

Available online at www.sciencedirect.com

Topology and its Applications 132 (2003) 129-138

www.elsevier.com/locate/topol

T_0 -reflection and injective hulls of fibre spaces

F. Cagliari^{a,*}, S. Mantovani^b

^a Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato, 5, I-40127 Bologna, Italy ^b Dipartimento di Matematica, Università di Milano, Via C. Saldini, 50, I-20133 Milano, Italy

Abstract

We give a characterization of injective (with respect to the class of embeddings) topological fibre spaces using their T_0 -reflection, that turns out to be injective itself. We then prove that the existence of an injective hull of (X, f) in the category **Top**/*B* of topological fibre spaces is equivalent to the existence of an injective hull of its T_0 -reflection (X_0, f_0) in **Top**/ B_0 (and in the category **Top**/ B_0 of T_0 topological fibre spaces).

© 2003 Elsevier B.V. All rights reserved.

MSC: 18G05; 55R05; 54B30

Keywords: Injective object; Injective hull; To-reflection; Initial topology; Pullback complement

Introduction

New investigations on injective objects have been recently forwarded (see [1,2,8,9]) in comma-categories, since "sliced" injectivity describes weak factorization systems, a concept used in homotopy theory, in particular for model categories. The question if any \mathbf{C}/B for *B* in a given category \mathbf{C} has enough \mathcal{H} -injectives acquires a particular relevance, since it is equivalent, under mild conditions on \mathcal{H} , to the existence in \mathbf{C} of a weak factorization system that has morphisms of \mathcal{H} as left part and \mathcal{H} -injectives in the comma-categories as right part (see [2,8,9]). So it may be useful to know the nature of \mathcal{H} -injectives in \mathbf{C}/B and in this direction there are results in [2] for the category **Pos** of partial ordered sets and monotone mappings and for the category of small categories **Cat**. In [4] a characterization of injective (T_0) topological fibre spaces over *B* can be found.

^{*} Corresponding author. Investigation supported by University of Bologna. Funds for selected research topics. *E-mail addresses*: cagliari@dm.unibo.it (F. Cagliari), Sandra.Mantovani@mat.unimi.it (S. Mantovani).

^{0166-8641/03/\$ –} see front matter @ 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0166-8641(02)00370-X

If any C/B has not only enough \mathcal{H} -injectives, but also \mathcal{H} -injective hulls, we get in C a particular weak factorization system, called left essential in [9]. In [5] we found a necessary and sufficient condition for the existence of injective hulls of T_0 topological fibre spaces whose restriction to the image is injective. Now the question arises naturally: What about topological (not T_0) fibre spaces? As Wyler did for topological spaces in [10], we use some properties of the T_0 -reflection to find an answer to the above question. In the "non-fibred" case, Wyler found a space is injective if and only if its T_0 -reflection is injective. In the fibred case, the injectivity of the T_0 -reflection (X_0 , f_0) may not be sufficient to ensure the injectivity of (X, f). For example, if S denotes the Sierpinski space, I the indiscrete space with two points and b a bijective map between them, (S, b) has a trivially injective T_0 -reflection, but it is not injective, since it is not a topological quotient (see Proposition 2.4.1). In order to have a characterization, we need an additional request on f, that is f has to send indiscrete components onto indiscrete components.

As a final result, we obtain that the existence of an injective hull of (X, f) in **Top**/*B* is equivalent to the existence of an injective hull of its T₀-reflection (X_0, f_0) in **Top**/ B_0 (and in **Top**₀/ B_0). The analogy with the "non-fibred" case is obtained by means of the notion of pullback complement (see [6]), that turns out to be an useful tool to construct an injective hull of (X, f), once an injective hull of (X_0, f_0) is given.

1. Injectivity

Let \mathcal{H} be a class of morphisms in a category **C**. We recall the following definitions:

Definition 1.1. An object *I* is \mathcal{H} -injective if, for all $h: X \to Y$ in \mathcal{H} , the function $\mathbf{C}(h, I): \mathbf{C}(Y, I) \to \mathbf{C}(X, I)$ is surjective.

Definition 1.2. A morphism $h: X \to I$ in \mathcal{H} is \mathcal{H} -essential if, for every k, the composite kh lies in \mathcal{H} only if k does; if, in addition, I is \mathcal{H} -injective, then h is an \mathcal{H} -injective hull of X.

C is said to have enough \mathcal{H} -injectives if for every object X in **C** there is a morphism $h: X \to I$ in \mathcal{H} with $I \mathcal{H}$ -injective; if h can be chosen to be \mathcal{H} -essential, then **C** has injective hulls.

It is well-known that \mathcal{H} -injective hulls, if they exist, are uniquely determined, up to isomorphisms.

In the comma-category \mathbb{C}/B (whose objects (X, f) are \mathbb{C} -morphisms $f: X \to B$ with fixed codomain B), (X, f) is then \mathcal{H} -injective if, for any commutative diagram in \mathbb{C}

with $h \in \mathcal{H}$, there exists an arrow $s: V \to X$

such that sh = u and fs = v.

Furthermore, $j: (X, f) \to (Y, i)$ is a \mathcal{H} -injective hull of (X, f) in \mathbb{C}/B , if (Y, i) is \mathcal{H} -injective and j in \mathcal{H} is essential in \mathbb{C}/B , that is: for any factorization i = hk

with hk in \mathcal{H} , necessarily $k \in \mathcal{H}$ follows.

Notation. From now on, injective will denote \mathcal{H} -injective for \mathcal{H} the class of topological embeddings.

Any comma-category **Top**/*B* has enough injectives (see, e.g., Proposition 1.8 in [4]), but it has not injective hulls, since **Top** has not. Thus it may be useful to know when an object (X, f) has an injective hull in **Top**/*B*. Since we have a result in [5] about the existence of injective hulls in the categories **Top**₀/*B*₀ of T₀ topological fibre spaces, we would like to know how the T₀-reflection behaves in such a situation. So we need to state some results on the properties of the T₀-reflection.

2. The T₀-reflection

The category **Top**₀ of T_0 topological spaces is reflective in the category **Top** (with reflector π given on the objects by the topological quotients on the indiscrete components). The unit of this adjunction is called the T_0 -reflection, so that, for any X in **Top**, there exists a T_0 space X_0 and a map $\pi_X : X \to X_0$ such that the following universal property holds: for any T_0 space Z_0 and for any map $f : X \to Z_0$, there exists a unique map $f_0 : X_0 \to Z_0$ such that $f = f_0 \pi_X$.

Given any *B* in **Top**, this unit defines a functor between the categories **Top**/*B* and **Top**₀/*B*₀, so that any object (*X*, *f*) in **Top**/*B* is reflected in (*X*₀, *f*₀) in **Top**₀/*B*₀:

We recall the following properties of this T_0 -reflection (see also [10]):

Proposition 2.1.

- (1) *X* has the initial topology and X_0 has the final topology with respect to the T_0 quotient $\pi_x : X \to X_0$.
- (2) $f: X \to Y$ is a function between topological spaces preserving indiscrete subspaces such that the induced function $f_0: X_0 \to Y_0$ is continuous, then f is continuous.
- (3) $f: X \to Y$ is an embedding if and only if f is monic and $f_0: X_0 \to Y_0$ is an embedding.
- (4) The T₀-reflection has stable units, that is (see [3]), the pullback p of any π_x along any map $q: Y \to X_0$

has a T_0 -reflection p_0 that is an isomorphism.

Proposition 2.2. If $f: X \to B$ is a surjective map and X has the initial topology with respect to f, then (X, f) is injective in **Top**/B. In particular, any (X, π_x) is injective in **Top**/X₀.

In particular, any (Π, Π_X) is injective in **Top**/ Π

Proof. Given a commutative diagram in Top

with *h* an embedding, since in the category **Set**/*B* injective objects are surjective functions over *B*, there is a function $k: Z \to X$ such that kh = u and fk = v. But this *k* is continuous, since *X* has the initial topology with respect to *f* and *fk* is continuous. In particular, by Proposition 2.1(1) we can apply this result to (X, π_X) .

Corollary 2.3. If $f: X \to B$ is a surjective map with T_0 -reflection f_0 that is an isomorphism, then (X, f) is injective in **Top**/B.

Proof. Under these hypothesis, by Proposition 2.1(1), X has the initial topology with respect to f, then we can apply Proposition 2.2.

Before going on, we need to recall some useful properties of injectives in Top/B.

Proposition 2.4.

(1) If (X, f) is injective in **Top**/*B*, *f* is a retraction in **Top**. In particular, for any $x \in X$ there exists a section s_x of *f* with $s_x(f(x)) = x$.

(2) Given (X, h) injective in **Top**/Y and (Y, k) injective in **Top**/Z, then (X, kh) is injective in **Top**/Z.

Proof. (1) If (X, f) is injective in **Top**/*B*, given a point $x \in X$ and its embedding in *X*, we can consider following diagram:

Since (X, f) is injective, there exists a section $s: B \to X$ of f with $s_x(f(x)) = x$.

(2) It easily follows from the definition of injective objects in comma-categories.

Lemma 2.5. Given $f: X_0 \to B_0$ in **Top**₀, then (X, f_0) is injective in **Top** $/B_0$ if and only if it is injective in **Top** $/B_0$.

Proof. It follows from the definition of injective objects, knowing that the T_0 -reflection preserves embeddings (by Proposition 2.1(3)).

Now we are ready to give the first characterization theorem:

Theorem 2.6. (X, f) is injective in **Top**/B if and only if

(1) For any indiscrete component C of X, f(C) is an indiscrete component of B.

(2) Its T₀-reflection (X_0, f_0) is injective in **Top**₀/ B_0 .

Proof. Let (X, f) be injective in **Top**/*B*.

(1) For any indiscrete component *C* of *X*, f(C) is indiscrete, since *f* is continuous. Then $f(C) \subset C'$, with *C'* indiscrete component of *B*. Given $b_1 \in f(C)$, that is $b_1 = f(x_1)$, with $x_1 \in C$, we can consider the corresponding section s_{x_1} of *f* given by Proposition 2.4(1). Then $x_1 \in s_{x_1}(C')$, so that $s_{x_1}(C') \subset C$, since *C'* is a component. But then $C' = f(s_{x_1}(C')) \subset f(C)$, so that f(C) = C'.

(2) Given the T₀-reflection (X_0, f_0) and the diagram

by Propositions 2.2 and 2.4(2), $(X, \pi_B f)$ is injective in **Top**/ B_0 . Since (X_0, f_0) is a retract of $(X, \pi_B f)$ in **Top**/ B_0 by the retraction π_X , it is injective in **Top**/ B_0 and then in **Top**₀/ B_0 by Lemma 2.5.

Now let (X, f) fulfill conditions (1) and (2). We want to show that it is injective in **Top**/*B*. So let

be a commutative diagram in **Top** with *j* an embedding. By condition (2), (X_0, f_0) is injective in **Top**₀/ B_0 and then in **Top**/ B_0 , by Lemma 2.5. Consequently, there exists a map $h_0: A' \to X_0$ such that $h_0 j = \pi_x l$ and $f_0 h_0 = \pi_B m$. For any $x_0 \in X_0$, let $C_0 = \pi_x^{-1}(x_0)$ an indiscrete component of *X*. By condition (1), $f(C_0) = C'_0$ is the indiscrete component of *B* given by $\pi_p^{-1}(b_0)$, where $b_0 = f_0(x_0)$. The square in the following diagram

is commutative by construction. Since $(C_0, f_|)$ is injective by Corollary 2.3, there exists h_{x_0} with $j_|h_{x_0} = l_|$ and $h_{x_0}f_| = m_|$. Let us define $h = \bigcup \{h_{x_0} | x_0 \in X_0\}$. By Proposition 2.1(2), h is continuous since $\pi_X h = h_0$ and by construction jh = l and fh = m.

Before giving the characterization theorem on injective hulls, we need some preliminary results:

Lemma 2.7 (cf. [10]). An embedding $j: X_0 \to Y_0$ is essential in **Top**₀ if and only if it is essential in **Top**.

Proof. It follows from the definition of essential embedding, knowing that the T_0 -reflection preserves embeddings (by Proposition 2.1(3)).

Proposition 2.8. (X_0, f_0) has injective hull in **Top**₀/ B_0 if and only if has injective hull in **Top**/ B_0 and in this case the injective hulls coincide.

Proof. If (X_0, f_0) has injective hull $j: (X_0, f_0) \rightarrow (Y_0, g_0)$ in **Top**₀/ B_0 , then (Y_0, g_0) is injective in **Top**₀/ B_0 and then in **Top**/ B_0 by Lemma 2.5. Furthermore j is essential in **Top**₀ and then in **Top** by Lemma 2.7.

If (X_0, f_0) has injective hull $j: (X_0, f_0) \to (Y, g)$ in **Top** $/B_0, \pi(j) = \pi_Y j: X \to \pi(Y) = Y_0$ is an embedding and then π_Y is an embedding, since j is essential. Hence $Y_0 = Y$ and j is an injective hull of (X_0, f_0) also in **Top** $/B_0$.

As a main ingredient of the next characterization theorem, we will use the notion of pullback complement. So we need to recall (see [6]):

Definition 2.9. Given a morphism $m: U \to B$, the pullback complement of *m* along a morphism $e: A \to U$ is the morphism \overline{m} in a pullback diagram

$$\begin{array}{c|c} A & \xrightarrow{e} & U \\ \bar{m} & & & \\ \bar{m} & & & \\ P & \xrightarrow{e} & B \end{array}$$

such that, given any pullback diagram

$$\begin{array}{c|c} X & \stackrel{d}{\longrightarrow} U \\ k \\ \downarrow & & \downarrow m \\ Y & \stackrel{g}{\longrightarrow} B \end{array}$$

and a morphism $h: X \to A$ with eh = d, there is a unique morphism $h': Y \to P$ with $\bar{e}h' = g$ and $h'k = \bar{m}h$.

The existence of pullback complements of a monomorphism m in a category \mathbb{C} with finite limits is equivalent to the exponentiability of m in \mathbb{C} (see [6]), so that in the locally Cartesian closed category **Set** pullback complements of monomorphisms always exist. In **Top** pullback complements of an embedding m exist along any morphism if and only if m is a locally closed embedding (see [7,6]). But pullback complements of an embedding m along particular morphisms may exist also without conditions on m, as the following proposition shows:

Proposition 2.10. *Let m* be any embedding in **Top** *and let A have the initial topology with respect to* $e: A \rightarrow U$. *Then there exists a pullback complement of m along e:*

$$\begin{array}{c}
A \xrightarrow{e} & U \\
 & \downarrow m \\
P \xrightarrow{e} & B
\end{array}$$

where P has the initial topology with respect to $\bar{e}: P \to B$.

Proof. Let us consider the pullback complement of *m* along the function *e* in **Set**. If we take on $P = (B \setminus m(U)) \cup A$ the initial topology with respect to $\bar{e} : P \to B$, \bar{m} is continuous since $\bar{e} \bar{m} = me$ is continuous. The diagram is a pullback complement diagram also in **Top**, because of the initial topology on *A*.

Now we are ready to state the main theorem:

Theorem 2.11. (X, f) has injective hull in **Top**/*B* if and only if its T₀-reflection (X_0, f_0) has injective hull in **Top**/*B*₀.

Proof. Let (X, f) have injective hull $j: (X, f) \to (Y, g)$ in **Top**/*B*. We want to show that the T₀-reflection $j_0: (X_0, f_0) \to (Y_0, g_0)$ is an injective hull of (X_0, f_0) in **Top**/*B*₀, that is

in **Top**₀/ B_0 by Proposition 2.8. (*Y*, *g*) is injective in **Top**/B, hence (*Y*₀, *g*₀) is injective in **Top**₀/ B_0 , by Theorem 2.6. We have only to prove that j_0 is essential in **Top**₀/ B_0 . Let then $k_0: (Y_0, g_0) \rightarrow (Z_0, h_0)$ be a map such that $q_0 := k_0 j_0$ is an embedding:

Let us define $Z := Z_0 \times \widehat{Y}$, where \widehat{Y} is the set Y endowed with the indiscrete topology and the map $k := \langle k_0 \pi_Y, id_Y \rangle \colon Y \to Z$ is continuous since both $k_0 \pi_Y$, id_Y are continuous. Since $\pi(Z) = Z_0$, we can consider the following commutative diagram

Looking at this as a diagram in **Set**, we obtain that, since k is monic and π_B is epic, there exists a function $h: Z \to B$ such that hk = g and $\pi_B h = h_0 \pi_Z$. But B has the initial topology with respect to π_B and $\pi_B h = h_0 \pi_Z$ is continuous, hence h is continuous. Thus (Z, h) is an object of **Top**/B and $q := kj: (X, f) \to (Z, h)$ is a monomorphism in **Top**/B:

The T₀-reflection $\pi(q) = q_0$ of q is an embedding, hence also q is an embedding, by Proposition 2.1(3). But j is essential, so k and, by Proposition 2.1(3), k_0 are embeddings. This proves that j_0 is essential.

Let $j_0: (X_0, f_0) \to (Y_0, g_0)$ be the injective hull of (X_0, f_0) in **Top** $/B_0$ (and in **Top** $_0/B_0$ by 2.8). Let \tilde{g} be the pullback of g_0 along π_B . By the universal property, there exists a map $l: X \to \tilde{Y}$ making the following diagram commutative:

From Proposition 2.1(4), $\pi(\tilde{Y}) = Y_0$. Furthermore X has the initial topology with respect to $j_0\pi_X$, then with respect to l. If l = me, with e epimorphism and m embedding, then X has the initial topology with respect to e, so that (X, e) is injective, by Propositions 2.2 and by 2.10, there exists the pullback complement of e along m:

By Proposition 2.2 of [8], (Y, \tilde{e}) is injective in **Top**/ \tilde{Y} . Moreover (\tilde{Y}, \tilde{g}) is injective in **Top**/B, \tilde{g} being a pullback of g_0 and (Y_0, g_0) is injective in **Top**/ B_0 . Thus, if $g = \tilde{g}\tilde{e}$, (Y, g) is injective in **Top**/B. Now we have to show that $j: (X, f) \to (Y, g)$ is essential in **Top**/B.

Since $\pi(\tilde{e})$ is an isomorphism, $\pi(g) = \pi(\tilde{g}) = g_0$ and $\pi(l) = \pi(j) = j_0$, by Proposition 2.1(4). Let $k: (Y, g) \to (Z, h)$ be a map such that q := kj is an embedding. Then $\pi(q) = q_0$ is an embedding and k_0 is an embedding, since j_0 is essential. By Proposition 2.1(3), it is sufficient to show that k is a monomorphism. Let $\alpha, \beta: T \to Y$ be such that $k\alpha = k\beta = \psi$ by definition:

Then $\pi_Z(k\alpha) = \pi_Z(k\alpha) \Longrightarrow k_0(\pi_Y\alpha) = k_0(\pi_Y\beta)$ and k_0 monic implies $\pi_Y\alpha = \pi_Y\beta := \varphi$ by definition. Then $g_0\varphi = h_0k_0\varphi = h_0\pi_Z\psi = \pi_B(h\psi)$.

By the universal property of the pullback of π_B along g_0 in correspondence to the maps $h\psi: T \to B$ and $\varphi: T \to Z_0$ there exists a unique map from T to \widetilde{Y} satisfying the requested properties. But $\widetilde{g}(\widetilde{e}\alpha) = h\psi = \widetilde{g}(\widetilde{e}\beta)$, then $\widetilde{e}\alpha = \widetilde{e}\beta =: \sigma$ by definition:

Taking the pullback of σ along *m*, by the universal property of the pullback complement, the map from *T* to *Y* making the square on the top left commutative is unique, so that $\alpha = \beta$. Then *k* is monic and the proof is completed.

References

- [1] J. Adámek, H. Herrlich, J. Rosicky, W. Tholen, Injective hulls are not natural, Algebra Universalis, to appear.
- [2] J. Adámek, H. Herrlich, J. Rosicky, W. Tholen, Weak factorization systems and topological functors, Appl. Categorical Structures 10 (2002) 237–249.
- [3] C. Cassidy, M. Hébert, G.M. Kelly, Reflective subcategories, localizations and factorization systems, J. Austral. Math. Soc. (Ser. A) 38 (1985) 287–329.
- [4] F. Cagliari, S. Mantovani, Injective topological fibre spaces, Topology Appl. 125 (3) (2002) 525-532.
- [5] F. Cagliari, S. Mantovani, Injective hulls of T₀ topological fibre spaces, 2002, submitted.
- [6] R. Dyckhoff, W. Tholen, Exponentiable morphisms, partial products and pullback complements, J. Pure Appl. Algebra 49 (1987) 103–106.
- [7] S. Niefield, Cartesianness: Topological spaces and affine schemes, J. Pure Appl. Algebra 23 (1982) 147–167.
- [8] W. Tholen, Injectives, exponentials, and model categories, in: Abstracts of the Internat. Conf. on Category Theory (Como, Italy, 2000), pp. 183–190.
- [9] W. Tholen, Essential weak factorization systems, Contrib. Gen. Algebra 13 (2001) 321-333.
- [10] O. Wyler, Injective spaces and essential extensions in TOP, Gen. Topology Appl. 7 (1977) 247-249.