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ABSTRACT
We have applied the formalism of classical density functional theory to study the
shape and the orientation of the density profiles ρ(r) formed by aspherical, ultrasoft
particles. For simplicity we have considered particles with an elliptic shape, char-
acterized by an aspect ratio λ. The ρ(r)’s are obtained via the minimization of the
grand-potential functional Ω[ρ], for which we have used a mean-field format. The
optimization of Ω[ρ] is numerically realized in a free (i.e., unbiased) manner mini-
mizing the functional with respect to the density profile, which we have discretized
in the unit cell of the lattice on 803 grid points. Keeping the temperature fixed
and varying the chemical potential and λ, we have investigated the impact of these
parameters on the density profile.

KEYWORDS

1. Introduction

It has by now become common knowledge that anisotropy is a relevant driving force
in establishing and triggering self-assembly of colloidal particles.

In the past decade, the effect of particle shape on the symmetry of high-density
phases has been studied in considerable detail, especially in hard ellipsoids [1] and
hard polyhedra where a range of liquid-crystalline, quasicrystalline, plastic-crystalline,
and crystalline structures were reported. [2–6]. Besides being related to particle shape,
anisotropy can also be introduced via the effective interactions as in the case of patchy
particles, i.e., hard, spherical particles with an additional interaction which is localized
at specific domains on the particle surface [7–10].

In order to grasp as faithfully as possible the impact of anisotropy on the prop-
erties of the system, considerable effort has been dedicated during the past years to
simulation-based (for an overview see [11, 12]) and theoretical methods: including
anisotropy in these frameworks represents a major challenge; this holds in particular
in the case of theory, where it is both conceptually and numerically very difficult to
account for it on a quantitative level.

Classical density functional theory (DFT) ranges undoubtedly among the most fruit-
ful and powerful concepts that have been and are still used to describe the structural
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and thermodynamic properties of (soft) condensed-matter systems [13–15]. In this
contribution we demonstrate that DFT allows to calculate non-trivial single particle
density profiles ρ(r), as they obviously arise in ordered structures formed by aspherical
particles.

So far, in DFT calculations (based on some reliable format for the grand-potential
energy functional Ω[ρ]) an educated guess for ρ(r) was assumed, i.e., some function
which was expected to represent the density profile and which was characterized by a
few parameters. Minimization of the functional Ω[ρ], which thus has become a function
of these parameters, was then obtained by minimizing the function with respect to the
parameters. In a recent contribution by Pini et al. [16] it was shown that present
day computational power in combination with highly efficient and reliable numerical
optimization techniques enable to perform the minimization of Ω with respect to ρ(r)
in an unbiased manner. This could be achieved by representing ρ(r) in a finite volume
(e.g., in a lattice cell), discretized on a sufficiently fine grid (with typically 803 to 1003,
or even more, grid points) in r-space, avoiding thereby an a priori bias on the shape
of the density profile. Minimization is then performed by varying the values of ρ(r)
on the grid points and – if required – by optimizing the shape of the lattice cell. In
[16], the authors have shown with this approach that even a spherically symmetric
two-body interaction may lead to quite complex structures, which would have likely
escaped a biased search. The broad applicability of this method was demonstrated in
subsequent work by Roth and coworkers [17–19] and again by Pini and Parola [20].

This has motivated us to turn to the density profile of particles that are aspherical in
their shape and/or their interaction. In our investigations we have focused on ultrasoft
(i.e., penetrable), aspherical particles. During the past decade, (colloidal) particles
that interact via ultrasoft potentials have often been viewed as “effective particles”,
representing considerably more complex macromolecules with an intricate internal
structure, consisting of hundreds or thousands of atomistic entities. Examples for such
ultrasoft “effective particles”, which have been discussed in literature are polymers [21]
or dendrimers [22]. As will be detailed in the body of the manuscript, some of these
ultrasoft particles are able to form particular mesophases, termed in literature “cluster
crystals” [23]. In general these “effective particles” are assumed – mostly for simplicity
– to be spherically symmetric, leading to a simple dependence of their interactions
on the distance. However, as has been evidenced in more detailed investigations on
isolated dendrimers or ensembles of dendrimers, these macromolecules are definitely
aspherical; their shape can actually be more appropriately represented by an ellipsoid
of revolution, whose semi-axes are determined by diagonalizing their radius of gyration
tensor [24–26].

We have then assumed for their effective interaction a generalization of the spher-
ically symmetric generalized exponential model potential [23, 27], introducing in a
Gay-Berne-type fashion [28, 29] anisotropy via the characteristic length scale of the
potential: the interaction between two particles now depends on the center-to-center
vector between the particles and the respective orientations of the particles in space.
Via the assumed functional form of the potential, the particles are elliptic in their
shape and are characterized by their aspect ratio λ, i.e., the ratio of the values of their
principal axes. In an effort to reduce complexity, we have assumed that the orienta-
tions of the particles on the lattice sites of the underlying lattice are parallel. For the
excess part of the energy functional we have opted for a mean-field format, justified
by the fact that we consider ultrasoft (i.e., penetrable) particles [30]. In our numerical
approach both the lattice of the ordered equilibrium structure (expressed via the three
lattice vectors ai, i = 1, 2, 3) and the single-particle density profile have been obtained
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for a given temperature and chemical potential via a free, i.e., unbiased optimization
of the functional Ω[ρ] with respect to ρ(r). By changing the temperature, the chemical
potential (or, equivalently, the density) and the aspect ratio λ, we have investigated
the impact of these quantities on the shape and on the orientation of the density
profile.

The manuscript is arranged as follows: in the subsequent section we briefly present
our model and the underlying interaction, we summarize the relevant aspects of the
DFT formalism and provide details about our numerical implementation, and finally
describe the tools that allow us to analyze and to characterize the emerging single-
particle density profiles. In Section 3 we present and discuss the results; the contribu-
tion is closed with our concluding remarks.

2. Model and methods

2.1. The model

In this contribution we have assumed that the particles interact via an aspherical,
ultrasoft potential, which can be viewed as a generalization of the (spherically sym-
metric) generalized exponential potential of index n (GEM-n) [23, 27, 31, 32] which
is given by

Φ(r) = ε exp[−(r/σ)n]; (1)

here ε and σ are energy and length scales, respectively. If the index n is larger than
two, this interaction has been shown to belong to the so-called Q± class, i.e., a set
of potentials for which the formation of stable clusters of overlapping particles has
been predicted [23, 27, 30–33]; this particular feature can be traced back to the fact
that there exists a non-vanishing k-vector for which the Fourier transform of the
potential, Φ̃(k), attains a negative minimum. In the following (and in order to establish
connections to the above mentioned previous studies) we have fixed n = 4, both for
the spherical and the aspherical case.

Asphericity of the interaction can be introduced – extending original ideas of Gay
and Berne [28] – via ε and σ, which are now assumed to depend on the vector r
between the centers of the particles and on their respective orientations in space (i.e.,
u and u′ with respect to some arbitrary coordinate system – see left panel of Fig. 1).

Thus our potential, Φ(r;u,u′) is given by

Φ(r;u,u′) = ε(r;u,u′) exp

[
−
(

r

σ(r;u,u′)

)n]
. (2)

Ever since the work of Gay and Berne [28], different choices for the dependence
of σ and ε on r, u and u′ have been proposed in literature. In this contribution we
have opted for the following functional form of σ(r;u,u′), which was proposed by
Ghoufi et al. [29] for particles modelled as ellipsoids of revolution with longitudinal
and transverse axes of length respectively σ‖, σ⊥ (see Fig. 2).
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Figure 1. (color online) Left panel: schematic sketch of two interacting aspherical particles; u and u′ denote

the respective orientational unit vectors of the particles, while r is the center-to-center vector. Right panel:

schematic sketch of two parallel interacting spherical particles, as they are studied in this contribution (see
Equation (4) for the corresponding potential, the angle ϑ is defined in Equation (6); same notation as in the

left panel).

σ(r;u,u′) = σ0

(
1− χ

r2

(r · u)2 + (r · u′)2 − 2χ(r · u)(r · u′)(u · u′)
1− χ2(u · u′)2

)−1/2

, (3)

where σ0 sets the unit length. In the above expression we have introduced the
anisotropy parameter χ = (λ2 − 1)/(λ2 + 1), where λ is the aspect ratio λ = σ‖/σ⊥.
In this paper we shall consider prolate ellipsoids such that λ > 1. For simplicity (and
unlike Ghoufi et al. [29]) the energy scale parameter ε is assumed to be constant, i.e.,
ε(r;u,u′) ≡ ε.

In our investigations the orientational unit vectors of two particles, u and u′, that
populate two different lattice positions, are assumed to be parallel: since their direction
in space is arbitrary, but is kept fixed throughout the calculations, we can set u =
u′ = n (with |n| = 1); we thus arrive at the following expression for Φ(r;u,u′) = Φ(r):

Φ(r) = ε exp

[
−
(

r

σ(r)

)4
]

, (4)

with

σ(r) =
σ0√

1 + (λ−2 − 1)
(r · n

r

)2
=

σ0√
1 + (λ−2 − 1) cos2 ϑ

, (5)

where

r · n
r

= cosϑ; (6)

the angle ϑ is enclosed by the vectors r and n (see right panel of Fig. 1). Thus Φ(r) can
alternatively be written as Φ(r, ϑ). According to Equations (5), (6), the isosurfaces of
Φ(r, ϑ) are ellipsoids with their longitudinal axis parallel to n. A few examples for the
r- and ϑ-dependence of Φ(r, ϑ) are shown in the panels of Fig. 3, keeping either of the
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Figure 2. Schematic view of an aspherical particle with ellipsoidal shape as it is used in this contribution:

the parameters σ‖ and σ⊥ define via λ = σ‖/σ⊥ the aspect ratio λ. The particle is an ellipsoid of revolution

around σ‖.

Figure 3. (color online) Left panel: Φ(r, ϑ) as defined in Equations (4) and (5) as a function of r for selected

values of ϑ (as labeled). Right panel: Φ(r, ϑ) as a function of ϑ for selected values of r (as labeled). For this
particular case λ = 1.5.

two arguments fixed (there λ is assumed to be 1.5). Note that similar models – albeit
with an exponent n = 2 (i.e., Gaussian potentials) – have been used in Refs. [34, 35].

In a similar manner, the Fourier transform of the potential Φ̃(k), can be written
as Φ̃(k, φ) where k = |k| and φ is now the angle enclosed by k and the preferred
axis in k-space (see Fig. 4). It is readily shown that the isosurfaces of Φ̃(k, φ) are also
ellipsoids. Specifically, one has

Φ̃(k, φ) = εσ‖σ
2
⊥Ψ
(
σ0k
√

1 + (λ2 − 1) cos2 φ
)

, (7)

where the function Ψ is the same as that obtained for spherical particles by perform-
ing the Fourier transform of Equation (1). Therefore, also in the case of asphericity,
Φ̃(k) shows for n > 2 negative Fourier components; however, in contrast to the spher-
ical case, the positions of the minima of Φ̃(k) show for λ > 1 an additional angular
dependence. While in the spherically symmetric case the locus where Φ̃(k) takes its
minimum is obviously the surface of a sphere, in the aspherical case we are dealing
with it is an ellipsoid.

2.2. Classical density functional theory

Working in the grand-canonical ensemble (i.e., at given temperature T , volume V ,
and chemical potential µ), the central quantities of classical density functional theory
(DFT) [13, 14] are the single-particle density profile
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Figure 4. (color online) Left panel: Φ̃(k, φ) as defined in Equation (16) as a function of k for selected values

of φ (as labeled). Right panel: Φ̃(k, φ) as a function of φ for selected values of k (as labeled). For this particular

case λ = 1.5.

ρ(r) =

〈∑
i

δ(r− ri)

〉
(8)

and the grand-potential functional Ω[ρ], given (in the absence of an external potential)
by

βΩ[ρ] = βFid[ρ] + βFex[ρ]− βµ
∫
V
drρ(r); (9)

in the above equations the ri are the positions of the particles, β = 1/(kBT ), kB being
the Boltzmann constant, and 〈. . . 〉 denotes the grand-canonical ensemble average.
Fid[ρ] and Fex[ρ] are, respectively, the ideal and excess parts of the Helmholtz free

energy functionals, the former one being given by

Fid[ρ] = kBT

∫
V
drρ(r)

{
ln
[
Λ3ρ(r)

]
− 1
}

; (10)

Λ is the thermal wavelength. As we are dealing with ultrasoft potentials, we can
assume – as laid out in [30] – a mean-field format for the excess part of the free energy
functional, namely,

Fex[ρ] =
1

2

∫ ∫
drdr′ρ(r)Φ(r− r′)ρ(r′). (11)

The equilibrium single-particle distribution is obtained by minimizing Ω[ρ] with
respect to ρ(r), i.e., by solving

δΩ[ρ]

δρ(r)
= 0. (12)
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As we are looking for the equilibrium density profile of ordered phases, we can
assume that ρ(r) is periodic with respect to an underlying lattice (specified by lattice
vectors a1, a2, and a3), i.e.,

ρ(r) = ρ(r + ai) i = 1, 2, 3. (13)

The corresponding reciprocal lattice vectors are denoted by bi, i = 1, 2, 3. The liquid
(i.e., disordered) case is covered in this formalism by setting ρ(r) ≡ const. In this
case, Equations (10) and (11) give the free energy of the compressibility route of the
random-phase approximation [36], i.e., the familiar van der Waals expression.

Due to its periodicity, ρ(r) can be expressed as a Fourier series over the reciprocal
lattice vectors, i.e.,

ρ(r) =
∑
m

exp [−ikm · r] ρ̂m with ρ̂m =
1

v

∫
C
dr exp [ikm · r] ρ(r) (14)

where C is the unit cell with volume v and with

km =

3∑
i=1

mibi m = (m1,m2,m3) mi = 0,±1,±2, . . . . (15)

Further we introduce the Fourier-transform of the (non-periodic) potential

Φ̃(k) =

∫
V
dr exp [−ik · r] Φ(r). (16)

When solving Equation (12) numerically in practical applications of DFT, simple,
parametrized functions have been used during the past years as an ansatz (or edu-
cated guess) for the density profile, whose parameters were chosen such that Ω[ρ] is
minimized for a given lattice structure; comparing the ensuing results for a preselected
set of candidate structures have led to the final result.

In the present contribution, on the other hand, we shall resort to an unbiased
optimization along the lines laid out in [16–20]. To this end, in our numerical imple-
mentation of the DFT formalism ρ(r) has been discretized on N3 grid points of the
unit cell C, i.e.,

ρ(r)→ ρn (17)

where n stands for the N3 values of ρ(r) on this grid. Furthermore, we introduce
the nine Cartesian components of the lattice vectors ai (or, equivalently, of the bi)
as additional parameters to be optimized in solving Equation (12). We remark that
here, at variance with [16, 20], the lattice vectors are not assumed to be mutually
orthogonal.

As discussed in [16], optimization with respect to the lattice vectors is of paramount
importance in order to prevent the occurrence of local minima of the grand-potential
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functional such as defective configurations, which would otherwise be those most fre-
quently observed as a consequence of the intrinsic periodicity of the density profile
being incommensurate with the size of the box where it is sampled. Nevertheless, the
regular structures obtained by this procedure are still local minima of the grand po-
tential Ω, and there is no guarantee that the outcome of a specific optimization run
coincides with the absolute minimum of Ω for the thermodynamic state at hand. This
uncertainty is, we fear, intrinsic to the problem, and there is little one can do about
it, except for trying to reduce it by sampling the free-energy landscape as thoroughly
as possible, e.g. by starting the minimization from different trial density profiles.

Once the discretization – see Equation (17) – has been performed, the functional
Ω[ρ] becomes a function Ω of the N3 variables ρn and of the nine variables specifying
the components of the ai (or bi), i.e.,

Ω[ρ]→ Ω(ρn,ai) = Ω(ρn,bi). (18)

Ω(ρn,bi) can be written after some algebra as

β

V
Ω(ρn,bi) =

1

N3

∑
n

ρn
[
ln(Λ3ρn)− 1− βµ

]
+

β

2N6

∑
m

ρ̂mΦ̃(km)ρ̂−m. (19)

In this expression, the first sum is extended over the N3 grid points in the unit
cell (and thus in r-space), while the second sum extends over N3 points in reciprocal
space.

In the following we specify (and justify) the numerical parameters that we have
used: detailed numerical tests have shown that for the potential at hand and for
the considered parameter range (i.e., temperature, chemical potential, density, etc.)
N = 80 guaranteed a sufficient numerical accuracy (leading to a relative accuracy of
Ω of 10−8 to 10−9). For the numerical Fourier transform of the potential Φ(r) we have
used a standard Fast Fourier Transform algorithm [37], where Φ̃(k) was discretized
on 803 grid points. The grid size was chosen in such a way that Φ(r) < 10−15 at
the r-value where the Fourier integral was truncated. Moreover, in order to keep the
computational cost low, the sum over m in Equation (19) was truncated at some
appropriately chosen upper limit for the mi. In an effort to fully grasp the asphericity
in the potential, we carefully checked the truncation in reciprocal space: as the results
for βΩσ3

0/V obtained for selected cases for truncation at |mi| = 5 differed by less than
10−9 from the data obtained at |mi| = 7, we opted for the former choice.

As a stringent test for the numerical accuracy we have considered Poisson sum rule,
i.e.

v
∑
n

Φ(ni,ai) =
∑
m

Φ̃(mi,bi), (20)

which we found to be fulfilled with a relative numerical accuracy of at least 10−11.
The minimization of Ω(ρn,bi), which – in view of the specific numerical parameters

mentioned above – was carried out in a parameter space of ∼ 512 000 dimensions
was performed via a preconditioned conjugate gradient algorithm with adaptive step-
size, as laid out in [16]. This can be considered as a refinement of the basic steepest
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descent algorithm (see, for instance [38]). Within this algorithm, the gradients were
calculated via analytic expressions. This procedure has proved rather robust, but in
future developments other algorithms could be adopted, such as the limited-memory
inverse Broyden method [17, 18], which would likely prove to be significantly more
efficient.

As all the numerical calculations were rather time-consuming, use of shared memory
parallelization via OpenMP was imperative. The calculations were carried out at the
Vienna Scientific Cluster [39].

2.3. Analysis of the single-particle density profile

In order to analyze the single-particle density profile ρ(r) on a quantitative level we
introduce (i) its radius of gyration, Rg, and (ii) its radius of gyration tensor, S, i.e.,
quantities which are often used to characterize the size and the shape of colloidal
particles with complex internal shape. Based on the related, conventional definition of
these quantities (see, for example, [40, 41]), we have generalized these expressions to
our particular case.

We define the radius of gyration, Rg, and the position of the center of mass, Rcm,
for our continuous single-particle density profile ρ(r) via

R2
g =

1

N

∫
C
dr ρ(r)(r−Rcm)2 with Rcm =

1

N

∫
C
dr ρ(r)r (21)

and

N =

∫
C
dr ρ(r). (22)

The shape of the single-particle density profile can most readily be characterized
via the radius of gyration tensor (RGT) S [40, 41], whose elements Sij , i, j = 1, 2, 3,
have been evaluated for our particular case via

Sij =
1

N

∫
C
dr ρ(r)(ri −Rcm,i)(rj −Rcm,j) . (23)

By definition, S is symmetric and real. One can easily verify, that R2
g = S11 +S22 +

S33 = Tr(S). S can be diagonalized, with the real eigenvalues E1, E2, and E3; without
loss of generality it is assumed that E1 ≥ E2 ≥ E3. The corresponding eigenvectors,
which are mutually orthogonal, are denoted by ei.

Characterizing the single-particle density profile ρ(r) by the eigenvalues of the RGT
corresponds to approximating ρ(r) by an ellipsoid of revolution centered at Rcm: the
eigenvectors point along the principal axes and the square roots of the eigenvalues,
i.e.,
√
Ei, set the lengths of the three (orthogonal) semi-axes of the ellipsoid [26].

Based on the Ei, two further quantities which characterize the shape of the density
profile can be calculated: (i) the asphericity parameter δ (as defined in [42]), and the
acylindricity parameter ζ (as defined in [26] and references therein):
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δ = 1− 3
E1E2 + E1E3 + E2E3

(E1 + E2 + E3)2
(24)

ζ = E2 − E3 (≥ 0). (25)

δ ranges from 0 (for spherical symmetry) to 1 (for a rod-like shape). In case ζ = 0 (i.e.
if E2 = E3) we have characterized the shape of the density profile via its aspect ratio√
E1/E2.

3. Results

In the following we present and discuss data that we have obtained for the particle
density profile ρ(r). We remark that from here onwards we shall drop the specification
“single” of the density profile, since – as will be discussed below – also aspherical
GEM-4 particles show the phenomenon of multi-occupancy of the underlying lattice.
In order to understand the impact of asphericity of the potential on the density profile,
we have systematically varied the relevant parameters, i.e., the aspect ratio λ – see
Subsec. 3.1 and the chemical potential (and hence the density) – see Subsec. 3.2.

For convenience we introduce the dimensionless temperature T ∗ = kBT/ε and the
reduced, dimensionless density ρ∗ = σ3

0

∫
d3rρ(r)/V . We further introduce – similar as

in [16] – the density ρ̄, defined as

µex = ρ̄

∫
drΦ(r), (26)

where µex is the excess chemical potential with respect to the ideal gas.
As mentioned above, also the disordered liquid phase can be captured within the

present DFT formalism: this phase is characterized by a spatially constant density
profile. Indeed, by fixing the temperature and increasing systematically the chemical
potential, we are able to obtain the free energy F as a function of the density along a
specific isotherm for the fluid phase and for the competing ordered phases. In principle,
this information allows us to construct – e.g., via a common tangent construction –
the coexistence densities of the competing phases. However, in the following we refrain
from a discussion of the liquid phase and focus instead on the ordered phases and the
respective density profiles.

3.1. Impact of the asphericity in the potential on the shape of the density
profile

In order to study the impact of the asphericity in the interparticle interaction on the
shape of the density profile ρ(r), we have made a series of runs where we have – starting
from the spherical case λ = 1 – gradually increased λ up to a value of 1.5. To this end
we have fixed T ∗ = 1.0 and have considered two different densities, namely, ρ̄∗ = 5.5
and ρ̄∗ = 7.

Starting with the bcc equilibrium structure for the spherical case λ = 1 [16, 23, 27],
we have increased λ in small steps, using the results for the equilibrium structure
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Figure 5. (color online) Variation of the aspect ratios of the density profile,
√
E1/E2 and

√
E1/E3 (as

labeled), as obtained in our DFT calculations as the aspect ratio of the potential λ is varied. Left panel:

T ∗ = 1.0, ρ̄∗ = 5.5, right panel: T ∗ = 1.0, ρ̄∗ = 7.0.

and for the density profile of the preceding λ-value as an input for the unconstrained
minimization of the functional Ω[ρ] for the current λ-value.

Along this λ-variation we observe in the high density case ρ̄∗ = 7 that the shape of
the interaction potential is essentially mirrored in the shape of the density profile: ρ(r)
has also shape of an ellipsoid of revolution (i.e., E2 = E3) and we find throughout that√
E1/E2 ' λ (see Fig. 5). This behaviour is not very surprising, if we consider the

occupancy number nc of these multiply occupied lattices (see Fig. 7 and the related
discussion below). Already for moderate densities, nc attains values around six, mean-
ing that the particles populating a specific lattice site experience a strong repulsion
from the particles located on the neighbouring lattice sites. The natural consequence
is that the particles of a specific site arrange into a spatial shape that reflects the
geometry of the underlying potential; some further remarks to this issue are summa-
rized in the discussion of Fig. 11. Furthermore, our results provide evidence that, as
soon as λ starts to grow from the value 1, the eigenvector e1 of the RGT S given by
Equation (23), which corresponds to the largest eigenvalue of S, aligns with n, i.e.,
the orientation of the main axis of Φ(r) (not shown; for details see [43]). Of course, the
other eigenvectors, e2 and e3, span the plane orthogonal to n. Moreover, increasing λ
also imposes an increasingly strong deformation of the unit cell. This distortion can
easily be quantified via the angles enclosed by the lattice vectors ai: the cell becomes
increasingly skewed as λ increases; for an example see Fig. 6.

At the smaller density, i.e., ρ̄∗ = 5.5, the situation is at least for λ . 1.25 markedly
different: while

√
E1/E2 ≡ λ over the considered λ-range, the values of

√
E1/E3 do

differ from the respective λ: thus, in this λ-regime the density profile can no longer be
approximated by an ellipsoid of revolution. However, with increasing λ, the density
profile assumes within high numerical accuracy the shape of ellipsoid of revolution,
whose aspect ratio is imposed by the respective value of λ for reasons similar to the
ones put forward for the high density case.

Our results thus provide evidence that both for a high value of the density and a
relatively strong asphericity the density profiles originating from our aspherical po-
tential can be locally approximated very well by an ellipsoid of revolution which is
oriented along the main axis of the potential n, and whose shape reflects the shape
of the interaction. Only for relatively small densities and up to intermediate values of
the aspect ratio λ, deviations from this shape can be observed in the density profile.
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Figure 6. (color online) A representation of the density profile ρ∗(r) for λ = 1.5 and T ∗ = 0.5, ρ∗ = 8.32,

showing four replicas of the primitive cell. The lengths of the cell axes are a = 2.09, b = 1.60, c = 1.49 in units
of σ0. The isosurfaces at which ρ∗(r) = 60, corresponding to ∼ 1% of the peak value, have been displayed in

yellow. The upper cells show a section of ρ∗(r) inside the domain bounded by the isosurfaces.

Figure 7. (color online) Occupation number nc as a function of the density ρ∗. Here T ∗ = 0.5 and λ = 1.5.

3.2. Variation of the density profile with the chemical potential

To describe the dependence of the density profile ρ(r) on the average density, we have
systematically increased the chemical potential µ, keeping the temperature fixed at
T ∗ = 0.5 and setting λ = 1.5. We have carefully checked that within the considered
range of µ the ordered phase is more stable than the disordered, liquid phase, i.e., has
the lower grand potential. Similarly to the spherically symmetric case, the ultrasoft
interaction at hand leads to cluster crystals, whereby each lattice site is multiply
occupied, and the lattice site occupation number nc shows a linear dependence on the
density ρ∗, as displayed in Fig. 7. This behavior is characteristic of the crystal phases
of so-called Q± potentials, and is due to the fact that their lattice constants, unlike
those of atomic crystals, are nearly state-independent [23, 30].

In the two panels of Fig. 8 data for the free energy F (in dimensionless, reduced
units), and the volume of the unit cell of the underlying lattice, v, are shown as
functions of the reduced density ρ∗. As expected, F increases with increasing ρ∗,
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whereas v monotonously decreases with ρ∗, but very weakly so, consistently with the
above-mentioned behavior of the lattice constants.

We now proceed to a quantitative analysis of the density profile in the neighbor-
hood of a given lattice site, starting with the radius of gyration, Rg (Fig. 9), and the
asphericity δ and the acylindricity ζ parameters (both in Fig. 10). Rg decays mono-
tonically with increasing ρ∗, as expected for ultrasoft potentials. This rapid, non-linear
decay with the density is again imposed by the increasing number of particles that
populate the neighbouring lattice sites, leading thus to an increase in the repulsion
that the particles of a specific lattice site experience: as a consequence, the density
profile shrinks in size. The δ-values converge rather fast with increasing density to-
wards a value of δ ' 0.087, corresponding to a moderate deviation from sphericity.
The increase in δ by about 10% over the observed density range is moderate and re-
flects on a quantitative level that the density profile assumes an ellipsoidal shape. Also
the acylindricity parameter ζ is characterized by rather small values (i.e., throughout
smaller than 0.05) and vanishes for ρ∗ & 3.3.

The aspect ratio of the density profile, expressed via
√
E1/E2 shown in Fig. 11,

differs at intermediate densities from the value of the aspect ratio of the interaction, i.e.,
λ = 1.5; in this density regime the density profile is not an ellipsoid of revolution. This
observation is nicely compatible with the above discussion of the λ dependence of the
shape of the density profile (see Subsec. 3.1): at the lowest densities investigated, the
occupancy number at a given lattice site is still small enough; therefore the particles are
not able to exert a substantial repulsion on the particles of a neighbouring lattice site,
which can therefore deviate in their density profile from the elliptic shape. However,
already for ρ∗ ' 3, the ratio

√
E1/E2 (and also

√
E1/E3, which is not shown) attains

the value of 1.5; as shown in Fig. 10, the density profile has now rotational symmetry
around its main axis. This limiting behaviour at high densities is reminiscent of the
alignment of the density profile parallel to the main axis of the potential as reported
in Subsection 3.1. Finally, we note that at intermediate densities the main axis of the
density profile is not necessarily oriented parallel to the direction of the main axis of
the interaction: both e2 ·n and e3 ·n, as well as e1 ·n differ from their respective values
for perfect alignment (i.e., 0 and 1, respectively) by less than 10 % (see panels of Fig.
12). Further increasing the density forces the density profile to align in the direction
of the main axis of the potential.

Summarizing, results shown in Figs. 10, 11, and 12 indicate that the parameters
that specify the shape and the orientation of the density profiles assume for ρ∗ & 3
essentially density-independent values.

4. Conclusions

In this contribution we have studied the local structure of the density profiles of
ultrasoft, aspherical particles via classical density-functional theory. For the interaction
of the particles we have assumed an aspherical version of the ultrasoft generalized
exponential model of index n with n = 4, where asphericity is introduced via an
intrinsic length scale parameter, which now depends on the center-to-center vector
between two interacting particles and their orientations in space; the particles are thus
modelled as (prolate) ellipsoids of revolution, with an aspect ratio λ > 1. For simplicity
we have further assumed that particles located on different lattice sites have parallel
orientation. For the excess free energy functional we have used a mean-field format.
Optimization of the grand-potential functional has been performed with respect to the
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Figure 8. (color online) Left panel: free energy, F , in reduced dimensionless units (as specified) as a function
of ρ∗ (for T ∗ = 0.5 and λ = 1.5). Right panel: the same for the volume of the lattice unit cell, v (in units σ3

0).

Figure 9. (color online) Radius of gyration, Rg (in units of σ0), as a function of ρ∗ (for T ∗ = 0.5 and λ = 1.5).

Figure 10. (color online) Asphericity, δ, and acylindricity, ζ, as defined in Equations (24), (25) as functions
of ρ∗ (for T ∗ = 0.5 and λ = 1.5).
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Figure 11. (color online) Aspect ratio of the density profile, expressed via
√
E1/E2, as a function of ρ∗ (for

T ∗ = 0.5 and λ = 1.5).

Figure 12. (color online) Orientation of the main axes of the density profile, e1, e2, and e3, with respect

to the orientation of the main axis of the interaction potential, n, expressed via e1 · n, e2 · n, and e3 · n, as
functions of ρ∗ (for T ∗ = 0.5 and λ = 1.5).
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lattice vectors as well as to the density profile, which has been discretized on 803 grid
points in the lattice unit cell, and has been carried out in a free, i.e., unbiased manner.

Varying the temperature, the chemical potential (and thus the density), and the
aspect ratio λ we have investigated the impact of these parameters on the shape
of the density profile ρ(r). Variation of λ keeping the other parameters fixed forces
the orientation of the density profile to align with the main axis of the interparticle
interaction, leading also to an increasingly strong distortion of the underlying lattice as
λ increases; in addition, ρ(r) assumes the same value of aspect ratio as the interaction.
An increase of the chemical potential leads at higher densities to an ellipsoidal shape of
the density profile, which mirrors on a quantitative level the shape and the orientation
of the underlying interparticle potential. Only at intermediate densities, relatively
small deviations from this behaviour can be observed.

Some of the interesting physics that can emerge from this formalism will be post-
poned to future investigations and publications. Assuming a multi-component system,
one might study the case where the density profiles located on different lattice sites
are no longer identical, but can show different shapes and orientations. Along a dif-
ferent line, one could investigate if the predicted density profiles are faithful, i.e., if
they describe in a quantitative manner the related density profiles as predicted in
computer simulations on a monomeric level, where these “effective particles” on which
the current investigations are based, are represented on a monomeric, atomistic level.
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