i∈I Ai is isomorphic to the finite disjoint union

∐
i∈I Spec Ai .

(2) (a) F is a closed up-set of G if and only if Clup F is a homomorphic image of Clup G.

(b) F is a continuous p-morphic image of G if and only if Clup F is a subalgebra of Clup G.

(c) Clup
∐

i∈ J Fi is isomorphic to the finite product

∏
i∈ J Clup Fi .

�
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Weak Representation Theorems

Also of great interest for the applications to logic that we shall see in Chapter 4 are the
following weak representation theorems for Heyting algebras due to Tarski, Stone and
Kripke. In the light of Esakia duality, they can be seen as the result of the restriction
of Esakia’s spaces either to their topological side or to their ordered one.
Theorem 3.3.43 (Tarski-Stone Representation). Every Heyting algebra can be embedded

into the Heyting algebra of open sets of some topological space.

�

In order to grasp the relationship with Esakia duality, we have just to consider, for
every Heyting algebra H, the set X :� Fp(H) of prime filters of H and the map
η(a) � {P ∈ Fp(H) : a ∈ P}, as usual. Let O(X) be a topology on X generated by the
basis B � { η(a) | a ∈ H }. It easy to see map η : H → O(X) gives rise to a Heyting
algebra embedding.

In a very similar manner, it can be established the following well-known result.
Theorem 3.3.44 (Kripke Representation). Every Heyting algebra can be embedded into

the Heyting algebra of up-sets of some poset.

�

In fact, for every Heyting algebra H, consider again the set X of prime filters of H
and the map η. LetUp(X) be the Heyting algebra of up-sets of X. Clearly, the map
η : H →Up(X) is a Heyting algebra embedding.
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4 Model theory for Algebras

In this Chapter we shall investigate a general approach to those algebraic structures,
such as lattices, boolean algebras, Heyting algebras, whose basic concepts are being
developed in Chapter 3. All those structures are characterized by the existence of
several operation which are defined everywhere and satisfy axioms expressed by
equations. In the last part of the chapter we shall see how to apply this general
framework to intuitionistic and intermediate logics.

4.1 τ-Algebras and Varieties

4.1.1 Algebraic Language or Similarity Type

We need an appropriate language if we want to describe classes of algebras of a given
"type" by logical expressions. This formal language is built up first by choosing a
denumerable set of variables x, y, z, .... Also, we need certain non logical symbols
denoting basic operations of various kinds. This data constitutes the similarity type
of the language.
Definition 4.1.1. An algebraic language or similarity type is a pair τ :� 〈F , ar〉 consisting
of a set F of operation symbols and a function ar : F →N assigning a non-negative
integer, called arity, to every operation symbols. We will say that f ∈ F is an n-ary
operation symbol when ar( f ) � n. A 0-ary operation symbol is called a constant symbol.
Examples 4.1.2.

1. The constant symbols that appeared more often in Chapter 3 are > and ⊥.

2. Instead, examples of unary operations that we have already met are ¬ and �;
among binary operations, ∧,∨,⇒ and⇐ are the more commonly used above.

While in general there is no restriction on the cardinality of F , practically all the
examples that we shall see use a finite language.

In the specification of particular languages, it is customary to describe a similarity
type τ by a sequence of the symbols actually used together with the sequence of their
arities; for instance, in the following we shall often use the language 〈∧,∨,⇒,>,⊥〉
of “type” 〈2, 2, 2, 0, 0〉.
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4.1.2 Interpretations of the Language: τ-Algebras

Definition 4.1.3. We define τ-algebra or algebra of (similarity) type τ as an interpretation
A of τ in �et, the category of sets and functions. By this we mean:

1. a set A, called the universe of the algebra; and

2. for each operation symbol f ∈ F of arity k, a function f A : Ak → A from
the n-fold cartesian product of A into A. In particular, constant symbols c are
interpreted as functions cA : {∗} → A, namely as elements of A.

More succintly, the τ-algebra A is the tuple 〈A, 〈 f A : f ∈ F 〉〉 consisting of an under-
lying set A and the interpretations f A.
Definition 4.1.4. If X and Y are τ-algebras, by homomorphism of X in Ywe mean a
function h : X → Y such that for all f ∈ F we have h ◦ f X � f Y ◦ hn , namely the
diagram

Xn X

Yn Y

f X

hn h

f Y

commutes.

The τ-algebras and their morphisms form a category. We shall indicate that category
with�l1τ.

If we consider a type τ that contains only one operation symbol of arity 2, thenwe have
that the τ-algebras are the sets equipped with a binary operation and the morphisms
between τ-algebras are the homomorphisms that are usually considered in algebra.
Monoids, groups, lattices, boolean algebras, Heyting algebras, etc., they can be seen
as particular τ-algebras (which satisfy some axioms) for suitable types τ, and then
the concept of morphism is particularized to the usual concept of homomorphism.

We observe that in general a class of algebraic structures, for example groups, does not
uniquely identify a similarity type. In fact, groups can be thought of as particular sets
with a binary operation, the product, or with three operations: a binary operation,
the product, a 0-ary one, the identity element, and a unary one, the inverse.

As we shall see in the following, the c of τ-algebra and morphisms is also useful for
logic. In fact the sentences of an intuitionistic propositional language can be seen
as τ-algebras in which the symbols of operation are the connectives 〈∧,∨,⇒,>,⊥〉.
Hence, It turns out that the concept of interpretation for propositional logic coincides
with that of morphism from the algebra of the sentences to an appropriate algebra (or
class of algebras).
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4.1.3 Subalgebras and Generated Subalgebras

For a given algebra B of type τ we obtain new algebras using certain algebraic con-
structions. The first algebraic construction we want to mention, is the formation of
subalgebras.
Definition 4.1.5. Let A be a τ-algebra. A subset of the universe A, which is closed
with respect to each fundamental operation of A, is called a subuniverse of A. The
τ-algebraB is said to be a subalgebra of A if and only if A andB have the same type, B
is a subuniverse of A, and f B is the restriction to B of f A, for each operation symbol
f ∈ F . Sub(A) denotes the set of all subuniverses of A.

It is almost immediate to see that there is a bĳective correspondence between subalge-
bras and non-empty subuniverses.

If B is an algebra of type τ and if {A j} j∈ J is a family of subalgebras of B with the
non-empty intersection A :�

⋂
j∈ J A j of its universes, then it is easy to see that A is

subuniverse of a subalgebra of B which is called the intersection of the family {A j} j∈ J

denoted by
⋂

j∈ J A j . This allows us to consider the subalgebra

〈X〉B �

⋂
{A | A ∈ Sub(B) and X ⊆ A }

ofB generated by a subset X ⊆ B of the universe. The set X is called generating system

or set of generators of this algebra. The process of subalgebra generation is another
example of a closure operator, which we have just considered in more detail in the
previous Chapters (see Subsections 2.1.6 and 3.1.5). As a consequence, the set of fixsets
Sub(B) is a complete lattice (see Proposition 3.1.34).
Definition 4.1.6. For X ⊆ A, we say that A is the subalgebra generated by X if 〈X〉A � A.
A τ-algebra A is finitely generated if it has a finite set of generators. Also, we say that a
τ-algebra A is locally finite if and only if every finitely generated subalgebra of A is
finite.

If X ( A is a subset of the universe of a τ-algebra A, 〈X〉A is the subalgebra of A
generated by X and h : A→ B is a homomorphism, then

〈h(X)〉B � h(〈X〉A).

In particular, if X is a generating system of A and h : A � B is surjective homomor-
phism, then h(X) generates B.

Clearly, the notion of subalgebra can be also thought of as the generalization of the
notion of sublattices that we have encountered in Chapter 3.
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4.1.4 (Direct) Products

In this section we shall examine another important construction, the formation of
product algebras. Subalgebras of a given τ-algebra have cardinalities no larger than
its cardinality. The formation of products, however, can lead to algebras with bigger
cardinalities than those we started with.
Definition 4.1.7. Let {Xi}i∈I be a family of τ-algebras indexed by a set I, we define
product of the family {Xi}i∈I a τ-algebra X equipped with a family of morphisms {πi :
X→ Xi}i∈I , called projections, such that, for every Y and every family of morphisms
{hi : Y→ Xi}i∈I , there exists exactly a morphism h : Y→ X such that for every i ∈ I
we have πi ◦ h � hi . Namely, the following diagram

Y

X Xi

hi
h

πi

commutes for every i ∈ I.

In the category of τ-algebras�l1τ, the product indexed by a set always exists. This
product can be defined as follows: an element of the product is a choice 〈. . . , xi , . . .〉
of an element xi ∈ Xi for each i ∈ I, and the operations between the product elements
are defined coordinatewise, namely, if f ∈ F is an operation symbol of arity n,

f X(〈. . . , x(1)i , . . .〉 , . . . , 〈. . . , x(n)i , . . .〉) �
〈
. . . , f Xi (x(1)i , . . . , x(n)i ), . . .

〉
Then we have that πi : X → Xi is defined by 〈. . . , xi , . . .〉 7→ xi and the function
h : Y→ X, which is also indicatedwith 〈. . . , hi , . . .〉, is defined by y 7→ 〈. . . , hi(y), . . .〉.

Needless to say, the notion of product can be regarded as the generalization of the
notion of product of lattices that we have come across in Chapter 3.

4.1.5 Congruences, Quotient Algebras and Homomorphic Images

The last important algebraic construction that we want to mention, is the formation of
homomorphic images. Before proceeding to examine the formation of homomorphic
images, it is important to recall the notion of equivalence relation and introduce a
new one suitable for τ-algebras: the notion of congruence.

Every function h : A→ B from a set A onto a set B defines a partition of A into classes
of elements having the same image. Partitions of a set define equivalence relations on
that set where two elements are related to each other if and only if they belong to the
same block of the partition. Let A, B be the universes of two τ-algebras A and B and
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h : A � B is a surjective homomorphism. Then, an equivalence relation R on A can
be well suited with h if satisfies the following compatibility property:
Definition 4.1.8. Let A be a τ-algebra. An equivalence relation R on A is called a con-
gruence relationonA if for eachoperation symbols f ∈ F and for all a1, . . . , an , b1, . . . , bn ∈
A,

(a1, b1) ∈ R, . . . , (an , bn) ∈ R implies ( f A(a1, . . . , an), f A(b1, . . . , bn)) ∈ R.

We denote by Con(A) the set of all congruence relations of the τ-algebra A.

A congruence of A is nothing but an equivalence relation which, as a subset of the
product A ×A, is closed with respect to the operations. This means that congruences
are the equivalence relations that occur as objects in the category of τ-algebras�l1τ.

Similarly to the set of subuniverses of a given τ-algebra, also the set of its congruence
relations admits an abstract characterization in terms of closure operator. Let A be
a τ-algebra, and let Q be a binary relation on A. We define the congruence relation
〈Q〉Con(A) on A generated by Q to be the intersection of all congruence relations R on
A which contain Q:

〈Q〉Con(A) �
⋂
{ R | R ∈ Con(A) and Q ⊆ R }

It is not difficult to that 〈Q〉Con(A) is a closure operator and its set of fixsets Con(A) is a
complete lattice (see Proposition 3.1.34).

If R is a congruence relation on A, then we can partition the set A into blocks with
respect toR and obtain the quotient set A�R. In a natural way, for each n-ary operation
symbol f ∈ F , we define an n-ary operation f A/R on the quotient set by

f A/R :
(
A�R

)n
→ A�R

with
([a1]R , . . . , [an]R) 7−→ f A/R([a1]R , . . . , [an]R) :� [ f A(a1, . . . , an)]R .

Of course, we have to verify that our operations are well-defined, namely that they are
independent on the representatives chosen. But this is exactly what the compatibility
property of a congruence relationmeans and sowe obtain a new τ-algebraA�R, which
is called the quotient algebra of A by R.

Actually, for every congruence relation R the τ-algebra A�R is a homomorphic image
of A under the natural projection defined by

πR : A � A�R with a 7−→ [a]R

for every a ∈ A. It is easy to check that πR is really a surjective homomorphism. So,
for any congruence relation R ∈ Con(A)we obtain a homomorphism and, finally, it
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arises the question whether homomorphisms define congruence relations on A. This
is also the case since we have:
Lemma 4.1.9. The kernel

Ker h :� { (a, b) ∈ A ×A | h(a) � h(b) }

of any homomorphism h : A→ B is a congruence relation on A.

Suppose we have now a homomorphism h : A → B. We have seen that Ker h is a
congruence on A, so we can form the quotient algebra A�Ker h, along with the natural
homomorphism πKer h : A → A�Ker h which maps the algebra A onto this quotient
algebra. Now we have two homomorphic images of A: the original h(A) and the new
quotient A�Ker h. What connection is there between these two homomorphic images?
The answer to this question is a consequence of the universal property of quotients.
Proposition 4.1.10 (Universal property of quotients). Let h : A→ B be a homomorphism

of τ-algebras, π : A � Q is a surjective homomorphism. If Ker π ⊆ Ker h, then there exists

exactly one homomorphism h′ : Q → B such that h′ ◦ π � h, namely the following diagram

commutes.

A B

Q

h

π h′

Furthermore,

(i) h′ is surjective if and only if h is surjective, and

(ii) h′ is injective if and only if it is Ker π � Ker h.

Proof. See Burris and Sankappanavar (1981). �

Corollary 4.1.11 (Homomorphic Image Theorem). Let h : A � B be a surjective

homomorphism of τ-algebras. Then there exists a unique isomorphism h′ from A�Ker h → B
with h′ ◦ πKer h � h, where πKer h : A � A�Ker h is the natural projection.

Congruence Relations on Heyting Algebras

Having discussed the correspondence between congruence relations and homomor-
phic images, in the following section we address the close correspondence between
congruence relations and filters on Heyting algebras. As we shall see in the Section
4.3, Heyting algebras can be grasp as particular τ-algebras, which satisfy some axioms,
for the language 〈∧,∨,⇒,>,⊥〉 of type 〈2, 2, 2, 0, 0〉. Hence, we can define, for each
congruence R on a Heyting algebra H, the set

ω−1(R) � { x ∈ H | (x,>) ∈ R } .
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ω−1(R) is a filter of H, called the filter determined by a congruence R. Conversely, for
each filter F ⊆ H,

ρ−1(F) � { (x, y) ∈ H ×H | x ⇔ y ∈ F }

is a congruence, called the congruence determined by a filter F ⊆ H. The notational
choice to indicate these maps as inverse functions will become clear in the following
(see subsection 4.3.5). Interestingly, it can be proved that ω−1 constitute a lattice
isomorphism.
Theorem 4.1.12. For all congruences R,Q and all filters F, G of a Heyting algebra H, the

following hold:

(1) R ⊆ Q implies ω−1(R) ⊆ ω−1(Q).

(2) F ⊆ G implies ρ−1(F) ⊆ ρ−1(G).

(3) ρ−1(ω−1(R)) � R and ω−1(ρ−1(F)) � F.

Thus, the map ω−1
is an order-isomorphism, and therefore is a complete lattice isomorphism

between the congruence lattice Con(H) and the lattice of all filters of H.

Proof. See Balbes and Dwinger (2011). �

As a consequence of this isomorphism, the quotient algebra H�ρ−1(F) can be equiva-

lently represented as H�F, for a given filter F ⊆ H. Moreover, we can observe that, for
each R ∈ Con(H),

(a, b) ∈ R if and only if (a ⇔ b,>) ∈ R.

Conversely, for each filter F ⊆ H,

a ∈ F if and only if a ⇔ > ∈ F.

Those relations will be useful in the remainder (see subsection 4.3.5).

4.1.6 Class Operators on τ-Algebras and Varieties

So far the previous subsections have focused on the various ways in which it can be
manufacture a new τ-algebra form a given one. We introduce now the following
operators mapping classes of τ-algebras to classes of τ-algebras:

(1) A ∈ H(K) if and only if A is a homomorphic image of some member ofK .

(2) A ∈ S(K) if and only if A is isomorphic to a subalgebra of some member ofK .

(3) A ∈ P(K) if and only if A is isomorphic to a product of a family of algebras inK .

Each of the class operators just introduced, when restricted to classes of algebras of one
similarity type τ, can be regarded as a closure operator on the class of all τ-algebras.
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If Q1 and Q2 are class operators belonging to {H, S, P }, we write Q1Q2 for the com-
position of the operators. We use ≤ to denote the following partial ordering of class
operators: Q1 ≤ Q2 if and only if Q1(K) ≤ Q2(K) for all classesK of τ-algebras. Notice
that Q(K) is always an abstract class since, if a τ-algebra A belongs to the class, every
τ-algebra isomorphic to A also belongs to it. Moreover, we can observe that P(K)
always includes the trivial algebras of the τ-algebras inK , since we allow the product
of an empty family of τ-algebras.
Lemma 4.1.13. The class operators HS, SP and HP are closure operators on the class of

τ-algebras. the following inequalities hold: SH ≤ HS, PS ≤ SP, PH ≤ HP.

Proof. See McKenzie et al. (1987); Burris and Sankappanavar (1981). �

LetK be a class of τ-algebras. We say thatK is closed under the class operator Q if
and only if Q(K) ⊆ K .
Definition 4.1.14. A classK of τ-algebras is called a variety if and only ifK is closed
under H, S and P.
Examples 4.1.15. Aswe shall see in Section 4.2, all of the classes considered in Chapter
3, lattices, distributive lattices, boolean algebras and Heyting algebras, are varieties.

Since the class of all τ-algebras is a variety, and since the intersection of any family
of varieties of τ-algebras is again a variety, we can conclude that there does exist a
smallest variety containing a given class of τ-algebras.
Definition 4.1.16. LetK be a class of τ-algebras. V(K) denotes the smallest variety
containing K , called the variety generated by K . If K consists of a single τ-algebra
A, or of finitely many τ-algebras A1, . . . , An , then we write V(A) or V(A1, . . . , An),
respectively, for this variety.
Theorem 4.1.17. V � HSP.

Proof. See McKenzie et al. (1987); Burris and Sankappanavar (1981). �

Definition 4.1.18. LetV be a variety of τ-algebras.

(1) V is locally finite if and only if each of its members is a locally finite τ-algebra.

(2) V is finitely generated iffV � V(A) for some finite τ-algebra A ∈ V.

(3) V is finitely approximable iffV � V(G) for some set G ⊆ V of finite τ-algebras.
Theorem 4.1.19. LetK be a finite set of finite algebras. Then V(K) is a locally finite variety.
In particular, every finitely generated variety is locally finite.

Proof. See McKenzie et al. (1987); Burris and Sankappanavar (1981). �

Examples 4.1.20.

1. Let us denote the variety of all distributive lattices byDL. As a consequence of
Birkhoff’s theorem that we shall see in Section 4.2, it can be proved thatDL is
finitely generated by 2 and so locally finite (see G. Bezhanishvili 2001).
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2. Let us denote the variety of all Boolean algebras by BA. As in the case of
distributive lattices, it can be proved that BA is finitely generated by 2 and so
locally finite (see G. Bezhanishvili 2001).

3. Let us denote the variety of all Heyting algebras byHA. As a consequence of
the fact that the free Heyting algebra generated by one element, also called the
Rieger-Nishimura lattice, is infinite,HA is not locally finite (see example 4.2.10).
However, it can be proved thatHA is finite approximable (see Theorem 4.3.19).

Remark 4.1.21. In general we have:

finitely generatedV locally finiteV finitely approximable,

with both of the implications being strict.

Finally, we introduce a useful class operator for the study of locally finite varieties.
Definition 4.1.22. Let K be a class of τ-algebras. P f (K) is the class of τ-algebras
isomorphic to a product of a finite family of members ofK . K f is the class of finite
members ofK .
Lemma 4.1.23. (SP(K)) f ⊆ SP f (K).

Proof. See McKenzie et al. (1987). �

Corollary 4.1.24. Suppose thatK is a finite set of finite τ-algebras andV � V(K). Then
Vf � HSP f (K).

�

4.2 Terms, Free τ-Algebras and HSP Theorem

As indicated previously, the concept of τ-algebra is too general to describe mathe-
matical objects such as lattices, boolean algebras, Heyting algebras, etc. In all these
cases we do not have to deal with the totality of the algebras of a given type τ, but
with its subclass defined through certain properties usually called axioms. We limit
ourselves here to the study of the equational properties, that is, of the properties that
are expressed as the equality of two expressions that technically we will call terms.
The latter represent the derivative operations, namely those obtained by composition
from the operations that come from the type τ. More precisely, the derived operations
will be obtained as interpretations of the terms.

4.2.1 Terms and Basic Adjunction

Terms and Equations Between Terms

Let us define the terms of our type τ, the “words” of our language.
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Definition 4.2.1. The terms of a type τ are expressions constructed inductively by the
following rules:

(i) every variable x, y, z, ..., is a term,

(ii) if t1, . . . , tk are terms and f ∈ F is a k-ary operation then f (t1, . . . , tk) is a term.

Let X be any set of variables. The set Trτ(X) of terms of type τ over X is the smallest
set which contains X and closed under finite application of (ii).
Definition 4.2.2. An equation, that we shall indicate with u � v, is simply given by a
pair of terms (u, v) ∈ Trτ(X) × Trτ(X).

Interpretation of Terms and Validity of Equations

The interpretation of a similarity type τ in �et that we have examined in Subsection
4.1.2 can be extended to all terms of the type τ as follows: a general term t is always
interpreted together with a context of variables x1, . . . , xn , where the variables appear-
ing in t are among the variables appearing in the context. We write ®x.t to indicate
that the term t is to be understood in context ®x � x1, . . . , xn .
Definition 4.2.3. If A is an interpretation of τ in �et, then the corresponding inter-

pretation of a term t of type τ is a function tA : An → A, determined by the following
specification:

1. the interpretation of a variable xi is the i-th projection πi : An → A.

2. A term of the form f (t1, . . . , tk) is interpreted as the composite:

An Ak A
f A(tA

1 , . . . , tA
k )

where tA
i : An → A is the interpretation of the subterm ti , for i � 1, . . . , k, and

f A is the interpretation of the operation symbol f .

Several properties of the fundamental operations of an algebra A are also valid for
term operations. For instance, for a homomorphism h : A→ B and an arbitrary n-ary
term t of the corresponding type we have:

h ◦ tA
� tB ◦ hn .

Similarly, congruence relations and subuniverses of A are not only preserved by all
its fundamental operations but also by all its term operations.

Suppose u and v are terms in context x1, . . . , xn . Then we say that the equation u � v
is satisfied by the interpretation A if uA and vA are the same function in �et. In other
terms, if u � v is an equation, and x1, . . . , xn are all the variables appearing in u and v,
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we say that A satisfies the equation u � v if [®x.u]A and [®x.v]A are the same function,

An A
[®x.u]A

[®x.v]A

which we also write as:

A |� u � v if and only if uA
� vA. (4.1)

Remark 4.2.4. Of course, the validity of equations is preserved for subalgebras, ho-
momorphic images and products. That is,

(i) if A |� u � v and B is a subalgebra of A, then B |� u � v;

(ii) if A |� u � v and C is a homomorphic image of A, then C |� u � v;

(iii) if Xi |� u � v for all i ∈ I, then
∏

i∈I Xi |� u � v.

The Basic Adjunction Between Equations and τ-Algebras

We shall indicate the set of all equations of type τ, Trτ(X) × Trτ(X), with EqX
τ . The

relation of validity, like every binary relation (see example 2.1.32.4), induces the
adjunction (

2A l1τ
)op 2EqX

τ

Mod

IdX

between 2EqX
τ , whose element Θ ⊆ EqX

τ are set of equations that will be thought of as
a set of axioms of a theory, and the opposite of 2Algτ , whose elmentK ⊆ A l1τ is any
class of τ-algebras.

With Mod (Θ)we mean the class of models of the theory having Θ as a set of axioms,
that is to say

Mod (Θ) � {A ∈ A l1τ | ∀(u � v) ∈ Θ A |� u � v } .

Dually, IdX(K) is the set of equations that are valid in all τ-algebras ofK , that is to say

IdX(K) � { (u � v) ∈ EqX
τ | ∀A ∈ K A |� u � v } .

Since the maps Mod and IdX constitute the adjunction Mod a IdX , they satisfy the
following properties:

(1) for all subsets Θ,Θ′ of Eqτ, if Θ ⊆ Θ′, then Mod(Θ′) ⊆ Mod(Θ);

(2) for all subclassesK ,K ′ ofA l1τ, ifK ⊆ K ′, then IdX(K ′) ⊆ IdX(K).

(3) for all subclassesK ofA l1τ and for all subsets Θ of Eqτ,K ⊆ Mod(Θ) if and only
if Θ ⊆ IdX(K).
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Moreover, the maps IdX Mod and Mod IdX are closure operators on Eqτ and onA l1τ,
respectively. The sets closed under Mod IdX are exactly the sets of the form Mod(Θ),
for some Θ ⊆ Eqτ, and the sets closed under IdX Mod are exactly the sets of the form
IdX(K), for someK ⊆ A l1τ (see Proposition 3.1.34).

Let us now look at some of the meanings of the conditions now estabilished. First of
all IdX Mod(Θ) is the set of all equations that are valid in all the models of the theory
having Θ as a set of axioms, namely IdX Mod(Θ) is the set of semantics consequences of
the set of axioms Θ. It is clear that we often have Θ ( IdX Mod(Θ) because the sets of
axioms often have, as consequences, equations that are not axioms. Therefore, the
fixsets of IdX Mod can be interpreted as follows.
Definition 4.2.5. A set of equations Θ is an equational theorywhen there is a classK
of τ-algebras such that Θ is the totality of equations valid onK , namely Θ � IdX(K).

Since the equational theories are exactly the fixsets with respect to the closure operator
IdX Mod, their collection forms a complete latticeΛ(Eqτ)dually isomorphic toΛ(A l1τ),
the complete lattices of fixsets of Mod IdX , that can be interpreted as follows.
Definition4.2.6. AclassK of τ-algebras is an equational class, or is said tobe equationally
definable when there is a set of equationsΘ such thatK is the totality of the models of
Θ, namelyK � Mod(Θ).
Examples 4.2.7. All of the classes considered in chapter 3, lattices, distributive lattices,
boolean algebras and Heyting algebras, are equational classes.

This suggests that equational class and variety are the same, as we are going to prove
in the next subsection.

4.2.2 Free τ-Algebras and HSP Theorem

In this section we shall introduce free τ-algebras, τ-algebras of terms and prove that
every variety of algebras is equationally definable (the HSP Theorem).

Free τ-Algebras

We begin with the definition of free τ-algebras.
Definition 4.2.8. Let K be a class of τ-algebras. Let X be a set, A a τ-algebra and
ι : X → A an homomorphism. We say that ι : X → A is free with respect toK if it holds
the following universal mapping property: for every B ∈ K and for every mapping
1 : X → B there is a unique homomorphism h : A→ B such that h ◦ ι � 1. Namely,
the following diagram commutes

X A

B

ι

1 h
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If ι : X → A is free with respect toK over X and A ∈ K , A is said to be the free algebra
inK generated by X.
Remark 4.2.9. Observe that ι is not necessarily injective.
Examples 4.2.10 (Rieger-Nishimura lattice). The free Heyting algebra generate by
one single element p is infinite and is given recursively as in Figure 4.1.

Figure 4.1: The Rieger-Nishimura lattice.

Unfortunately, not every classK contains algebras with the universal mapping prop-
erty for K . Nonetheless, if we consider the class of all τ-algebras A l1τ, then free
algebras always exist. In Section 4.2, we will be able to show that any class closed
under H, S and P contains free algebras.

Consider now the set Trτ(X). Clearly, it can be turned into a τ-algebra. Given τ and X,
Trτ(X) is a τ-algebra of type τ over X, which has as its universe the set Trτ(X), and
the fundamental operations

f Trτ(X) : Trτ(X)n → Trτ(X)

satisfy
(t1, . . . , tn) 7−→ f Trτ(X)(t1, . . . , tn) ∈ Trτ(X)

for f ∈ F of arity n and ti ∈ Trτ(X).

Notice that Trτ(X) is indeed generated by X. Hence, the τ-algebra of terms provides
us with the simplest examples of algebras with the universal mapping property.
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Lemma 4.2.11. for any set X, the morphism ι : X → Trτ(X) is free with respect to the class
of all τ-algebrasA l1τ.

Proof. See McKenzie et al. (1987); Burris and Sankappanavar (1981). �

Remark 4.2.12. As a consequence, every homomorphism h : Trτ(X) → B is com-
pletely determined by its restriction h |X � 1. Namely, two homomorphisms from the
free algebra Trτ(X) to the same τ-algebra B are equal if and only if they coincide on
variables. Also, for each ®x.t ∈ Trτ(X), h(t) depends only on the restriction of h |®x .
Corollary 4.2.13. Every τ-algebra is a quotient of some Trτ(X).

Observe that the morphism ι : ∅ → A is free with respect toA l1τ if and only if A is
initial, since for everyB there exists a unique morphism ! : A→ B. Therefore, Trτ(∅),
the τ-algebra of constants, is initial inA l1τ.

With the help of the free τ-algebra Trτ(X), two notions with an undeniably logical
flavour can be introduced. One such notion is that of evaluation, which can be thought
of as being just one of the functions above.
Definition 4.2.14. An assignement or evaluation into B is a function h : Trτ(X) → B
from the free τ-algebra Trτ(X) to B.

Since any function 1 : X → B extends uniquely to a homomorphism h from Trτ(X)
to B in a such way that

h( f (t1, . . . , tn)) � f A(h(t1), . . . , h(tn)),

for each operation symbol f ∈ F with arity n, an evaluation of terms in B is given by
the following commutative diagram

X Trτ(X)

B

ι

1 h

associating to every terms t ∈ Trτ(X) an interpretation tB : Bn → B.

Another notion is that of substitution, which is a particular case of an evaluation,
actually an evaluation into the τ-algebra of terms. Or, equivalently:
Definition 4.2.15. A substitution is any function σ : X → Trτ(Y) from a set of variables
X into the τ-algebra of terms Trτ(Y) generated by a set of variables Y not necessarily
being identical to X.

Notice that Y can be different from X. Since any function σ : X → Trτ(Y), extends
uniquely to a homomorphism h from Trτ(X) to Trτ(Y), a substitution of terms is
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given by the following commutative diagram

X Trτ(X)

Trτ(Y)

ι

σ h

assigning to each term t(x1, . . . , xk) ∈ Trτ(X) a term obtained from t by uniformly
replacing occurrences of variables xi ∈ X by the σ-corresponding ones, namely

h(t) � t(σ(x1), . . . , σ(xk)).

Birkhoff’s Theorem

Turning now on a cornerstone of universal algebra due to Birkhoff. Let K a class
of τ-algebras and A a τ-algebra which do not belongs to the class. Consider the
equivalence relation ≡A

K⊆ A ×A defined by, for all u, v ∈ A,

u ≡A
K v if and only if ∀B ∈ K ∀h ∈ Hom(A,B) h(u) � h(v).

In order to prove that the above relation is actually a congruence, it turns out essential
recasting the definition. If we put Hom(A,K) :�

⋃
B∈K Hom(A,B), we can rephrase

the previous definition in the following way:

≡A
K :�

⋂
{ Ker(h) | h ∈ Hom(A,K) }

Since Ker(h) is a congruence relation and any intersection of congruences is in turn a
congruence, ≡A

K is a congruence on A.
Lemma 4.2.16. The following facts are equivalent:

1. ≡A
K is a congruence relation.

2. There exists a set I ⊆ K such that
A�≡A

K
is a subalgebra of the product

∏
B∈I B, namely

A�≡A
K
∈ SP(K).

Proof. See Meloni (1979). �

Let us now return to the relation of validity (4.1). The equation uB � vB means that
for every mapping 1 : X → B, we have h(u) � h(v), where h : Trτ(X) → B is the
uniquely determined extension of 1. Therefore, u � v is an identity in B if and only
if (u, v) ∈ Ker(h) for all evaluation h : Trτ(X) → B. That is, the pair (u, v) must
belong to the intersection of the kernels of all these mappings h. Thus an identity
u � v holds in an τ-algebra B (or in a classK of τ-algebras), if and only if (u, v) is in
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the intersection of the kernels of h, for every evaluation h : Trτ(X) → B (for every
τ-algebra B inK ).

Hence, for a classK of algebras of type τ we have:
Proposition 4.2.17. LetK ⊆ A l1τ be a class of τ-algebras and let IdX(K) be the set of all
identities satisfied in each algebra B ∈ K . Then, IdX(K) is a congruence relation on Trτ(X).
In particular,

≡Trτ(X)
K � IdX(K).

Proof. See McKenzie et al. (1987); Burris and Sankappanavar (1981). �

Considered under this light, the set IdX(K) has several interesting properties. It is
invariant with respect to all substitutions, that is, for any σ : X → Trτ(X),

u � v ∈ IdX(K) implies σu � σv ∈ IdX(K).

We simply have to note that, since IdX(K) is equal to the intersection of the kernels of
the homomorphisms h for all maps h : Trτ(X) → B and all τ-algebras B in K and,
for any such B and map h, the map h ◦ σ is also a homomorphism from Trτ(X) into
B, our pair u � v from IdX(K)must also be in the kernel of this new homomorphism
h ◦ σ. And this means precisely that the pair σu � σv must be in IdX(K).

Also, there is a crucial connection with the identities valid on Trτ(X)�IdX(K), namely
Theorem 4.2.18. Given a classK of τ-algebras, we have

IdX(K) � IdX
(
Trτ(X)�IdX(K)

)
. (4.2)

Proof. See McKenzie et al. (1987); Burris and Sankappanavar (1981). �

Finally, as a consequence of Remark 4.2.4, all of the classes H(K), S(K), P(K) and
V(K) satisfy the same identities asK , over any set of variables X.
Lemma 4.2.19. For any classK of τ-algebras and any class operator Q ∈ {H, S, P, V }

IdX(K) � IdX(Q(K)).

Proof. See McKenzie et al. (1987); Burris and Sankappanavar (1981). �

With these results in the background, it can be proven the main theorem on equational
theories, also called Birkhoff’s Theorem.
Theorem 4.2.20 (Birkhoff’s Theorem). Let |X | ≥ ℵ0. For any classK of similar algebras,

HSP(K) � Mod IdX(K).

ThusK is a variety if and only if is an equational class.

Proof. See Meloni (1979). �
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Several important results, regarding the relation between free τ-algebras and varieties
of τ-algebras, follow easily from the HSP theorem.
Corollary 4.2.21. LetK be a class of τ-algebras. X → Trτ(X)�IdX(K) is free with respect

to HSP(K).

In particular, if K is a variety, Trτ(X)�IdX(K) is the free τ-algebra in K . Moreover,
from (4.2) follows that every variety of τ-algebras is generated by its free τ-algebra.
Corollary 4.2.22. LetV be a variety of τ-algebras. Then,

V � HSP
(
Trτ(X)�IdX(V)

)
.

Corollary 4.2.23. a varietyV of τ-algebras is locally finite if and only if
Trτ(X)�IdX(V) is

a locally finite τ-algebra.

The basic facts about varieties, free algebras, and equations can now be summarized.
LetV be a variety of τ-algebras. V is generated by its free τ-algebra Trτ(X)�IdX(V),
which can be constructed as a quotient of Trτ(X). Two terms u and v are identified
by the quotient map if and only if the equation is valid inV, namelyV |� u � v. In
this way the equational theory ofV determines Trτ(X)�IdX(V) andV itself can be
defined as the class of all models of its equational theory. This algebraic machinery
will turn out to be very useful in the study of the intuitionistic and intermediate logics.

4.3 The Algebraic Approach to Intuitionistic Logics

We start by describing the first two steps involved in the algebraic study of intuitionistic
propositional logic. Both are needed in order to endow the propositional language
with an algebraic conceptualization.

The two steps we are about to expound can be summarized in the slogan: propositional
formulas are terms.

The first step consist in looking at the formulas of the propositional language SL as
the terms of the algebraic language τ � { ∧,∨,⇒,>,⊥ } with type { 2, 2, 2, 0, 0 }. This
means that

1. every connective of SL of a given arity is taken as an operation symbol of the
same arity (thus every 0-ary symbol of SL is taken as a constant), and that

2. the propositional formulas of SL are taken as the terms of this algebraic lan-
guage; in particular the sentence symbols are the variables of the algebraic
language. From this point of view the definition of formula of SL is exactly the
definition of term of type τ.

As a consequence, the set of formulas of a language SL turns into aτ-algebra, the
τ-algebra of propositions of SL.
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The secondand fundamental step is to build a specific τ-algebra out of thepropositional
formulas, modulo provable equivalence, of intuitionistic logic. It thus embodies the
“algebraic” structure of this logic, but in syntax invariant way. Moreover, it turns out
to be free τ-algebra on the variety of Heyting algebras.

The following part of this chapter is devoted to describe in more detail this process of
algebraization of intuitionistic logic.

4.3.1 The τ-Algebra of Propositions

Let us fix a set of sentence symbols L. As we have seen in the first chapter, we can
reconstruct recursively the sentences’ language SL. The elements of L are usually
called atomic propositionswhile the elements ofSL are the sentences. Now, according
to the first step above, we can think SL as an algebra with similarity type τ :�
{ ∧,∨,⇒,>,⊥ } and arity (2, 2, 2, 0, 0). SL has an obvious τ-algebra structure given
by the following.

∧SL : SL ×SL → SL with (α, β) 7→ α ∧ β
∨SL : SL ×SL → SL with (α, β) 7→ α ∨ β
⇒SL : SL ×SL → SL with (α, β) 7→ α⇒ β

>SL : SL → SL with α 7→ >
⊥SL : SL → SL with α 7→ ⊥

In particular, SL is precisely the set of all Trτ(L) terms. In fact, due to the freedom of
Trτ(L), a morphism h : Trτ(L) → SL is uniquely determined by the identity function
and is an isomorphism of algebras. We can think of h as a translation from a prefix
notation to an infixed notation. formulas. Therefore, SL and Trτ(L) are regarded as
two names for the same syntactic objects.

As a consequence of this isomorphism, the main property of the τ-algebra of proposi-
tions can be summarized in the next result.
Lemma 4.3.1. The algebra SL is the free τ-algebra inA l1τ generated by L.

�

4.3.2 The Class of τ-Algebras for Intuitionistic logic

We need first to identify a class of algebras for which holds a weak form of soundness
for the intuitionistic logic.
Theorem 4.3.2. Let `⊆ 2SL ×SL be as above in definition 1.1.4 andHA the variety of

Heyting algebras. For all ϕ,ψ ∈ SL,

(1) if ` ϕ and H ∈ HA, then h(ϕ) � > for all h ∈ Hom(SL, H);
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(2) if ` ϕ and ` ψ, thenHA |� ϕ � ψ;

(3) if ` ϕ, thenHA |� ϕ � >.

Sketch of proof. The first point is proved by what is normally qualified as routine
checking; that is, by just checking, for an arbitrary H ∈ HA and an arbitrary h ∈
Hom(SL, H), that h(ϕ) � > for all axioms ϕ of our chosen axiomatization Ax, and
that modus ponens preserves the property of “being equal to >”: If h(ϕ) � > and
h(ϕ⇒ ψ) � >, then h(ψ) � >, this amounts to checking that in H, if> ⇒ a � >, then
a � >, for all a ∈ H, and this is obvious from the properties of Heyting algebras. Then,
induction on the length of proofs completes the demonstration. The other points
follows easily in succession. �

The above property suggests using the “transformation” ϕ 7→ ϕ � > to turn every
formula into an equation. With this trick, it is not difficult to prove:
Proposition 4.3.3. The equational classHA can be presented by the equations that result

by applying the transformation ϕ 7→ ϕ � > to the set of axioms Ax.

�

4.3.3 The Lindenbaum-Tarski Algebra of Intuitionistic Logic

Consider the τ-algebra SL. We can identify α and β inSL according to the following
binary relation:
Definition 4.3.4 (Equivalence modulo provability). for all α, β ∈ SL, we define a
binary relation ≡` on SL putting

α ≡` β if and only if ` α⇔ β (4.3)

This is clearly well defined on equivalence classes, in the sense that if ` p ⇒ q and
[p]` � [p′]` then ` p′⇒ q, and similarly for q. We can construct an Heyting algebra
SL�≡`, consisting of equivalence classes [p] of formulas p, according to the binary
relation ≡`. The operations in SL�≡` are then induced in the expected way by the
logical operations:

> � [>]`

⊥ � [⊥]`

[p] ∧ [q]` � [p ∧ q]`

[p] ∨ [q]` � [p ∨ q]`

[p] ⇒ [q]` � [p ⇒ q]`

Again, these operations are easily seen to be well defined on equivalence classes. As a
consequence, ≡` is a congruence. Moreover, these operations satisfy the axioms for
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a Heyting algebra because the logical axioms evidently imply them, for Proposition
4.3.3.
Lemma 4.3.5. The congruence ≡` provides the τ-algebra SL with the structure of Heyting

algebra, namely
SL�≡` ∈ HA.

Proof. See Borceux (1994), Awodey (2010). �

So, it is in fact a model of intuitionistic logic but it is also “generic” in the sense that
validates only the provable formulas.
Lemma 4.3.6. The Heyting algebra

SL�≡` has the property that the top element [>] is
constituted by the set ∇∅, which is a single equivalence class, namely, for all formula p ∈ SL,

` p if and only if [p]` � >.

Proof. See Awodey (2010). �

The quotient algebra SL�≡` is popularly called the Lindenbaum-Tarski algebra of
intuitionistic logic.

4.3.4 Algebraic Completeness for Intuitionistic Logic

With the constructions made up to this point, it is clear that the Lindenbaum-Tarski
algebra provides a weak completeness theorem for intuitionistic logic. In fact, we now
have all the machinery to prove the main general relations linking intuitionistic logic
with the variety of Heyting algebras.
Theorem 4.3.7 (Algebraic completeness for INT).

IdL(SL�≡`) � IdL(HA)

Proof.
SL�≡` ∈ HA. Then,

IdL(SL�≡`) ⊇ IdL(HA)

The opposite inclusion follows from Theorem 4.3.2. �

This says that the varietyHA is (weakly) complete for intuitionistic logic. In particular,
4.3.2(3) can now be enhanced via Deduction Theorem:

` ϕ if and only if HA |� ϕ � >. (4.4)

Another crucial consequence of this result is that ≡` and ≡Trτ(L)
HA are equivalent.

Corollary 4.3.8. The Lindenbaum-Tarski algebra
SL�≡` is the free τ-algebra inHA gener-

ated by L.
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�

Since SL�≡` is free on the variety of Heyting algebras, it has a universal mapping
property and, given any other model H ∈ HA in Heyting algebras, there is a unique
homomorphism h : SL�≡` → H. In this sense, the Lindenbaum-Tarski Heyting
algebra can be said to contain a “universal model” of the logic. Also every model
anywhere else, in a class of ordered sets or topological spaces, is a structure preserving
image of SL�≡` by an essentially unique, logic-preserving function. Such a universal
model is then “logically generic”, in the sense that it has all and only those logical
properties had by all models.
Remark 4.3.9.

1. This Lindenbaum-Tarski algebra’s construction can be applied to a very large
number of logics other than intuitionistic logic, in particular to all its axiomatic
extensions. In that case, there is a subclass of Heyting algebras that plays the role
ofHA and the properties of these τ-algebras produce properties of the logic,
among them enhanced completeness theorems; namely, completeness theorems
with respect to restricted classes of Heyting algebras that could eventually carry
a more definite structure such as algebras of upper sets on a posets or algebras
of specific kind of (open) sets in a topological space. We will illustrate the point
by taking the argument further in Subsection 4.3.5.

2. Still in the case of intuitionistic logic, some observations or consequences of
the above construction can be highlighted. Any weak representation theorem
of Heyting algebras in terms of algebras in a particular subclass (see Theorem
3.3.43 and 3.3.44) yields a corresponding completeness theorem for that class (for
instance, algebras of upper sets of posets or algebras of open sets of topological
spaces).

The following result gives substance to the last remark above.
Proposition 4.3.10 (Tarski-Kripke algebraic completeness for INT). Let C ⊆ HA be a

subclass of Heyting algebras of the form {Up P | P ∈ Pos } or { O(X) | X ∈ T op }. Then,

IdL(SL�≡`) � IdL(C).

Proof. As a consequence of the basic adjunction, we have

IdL(SL�≡`) ⊆ IdL(C)

In order to prove the opposite inclusion, it suffices to take the contrapositive. Suppose
the equation (ϕ � ψ) < IdL(SL�≡). Then, in particular it fails on some A ∈ HA.
By the weak representation theorems 3.3.43 and 3.3.44, there exists A′ ∈ C, namely
A′ � Up P or A′ � O(X) for some P ∈ Pos and X ∈ T op, such that A ∈ HA can be
embedded in A′ ∈ C. As a consequence of Remark 4.2.4(i), ϕ � ψ fails on A′ and
(ϕ � ψ) < IdL(C). �
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4.3.5 The Lattice of Superintuitionistic Logics

Until now, we have discussed only intuitionistic logic. In this section, we turn on
superintuitionistic logics, namely logics stronger than or equal to intuitionistic logic.
The first question should be “what are superintuitionistic logics from an algebraic
point of view?”

We fix a set of formulas Γ, and consider∇`Γ � { α ∈ SL | Γ ` α }, the theory generated
by Γ. Comparing the definition of closure operator (see subsection 2.1.6) and Remark
1.1.6(2), it easy to see that ∇` is a closure operator defined as

ϕ ∈ ∇`Γ if and only if Γ ` ϕ.

Hence, Γ is a theory if ∇`Γ � Γ, namely if it belongs to the lattices of closed sets
associated to ∇`, which is precisely the lattice of theories T h(INT). The set SL of
all formulas and the set INT of all formulas which are provable in ` are two extreme
examples of theories, the top and the bottom of the lattice, respectively.

Obviously, non every theory generated by a set of formulae is a superintuitionistic
logic. According to Definition 1.2.2, a set of formulas Γ is a superintuitionistic logic
(or, an intermidiate logic, if we leave aside SL) if and only if it is closed under both
provability and substitution. Hence, only those theory invariant under substitutions.
This suggests that intermediate logics are in correspondence with the equational
theories. We will try to corroborate this intuition.

Consider now more carefully the transformation given by ϕ 7→ ϕ � >. Naturally, this
map induces the adjunction ω−1 a ω.

2SL×SL 2SL
ω

ω−1

where ω(Γ) � { α � > | α ∈ Γ } and ω−1(Θ) � { α | α � > ∈ Θ } spring from a general-
ization of one of the maps involved in Theorem 4.1.12. This pair of maps establishes an
equivalence between set of formulae and set of equations of the form { α � > | α ∈ Γ },
for some set of sentences Γ. We can combine this equivalence with Mod a Id restricted
to Heyting algebras. (

2HA
)op 2SL×SL 2SL

Mod

IdX

ω

ω−1

For Remark 2.1.34(1), this composite is also an adjunction

(
2HA

)op 2SL
Alg

Log
(4.5)



4.3. The Algebraic Approach to Intuitionistic Logics 95

For allK ⊆ HA, we define Log(K) :� ω−1IdX(K), namely as the set of formulae that
are valid in all Heyting algebras ofK , that is to say

Log(K) � { α ∈ SL | ∀A ∈ K A |� α � > } .

Dually, we define Alg (Γ) :� Modω(Γ) for all Γ, namely as the class of Heyting algebras
of the theory having Γ as a set of axioms, that is to say

Alg (Γ) � {A ∈ HA | ∀α ∈ Γ A |� α � > } .

Remark 4.3.11. Since Alg a Log, they satisfy the following properties:

(1) for all subsets Γ,Γ′ of SL, if Γ ⊆ Γ′, then Alg(Γ′) ⊆ Alg(Γ);

(2) for all subclassesK ,K ′ ofHA, ifK ⊆ K ′, then Log(K ′) ⊆ Log(K).

(3) for all subclassesK ofHA and for all subsets Γ of SL,K ⊆ Alg(Γ) if and only if
Γ ⊆ Log(K).

Moreover, the maps Log Alg and Alg Log are closure operators on SL and on HA,
respectively. The sets closed under Alg Log are exactly the sets of the form Alg(Γ),
for some Γ ⊆ SL, and the sets closed under Log Alg are exactly the sets of the form
Log(K), for someK ⊆ HA.

Let us now look at some of the meanings of the conditions now estabilished.

First consider the significance of the composite map Alg Log. Since ωω−1 � 1SL×SL ,
this closure operator is nothing but Mod Id. Its fixsets are therefore varieties of Heyting
algebras, axiomatized by equations of the form { α � > | α ∈ Γ }, for some set of
sentences Γ, or more simply by Γ itself. The collection of fixsets of Alg Log forms the
complete lattice Λ(HA) dually isomorphic to the complete lattice of fixsets of Log Alg,
that we shall indicate Λ(INT)

Λop(HA) Λ(INT)
Alg

Log

By definition, Log Alg(Γ) is the most inclusive set of sentences which are valid on all
those Heyting algebras which are models for Γ. In more familiar terms, ϕ ∈ Log Alg(Γ)
if and only if every interpretation which makes all of Γ valid makes ϕ valid. Hence
Log Alg(Γ) is just the set of semantic consequences of the set of axioms Γ. More precisely,
Log Alg generates the smallest closure under semantical consequence.

Moreover, since α ∈ Log Alg(Γ) if and only ifω(α) ∈ IdXAlg(Γ) and the latter is invariant
under substitutions (see subsection 4.2.2), we have that LogAlg(Γ) is invariant under
substitutions as well. Therefore, the fixsets of Log Alg can be interpreted as follows.
Proposition 4.3.12. LetK ⊆ HA be a class of Heyting algebras, then Log(K), the totality
of formulae valid onK , is a superintutionistic logic.

�
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For each superintuitionistic logic L, we can perform the Lindenbaum-Tarski construc-
tion as before (see subsection 4.3.3). More precisely, we define a binary relation ≡L on
the set SL of formulas, putting (equivalence modulo L)

α ≡L β if and only if `L α⇔ β.

By construction, Log
(SL�≡L

)
� L. Since we have

Log
(SL�≡L

)
� Log

(
V
(SL�≡L

) )
by Lemma 4.2.19, every intermediate logics is of the form Log(K), forK � V

(SL�≡L
)
.

Moreover, SL�≡L generates the variety Alg(L) and it is also the free Heyting algebra
in Alg(L).
Theorem 4.3.13. Every intermidiate logic L is complete with respect to Alg(L).

Proof. See Chagrov and Zakharyaschev (1997). �

Finally, let us take a closer look at the operations on both lattices of intermediate logics
and subvarieties ofHA. Suppose {Li}i∈I is a collection of superintuitionistic logics.
Then the intersection

∧
i∈I Li :�

⋂
i∈I Li is also a superintuitionistic logic. Instead, we

define
∨

i∈I Li :� Log
⋂

i∈I Alg Li as the smallest intermediate logic containing {Li}i∈I .

Dually, suppose that {Vi}i∈I is a collection of subvarieties ofHA. Then the intersection∧
i∈IVi :�

⋂
i∈IVi is also a variety and

∨
i∈IVi , defined by Alg

⋂
i∈I Log(Vi), is the

smallest variety containing that collection {Vi}i∈I .

Among all of its subvarieties,HA is the greatest while the variety BA of Boolean
algebras is the atom of the latticeΛ(HA), namely it is greater than the smallest (trivial)
variety and there are no subvarieties between them.

4.3.6 Semantic Universes

We can now regard specific classes of Heyting algebras as semantic universes. More
precisely:

(1) Classes of Heyting algebras of the kind Clup (X), for an Esakia space X, are called
Esakia semantics.

(2) Classes of Heyting algebras of the kind O(X), for a topological space X, are called
Tarski-Stone semantics.

(3) Classes of Heyting algebras of the kind Up (P), for a poset P, are called Kripke
semantics;

The representation theorems 3.3.38,3.3.43 and 3.3.44 allow us to express all these
algebraic semantics in terms of Esakia spaces, topological spaces and order sets,
respectively.
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Observe that, in a semantical context, Esakia spaces and ordered sets are called Esakia
frames and Kripke frames, respectively. It is worth recalling that, if we limit ourself to
the finite case, they are the same (see subsection 3.3.6).

Esakia Semantics

Consider the mapping Clup (K) � {Clup X | X ∈ K }, for allK ⊆ ES. Naturally, this
map induces the adjunction Clup−1 a Clup.

(
2ES

)op (
2HA

)op 2SL
Clup−1

Clup

Alg

Log

For all Γ ⊆ SL, we define Fre (Γ) :� Clup−1Alg (Γ), namely the class of Esakia frames
that validates Γ, that is to say

Fre (Γ) � {X ∈ ES | ∀α ∈ Γ Clup(X) |� α � > } .

Dually, we define Loge(K) :� Log Clup(K), namely as the set of formulae that are valid
in all Esakia frames ofK , that is to say

Loge(K) � { α ∈ SL | ∀X ∈ K Clup(X) |� α � > } .

For Remark 2.1.34(1), they can be encapsulated in the following adjunction.

(
2ES

)op 2SL
Fre

Loge

This adjunction is exactly the same as (4.5). As a consequence,
Theorem 4.3.14. Every intermidiate logic L is complete with respect to Fre(L).

�

The only difference with (4.5) lies in the fact that, as a consequence of Theorem 3.3.42,
a class of Esakia frames validating some set of formulae is closed under subframes
(that is up-sets), continuous p-morphic images and finite disjoint unions rather than
finite products, as in the pure algebraic context. Adopting the notation − |� ϕ for
Clup(−) |� ϕ � >, we can summarized the observation as follows.
Remark 4.3.15. The validity of formulae is preserved for subframes, continuous
p-morphic images and finite disjoint unions. That is,

(i) if X |� ϕ and Y is a subframe of X, then Y |� ϕ;

(ii) if X |� ϕ and Z is a continuous p-morphic image of X, then Z |� ϕ;

(iii) if Xi |� ϕ for all i ∈ I (I finite), then
∐

i∈I Xi |� ϕ.



98 Chapter 4. Model theory for Algebras

Tarski-Stone Semantics

In a similar way, considering the map Op (K) � { O(X) | X ∈ K }, for all K ⊆ T op,
we obtain (

2T op )op 2SL
Sp

Logs

where Sp (Γ) :� Op−1Alg (Γ) is the class of topological spaces that validates Γ, namely

Sp (Γ) � {X ∈ T op | ∀α ∈ Γ O(X) |� α � > } .

and Logs(K) :� Log Op(K) the set of formulae that are valid in all topological spaces
ofK , that is to say

Logs(K) � { α ∈ SL | ∀X ∈ K O(X) |� α � > } .

The main difference with the previous semantics is crucial: since we have, for any
intermediate logic L, L ⊇ LogsSp L, there is no guarantee that L is complete with
respect to Sp(L).

As a consequence of Lemma 3.3.25, the closure properties of classes of topological
spaces validating some set of formulae can be recap in the following remark.
Remark 4.3.16. The validity of formulae is preserved for subspaces, open continuous
images and disjoint unions. That is, adopting the notation − |� ϕ for O(−) |� ϕ � >,

(i) if X |� ϕ and Y is a subspace of X, then Y |� ϕ;

(ii) if X |� ϕ and Z is an open continuous image of X, then Z |� ϕ;

(iii) if Xi |� ϕ for all i ∈ I, then
∐

i∈I Xi |� ϕ.

Kripke Semantics

Analogously, considering the mapping Up (C) � {Up(X) | X ∈ C } for all C ⊆ Pos,
we obtain (

2Pos )op 2SL
Frk

Logk

where Frk (Γ) :� Up−1Alg (Γ) is the class of Kripke frames that validates Γ, namely

Frk (Γ) � {X ∈ Pos | ∀α ∈ Γ Up(X) |� α � > } .

and Logk(C) :� Log Up(C) the set of formulae that are valid in all Kripke frames of C,
that is to say

Logk(C) � { α ∈ SL | ∀X ∈ C Up(X) |� α � > } .

Here too, since we have, for any intermediate logic L, L ⊇ LogkFrkL, there is no
guarantee that L is complete with respect to FrkL.
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The closure properties of classes of Kripke frames validating some set of formulae
can be summarized as follows.
Remark4.3.17. The validity of formulae is preserved for subframes, p-morphic images
and disjoint unions. That is, adopting the notation − |� ϕ for Up(−) |� ϕ � >,

(i) if X |� ϕ and Y is a subframe of X, then Y |� ϕ;

(ii) if X |� ϕ and Z is a p-morphic image of X, then Z |� ϕ;

(iii) if Xi |� ϕ for all i ∈ I, then
∐

i∈I Xi |� ϕ.

4.3.7 Basic Properties of Intermediate Logics

Next we look at the important properties of intermediate logics that we will be con-
cerned with in the last part of the thesis.

First we recall the definition of the finite model property.
Definition 4.3.18. An intermediate logic L is said to have the finite model property if
there exists a classK of finite Heyting algebras such that L � Log(K) or, equivalently,
if Alg(L) is finite approximable.

As we have already said, the variety of Heyting algebras is generated by the finite
Heyting algebras. This crucial fact is a consequence of the following theorem.
Theorem 4.3.19. Intuitionistic propositional logic has the finite model property. Or, equiva-

lently, the variety of Heyting algebras is generated by the finite Heyting algebras.

Proof. See Chagrov and Zakharyaschev (1997). �

Clearly every logic that has the finite model property is complete. The converse, in
general, does not hold.

Let L be an intermediate logic. If L has the finite model property, then it is complete
with respect to a classK of finite Heyting algebras. ClearlyK can be very big. Now
we define a very restricted notion of the finite model property.
Definition 4.3.20. An intermediate logic L is called tabular if there exists a finite
Heyting algebra H such that L � Log(H) or, equivalently, if Alg(L) is finitely generated.

Obviously, if L is tabular, then L has the finite model property. However, there are
logics with the finite model property that are not tabular. In particular, INT enjoys
the finite model preperty but is not tabular (see Chagrov and Zakharyaschev 1997).
The best known example of a tabular logic is the classical propositional logic CL (see
example 4.1.20(2)).
Definition 4.3.21. An intermediate logic L is called locally tabular if

|L | < ℵ0 implies SL�≡L < ℵ0.
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This logical property finds its algebraic counterpart in the local finiteness of the
corresponding varieties. Of course, every tabular logic is locally tabular. Therefore,
CL is locally tabular (see example 4.1.20(2)). However, there are locally tabular logics
that are not tabular.

The following theorem explains this connection between local tabularity and finite
model property.
Theorem 4.3.22. If an intermediate logic L is locally tabular, then L enjoys the finite model

property.

Proof. See Chagrov and Zakharyaschev (1997). �

The intuitionistic propositional logic provides a counter-example to the converse of
the above theorem. As we mentioned above, INT has the finite model property, but it
is not locally tabular (see example 4.1.20(3)).
Remark 4.3.23. In general we have:

tabularityV local tabularityV finite model property,

with both of the implications being strict.

Table 4.1: Equivalences between algebraic and logical properties

Tabularity Finite generation

Local tabularity Local finiteness

Finite model property Finite approximability

4.3.8 The Intermediate Logics ofBoundedDepth andBoundedBranching

In this section we introduce some intermediate logics and we report some facts that
will be used in the next chapters.

The Logics of Bounded Depth

Let us consider the sequence of formulas BDn defined as follows:

bd0 � p0 ∨¬p0,

bdn � pn ∨ (pn ⇒ bdn−1).

The family of logics BDn of bounded depth, for n ∈ N, is defined as follows:

BDn � INT + bdn .

The frames for BDn are the frames of depth at most n, as asserted in next proposition.
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Proposition 4.3.24. P is a frame for the logic BDn , for n ∈ N, if and only if every point of

P has depth at most n.

Proof. See Chagrov and Zakharyaschev (1997). �

For those intermediate logics, there is a completeness result with respect to their
relative classes.
Theorem 4.3.25 (Segerberg’s theorem). Every logic BDn , for n ∈ N, is characterized by

the class of its finite frames of depth at most n.

Proof. See Chagrov and Zakharyaschev (1997). �

They also have the important property that their corresponding variety of algebras is
locally finite.
Theorem 4.3.26. Every logic BDn , for n ∈ N, is locally tabular.

Proof. See G. Bezhanishvili (2001). �

The Logics of Bounded Branching

Let us consider the following family of formulas:

bbn �

n∧
i�0
((pi ⇒

∨
i, j

p j) ⇒
∨
i, j

p j) ⇒
n∨

i�0
pi , n ≥ 1.

The logics BBn , for n ≥ 1 (also known as Gabbay-de Jongh), are defined as follows:

BBn � INT + bbn .

Let P be a finite frame and let x ∈ P. We say that x has branching n if x has at most n
distinct immediate successors. It is not difficult to prove that:
Proposition 4.3.27. Let P be a finite frame. P is a frame for the logic BBn , with n ≥ 1, if
and only if every point x of P has branching at most n.

Proof. See Chagrov and Zakharyaschev (1997). �

Also for those logics, we have a completeness theorem with respect to their relative
classes.
Theorem 4.3.28. Every logic BBn , for n ≥ 1, is characterized by the class of its finite frames

of branching at most n.

Proof. See Chagrov and Zakharyaschev (1997). �
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5 Polyhedra: Heyting Structure
and Local Finiteness

In this chapter we recall all needed definitions and results about Polyhedra. More-
over, following N. Bezhanishvili et al. (2018), we shall show that the collection of
subpolyhedra of a given polyhedron P is, in fact, a Heyting subalgebra of O(P); and,
unlike O(P), it is always locally finite. This result provides one of the key insights of
N. Bezhanishvili et al. (2018): local finiteness reflects algebraically a crucial tameness
property of polyhedra as opposed to general compact subsets of Rn .

5.1 Basic Notions

We begin by summarizing some notation from affine geometry to clarify the terminol-
ogy and concepts that we will use. As usual, let R denote the field of real numbers.
Definition 5.1.1. Let A ⊆ Rn . An affine combination of points x0, . . . , xd ∈ A is a
linear combination

∑d
i�0 λi xi ∈ Rn , where λi ∈ R and

∑d
i�0 λi � 1. The points

x0, . . . , xd ∈ Rn are affinely independent if the vectors x1 − x0, x2 − x0, . . . , xd − x0 are
linearly independent, a condition which is invariant under permutations of the index
set {0, . . . , d}.

For example, three distinct points in the real plane are affinely independent while
each set of four or more points are affinely dependent.
Definition 5.1.2. Let A ⊆ Rn . A convex combination of A is an affine combination∑d

i�0 λi xi ∈ Rn which additionally satisfies λi ≥ 0 for each i ∈ {0, . . . , d}. The set
conv A of all convex combinations of of finite subsets of A is called the convex hull of
A. A set A ⊆ Rn is called convex if A � conv A.

The empty set is convex by definition. The simplest non-trivial example of a convex
set is the closed interval [a, b] ⊆ R. It is one-dimensional and is the convex hull of its
end points. Analogously, for a, b ∈ Rn we define:

[a, b] :� { λa + (1− λ)b ≤ λ ≤ 1 } � conv{a, b}.

It is not difficult to see that a set A ⊆ Rn is convex if and only if, for every two points
x, y ∈ A, the segment [x, y] is contained in A.
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Definition 5.1.3. A set P ⊆ Rn is a polytope if it can be expressed as the convex hull of
finitely many points, that is, if P � conv V for a finite set V ⊆ Rn . A polyhedron in Rn

is any subset that can be written as a finite union of polytopes.

The union over an empty index set is allowed, so that ∅ is a polyhedron. See Figure 5.1
for a classic example of polyhedra (the Octahedron). From an topological viewpoint,
a polyhedron is a closed and bounded, and hence compact, subset of Rn .

1

Figure 5.1: The Octahedron.

5.1.1 Simplices

Definition 5.1.4. A non-empty set ζ ∈ Rn is a simplex if ζ :� conv V , where V :�
{x0, . . . , xd} is a set of affinely independent points called vertices of the simplex.

It is almost immediate to see that V is the uniquely determined such affinely indepen-
dent set.
Proposition 5.1.5. A simplex determines its vertices, so that two simplices coincide if and

only if they have the same set of vertices.

Proof. See Maunder (1980). �

See Figure 5.2 for some example of simplices. We introduce now the crucial notions
of face and dimension of a simplex.

1

Figure 5.2: Some simplices.

Definition 5.1.6. A face of the simplex ζ is the convex hull of a non-empty subset of
V , and thus is itself a simplex for a uniquely determined V′ ⊆ V .
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Hence the 0-faces of ζ are precisely its vertices. We write

ζ � x0 · · · xd ,

to indicate that ζ is the d-simplex whose vertices are x0, . . . , xd .
Definition 5.1.7. The (affine) dimension of a d-simplex ζ � x0 · · · xd ∈ Rn is the linear-
space dimension of the affine subspace of Rn spanned by ζ. It is precisely d because
of the affine independence of the vertices of ζ.

We write
ζ ≤ ξ and ζ < ξ

to indicate that ζ is a face of ξ, and that ζ is a proper face of ξ, respectively.

Now suppose that ζ � x0 · · · xd ∈ Rn and ξ � y0 · · · yd ∈ Rn are d-simplices in Rn .
Then ζ and ξ are homeomorphic, in a rather special way.
Proposition 5.1.8. ζ and ξ are linearly homeomorphic, that is, there exists a homeomorphism

f : ζ→ ξ, such that

f
( d∑

i�0
λi xi

)
�

d∑
i�0

λi yi

for all points of ζ.

Proof. See Maunder (1980). �

It follows that a d-simplex ζ is completely characterized, up to homeomorphism, by
its dimension.

Notice that, by the affine independence of the vertices of ζ, for each x ∈ ζ there exists
a unique choice of λi ∈ R with x �

∑d
i�0 λi xi and λi ≥ 0,

∑d
i�0 λi � 1. The λi’s are

traditionally called the barycentric coordinates of x. With this in mind, we introduce
the following notion.
Definition 5.1.9. Let ζ � x0 · · · xd ∈ Rn be a simplex. The relative interior of ζ, denoted
relint ζ, is the subset of ζ of those points x ∈ ζ whose barycentric coordinates are
strictly positive.

Naturally, it coincides with the the topological interior of ζ in the affine subspace of
Rn spanned by ζ. The relative interior of a 0-simplex, namely a point, is the point
itself. In the following, for any set S ⊆ Rn we use the notation

cl S

to denote the closure of S in the ambient Euclidean space Rn . Observe that if P ⊆ Rn

is a polyhedron and S ⊆ P, then the closure of S in the subspace P of Rn agrees with
cl S, because P is closed in Rn . Note that cl relintζ � ζ for any simplex ζ.

We recall also the notion of open star of a simplex.
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Definition 5.1.10 (Open star). For Σ a triangulation, the open star of σ ∈ Σ is the
subset of |Σ| defined by

o(ζ) :�
⋃
ζ⊆ξ∈Σ

relint ξ. (5.1)

We now consider how to combine simplices in order to obtain more complicated
spaces.

5.1.2 Triangulations

Definition 5.1.11. A triangulation is a finite set Σ of simplices in Rn satisfying the
following conditions.

1. If ζ ∈ Σ and ξ is a face of ζ, then ξ ∈ Σ.

2. If ζ, ξ ∈ Σ, then ζ ∩ ξ is either empty, or a common face of ζ and ξ.

One also says that Σ triangulates the subset |Σ| of Rn . A subtriangulation of the tri-
angulation Σ is any subset ∆ ⊆ Σ that is itself a triangulation. This is equivalent to
the condition that ∆ be closed under taking faces – i.e. satisfies just 5.1.11(1). By the
vertices of Σwe mean the vertices of the simplices in Σ.

It is important to observe that a triangulation K is not a topological space; it is merely
a set whose elements are simplices. However, the set of points of Rn that lie in at
least one of the simplices of Σ, topologized as a subspace of Rn , is a topological space,
called the support, or underlying polyhedron, of the triangulation Σ, that is,

|Σ| :�
⋃

Σ ⊆ Rn .

if ∆ is a subtriangulation of Σ, then |∆| is called a subpolyhedron of |Σ|. See Figure 5.3
for an example of triangulations.

The locally finite Heyting structure

a

d

b

c

ab

cd

bcad ac

abc

acd

a db c

ab cdbc adac

abc acd a db c

ab cdbc adac

abc acd

Vincenzo Marra Tarski’s Theorem for Polyhedra December 17th, 2015 18

Figure 5.3: The triangulation of [0, 1]2.

Observe that a triangulation Σ can be regarded as a poset under inclusion and a
subtriangulation of Σ is precisely the same thing as a lower set of Σ. This fact will be
heavily exploited below (see Chapter 6). The following fact makes precise the idea
that a triangulation Σ provides a finitary description of the triangulated space |Σ|.
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Lemma 5.1.12. If Σ is a triangulation, for each x ∈ |Σ| there is exactly one simplex ζx ∈ Σ
such that x ∈ relint ζ.

Proof. See Maunder (1980). �

The simplex ζx is called the carrier of x in Σ.

So far we have been concerned exclusively with triangulations and their associated
polyhedra, and have said nothing about maps that preserve the simplicial structure.
To this end, we make the following definition.
Definition 5.1.13. Given triangulations Σ and ∆, a simplicial map f : Σ → ∆ is a
function from Σ to ∆with the following properties.

(1) If xi is a vertex of a simplex of Σ, then f (xi) is a vertex of a simplex of ∆.

(2) If x0x1 · · · xn is a simplex of Σ, then f (x0) f (x1) · · · f (xn) span a simplex of ∆ (pos-
sibly with repeats).

(3) If x �
∑d

i�0 λi xi is in a simplex x0x1 · · · xn of Σ, then f (x) � ∑d
i�0 λi f (xi);

in other words, f is linearly onto on each simplex.

Simplicial maps are then determined by their restriction to the vertices and induce
continuous maps between the underlying polyhedra of the triangulations: it suffices
to extend linearly using barycentric coordinates.
Proposition 5.1.14. Let f : Σ→ L be a simplicial map. Then f : |Σ| → |∆| is continuous.
Moreover, if f : Σ→ ∆ is bĳective, f : |Σ| → |∆| is an homeomorphism.

Proof. See Maunder (1980). �

We need also to recall the following result.
Lemma 5.1.15. If Σ is is a disjoint union of Σi , i � 1, . . . , k, that is

Σ �

k∐
i�0

Σi ,

then

|Σ| �
k∐

i�0
|Σi |.

�

5.1.3 The Triangulation Lemma and its Consequences

Any subset of Rn that admits a triangulation, being a finite union of simplices, is
evidently a polyhedron. The rather less trivial converse is true, too, in the following
strong sense.
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Lemma 5.1.16 (Triangulation Lemma). Given finitely many polyhedra P, P1, . . . , Pm in

Rn
with Pi ⊆ P for each i ∈ {1, ..., m}, there exists a triangulation Σ of P such that, for each

i ∈ {1, ..., m}, the collection Σi :� {ζ ∈ Σ|ζ ⊆ Pi} is a triangulation of Pi , i.e. |Σi | � Pi .

Proof. See Rourke and Sanderson 1982. �

The Triangulation Lemma is the fundamental tool in the following. In order to better
understand its importance we can write, for each polyhedron P ⊆ Rn , Subc P for the
collection of subpolyhedra of P – i.e., polyhedra in Rn contained in P. We set also

Subo P :� {O ⊆ P |P\O ∈ Subc P},

whose members are called open (sub)polyhedra of P.

Here is a first consequence of Lemma 5.1.16.
Corollary 5.1.17. For any polyhedron P ⊆ Rn

, both Subc P and Subo P are distributive

lattices (under set-theoretic intersections and unions) bounded above by P and below by ∅.

Proof. See N. Bezhanishvili et al. (2018). �

In Subsection 5.2 we shall see a strengthening of Corollary 5.1.17 to the effect that
Subo P is a Heyting subalgebra of the Heyting algebra O(P). Before moving on, we
introduce the notion of dimension for polyhedra.
Definition 5.1.18. The (affine) dimension of a nonempty polyhedron P in Rn is the
maximum of the dimensions of all simplices contained in P ; if P � ∅, its dimension
is −1. We write dim P for the dimension of P. Given a triangulation Σ in Rn , the
(combinatorial) dimension of Σ is

dimΣ :� max { d ∈ N | there exists ζ ∈ Σ such that ζ is a d-simplex }

Again, the dimension of an empty triangulation is −1. Given d ∈ N, we shall denote
by Pd the set of all polyhedra of dimension less than or equal to d.

We recall now the essential notion of Lebesgue covering dimension (for more details,
see Pears 1975).
Definition 5.1.19. A topological space X is said to have the Lebesgue covering dimension

d < ∞ if d is the smallest non-negative integer with the property that each finite open
cover of X has a refinement in which no point of X is included in more than d + 1
elements.

With the Triangulation Lemma 5.1.16 available, we have the following equivalent
characterizations of polyhedra’s dimension.
Lemma 5.1.20. For any polyhedron ∅ , P ⊆ Rn

and every d ∈ N, the following are

equivalent.

1. dim P � d
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2. There exists a triangulation Σ of P such that dimΣ � d.

3. All triangulations Σ of P satisfy dimΣ � d.

4. The Lebesgue covering dimension of the topological space P is d.

�

5.2 The Locally Finite Heyting Algebra of a Polyhedron

Throughout this section we fix n ∈ N along with a polyhedron P ⊆ Rn . We shall
study the distributive lattice SuboP (see Corollary 5.1.17). We begin by proving that
SuboP is in fact a Heyting algebra. We then prove that SuboP is always locally finite.
Through this section we essentialy follow N. Bezhanishvili et al. (2018).

5.2.1 The Heyting Algebra of Open Subpolyhedra

We need the following elementary observation on relative interiors.
Lemma 5.2.1. Let Σ be a triangulation in Rn

, let ξ � x0 · · · xd be a simplex of Σ, and let

x ∈ relint ξ. Then no proper face ζ < ξ contains x. Hence, in particular, the carrier ζx
of x

in Σ is the inclusion-smallest simplex of Σ containing x.

Proof. There are r0, . . . , rd ∈ (0, 1] such that x �
∑d

i�0 λi xi and
∑d

i�0 λi � 1. Let
ρi :� x0 · · · xi−1xi+1 · · · xd . Clearly ρi < ξ for each i ∈ {0, . . . , d}, and for each ζ < ξ
there exists i ∈ {0, . . . , d} such that ζ ≤ ρi . Hence, ifwe assumebywayof contradiction
that x ∈ ζ < ξ, then x ∈ ρi for some i ∈ {0, ..., d}; say x ∈ ρ0. Then x �

∑d
i�1 si xi , for

some s1, . . . , sd ∈ [0, 1] such that
∑d

i�1 si � 1. It follows that r0 �
∑d

i�1(si − λi), and so

0 � x − x �

d∑
i�1

si xi −
d∑

i�1
λi xi �

d∑
i�1
(si − λi)xi − λ0x0 �

d∑
i�1
(si − λi)(xi − x0).

Since λ0 > 0, there must be i ∈ {1, . . . , d} such that si − λi , 0, contradicting the affine
independence of x0, . . . , xd . �

The next lemma is the key fact of this section.
Lemma 5.2.2. Let P and Q be polyhedra in Rn

with Q ⊆ P, and supposeΣ is a triangulation

of P such that

ΣQ :� { ζ ∈ Σ | ζ ⊆ Q } ,

triangulates Q. Define

• C :� cl (P\Q)

• ΣC :� { ζ ∈ Σ | ζ ⊆ C }

• Σ∗ :� { ζ ∈ Σ | There exists ξ ∈ Σ\ΣQ such that ζ ≤ ξ }.
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Then

(1) ΣC � Σ∗, and

(2) |ΣC | � |Σ∗ | � C.

In particular, C is a polyhedron.

Proof. We first show that Σ∗ triangulates C, that is:

|Σ∗ | :�
⋃

Σ∗ � C. (5.2)

To show |Σ∗ | ⊆ C, let ζ ∈ Σ∗, and pick ξ ∈ Σ\ΣQ such that ζ ≤ ξ. We prove that
relint ξ ⊆ P\Q. For, if x ∈ relint ξ, by Lemma 5.2.1 there are no simplices ζ ∈ Σ such
that x ∈ ζ < ξ. Then, by definition of triangulation, for any simplex ρ ∈ Σ, x ∈ ρ
entails ξ ≤ ρ. Hence no simplex ofΣQ contains x, or equivalently, x < Q and therefore
relint ξ ⊆ P\Q.

Now, it is clear that any simplex ξ satisfies ξ � cl relint ξ. It follows that ζ ⊆ ξ �

cl relint ξ ⊆ cl (P\Q), and thus |Σ∗ | ⊆ C as was to be shown.

Conversely, to show C ⊆ |Σ∗ |, let x ∈ C. Since C is the closure of P\Q in Rn , there
exists a sequence {xi}i∈N ⊆ P\Q that converges to x. Clearly the carrier ζxi of xi in Σ
lies in Σ\ΣQ , for all i ∈ N. Since Σ\ΣQ is finite, there must exist a simplex ξ ∈ Σ\ΣQ

containing infinitely many elements of {xi}i∈N. Then there exists a subsequence of
{xi}i∈N that is contained in ξ and converges to x. Since ξ is closed, x ∈ ξ, and therefore
x ∈ |Σ∗ | as was to be shown.

This establishes (5.2). It now suffices to prove 5.2.2(1). For the non-trivial inclusion
ΣC ⊆ Σ∗, let ζ ∈ Σ be such that ζ ⊆ C, and pick β ∈ relint ζ. There is a sequence
{xi}i∈N ⊆ P\Q converging to β ∈ ζ. Since each xi is in some simplex of Σ\ΣQ and Σ
is finite, there must exist a simplex ξ ∈ Σ\ΣQ containing a subsequence of {xi}i∈N

that converges to β. Since ξ is closed, β ∈ ξ. But by Lemma 5.2.1, ζβ � ζ, so that ζ ⊆ ξ
and ζ ∈ Σ∗. �

Corollary 5.2.3. Given polyhedra Q1, Q2 in Rn
, the set cl(Q2\Q1) is a polyhedron.

Proof. Observe that Q2\Q1 � Q2\(Q1 ∩Q2) and apply Corollary 5.1.17 together with
Lemma 5.2.2 to the set P :� conv (Q1 ∪Q2), which clearly is a polyhedron. �

Corollary 5.2.4. The lattice Subc P of is closed under the co-Heyting implication (see 3.14)

of C(P). Dually, the lattice Subo P is closed under the Heyting implication (see Example

3.3.28(1)) of O(P).

�
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5.2.2 Local Finiteness of the Heyting Algebra of Open Subpolyhedra

Having established that SuboP is a Heyting subalgebra of O(P), we infer an important
structural property of SuboP, local finiteness. For this, we first identify the class of
subalgebras of SuboP that corresponds to triangulations of P. These algebras will
have also a central role in Chapter 6.
Definition 5.2.5 (Σ-definable polyhedra). For any triangulation Σ in Rn , we write
Pc(Σ) for the sublattice of O(|Σ|) generated by Σ, and Po(Σ) for the sublattice of O(|Σ|)
generated by { | Σ|\C |C ∈ Pc(Σ) }. We call Pc(Σ) the set of Σ-definable polyedra, and
Po(Σ) the set of Σ-definable open polyedra.

Note that we have

Pc(Σ) � { C ⊆ Rn | C is the union of some subset ofΣ } .

Lemma 5.2.6. For any triangulation Σ of P, Pc(Σ) is a co-Heyting subalgebra of SubcP.
Dually, Po(Σ) is a Heyting subalgebra of SuboP.

Proof. For any ∅ , C, D ∈ Pc(Σ), it follows immediately by the assumptions that C and
D are triangulated by the collection of simplices ofΣ contained in C and D, respectively.
Hence C⇒ D :� cl(C\D) � |Σ∗ | � Σ∗ by Corollary 5.2.3 and Lemma 5.2.2, where Σ∗

is the appropriate subset of Σ as per Lemma 3.2. Thus C⇒ D ∈ Pc(Σ). �

Corollary 5.2.7. Let H be the co-Heyting subalgebra of SubcP generated by finitely many

polyhedra P1, . . . , Pm ⊆ P . Let further Σ be any triangulation of P that triangulates each

Pi , i ∈ {1, . . . , m}. Then H is a co-Heyting subalgebra of Pc(Σ). In particular, H is finite.

Dually for the Heyting subalgebra of SuboP generated by P\Pi , i ∈ {1, . . . , m}.

Proof. Each Pi is the union of those simplices of Σ that are contained in Pi , by as-
sumption. It follows that the distributive lattice L generated in SubcP by {P1, . . . , Pm}
is entirely contained in Pc(Σ). Now, if C, D ∈ L, C ⇐ D :� cl(C\D) � |Σ∗ | � Σ∗

by Corollary 5.2.3 and Lemma 5.2.2, where Σ∗ is the appropriate subset of Σ as per
Lemma 5.2.2. Hence C⇐ D ∈ Pc(Σ), as was to be shown. �

Corollary 5.2.8. The Heyting algebra SuboP is locally finite, and so is the co-Heyting algebra

SubcP.

�

Before proceeding to next Chapter, it is important to introduce the notion of logic for
a given family of polyhedra.
Definition 5.2.9. If P is any family of polyhedra, we write LogP for the extension of
intuitionistic logic determined by P, namely

LogP :� { α ∈ SL | ∀P ∈ P Subo P |� α } ,
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the unique intermediate logic corresponding to the variety of Heyting algebras gener-
ated by the collection of Heyting algebras { Subo P | P ∈ P }.
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6 Topological Dimension and
Bounded Depth

The aim of this chapter is to present the main results of N. Bezhanishvili et al. (2018):
For each d ∈ N, the logic of all polyhedra of dimension less than or equal to d, Log Pd ,
is intuitionistic logic extended by the axiom schema bdd .

We first prove that Log Pd is contained in intuitionistic logic extended by the axiom
schema bdd . Following to N. Bezhanishvili et al. (2018), this result is a consequence of
the analysis of frames arising from triangulations and a combinatorial counterpart
of the result for triangulations, Lemma 6.2.1 below. The converse is obtained by
constructing a polyhedron P of dimension d such that the Heyting algebra of upper
sets of A embeds into the Heyting algebra Subo P. To accomplish the proof, the notion
of nerve of a poset will turn out decisive.

6.1 Frames of Algebras of Definable Polyhedra

Consider a triangulation Σ, and the finite Heyting algebra Po(Σ). We shall henceforth
regard Σ as a poset under the inclusion order. Note that the inclusion order of Σ
is the same thing as the “face order” ζ ≤ ξ we have been using above: since Σ is
a triangulation, ζ ⊆ ξ implies ζ ≤ ξ, and the converse implication is obvious. We
shall show that the Heyting algebra of upper sets of Σ is isomorphic to Po(Σ); or,
equivalently, through Esakia duality (see Theorem 3.3.40), that the face poset Σ is
isomorphic to Spec Po(Σ).

We recall that the open star of any simplex is an open subpolyhedron (see Maunder
1980), that is, for each ζ ∈ Σ

o(ζ) ∈ Po(Σ). (6.1)

Indeed, set
Kζ :� {ξ ∈ Σ|ζ * ξ}.

Then Kζ is clearly a subtriangulation of Σ, |Kζ | is a subpolyhedron of |Σ|, and thus
O :� |Σ|\|Kζ | ∈ Po(|Σ|); but one can show using Lemma 5.1.12 that O � o(ζ), so (6.1)
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holds. We now define a function

γ↑ : UpΣ→Po(Σ).

U ∈ UpΣ 7→
⋃
ζ∈U

relint ξ. (6.2)

To see that γ↑ is well-defined, use the fact that Σ is a finite poset to list the minimal
elements ζ1, ..., ζu of the upper set U. Then

U �↑ ζ1 ∪ · · · ↑ ζu ,

so that

γ↑(U) �γ↑(↑ ζ1) ∪ · · · ∪ γ↑(↑ ζu),

�

⋃
ζ1⊆ξ∈Σ

relint ξ ∪ · · · ∪
⋃

ζu⊆ξ∈Σ
relint ξ

�o(ζ1) ∪ · · · ∪ o(ζu)

Thus γ↑(U) is a union of open stars and hence a member of Po(Σ).
Lemma 6.1.1. The map γ↑ of (6.2) is an isomorphism of the finite Heyting algebras UpΣ and

Po(Σ).

Proof. It suffices to show that γ↑ is an isomorphism of distributive lattices. It is
clear that γ↑ preserves the top and bottom elements, and that it preserves unions: if
U, V ∈ UpΣ then

γ↑(U ∪V) �
⋃

ζ∈U∪V

relint ζ �

⋃
ζ∈U∪V

relint ζ ∪
⋃

ζ∈U∪V

relint ζ � γ↑(U) ∪ γ↑(V).

Concerning intersections,

γ↑(U) ∩ γ↑(V) �
⋃
ζ∈U

relint ζ ∩
⋃
ξ∈V

relint ξ

�

⋃
ζ∈U

⋃
ξ∈V

relint ζ ∩ relint ξ

�

⋃
ζ∈U,ξ∈V

relint ζ ∩ relint ξ (6.3)

By Lemma 5.1.12, for any two ζ, ξ ∈ Σ the intersection relint ζ ∩ relint ξ is empty as
soon as ζ , ξ. Hence from (6.3) we deduce

γ↑(U) ∩ γ↑(V) �
⋃

δ∈U∩V

relint δ � γ↑(U ∩V),

as was to be shown.
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To prove γ↑ is surjective, let O ∈ Po(Σ) and set P :� |Σ|\O ∈ Pc(Σ). Then, by definition
of Pc(Σ), there is exactly one subtriangulation ∆ of Σ such that P � |∆|, and ∆ is a
lower set of (the poset) Σ. Set U :� Σ\∆, so that U is an upper set of Σ. We show:

O �

⋃
ζ∈U

relint ζ (6.4)

To prove (6.4) we use the fact that, since P is a member of Pc(Σ), for every ζ ∈ Σwe
have

relint ζ ∩ P , ∅ if and only if ζ ⊆ P (6.5)

Only the left-to-right implication in (6.5) is non-trivial, andwe prove the contrapositive.
Assume ζ * P. If ζ ∩ P � ∅ obviously relint ζ ∩ P � ∅. Otherwise ξ :� ζ ∩ P must be a
proper face of ζ, and therefore relint ζ ∩ ξ � ∅; hence relint ζ ∩ P � ∅. This establishes
(6.5).

Now, to show (6.4), if x ∈ O then the carrier ζx ∈ Σ is such that relint ζ ∩ P � ∅, so
ζx * P; equivalently, ζx < ∆. Then ζx ∈ U and hence x ∈ ⋃

ζ∈U relint ζ. Conversely,
if x < O, then x ∈ P, so relint ζx ∩ P � ∅ and thus ζx ⊆ P; equivalently, ζx ∈ ∆. Then
ζx ∈ U and hence x ∈ ⋃

ζ∈U relint ζ. This proves (6.4).

In light of (6.4) we now have γ↑(U) � O so that γ↑ is surjective.

Finally, to prove injectivity, it suffices to recall that relative interiors of simplices in Σ
are pairwise-disjoint, so the union in (6.2) is in fact a disjoint one, which makes the
injectivity of γ↑ evident. �

See Figure 6.1 for an example of intuitionistic frame corresponding to a given triangu-
lation.

The locally finite Heyting structure

a

d

b

c

ab

cd

bcad ac

abc

acd

a db c

ab cdbc adac

abc acd a db c

ab cdbc adac

abc acd

Vincenzo Marra Tarski’s Theorem for Polyhedra December 17th, 2015 18

Figure 6.1: The intuitionistic frame of the triangulation of [0, 1]2.

6.2 Topological Dimension Through Bounded Depth

We can prove now the following Lemma:
Lemma 6.2.1. Let Σ be a triangulation in Rn

.

(1) The join-irreducible elements of Pc(Σ) are the simplices of Σ.
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(2) The join-irreducible elements of Po(Σ) are the open stars of simplices of Σ.

(3) In both Pc(Σ) and Po(Σ) there is a chain of prime filters having cardinality dim Σ+ 1. In
neither Pc(Σ) nor Po(Σ) is there a chain of prime filters having strictly larger cardinality.

Proof. Item (1) follows from direct inspection of the definitions. Item (2) is an imme-
diate consequence of Lemma 6.1.1 along with Esakia duality (see Theorem 3.3.40). To
prove (3), set d :� dimΣ and note that by definition Σ contains at least one d-simplex
ζ � x0 · · · xd ∈ Σ. By item (1) the chain of simplices x0 < x0x1 < · · · < x0x1 · · · xd � ζ

is a chain of join-irreducible elements of Pc(Σ), and the principal filters generated
by these elements yields a chain of prime filters of Pc(Σ) of cardinality d + 1. On
the other hand, any chain of prime filters of Pc(Σ) must be finite because Pc(Σ) is.
If p1 ⊂ p2 ⊂ · · · ⊂ pl is any such chain of prime filters, then each pi is principal –
again because Pc(Σ) is finite – its unique generator pi is join-irreducible, and we have
pl < pl−1 < · · · < p2 < p1 in the order of the lattice Pc(Σ). Then pi ∈ Σ, and clearly,
since the simplex p1 has l − 1 proper faces of distinct dimensions, dim p1 ≥ l − 1. But
d :� dim p1 by definition of d :� dimΣ, and therefore d + 1 ≥ l, as was to be shown.
The proof for Po(Σ) is analogous, using item (2). �

Before finally relating the bounded-depth formulae to topological dimension by giving
a proof of the Theorem6.2.3 below,we recall the following LemmaonHeyting algebras.
Lemma 6.2.2. For any non-trivial Heyting algebra H and each d ∈ N, the following are

equivalent.

1. The longest chain of prime filters in H has cardinality d + 1.

2. dep Spec H � d.

3. H satisfies the equation bdd � >, and fails each equation bdd′ � > with 1 ≤ d′ < d.

Proof. See Chagrov and Zakharyaschev (1997). �

Theorem 6.2.3. For any polyhedron ∅ , P ⊆ Rn
and every d ∈ N, the following are

equivalent.

(i) dim P � d.

(ii) The Heyting algebra SuboP satisfies the equation bdd � >, and fails each equation

bdd′ � > for each integer 0 ≤ d′ < d.

Proof. (i) implies (ii): By Lemma 5.1.20, dimΣ � d for any triangulation Σ of d. By
Lemmas 6.2.2, 5.2.6, and 6.2.1, the subalgebra Po(Σ) of SuboP satisfies the equation
bdd � >, and fails each equation bdd′ � > for each integer 0 ≤ d′ < d. To complete
the proof it thus suffices to show that any finitely generated subalgebra of SuboP is a
subalgebra of Po(Σ) for some triangulation Σ of P. But this is precisely the content of
the Triangulation Lemma 5.1.16.
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(ii) implies (i): We prove the contrapositive. Suppose first dim P > d ≥ 0. Then, by (i)
implies (ii), SuboP fails the equation bdd , so that (ii) does not hold. On the other hand,
if 0 ≤ d′ :� dim P < d, by (i) implies (ii) we know that SuboP satisfies the equation
bdd′ � >, so again (ii) does not hold. �

6.2.1 Nerves of Posets and the Geometric Finite Model Property

In this section we use a classical construction in polyhedral geometry to realise finite
posets geometrically.

Construction The nerve (see Alexandrov 1998 and Björner 1995) of a finite poset A
is the set

N(A) � { ∅ , C ⊆ A | C is totally ordered by the restriction of ≤ to C × C }

In other words, the nerve of A is the collection of all chains of A. We always regard
the nerveN(A) as a poset under inclusion order. Let us display the elements of A as
{a1, . . . , an}. Let e1, . . . , en denote the vectors in the standard basis of the linear space
Rn . The triangulation induced by the nerveN(A) is the set of simplices

∇(N(A)) :� { conv {ei1 , . . . , eil } | {ai1 , . . . , ail } ∈ N(A) }

Then it is immediate that ∇(N(A)) indeed is a triangulation in Rn , and its underlying
polyhedron |∇(N(A))| is called the geometric realisation of the poset A.

For the proof of Theorem 6.2.4 below, we set Σ :� ∇(N(A)). Using the fact that
simplices are uniquely determined by their vertices (see Proposition 5.1.5), we see that
the map

ai1 < ai2 < · · · < ail ∈ N(A) 7−→ conv {ei1 , . . . , eil } ∈ Σ

is an order-isomorphism betweenN(A) and Σ, the latter ordered by inclusion. There-
fore,

dimΣ � cardinality of the longest chain inA � dep A.

To prove Theorem 6.2.4 below it will suffice to construct a p-morphismN(A)� A.
To this end, let us define a function

f : N(A) → A

C ∈ N(A) 7−→ max C ∈ A

where the maximum is computed in the poset A.
Theorem 6.2.4. Let A be a finite, nonempty poset of cardinality n ∈ N. There exists a

triangulation Σ in Rn
satisfying the following conditions.

(1) dep A � dimΣ



118 Chapter 6. Topological Dimension and Bounded Depth

(2) There is a surjective p-morphism Σ� A, where Σ is equipped with the inclusion order.

Proof. To show that f preserves order, just note that C ⊆ D ∈ N(A) obviously entails
max C ≤ max D in A. To show that f is a p-morphism, for each C ∈ N(A)we prove:

f [↑C] � { ak ∈ A | ak ≥ max C } �:↑max C �:↑ f (C). (6.6)

Only the first equality in (6.6) needs proof, and only the right-to-left inclusion is non-
trivial. So let ak ∈ A be such that ak ≥ max C. Then the set D :� C ∪ {ak} is a chain in
A, i.e. a member ofN(A), and D ∈↑C because C ⊆ D. Further, max D � ak , because
ak ≥ max C, so that f (D) � ak . Hence ak ∈ f [↑C], and the proof is complete. �

6.2.2 Tarski’s Theorem on Intuitionistic Logic for Polyhedra

We have now all ingredients to prove the main result of N. Bezhanishvili et al. (2018):
Theorem 6.2.5. For each d ∈ N, Log Pd is intuitionistic logic extended by the axiom schema

bdd . Hence, the logic Log
⋃

d∈N Pd of all polyhedra is intuitionistic logic.

Proof of Theorem. By Theorem 6.2.3, Log Pd is contained in intuitionistic logic extended
by the axiom schema bdd . Conversely, suppose a formula α is not contained in
intuitionistic logic extended by the axiom schema bdd . By Propositions 3.3.38,4.3.19
and Lemma 6.2.2, there exists a finite poset A satisfying dep A ≤ d such that there
is an evaluation into the frame A that provides a counter-model to α; equivalently,
the equation α � > fails in the Heyting algebra Up A. By Theorem 6.2.3 there exists
a triangulation Σ in R|A| such that dep A � dimΣ ≤ d, along with a surjective p-
morphism

p : Σ� A (6.7)

We set P :� |Σ| and consider the Heyting algebra Subo P and its subalgebra Po(Σ),
for Corollary 5.2.4 and Lemma 5.2.6, respectively. Since dim P ≤ d, we have Log P ⊇
Log Pd by Theorem 6.2.3.

By Lemma 6.1.1 there is an isomorphism of (finite) Heyting algebras

γ↑ : UpΣ −→ Po(Σ)

defined as in (6.2). By finite Esakia duality (Theorem 3.3.40) we have isomorphisms
of posets

Σ ' Spec UpΣ ' Spec Po(Σ).

The Esakia dual Spec p : Up A ↪→ UpΣ of the surjective p-morphism (6.7) is an
injective homomorphism. We thus have homomorphisms

Up A ↪→ UpΣ ' Po(Σ) ⊆ Subo P
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where the inclusion preserves the Heyting structure by Lemma 5.2.6. Since the
equation α � > fails in Up A, it also fails in the larger algebra Subo P; equivalently,
α < Log P ⊇ Log Pd , and the proof of the first statement is complete. The second
statement follows easily from the first using Proposition 4.3.19. �
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7 The Intermediate Logic of
1-Dimensional Manifolds

In this Chapter we characterize the triangulations of one dimensional manifolds,
namely the circle S1 and the closed interval I. This will allow us to study their logic.
We shall show that it is given by the logic of all 1-dimensional polyhedra, INT + bd1,
extended by the axiom schema bb2.

7.1 Characterisation of Triangulations of S1

Theorem 7.1.1. Let be Σ a triangulation. |Σ| � S1
if and only if Σ satisfies the following

properties:

(1) dimΣ � 1,

(2) ∀σ ∈ Σ(dim σ � 0⇒ deg σ � 2),

(3) Σ is connected.

Proof ofV). |Σ| � S1 implies Σ satisfies (1): The Lebesgue dimension of S1 is equal to
one, dimL S1 � 1. Since homeomorphism preserves the dimension and the Lebesgue
dimension of a triangulation is equal to the customary dimension of a triangulation
above defined (see Definition 5.1.18), we obtain the desired result.

|Σ| � S1 implies Σ satisfies (2): Let us suppose there exists a σ such that dim σ � 0
and deg σ > 2, for instance deg σ � 3. Given a homeomorphism h : |Σ| → S1, for
every V ∈ O(|Σ|) such that σ ∈ V , V � h(V) since homeomorphims are also local
homeomorphisms. Suppose now to remove σ: it is easy to check that V − {σ} and
h(V) − {h(σ)} are still homeomorphic. However, by this very operation, V − {σ} is
divided into three connected components, while h(V) − {h(σ)} has only two of them,
and this contradicts our assumption.

|Σ| � S1 implies Σ satisfies (3): This follows easily from the fact that S1 is connected
and homeomorphism preserves connection. �

Remark 7.1.2. For a triangulationΣ satisfying conditions (1), (2) and (3) of the theorem
above, it holds

|{σ ∈ Σ | dim σ � 0}| � |{η ∈ Σ | dim η � 1}|.
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This follows easily from the fact that every 1-dimensional triangulation is an undirected
simple graph G � (V , E), and we can apply the well known result from graph theory
according to which the sum of the degrees is twice the number of edges,∑

v∈V

deg(v) � 2|E |.

Remark 7.1.3. A triangulation Σ satisfying (1), (2) and (3) above must have at least
three distinct points, otherwise the degree of each vertex would be lesser than two.

In order to prove W) of Theorem 7.1.1, we begin with the following enumeration
lemma:
Lemma 7.1.4. Let be Σ a triangulation satisfying conditions (1), (2) and (3) of Theorem 7.1.1.

There exists an enumeration x1, ..., xn of vertices separately such that x1 is exactly adjacent to

(x2, xn), xi is exactly adjacent to (xi−1, xi+1), i � 2, ..., n − 1, and xn is exactly adjacent to

(xn−1, x1).

Proof. Wewant to show constructively that it is possible to enumerate vertices from x1

to xn in a separate form so thatwe have the clockwise (or counterclockwise) orientation
on S1. Remember that from Remark 7.1.3 we know that n ≥ 3:

Step 1) choose x1, it has exactly two adjacents, pick out one randomly and label it x2,
distinct from x1 because of Remark 7.1.3.

Step 2) x2 has exactly two adjacents, along with x1 that is already enumerated, there
is another one that we can call x3, distinct from x1, x2 because of Remark 7.1.3.

Step 3) x3 has exactly two adjacents, one being x2 that is already enumerated. We can
distinguish two cases:

• if x1 is adjacent to x3, then n � 3 and there cannot be other vertices, because Σ
is connected. In fact, if there is another vertex there is also a path from this one
to a previous one, But this would contradict condition (2) of Theorem 7.1.1.

• if x1 is not adjacent to x3, then there will exists x4, adjacent to x3 and distinct
from x1, x2, x3.

Step 4) x4 has exactly two adjacents, one being x3 that is already enumerated. We can
distinguish two cases:

• if x1 is adjacent to x4, then n � 4 and there cannot be other vertices, because Σ
is connected. In fact, if there is another vertex there is also a path from this one
to a previous one, But this would contradict condition (2) of Theorem 7.1.1.

• if x1 is not adjacent to x4, then there will exists x5, adjacent to x4, distinct from
x1, x3, x4 but also from x2 because otherwise the degree of x2 would be more
than two.
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The Generic Step i) xi has exactly two adjacents, one being xi−1 that is already enu-
merated. We can distinguish two cases:

• if x1 is adjacent to xi , then n � i and there cannot be other vertices, because Σ is
connected. In fact, if there is another vertex there is also a path from this one to
a previous one, But this would contradict condition (2) of Theorem 7.1.1.

• if x1 is not adjacent to xi , then there will exists xi+1, adjacent to xi , distinct from
x1, xi−1, xi but also from x2, . . . , xi−2 because otherwise the degree of the latter
vertices would be more than two.

Because Σ has a finite number of vertices by its own definition, this guarantees that
the algorithm ended at some point, and so the proof. �

Proof ofW) of Theorem 7.1.1. Nowwe can set up the homeomorphism between |Σ| and
S1 and conclude our proof of Theorem 7.1.1. Consider the function f between the set
of vertices of Σ, Σ(0) � {x1, . . . , xn}, and the set of n-th roots of unity {z0, . . . , zn−1} ⊆
S1, i.e., f : Σ(0) → {z0, . . . , zn−1} such that f (xk) � zk−1, for k � 1, . . . , n. It is
bĳective function and can be easily extend to a simplicial map between Σ and the
boundary of the convex hull spanned by {z0, . . . , zn−1} that, for the Lemma 5.1.14, is
both an isomorphism between triangulations and a homeomorphism between their
geometric realizations. Sowe have |Σ| � |∂ conv {z0, . . . , zn−1}|. Now, a radial segment
starting from the origin will intersect S1 in one point and |∂ conv {z0, . . . , zn−1}| in
another. In order to establish a homeomorphic correspondence between S1 and
|∂ conv {z0, . . . , zn−1}| it suffices to employ these two intersections in the standard
way. �

Corollary 7.1.5. Let be Σ a triangulation. |Σ| � S1 + · · · + S1
if and only if Σ satisfies the

following properties:

(1) dimΣ � 1,

(2) ∀σ ∈ Σ(dim σ � 0⇒ deg σ � 2),

Proof ofV). |Σ| � S1 + · · · + S1 implies Σ satisfies (1): The Lebesgue dimension of
the disjoint union among S1 is equal to one, dimL S1 + · · · + S1 � 1 (see Pears 1975).
Since homeomorphism preserves the dimension and the Lebesgue dimension of a
triangulation is equal to the customary dimension of a triangulation above defined
(see Definition 5.1.18), we obtain the desired result.

|Σ| � S1 + · · ·+ S1 impliesΣ satisfies (2): Since |Σ| � S1 + · · ·+ S1, in turn we can seeΣ
as a disjoint union of triangulations Σi ,

∐
Σi such that |Σi | � S1. Let us suppose there

exists a σ ∈ Σi , for some i, such that dim σ � 0 and deg σ > 2, for instance deg σ � 3.
Given a homeomorphism h : |Σi | → S1, for every V ∈ O(|Σi |) such that σ ∈ V ,
V � h(V) since homeomorphims are also local homeomorphisms. Suppose now to
remove σ: it is easy to check that V − {σ} and h(V) − {h(σ)} are still homeomorphic.
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However, by this very operation, V − {σ} is divided into three connected components,
while h(V) − {h(σ)} has only two of them, and this contradicts our assumption. �

Proof ofW) of Corollary 7.1.5. Suppose that Σ is not connected otherwise we fall back
within the previous case of Theorem 7.1.1. Hence, we can see Σ as a disjoint union of
triangulations Σi ,

∐
Σi such that every Σi satisfies (1) and (2) of Corollary 7.1.5. Since

every Σi is also connected, from Theorem 7.1.1 we obtain that |Σi | � S1, for every i.
By the fact that |∐Σi | �

∐ |Σi | (see Lemma 5.1.15), it follows the statement. �

7.2 Characterisation of Triangulations of I

Theorem 7.2.1. Let be Λ a triangulation. |Λ| � I if and only if Λ satisfies the following

properties:

(1) dimΛ � 1,

(2) ∀λ ∈ Λ(dim λ � 0⇒ deg λ � 1∨ deg λ � 2),

(3) ∃σ, η ∈ Λ(deg σ � 1∧ deg η � 1∧ σ , η),

(4) Λ is connected.

Proof ofV). |Λ| � I implies Λ satisfies (1): The Lebesgue dimension of I is equal to
one, dimL I � 1. Since homeomorphism preserves the dimension and the Lebesgue
dimension of a triangulation is equal to the customary dimension of a triangulation
above defined (see Definition 5.1.18), we obtain the desired result.

|Λ| � I implies Λ satisfies (2): Let us suppose there exists a λ such that dim λ � 0
and deg λ , 1, 2, for instance deg λ � 3. Given a homeomorphism h : |Λ| → I, for
every V ∈ O(|Λ|) such that λ ∈ V , V � h(V) since homeomorphims are also local
homeomorphisms. Suppose now to remove λ: it is easy to check that V − {λ} and
h(V) − {h(λ)} must be still homeomorphic. However, by this very operation, V − {λ}
is divided into three connected components, while h(V) − {h(λ)} can have at most
two of them, and this contradicts our assumption.

|Λ| � I implies Λ satisfies (3): Given a homeomorphism 1 : I → |Λ|, we consider the
images 1(0) � x and 1(1) � y. Let us suppose that deg x > 1, for instance deg x � 2.
For every V ∈ O(|Λ|) such that x ∈ V , V � 1−1(V) since homeomorphims are also
local homeomorphisms. Suppose now to remove x: it is easy to check that V − {x}
and 1−1(V) − {1−1(x)} must be still homeomorphic. However, by this very operation,
V − {x} is divided into two connected components, while 1−1(V) − {1−1(x)} can have
at most one of them, and this contradicts our assumption. The same line of reasoning
can be employed in order to prove that also deg y � 1.

|Λ| � I implies Λ satisfied (4): This follows easily from the fact that I is connected
and homeomorphism preserves connection. �
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Remark 7.2.2. a triangulation Λ satisfying (1), (2),(3) and (4) above must have at least
two distinct points, otherwise the degree of each vertex would be lesser than one.

In order to prove W) of Theorem 7.2.1, we begin with the following enumeration
lemma as we did before in the case of S1:
Lemma 7.2.3. Let be Σ a triangulation satisfying conditions (1), (2), (3) and (4) of Theorem

7.2.1. There exists an enumeration x1, ..., xn of vertices separately such that x1 is exactly

adjacent to x2, xi is exactly adjacent to (xi−1, xi+1), i � 2, ..., n − 1, and xn is exactly adjacent

to xn−1.

Proof. Wewant to show constructively that it is possible to enumerate vertices from x1

to xn in a separate form so that we have the left (or right) orientation on I. Remember
that from Remark 7.1.3 we know that n ≥ 2:

Step 1) from property (3) there exists two vertices of Λ whose degree is one, we pick
out one randomly and label it x1. It has exactly one adjacent, x2, distinct from x1

because of Remark 7.1.3.

Step 2) x2 has at least one adjacent, x1 that is already enumerated. We can distinguish
two cases:

• if x1 is the only adjacent to x2, then n � 2 and there cannot be other vertices,
because Λ is connected. In fact, if there is another vertex, say y, there is also a
path from y to x2 or x1. However, this would be in contrast with the fact that
deg x2 � deg x1 � 1.

• if x2 has exactly two adjacents, one being x1 that is already enumerated, then
there will exists x3, adjacent to x2 and distinct from x1, x2.

Step 3) x3 has at least one adjacent, x2 that is already enumerated. We can distinguish
two cases:

• if x2 is the only adjacent to x3, then n � 3 and there cannot be other vertices,
because Λ is connected. In fact, if there is another vertex, say y, there is also a
path from y to x2, x3 or x1. However, this would be in contrast with the degree
of those vertices.

• if x3 has exactly two adjacents, one being x2 that is already enumerated, then
there will exists x4, adjacent to x3, distinct from x2, x3 but also from x1 because
otherwise the degree of x1 would be more than one.

The Generic Step i) xi has at least one adjacent, xi−1 that is already enumerated. We
can distinguish two cases:

• if xi−1 is the only adjacent to xi , then n � i and there cannot be other vertices,
because Λ is connected. In fact, if there is another vertex, say y, there is also a
path from y to x2, x3 or x1. However, this would be in contrast with the degree
of those vertices.
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• if xi has exactly two adjacents, one being xi−1 that is already enumerated, then
there will exists xi+1, adjacent to xi , distinct from xi−1, xi but also from: x1,
because otherwise the degree of x1 would be more than one; and x2, . . . , xi−2,
because otherwise the degree of the latter vertices would be more than two.

Because Λ has a finite number of vertices by its own definition, this guarantees that
the algorithm ended at some point, and so the proof. �

Proof ofW) of Theorem 7.2.1. Now we can set up the homeomorphism between |Λ|
and I and conclude our proof of Theorem 7.2.1. Consider the function f between
the set of vertices of Λ, Λ(0) � {x1, . . . , xn}, and the set {0, 1

n−1 , . . . , n−2
n−1 , 1} ⊆ I, i.e.,

f : Λ(0) → {z0, . . . , zn−1} such that f (xk) � zk−1, for k � 1, . . . , n. It is bĳective function
and can be easily extend to a simplicial map betweenΛ and the boundary of the convex
hull spanned by {0, 1

n−1 , . . . , n−2
n−1 , 1} that is I. By the Lemma 5.1.14, this map is both an

isomorphism between triangulations and a homeomorphism between their geometric
realizations. So we have |Λ| � | conv {0, 1

n−1 , . . . , n−2
n−1 , 1}| � I. �

Corollary 7.2.4. Let be Λ a triangulation. |Λ| � I + · · · + I if and only if Λ satisfies the

following properties:

(1) dimΛ � 1,

(2) ∀λ ∈ Λ(dim λ � 0⇒ deg λ � 1∨ deg λ � 2),

(3) ∃σ, η, ... ∈ Λ(deg σ � 1∧ deg η � 1∧ · · · ∧ σ , η , ...).

Proof ofV). |Λ| � I + · · · + I implies Λ satisfies (1): The Lebesgue dimension of the
disjoint union among I is equal to one, dimL I + · · · + I � 1 (see Pears 1975). Since
homeomorphism preserves the dimension and the Lebesgue dimension of a trian-
gulation is equal to the customary dimension of a triangulation above defined (see
Definition 5.1.18), we obtain the desired result.

|Λ| � I + · · ·+ I implies Λ satisfies (2): Since |Λ| � I + · · ·+ I, in turn we can see Λ as a
disjoint union of triangulationsΛi ,

∐
Λi such that |Λi | � I. Let us suppose there exists

a λ ∈ Λi , for some i, such that dim λ � 0 and deg λ , 1, 2, for instance deg λ � 3. Given
a homeomorphism h : |Λi | → I, for every V ∈ O(|Λi |) such that λ ∈ V , V � h(V)
since homeomorphims are also local homeomorphisms. Suppose now to remove λ:
it is easy to check that V − {λ} and h(V) − {h(λ)} are still homeomorphic. However,
by this very operation, V − {λ} is divided into three connected components, while
h(V) − {h(λ)} has only two of them, and this contradicts our assumption.

|Λ| � I + · · · + I implies Λ satisfies (3): As we have just seen, we can regard Λ as a
disjoint union of triangulations Λi ,

∐
Λi such that |Λi | � I. Given a homeomorphism

1 : I → |Λi |, we consider the images 1(0) � x and 1(1) � y. Let us suppose that
deg x > 1, for instance deg x � 2. For every V ∈ O(|Λi |) such that x ∈ V , V � 1−1(V)
since homeomorphims are also local homeomorphisms. Suppose now to remove x:
it is easy to check that V − {x} and 1−1(V) − {1−1(x)} must be still homeomorphic.
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However, by this very operation, V − {x} is divided into two connected components,
while 1−1(V) − {1−1(x)} can have at most one of them, and this contradicts our as-
sumption. The same line of reasoning can be exploited to prove that also deg y � 1. It
easily follows that Λ has an even number of vertices whose degree is equal to one. �

Proof ofW) of Corollary 7.2.4. Suppose that Λ is not connected otherwise we fall back
within the previous case of Theorem 7.2.1. Hence, we can see Λ as a disjoint union of
triangulations Λi ,

∐
Λi such that every Λi satisfies (1), (2) and (3) of Corollary 7.2.4.

Since every Λi is also connected, from Theorem 7.2.1 we obtain that |Λi | � I, for every
i. By the fact that |∐Λi | �

∐ |Λi | (see Lemma 5.1.15), it follows the statement. �

7.3 The Logic of 1-Dimensional Manifolds

As a consequence of local finiteness of Subo P, for any polyhedron P (see Subsection
5.2.2), and the isomorphism UpΣ � Po(Σ) between Σ-definable open polyhedra and
algebra of upper sets of Σ (see Lemma 6.1.1), the logic of a topological manifold X is
given by the logic of the class of its triangulations X � {Σ | |Σ| � X}, namely

Log X :� LogX � { α ∈ SL | ∀Σ ∈ X Σ |� α } .

Let us now introduce some classes of frames that are relevant in order to investigate
the logic of 1-dimensional topological manifolds.
Definition 7.3.1.

• Let B be the class of all finite Kripke frames such that LogB � INT + bd1 + bb2,
namely the class of all finite frame

(1) of depth at most 1 (see Theorem 4.3.25) and

(2) such that every point in the frame has at most 2 distinct immediate succes-
sors (see Proposition 4.3.27).

• Let S be the class of all triangulations Σ such that |Σ| � S1.

• Let I be the class of all triangulations Λ such that |Λ| � I.

Moreover, for each of the last two classes above we can define the class of all finite
disjoint unions of its own elements, that is:
Definition 7.3.2.

• Let S̃ be the class of all disjoint unions of Σ ∈ S.

• Let Ĩ be the class of all disjoint unions of Λ ∈ I.

So, we can observe that the logic of S1 is given by Log S1 � LogS, while the logic
of I is given by Log I � LogI. In a similar way, the logic of disjoint unions of S1 is
given by Log S1 + · · · + S1 � Log S̃, while the logic of disjoint unions of I is given by
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Log I + · · · + I � Log Ĩ. Notice that, by Remark 4.3.17, it can be immediately deduced
the identity between Log X and Log X

∐· · ·∐ X. However, in the sequel we will
obtain this identity independently from Remark 4.3.17.

We are now able to prove the following theorem.
Theorem 7.3.3. The logic of 1-dimensional manifolds (or, equivalently, of their classes of

triangulations) is given by INT + bd1 + bb2. In particular:

LogI � INT + bd1 + bb2; (7.1)

Log Ĩ � INT + bd1 + bb2; (7.2)

LogS � INT + bd1 + bb2; (7.3)

Log S̃ � INT + bd1 + bb2. (7.4)

Before starting the proof, we investigate the relations among those classes above.
Lemma 7.3.4. The following facts hold:

I ⊆ Ĩ ⊆ B; (7.5)

S ⊆ S̃ ⊆ B. (7.6)

Proof of the Lemma. I ⊆ B is a straightforward consequence of Theorem 7.2.1 while
S ⊆ B is a straightforward consequence of Theorem 7.1.1. In a similar way, Ĩ ⊆ B is
a straightforward consequence of Corollary 7.2.4 while S̃ ⊆ B is a straightforward
consequence of Corollary 7.1.5. �

Proof ofW) of Theorem 7.3.3. From Remark 4.3.11 and Lemma 7.3.4, the following facts
hold:

LogB ⊆ Log Ĩ ⊆ LogI; (7.7)

LogB ⊆ Log S̃ ⊆ LogS. (7.8)

Hence, we obtain:

LogI ⊇ INT + bd1 + bb2;

Log Ĩ ⊇ INT + bd1 + bb2;

LogS ⊇ INT + bd1 + bb2;

Log S̃ ⊇ INT + bd1 + bb2.

�

Proof ofV) for (7.1) and (7.2) of Theorem 7.3.3. Wefirst exhibit aproof forLogI ⊆ INT+

bd1 +bb2. We need to prove that ϕ ∈ LogI implies ϕ ∈ INT+bd1 +bb2 or, equivalently,
by contrapositive ϕ < INT + bd1 + bb2 implies ϕ < LogI.



7.3. The Logic of 1-Dimensional Manifolds 129

A formula ϕ ∈ INT + bd1 + bb2 if and only if ϕ is valid on any finite frame (1) of depth
at most 1 and (2) such that every point in the frame has at most 2 distinct immediate
successors (see Definition 7.3.1). Hence, ϕ < INT + bd1 + bb2 means that there exists
a finite frame F ∈ B, namely satisfying (1) and (2), and such that F 2 ϕ. Similarly,
ϕ < LogI means that there exists a finite frameΛ satisfying all conditions in Theorem
7.2.1 and such that Λ 2 ϕ.

In order to do the proof, it suffices to show that, given a finite frame F satisfying (1)
and (2) and such that F 2 ϕ, it is possible to exhibit a frame Λ ∈ I such that Λ 2 ϕ.

First step: let be F a frame satisfying (1) and (2) and such that F 2 ϕ. Wemanufacture
a surjective p-morphism f : C � F, where C is given by the disjoint union of peculiar
posets as in Figure 7.1.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Figure 7.1: Example of finite frame F satisfying (1) and (2).

Consider the antichain of F, V � {y ∈ F | ↓ y � {y}}. The cardinality of V is of course
finite because F is finite. Suppose |V | � n and set n � {1, . . . , n} (see Section 2.1), we
can also see V as the indexed family of elements in F (yi)i∈n such that ↓ yi � {yi}, for
all i ∈ n. For property (2) we can also say that 0 ≤ deg yi ≤ 2, for all i ∈ n. Also, for
property (1) we have the useful identity, for y ∈ V , deg y � |↑ y | − 1 which in general,
for dimension higher than one, is not valid. Hence, 1 ≤ |↑ yi | ≤ 3 for all i ∈ n.

Consider C �
∐

j∈m A j , the disjoint union of the indexed family of posets (A j) j∈m such
that:

1. for all j ∈ m, dim A j ≤ 1,

2. for all j ∈ m, exists a ∈ C such that A j �↑a and,

3. if S � {a ∈ C | ↑a � A j , for some j}, 0 ≤ deg a ≤ 2 or, equivalently, 1 ≤ |↑a | ≤ 3,
for all a ∈ S.

For Lemma 2.1.15 there is a bĳection between S and (A j) j∈m, so |S | � m and we can
also see S as the indexed family of elements in C (a j) j∈m such that ↑ a j � A j , for all
j ∈ m. Roughly speaking, there are at most three kind of A j as in Figure 7.2.

Suppose also that |{y ∈ V | deg y � k}| ≤ |{a ∈ S | deg a � k}|, for all k � 0, 1, 2. So,
n ≤ m.

Consider now, the indexed family of morphisms ( f j : A j → F) j∈m : (A j) j∈m → F so
defined:
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x1

x2

x3

x4

x5

x6

Figure 7.2: A1, A2 and A3

1. If |↑ a j | � 1, namely A j � {a j}, f j(a j) ∈ V and deg f j(a j) � 0 (or, equivalently,
|↑ f j(a j)| � 1).

2. If |↑a j | � 2, namely A j � {a j , a} with a ∈ ↑a j and a , a j ,

(i) f j(a j) ∈ V and deg f j(a j) � 1 (or, equivalently, |↑ f j(a j)| � 2);

(ii) f j(a) ∈ ↑ f j(a j) and f j(a) , f j(a j).

3. If |↑a j | � 3, namely A j � {a j , a, b} with a, b ∈ ↑a j and a , b, a , a j , b , a j ,

(i) f j(a j) ∈ V and deg f j(a j) � 2 (or, equivalently, |↑ f j(a j)| � 3);

(ii) f j(a) ∈ ↑ f j(a j) and f j(a) , f j(a j), f j(b);

(iii) f j(b) ∈ ↑ f j(a j) and f j(b) , f j(a j), f j(a).

4. f j(a j) j∈m ⊇ V .

It is easy to see that, for all j, f j is an order embedding and also a p-morphism.

For instance, for all a ∈ A j , a ≥ a j if and only if a ∈ ↑a j and, by constructions (1-4), if
and only if f j(a) ∈ ↑ f j(a j) if and only if f j(a) ≥ f j(a j).

Also, for all a ∈ A j such that a > a j , f j[↑a] �↑ f j(a) is trivially satisfied. In fact, since
dim A j ≤ 1 for all j ∈ m, ↑ a � {a} and so f j[↑ a] � { f j(a)}. Similarly, since dim F ≤ 1
and f j(a) > f j(a j), ↑ f j(a) � { f j(a)}.

If | ↑ a j | � 3, namely ↑ a j � {a j , a, b} with a, b ∈ ↑ a j and a , b, a , a j , b , a j ,
f j[↑ a j] � { f j(a j), f j(a), f j(b)}. Since also |↑ f j(a j)| � 3, ↑ f j(a j) � { f j(a j), f j(a), f j(b)}
by construction (3).

Similarly, if | ↑ a j | � 2, namely ↑ a j � {a j , a} with a ∈ ↑ a j and a , a j , f j[↑ a j] �
{ f j(a j), f j(a)}. Since also |↑ f j(a j)| � 2, ↑ f j(a j) � { f j(a j), f j(a)} by construction (2).

Trivially, if |↑ a j | � 1, namely ↑ a j � {a j}, f j[↑ a j] � { f j(a j)}. Since also |↑ f j(a j)| � 1,
↑ f j(a j) � { f j(a j)} by construction (1).

For universal property of disjoint union, there is one andonly one f �
∐

j∈m f j : C→ F
such that f j � f ◦ ι j , where ι j : A j → C are the injections (see Awodey 2010).
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It follows easily that f is a p-morphism. In fact, since f j[↑a] �↑ f j(a) for all j ∈ m and
a ∈ A j and f j � f ◦ ι j for all j ∈ m, we can also write

( f ◦ ι j)[↑a] �↑( f ◦ ι j)(a) (7.9)

for all j ∈ m and a ∈ A j .

Let us consider for a while the injection maps. As usually, the disjoint union is
conveniently taken to be C �

∐
j∈m A j � {( j, a) | j ∈ m and a ∈ A j} with the order

given by:
( j, a) ≤C (i, b) if and only if i � j ∧ a ≤A j b.

Now, the injection ι j : A j → C is given by ι j(a) � ( j, a), for all a ∈ A j . Hence
↑ ι j(a) �↑ ( j, a) � {(i, b) | i � j and a ≤A j b} � {( j, b) | b ∈ ↑ a}. Moreover, if X ⊆ A j ,
ι j[X] � {( j, x) | x ∈ X}. Hence, ι j[↑a] � {( j, x) | x ∈ ↑a} and ι j[↑a] �↑ ι j(a).

Since the injection ι j : A j → C is a p-morphism, ( f ◦ ι j)[↑a] � f [↑ ι j(a)] and we can
write the equation (7.9) in the following way:

f [↑ ι j(a)] �↑ f (ι j(a)) (7.10)

for all j ∈ m and a ∈ A j . Or, equivalently,

f [↑( j, a)] �↑ f ( j, a) (7.11)

for all ( j, a) j ∈ m and a ∈ A j .

Of course, f is not necessarily an order embedding. For instance, we can have ↑
f ( j, a j)

⋂↑ f (i, ai) �↑ f j(a j)
⋂↑ fi(ai) � {y}. As a consequence, there exist a ∈ ↑a j and

b ∈ ↑ai such that f j(a) � fi(b) � y or, in terms of f , f ( j, a) � f (i, b) � y.

Instead, f is definitely surjective. In fact, let be z ∈ F, there exists some y ∈ V such that
z ∈ ↑ y. Hence, by construction (4), z ∈ ↑ f j(a j), for some a j such that deg a j � deg f j(a j)
or, equivalently, |↑a j | � |↑ f j(a j)|. By construction (1-3), z � f j(a) for some a ∈ ↑a j .

Second step: We have just manufactured a surjective p-morphism f : C � F and,
according to the Remark 4.3.17(ii), we are allowed to conclude that C 2 ϕ, given
our assumption that F 2 ϕ. In algebraic terms, we can say equivalently that the
equation ϕ � > is not valid in Up C (see Subsection 4.3.6). Since for Proposition 2.1.16
Up C �

∏
j∈m Up A j , ϕ � > is not valid in Up A j , for some j (see Remark 4.3.17(iii)).

In particular, considering that (A j) j∈m can be split up in three classes of isomorphic
posets {A j | |↑a j | � 1}, {A j | |↑a j | � 2} and {A j | |↑a j | � 3}, either ϕ � > is not valid
in Up A1, or is not valid in Up A2, or is not valid in Up A3, where A1, A2, A3 are the
chosen representing elements for each class, respectively.

Rephrasing the argument in terms of frames, we can say that if C 2 ϕ then A1 2 ϕ or
A2 2 ϕ or A3 2 ϕ.
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Third step: Consider now the following cases:

1. |↑a1 | � 1, namely A1 � {a1}. We can easily construct a surjective p-morphism
10 : Λ0 � A1, where Λ0 is given by {c, b, d; c ≤ b, d ≤ b} as in Figure 7.3,

c

b

d

Figure 7.3: Λ0

namely 1(λ) � a1, for all λ ∈ Λ0. In fact, 10[↑λ] � {a1} �↑10(λ) for all λ ∈ Λ0.

2. | ↑ a2 | � 2, namely A2 � {a2, a} with a ∈ ↑ a2 and a , a2. Again, we can
easily construct a surjective p-morphism 11 : Λ0 � A2, where Λ0 is given by
{b, c, d; d ≤ b, c ≤ b} as in Figure 7.3,

namely 11(c) � 11(d) � a2 and 11(b) � a. In fact, 11[↑ d] � 11[↑ c] � {a2, a} �↑
11(d) �↑11(c) and 11[↑b] � {a} �↑11(b).

3. |↑ a3 | � 3, namely A3 � {a3, a, e} with a, e ∈ ↑ a3 and a , e, a , a3, e , a3. We
can construct a surjective p-morphism 12 : Λ1 � A3, where Λ1 is given by
{b, c, d, h, l; d ≤ b, c ≤ b, d ≤ h, l ≤ h} as in Figure 7.4,

c

b

d

h

l

Figure 7.4: Λ1

namely 12(c) � 12(d) � 12(l) � a j , 12(b) � a and 12(h) � e. In fact, 12[↑
d] � {a3, a, e} �↑ 12(d), 12[↑ c] � {a3, a} �↑ 12(c), 12[↑ l] � {a3, e} �↑ 12(l),
12[↑b] � {a} �↑12(b) and 12[↑h] � {e} �↑12(h).

For the Remark 4.3.17(ii), we can conclude that: if A1 2 ϕ or A2 2 ϕ, then Λ0 2 ϕ; if
A3 2 ϕ, then Λ1 2 ϕ. And so, to summarise, we have just found a certain Λ ∈ I such
that Λ 2 ϕ, given our assumption that F 2 ϕ.

As a consequence, LogI ⊆ INT + bd1 + bb2 and, by formula (7.7), Log Ĩ � LogI �

INT + bd1 + bb2. �

As byproduct of the theorem’s proof we have the following result:
Corollary 7.3.5. If F 2 ϕ then A1 2 ϕ or A2 2 ϕ or A3 2 ϕ.
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We can observe that there is also a surjective p-morphism between A3 → A2, as well
as between A2 → A1. In fact, it suffices to construct 1 : A3 � A2 and q : A2 � A1,
where A3 is given by {a3, a, b}, A2 by {a2, c} and A1 by {a1}, by placing 1(a3) � a2,
1(a) � 1(b) � c and q(a2) � q(c) � a1. So, we have 1[↑a3] � {a2, b} �↑1(a3), 1[↑a] �
{b} �↑1(a) and 1[↑ e] � {b} �↑1(e), q[↑a2] � {a1} �↑q(a2) and q[↑a] � {a1} �↑q(a).
According to the Remark 4.3.17(ii), the existence of those p-morphisms implies the
fact that, if A3 � ϕ, A2 � ϕ and A1 � ϕ. Also, we can notice that A3 ∈ B and so
Log A3 ⊇ LogB (see Remark 4.3.11).

As a consequence, by contrapositive of the previous Corollary, we obtain the following
Proposition:
Proposition 7.3.6. If A3 � ϕ then F � ϕ, for all F ∈ B. Therefore Log A3 � LogB.

In algebraic terms, this proposition states that the variety ofHeyting algebras generates
by A3 is isomorphic to the variety of Heyting algebras generates by the class B of all
finite frames such that LogB � INT + bd1 + bb2 (see Section 4.3.5).

Proof ofV) for (7.3) and (7.4) of Theorem 7.3.3. Wefirst exhibit aproof forLogS ⊆ LogI.
we need to prove that α ∈ LogS implies α ∈ LogI or, equivalently, by contrapositive
α < LogI implies α < LogS. From Proposition 7.3.6 and the first part of proof of The-
orem 7.3.3, it follows that LogI � Log A3. Hence, it suffices to prove that α < Log A3

implies α < LogS.

In order to do that, we construct a surjective p-morphism Σ� A3, for some Σ, from
which, according to the Remark 4.3.17(ii), follows the result. Consider the frameΣ ∈ S
given by Σ � {x1, x2, x3, y1, y2, y3} such that ↑ x1 � {x1, y1, y3}, ↑ x2 � {x2, y1, y2},
↑ x3 � {x3, y2, y3}, ↑ y1 � {y1}, ↑ y2 � {y2} and ↑ y3 � {y3} and A3 � {a3, b, c} as in
Figure 7.5.

x1

y1

x2

y2

x3

y3 b

a3

c

f

Figure 7.5: The p-morphism f : Σ� A3.

The map f : Σ → A3 given by f (x1) � f (x2) � a3, f (y2) � f (y3) � f (x3) � c
and f (y1) � b is the desired p-morphism. In fact, f [↑ x1] � {a3, b, c} �↑ f (x1),
f [↑ x2] � {a3, b, c} �↑ f (x2), f [↑ y1] � {b} �↑ f (y1), f [↑ y2] � {c} �↑ f (y2),
f [↑ y3] � {c} �↑ f (y3) and f [↑x3] � {c} �↑ f (x3).

For the Remark 4.3.17(ii), we can conclude that α < LogS. As a consequence, LogS ⊆
INT + bd1 + bb2 and, by formula (7.8), Log S̃ � LogS � INT + bd1 + bb2. �
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Conclusions

The main result of the present work was to prove Theorem 7.3.3.9 This allows us
to understand logically – in the case of 1-dimensional manifolds – a fundamental
property of triangulations according to which, for every triangulation of a given
topological manifold of dimension d, each simplex of dimension d − 1 is a face of
exactly two simplices of dimension d.

This result opens the way to corroborating the property above even in the case of
dimension greater than one. Moreover, other possible developments of this work are
the following: Given any class of polyhedra C, what is the intermediate logic of C? Is
this logic (finitely, or recorsively) axiomatizable? Viceversa, given any intermediate
logic L, is there a class of polyhedra C whose logic is L?

There are also some limitations. First of all, the Theorem 7.3.3 shows that it is not
possible to grasp the homotopy class of topological manifolds. In fact, the closed interval
[0, 1], which is contractible to a point, has the same logic of the circle S1 which it is
not contractible. Furthermore, the proof of Theorem 7.3.3 makes clear the fact that,
for instance, the circle S1 has the same logic as a disjoint union of circles. This means
that it is not possible to grasp the connectedness of spaces. Naturally, it is not ruled out
that these limitations suggest better combinations between intermediate logics and
polyhedra.

9Similar results – albeit for the real line only – occurred in the setting of modal logic: in fact, the
modal logic of finite unions of convex subsets of R is given by a certain normal modal logic over S4. For
further details see Aiello, van Benthem, and G. Bezhanishvili 2003 and van Benthem et al. 2003.
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