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Abstract 26 

 27 

Native red squirrels (Sciurus vulgaris) in Great Britain and Ireland are threatened by alien grey 28 

squirrels (S. carolinensis) through exploitation competition and spillover of squirrelpox virus 29 

(SQPV). By accelerating the replacement of red squirrels by the invader, SQPV represents a 30 

fundamental factor to consider when planning management and conservation strategies. In mainland 31 

Europe, grey squirrels introduced to Italy threaten the survival of the whole continental red squirrel 32 

population, but no extensive surveys for SQPV presence have been carried out in the region. We 33 

therefore investigated SQPV infection in north Italian grey squirrel populations through a 34 

combination of serological and molecular methods. Firstly, we analysed sera from 285 individuals 35 

through an enzyme-linked immunosorbent assay (ELISA) to detect antibodies against SQPV. 36 

Secondly, a PCR designed to amplify a segment of the G8R SQPV gene was carried out on DNA 37 

extracted from swabs and skin tissue samples from a second set of 66 grey squirrels. ELISA tests 38 

identified 4 reactors (1.4%), but the subsequent PCR survey did not detect any SQPV DNA. Based 39 

on the low prevalence observed and on PCR results, we believe that the 4 suspected positives were 40 

the result of an ELISA cross-reaction following exposure to another pox virus. Considering sample 41 

size and performances of the two methods, confidence of freedom from SQPV resulted above 42 

99.9%. However, because of the severe impact of SQPV on red squirrels, we recommend the 43 

implementation of a passive surveillance plan for the early detection of an SQPV emergence in 44 

continental Europe.    45 
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Introduction 52 

 53 

During the last century, populations of Eurasian red squirrels (Sciurus vulgaris) declined throughout 54 

Great Britain and large areas of Ireland due to habitat destruction and fragmentation and 55 

interspecific competition with introduced Eastern grey squirrels (Sciurus carolinensis) (Gurnell, 56 

Lurz & Wauters, 2015). Replacement of native red by alien grey squirrels is one of the best 57 

documented examples of the negative impact induced by biological invasions on native ecosystems 58 

and is based on two mechanisms of competition. Firstly, an exploitation competition based on better 59 

use of food resources by grey squirrels leading to a progressive reduction in the fitness of red 60 

squirrels, which over time will result in the extinction of red squirrel populations (Gurnell et al., 61 

2004; Wauters, Tosi & Gurnell, 2005;). Secondly, an apparent competition (Holt, 1977) mediated by 62 

a shared pathogen: the squirrelpox virus (SQPV).  63 

Apparent competition is a form of indirect interaction between species mediated by the action of a 64 

shared enemy (either a predator, herbivore or pathogen), which exerts a differential impact on the 65 

two competitors (reviewed in Holt & Bonsall, 2017). Biological invasions represent a perfect 66 

scenario for disease-mediated competition to occur because it is likely that invaders will carry along 67 

alien pathogens that may spill over to native species; and it is also likely that the impact of such 68 

pathogens will be highly asymmetrical, as native hosts will lack any previous exposure to them 69 

(Strauss, White & Boots, 2012; Lymbery et al., 2014). In recent years, the role played by alien 70 

species in disease emergence in wildlife has been increasingly recognised, and several examples of 71 

disease-mediated invasions involving both vertebrate and invertebrate hosts have been documented 72 

(e.g. Strauss et al., 2012; Lymbery et al., 2014; Tompkins et al. 2015 and references therein). 73 

Awareness about disease risks connected to invasions is thus growing and there is a compelling 74 

need to account for such threats in management and control strategies (e.g. Dunn & Hatcher, 2015).  75 

The red-grey squirrel system in Great Britain is one of the most prominent examples of disease-76 

mediated invasions since SQPV has a very different pathogenicity in the two hosts, with grey 77 
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squirrels seemingly unaffected by the infection and high mortality rates in red squirrels (Tompkins 78 

et al., 2002; Fiegna et al. 2016). As a result, the virus ultimately facilitates replacement of the 79 

highly vulnerable native species by the more tolerant invader (Tompkins et al., 2002; Tompkins, 80 

White & Boots, 2003). It has been long debated whether the pox infection was introduced in Great 81 

Britain and Ireland by the alien host or was already endemic in the area, but most evidence points 82 

toward the former hypothesis (McInnes et al., 2006). In any case, regardless of SQPV origins, it is 83 

now certain that grey squirrels act as a reservoir for the virus, maintaining its circulation with dire 84 

consequences for native red squirrels (Sainsbury et al., 2000; Chantrey et al., 2014). Several authors 85 

argued that direct competition alone could not explain the rate of red squirrel decline observed in 86 

Great Britain: modelling analyses suggested that where the virus is present, the grey squirrel 87 

replaces red squirrels up to 25 times faster than in areas without the infection, where only 88 

competition for resources occurs (Tompkins et al., 2003; Rushton et al., 2005). SQPV in the UK 89 

appears thus as a crucial driver in the competition between the alien and the native species and 90 

collecting data on its presence is fundamental in order to plan adequate management and 91 

conservation strategies (Gurnell et al., 2006; Schuchert et al., 2014; Macpherson et al., 2015; 92 

Bertolino et al. 2016; White et al., 2016). 93 

In Europe, in addition to Great Britain and Ireland, grey squirrels have been introduced into Italy 94 

where their expansion could potentially threaten the whole continental red squirrel population 95 

(Bertolino et al., 2014). Distribution of the alien species in the country is still fragmented, with two 96 

large, expanding populations in Piedmont and Lombardy regions in north-western Italy and a 97 

smaller one in central Italy (Umbria region) (Martinoli et al., 2010; Bertolino et al., 2014; Signorile, 98 

Paoloni & Reuman, 2014a). Additionally, a small, isolated nucleus inhabiting an urban park in 99 

Genova Nervi (Liguria) is being eradicated through sterilization; and occasional sightings have been 100 

reported in Tuscany, Lazio and Veneto regions (Mori et al., 2016). The two north Italian populations 101 

are located 100 km apart, near the borders with France and Switzerland, and include approximately 102 

40,000 individuals which represent 90%-95% of the Italian grey squirrels. Expansion models 103 
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predicted that, in absence of control, grey squirrels inhabiting these regions will cross the Alps and 104 

invade neighbouring countries within 60 years (Tattoni et al., 2006; Bertolino et al., 2008). The 105 

smaller population established in central Italy has a more recent origin and currently covers a 50 106 

km2 area around the town of Perugia, 350 km south of the northern nuclei (Signorile et al., 2014a; 107 

La Morgia et al., 2017). It is known that the large population in Piedmont was founded by a first, 108 

single introduction of four American squirrels in 1948 (Bertolino, 2009; Martinoli et al., 2010), and 109 

genetic profiling suggests that the whole population in Perugia and at least some of the Lombardy 110 

nuclei derived from within-country translocations of Piedmontese individuals (Signorile et al., 111 

2016).  112 

Red squirrels are widespread in most of the Italian peninsula except for heavily urbanized areas, the 113 

islands and the southernmost regions, with the presence of an endemic subspecies (S. v. italicus) in 114 

central Italy. Additionally, a new, endemic squirrel species (S. meridionalis) inhabiting Basilicata 115 

and Calabria regions in the south has been recently described (Wauters et al., 2017). Threats to red 116 

squirrel survival in Italy include habitat loss and fragmentation, and direct competition with grey 117 

squirrels (Wauters et al., 2002a, 2005; Wauters, Tosi & Gurnell, 2002b), with the local extinction of 118 

red squirrels from large areas where the invader is spreading (Bertolino et al., 2014). However, the 119 

rate of grey squirrel spread (and concurrently of red squirrel decline) observed in the country 120 

always appeared much lower than in Great Britain (Bertolino et al. 2014). Absence of SQPV 121 

infection, higher  habitat fragmentation, reduced propagule pressure and genetic diversity have all 122 

been among the proposed mechanisms to explain the slower expansion of grey squirrels in Italy 123 

(Lurz et al., 2001; Rushton et al., 2005; Signorile et al, 2014b). All the three main Italian grey 124 

squirrel populations are currently under intensive control to prevent further expansion, but no 125 

surveillance for SQPV has been ever carried out in the country. Based on the British experience, the 126 

presence of SQPV in the Italian scenario could accelerate grey squirrel spread and potentially have 127 

huge welfare and conservation implications for the continental red squirrel population and for the 128 

survival of the two abovementioned endemic Italian taxa, S. v. italicus and S. meridionalis. To date, 129 
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no diseased red squirrels with clinical symptoms of the infection have ever been reported in the 130 

country, but this lack of evidence is not a proof of SQPV absence. Because of the often cryptic 131 

nature of the native squirrel, such disease may indeed have gone undetected, as was the case in 132 

Ireland for many years. There, it was known from enzyme-linked immunosorbent assay (ELISA) 133 

results obtained in the 90’s that grey squirrels had been exposed to the virus, but it was not until 14 134 

years later that disease was confirmed in red squirrels (McInnes et al., 2013; Stritch et al., 2015).  135 

For this reason, and because of the conservation implications that SQPV presence in Italy could 136 

have, here we aim to address the lack of data on the prevalence of SQPV in Italian grey squirrels. 137 

Based on the apparent lack of diseased red squirrels and the relatively slow rates of species 138 

replacement observed in the country, we predict that Italian squirrel populations are free from 139 

SQPV infection. We will investigate this hypothesis by using a combination of serological and 140 

molecular testing, integrated with an analytical approach to estimate the likelihood of true absence 141 

of the infection. 142 

 143 

Materials and Methods 144 

 145 

Host-virus system 146 

Infection by SQPV in grey squirrels is mostly sub-clinical (Tompkins et al., 2002; Atkin et al., 147 

2010), with seroprevalence in infected populations reaching values from 25% up to 100% 148 

(Sainsbury et al., 2000; Bruemmer et al., 2010; Chantrey et al., 2014; Collins et al., 2014). In 149 

contrast, in red squirrels the virus causes skin lesions and severe exudative dermatitis on the face, 150 

feet and genitalia, leading to the death of infected individuals in a few weeks (Tompkins et al., 151 

2002; Carroll et al., 2009; Fiegna et al., 2016). Current evidence suggests that interspecific 152 

transmission does not require direct contact among individuals, since skin lesions are rich in viral 153 

particles that are thus likely to contaminate nests, branches or may even be carried by ectoparasitic 154 

vectors (Atkin et al., 2010; Collins et al., 2014; Cowan et al., 2016; Fiegna et al., 2016). It appears 155 
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that some red squirrels are able to survive exposure to SQPV, but the infection generally causes 156 

high morbidity and mortality in the Eurasian species (Tompkins et al., 2002; Sainsbury et al., 2008; 157 

Shuttleworth et al., 2015). Chantrey et al. (2014) estimated a population decline of approximately 158 

90% with a potential survival rate of <10% following a naturally occurring epidemic of SQPV in 159 

red squirrels on Merseyside, UK.  160 

 161 

Sampling and study sites 162 

Between 2011 and 2014 extensive trapping of grey squirrels was carried out in the two main Italian 163 

populations located in north-western Italy. The Piedmont population covers approximately 2000 164 

km2 (Bertolino et al. 2014) with an estimated size of 25,000 individuals (min-max 15,600-45,800; 165 

LIFE09 NAT/IT/00095 EC-SQUARE Final Report, 2015). The Lombardy population is 100 km to 166 

the east and consists of several nuclei, more or less interconnected, for an estimated size of about 167 

15,000 individuals (min-max 10,000-20,000; Bertolino & Wauters, unpublished data). To 168 

investigate SQPV presence, we collected samples from sixteen sites located in the two regions (Fig. 169 

1) that were selected based on local squirrel density and to cover the maximum extent of the 170 

invader’s known distribution in the two areas.  171 

During 2011 and 2012 we carried out a first survey through serological testing, then (2013-2014) 172 

we carried out a second, separate sampling for SQPV detection through molecular methods. During 173 

both sampling campaigns, in each site we carried out a minimum of two trapping sessions that 174 

lasted at least 3 consecutive days. Squirrels were captured using live-traps (model 202, Tomahawk 175 

Live Trap Co., Wisconsin, USA) baited with hazelnuts that were checked at least twice a day (see 176 

Romeo et al., 2014, 2015 for further details on trapping and handling methods). Captures were 177 

carried out mostly within an alien squirrels control program (LIFE09 NAT/IT/00095 EC-178 

SQUARE): animals were immediately euthanised on the field by CO2 inhalation and blood samples 179 

for serological testing were collected post-mortem through heart-puncture. In a few areas at the 180 
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initial stages of the survey, the project was granted only permits for trapping and release. In this 181 

case, squirrels were marked with ear tags and released after blood collection from the femoral vein.  182 

Sampled blood was separated by centrifugation (15 min at 1800 g) within a few hours after 183 

collection and sera were subsequently stored at -20°C until analysis. Sampling for molecular 184 

analysis was carried out exclusively from culled animals: we collected swabs and skin tissue 185 

samples (approximate size 0.5 cm2) from body areas known for having a predilection for SQPV 186 

infection (i.e. lip, eyelid, arm sensory vibrissae and flank from both sides of the body, Dale et al., 187 

2016). These were stored at -20°C until DNA extraction could be carried out. All the sampled 188 

individuals were visually inspected for lesions and the sample set was representative of the 189 

population structure for sex (167 females and 184 males) and age class (266 adults and 85 190 

subadults). Trapping was carried out all through the year (176 individuals were trapped during 191 

spring-summer and 175 during autumn-winter). 192 

 193 

Serological analyses 194 

Grey squirrel serum samples were tested for the presence of antibodies against squirrelpox virus as 195 

previously described (Sainsbury et al., 2000). Briefly, 285 sera were analysed against squirrelpox 196 

virus antigen, from cell culture-grown virus. ELISA plates (96-well flat-bottomed, Griener Bio-197 

One, UK) were coated with detergent-extracted (IGEPAL® CA-630; Sigma-Aldrich) antigen from 198 

SQPV-infected or mock-infected cells. Squirrel sera, diluted 1/50 in 1 x PBS / 0.05% v/v Tween 199 

20/1% w/v bovine serum albumin, were added to duplicate wells containing SQPV or control 200 

negative antigen. After incubation for two hours, the wells were washed and bound IgG detected 201 

using Protein-G conjugated to horseradish peroxidise (HRP) and the substrate TMB (Sure Blu™ 202 

TMB Microwell Peroxidase substrate, KPL, USA). The optical density at 450nm was determined 203 

for positive and negative antigen wells and the corrected OD450 calculated for each serum sample. 204 

An OD450 value of >0.2 was considered positive. 205 

 206 
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Molecular analysis  207 

Sixty-six individuals were examined for the presence of SQPV DNA through the analysis of swabs 208 

and skin samples previously collected from lips, eyelids, arm vibrissae and flanks. The swab 209 

samples were used as an initial survey and if any amplification was recorded in any of the reactions 210 

then the skin samples from that individual were subsequently analysed. DNA was isolated from 211 

samples using a commercially available kit (DNeasy® Blood and Tissue kit, Qiagen, Manchester, 212 

UK). For skin samples the manufacturer’s recommended protocol was used on 25mg of tissue, 213 

while a modified protocol was used for swab samples (Dale et al., 2016). DNA extracts were then 214 

stored at -20oC. Prior to analysis, the nucleic acid concentration of DNA extracts was measured 215 

using a NanoDrop 1000 (Nano Drop Technologies Inc., Wilmington, USA) and each diluted to a 216 

concentration of 20ng/µl. ‘No sample’ DNA extracts were run in tandem with each batch of extracts 217 

to act as potential contamination indicators. A quantitative multiplex PCR designed to amplify a 218 

segment of the grey squirrel phosphoglycerate kinase (PGK) gene (acting as an endogenous control) 219 

and a segment of the G8R SQPV gene were then used to analyse the DNA extracts. Cycling was 220 

carried out on a Lightcycler® 480 II (Roche, Wellwyn Garden City, UK) real-time PCR machine 221 

using the following primers and probes GGTCTATTATCCTGTTGGA (left PGK primer), 222 

CTGGTTTGGAAAGTGAAG (right PGK primer), FAM-TACTTCGGCTGACTCGGCTT-BHQ1 223 

(PGK probe),CATCGACCAGAAGAAGTC (left SQPV primer), GCTGATGCACTTGATGAA 224 

(right SQPV primer), (TexR-CGTGTTCAACTTCCACCTCTACG-BHQ2 (SQPV probe) (primers 225 

and probes supplied by Eurofins MWG Operon, Edersberg, Germany). For more detailed 226 

information on the assay see Dale et al. (2016).  Each DNA extract/sample was run in triplicate with 227 

a single no-template-control for each sample. A positive result was recorded when a sample showed 228 

amplification in >2/3 reactions.  A sample was considered negative if no amplification occurred in 229 

3/3 reactions. If a sample showed amplification in 1/3 reactions the analysis was repeated and the 230 

previous scoring methodology applied. If an identical result occurred the individual was categorised 231 

as inconclusive.    232 
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 233 

Epidemiological Analysis  234 

Demonstrating the absence of an infection from a population is problematic since it would require 235 

the testing of all individuals with a test that had both 100% sensitivity and specificity. To overcome 236 

this, we estimated the confidence of freedom from SQPV infection based on the number of 237 

individuals in our sample that tested negative. More specifically, we estimated the herd-level 238 

negative predictive value (Eq. 1), which corresponds to the probability that an infection is truly 239 

absent given that a determinate number of individuals from that herd (i.e. population) are all 240 

negative to a specific diagnostic test (Martin, Shoukri & Thorburn 1992; Christensen & Gardner, 241 

2000; Humphry, Cameron & Gunn 2004).  242 

 243 

Eq. 1 𝐻𝑁𝑃𝑉 =
(1−𝑒𝑃)×𝐻𝑆𝑝

(1−𝑒𝑃)×𝐻𝑆𝑝+𝑒𝑃×(1−𝐻𝑆𝑒)
 244 

where eP is the expected prevalence and HSp and HSe are herd-level specificity and sensitivity, 245 

respectively 246 

 247 

Estimation of the herd-level negative predictive value does not require much information about the 248 

target population, as it depends only on the expected prevalence and herd-level specificity and 249 

sensitivity, which in turn will depend exclusively on sample size and sensitivity and specificity of 250 

the chosen diagnostic test (Eq. 2 and 3). Consequently, this method can be applied to estimate 251 

confidence of freedom from a disease a posteriori, when sampling is restricted by field limitations 252 

or a precise estimation of population size is not available, as is often the case with wild populations.  253 

 254 

Eq. 2 𝐻𝑆𝑒 = 1 − [(1 − (𝑒𝑃 × 𝑆𝑒) + (1 − 𝑒𝑃) × (1 − 𝑆𝑝))]
𝑁

 255 

Eq. 3 𝐻𝑆𝑝 = 𝑆𝑝𝑁 256 

 257 
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where N is sample size and Se and Sp are the sensitivity and specificity of the test, respectively.  258 

 259 

Based on the prevalence range observed in grey squirrels in Great Britain, where SQPV is endemic, 260 

we assumed two different scenarios and calculated the population-level negative predictive value 261 

for an expected prevalence of either 25% or 50%. In absence of specific estimates of tests 262 

performances, we conservatively assumed a sensitivity and specificity of 99% for PCR, and a 263 

sensitivity of 90% for ELISA. Specificity of ELISA was set at 92%, based on results obtained by 264 

Sainsbury et al. (2000), who found that 7.5% of SQPV positive sera reacted also to vaccinia virus.  265 

 266 

Results 267 

 268 

Serological Analyses 269 

The results of the analysis of 285 sera samples are presented in the form of a histogram (Fig. 2), 270 

demonstrating the range of corrected OD450 values. Only 4 samples (1.4%; 95% CI: 0.04% ‒ 2.8%) 271 

from the Italian grey squirrels gave readings > 0.2 (range 0.212 to 0.494) and therefore were 272 

considered as potentially positive for exposure to SQPV. 273 

 274 

Molecular Analyses 275 

Sixty-six swabs were analysed. Two swabs failed to amplify any grey squirrel PGK so they were 276 

excluded from the analysis. Four swabs showed amplification of the SQPV target gene one out of 277 

three reactions, but repeating the PCR analysis on these DNA extracts showed no amplification and 278 

skin samples from these individuals eventually proved negative, with one individual only showing 279 

one reaction out of three on both lip and flank skin. Again, subsequent analysis showed no 280 

amplification of the SQPV target gene, meaning that all the examined samples can be considered as 281 

negative. 282 

 283 
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Epidemiological Analysis  284 

Based on 281 individuals testing negatively to ELISA, and considering the 4 positive reactors as 285 

false positive for reactivity to SQPV, the confidence of freedom from SQPV of Italian grey squirrel 286 

populations is 100% in the 50% and 25% prevalence scenario. Molecular analysis provided 287 

consistent results: considering the 64 individuals testing negative by PCR, the confidence of 288 

freedom from SQPV is either 100% assuming a 50% prevalence, or periodic 99.9% assuming a 289 

25% prevalence. 290 

 291 

 292 

Discussion 293 

 294 

Demonstrating the absence of SQPV 295 

Serological testing of Italian grey squirrels resulted in four animals out of 285 identified as 296 

potentially positive for SQPV antibodies, however in the second survey through molecular methods 297 

we did not directly detect any SQPV DNA. Based on a set of reasons that are detailed in the 298 

following paragraphs, we are confident that the four seropositive individuals may have been the 299 

result of an ELISA cross-reaction and that our sampled squirrels were not infected by SQPV. 300 

Indeed, based on our sample size and assuming the four reactors as false positives, confidence of 301 

freedom from SQPV in Northern Italy is higher than 99.9%.  302 

The squirrelpox ELISA that we applied on our samples was developed in the UK (Sainsbury et al., 303 

2000) for determining the proportion of the grey and red squirrel populations that had been exposed 304 

to SQPV. As a consequence of being uncertain about whether or not SQPV was present within Italy, 305 

even if no clinical cases had been found or had been suspected, it was not possible to revalidate the 306 

test with known negative Italian squirrel sera samples and therefore we used the OD450nm 0.2 cut-off 307 

that had been established in the UK (Sainsbury et al., 2000). Based on the frequency distribution of 308 

the resulting ODs, the 0.2 cut-off seems to work reasonably well for the Italian serum samples, 309 
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since 98.6% of samples gave readings < 0.13 and only 4 samples (1.4%) gave readings > 0.2, with 310 

no OD readings between 0.13 and 0.2. As a result, we identified only these 4 samples as potentially 311 

coming from squirrels exposed to SQPV. It is known however that up to 7.5% of the grey squirrel 312 

sera which tested positive in the squirrelpox ELISA developed by Sainsbury and colleagues also 313 

cross-reacted in ELISA tests designed to detect vaccinia virus, suggesting sera cross-reactivity to a 314 

related poxvirus protein (Sainsbury et al., 2000). It is also known that rodents, including several 315 

squirrel species, can be infected by a variety of orthopoxviruses (Emerson et al., 2009; Obon et al., 316 

2011; Himsworth et al., 2013; Martínez-Duque et al., 2014; Wibbelt et al., 2017) and therefore it is 317 

a possibility that the 4 squirrel sera exhibiting OD450 values >0.2 reported in this study are a 318 

reflection of these squirrels having been exposed to a different poxvirus. Indeed, a red squirrel from 319 

Spain (Obon et al., 2011) and several from Germany (Wibbelt et al., 2017) are known to have 320 

succumbed to infections from poxviruses that are distinct from SQPV, but whether these viruses are 321 

present in Italy, can also infect grey squirrels and would be cross-reactive in the ELISA is unknown. 322 

Due to their low specificity, indirect methods based on antibody detection are considered 323 

insufficient to officially confirm the presence of an infection in an area and the detection of the 324 

etiological agent is normally required (Guberti, Stancampiano & Ferrari, 2014). In our case, tissues 325 

taken from squirrels covering the range of serological results, specifically including the area where 326 

two out of four suspect positive ELISA samples had originated from, were analysed for the presence 327 

of SQPV DNA, but all were found to be negative. The failure to find SQPV DNA does not mean 328 

however that these particular squirrels had not at some stage in the past been infected with the virus, 329 

as it would be expected that antibodies against the virus would be detectable for a much longer time 330 

period than the viral DNA given that most poxvirus infections tend to be acute. However, we also 331 

never found any lesions compatible with SQPV infection in over 2900 grey and 500 red squirrels 332 

examined in the field since 2011 (Wauters et al., personal communication). Further support for the 333 

four query positive grey squirrels not having been exposed to SQPV comes from the fact that they 334 

are from three different locations within Piedmont and represent just 2/49 of samples from BC, 1/10 335 
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samples from IPL and 1/17 samples from VST (see Fig. 1). Moreover, after we found the first two 336 

positive samples in BC in 2011, we carried-out a second sampling in this same site one year later, 337 

but the new individuals all tested negative. Studies within Great Britain have shown that in areas 338 

where seropositive grey squirrels have been established for decades, the prevalence of SQPV can 339 

approach 100%, whereas in areas where seropositive grey squirrels had only relatively recently 340 

emerged the SQPV prevalence was lower (Sainsbury et al., 2000). In Ireland, there was a 341 

progressive increase in overall seroprevalence in the woodlands analysed: from 17% in 1997/99, to 342 

34% by 2004/2005 and 67% in 2009, a few years before the first diseased red squirrels were 343 

observed (McInnes et al., 2013). Crouch et al. (1995), proposed that where a species was acting as a 344 

reservoir of poxvirus infection it would be expected to find >8-12% seroprevalence of antibodies to 345 

the virus. All the four query positive samples in our study had been collected within the 346 

Piedmontese population, which has been expanding for over 50 years. Therefore, if the founder 347 

animals of these longer established populations had been infected with virus it is reasonable to 348 

assume that they would exhibit a high seroprevalence if the virus was still circulating within the 349 

population.  350 

Determining freedom from a disease in wild animal populations is among the main challenges that 351 

wildlife diseases operators and researchers have to cope with. Demonstrating the absence of a 352 

disease is generally more difficult that proving its presence, but in wildlife populations it often 353 

means dealing with a significant lack of information on both the pathogen (e.g. its origin and 354 

expected prevalence) and the host (e.g. population size). These limits imply that the application of 355 

traditional surveillance approaches originally developed on domestic animals is often ineffective 356 

(Guberti et al., 2014), encouraging the development of alternative methods in order for wildlife 357 

diseases to be properly monitored and managed. In our case, following diagnostic testing, we 358 

calculated the population-level negative predictive value of each test in order to estimate, based on 359 

results obtained, the confidence of freedom from SQPV. This simple analytical method allows us to 360 

support with a 99.9% probability the absence of the infection from Italy. 361 
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 362 

No SQPV in Italian squirrels: causes and implications 363 

The fact that SQPV appears not to have been introduced to Italy is not surprising since introduction 364 

of parasites by alien hosts is largely a stochastic process and many species are commonly lost 365 

during invasion (Torchin et al., 2003; MacLeod et al., 2010). For example, grey squirrels in Italy 366 

and Great Britain harbour fewer macroparasite species than in their native range and the 367 

composition of their parasite communities in the two areas is also quite different (Romeo et al., 368 

2014; Romeo, Wauters & Ferrari, 2016). SQPV could also have reached Italy with founders, but 369 

could have burned out during the initial stages of the invasion due to low host densities or the 370 

absence of competent vectors. We know that Italy likely had fewer introduction events compared to 371 

Great Britain (i.e. less chance of “drawing” an infected founder) and also that population growth 372 

rate and spread after the 1948 introduction have been slower than in Great Britain (Lurz et al., 373 

2001; Bertolino et al., 2008, 2014). Models by Cowan et al. (2016) also suggest that fleas might 374 

play a fundamental role in SQPV infection persistence, perhaps acting as mechanical vectors and 375 

facilitating its spread. In this scenario, it should be noted that the North American grey squirrel flea 376 

Orchopeas howardi that commonly infects both grey and red squirrels in Great Britain is instead 377 

absent from Italy (Romeo et al., 2014). Additionally, although grey squirrels in Italy acquired the 378 

red squirrel flea Ceratophyllus sciurorum, flea prevalence observed in Italian populations is lower 379 

than that reported in Great Britain (Romeo et al., 2016, 2014). 380 

Demonstrating that Italian grey squirrel populations are free from SQPV has important biological 381 

and management implications. Firstly, SQPV absence from Italy further suggests that the virus was 382 

introduced to Great Britain and Ireland by grey squirrels and does not have a European origin 383 

(Shuttleworth et al., 2014). It has been hypothesised that SQPV initially spilled over from other 384 

native rodents, with grey squirrels then amplifying its circulation, but if this were the case, it is 385 

reasonable to assume that the infection would have emerged also in Italy. 386 
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Moreover, our findings support the notion that SQPV is a critical driver in red-grey squirrel 387 

competition, as the higher rate of grey squirrel spread (and red squirrel replacement) observed in 388 

Great Britain might be ascribed to apparent competition mediated by disease. At the same time, the 389 

absence of such infections from Italian populations also confirms that mere competition for 390 

resources, albeit being a slower process, might result in red squirrel extinction by itself (Wauters et 391 

al., 2005; Bertolino et al., 2014; Gurnell et al., 2015). These differences between introduction 392 

ranges, highlight how knowledge about disease status is essential to correctly predict spread of 393 

invaders and implement proper management and conservation strategies (Strauss et al., 2012; 394 

Tompkins et al., 2015).  395 

 396 

Perspectives on red squirrel conservation 397 

Since SQPV speeds up red squirrel replacement, its absence from Piedmont and Lombardy regions 398 

gives more time to the ongoing control activities, supporting the rate of grey squirrel spread 399 

predicted by models (Tattoni et al., 2006; Bertolino et al., 2008). Furthermore, considering that in 400 

mainland Europe grey squirrel populations are present only in Italy, the absence of SQPV from the 401 

country is good news for the conservation of the red squirrel at the whole continental scale. 402 

However, since several aspects regarding SQPV origin and its dynamics of transmission and 403 

maintenance are still undefined, a future emergence of the virus in Italy cannot be completely ruled 404 

out. It should also be noted that grey squirrels were sold in Italy as pets until 2013, when a decree 405 

banned their trade, therefore a future illegal release of animals from the pet trade cannot be 406 

excluded either. Consequently, a disease surveillance plan aimed at an early detection of the virus 407 

should be set up. An active surveillance plan that requires the recurrent testing of biological samples 408 

through both serology and PCR does not appear feasible due to the large number of individuals and 409 

the high costs required to guarantee its efficacy in early detection (Guberti et al., 2014). For 410 

infections with evident clinical signs such as SQPV, a passive surveillance plan that only includes 411 

the diagnostic testing of suspected cases would have a higher probability of detecting a new 412 
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emergence (Guberti et al., 2014). In the case of SQPV, we propose as suspect case any sciurid 413 

displaying cutaneous lesions. Efforts should thus be directed at developing an effective network for 414 

the recovery in the field of such individuals and their subsequent diagnostic testing (Everest et al., 415 

2017). Finally, additional attention aimed at an early detection of symptomatic sciurids should be 416 

given to those Italian areas where new grey squirrel nuclei may potentially establish (Mori et al., 417 

2016), even if most of them likely derive from translocations from the same Piedmontese 418 

population that was extensively sampled during the present survey (Signorile et al., 2014a, 2016). 419 

 420 

Concluding remarks 421 

The present field survey supports with high probability the absence of SQPV infection in Italian 422 

squirrel populations and has important implications for the management of alien grey squirrels and 423 

the conservation of red squirrels in their native range. At the same time, our results confirm the role 424 

played by SQPV in the dramatic decline of red squirrel populations in Great Britain, opposed to the 425 

slower rate of replacement observed in Italy, thus highlighting that diseases might play a critical 426 

role in biological invasions. However, our findings encourage the future activation of health 427 

surveillance plans in order to keep the whole continental red squirrel population safe from further 428 

threats represented by infectious diseases. 429 

 430 
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Figure captions 621 

 622 

Figure 1. Location of sites in Piedmont and Lombardy regions, northern Italy, where grey squirrels 623 

(Sciurus carolinensis) were sampled between 2011 and 2014 to investigate squirrelpox virus 624 

infection. Line patterns indicate grey squirrel range in 2015. 625 

 626 

Figure 2. Frequency distribution of ELISA optical densities obtained on grey squirrel sera (N=285) 627 

tested for antibodies against squirrelpox virus. The dashed line indicates the cut-off value.   628 
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