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Abstract

The formation of mesophases in fluids with hard-core plus tail interactions is investigated and

compared with the occurrence of cluster crystals in ultra-soft repulsive potentials by using a simple

variational expression for the Helmholtz free energy. The purpose of this study is mostly qualitative,

i.e., to explain the origin of the different behavior of these systems, and the reason why, in the

hard-core case, interactions which are apparently quite different display a common pattern for the

phase diagram, featuring clusters, bars, lamellae, inverted bars, and inverted clusters as the density

is increased. In the limit of zero temperature, our approach also yields some simple predictions

for the densities at which the transitions between different mesophases are expected to take place,

as well as for the size of their aggregates at the transitions. We find that these results compare

favorably with those obtained in a former study of a model fluid with competing attractive and

repulsive interactions by density-functional theory with numerical minimization.
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I. INTRODUCTION

Spontaneous self-assembly into ordered structures is a fascinating property of soft matter

and an example of how, when collective properties are considered, even simple models can

lead to a surprisingly rich behavior. A relevant case in this respect is represented by ultra-

soft repulsive potentials [1, 2], which may be thought of as a representation of the effective

interactions between branched macromolecules such as dendrimers [3]. Another instance

is that of compact, hard-core particles whose potential features, besides the hard-sphere

contribution, a short-range attractive and long-range repulsive (SALR) tail [4–20], due e.g.

to the combination of depletion and screened electrostatic effective forces. In terms of the

interactions between their constituents, the physical explanation of the mechanism leading

to self-assembly is quite different in the two systems. In the former case, clustering occurs

because, due to the very soft character of the repulsion, above a certain density strong overlap

between the relatively few particles within each cluster is energetically favored with respect

to partial overlap between many particles [21]. In the latter case, instead, clusters are formed

because of the competition between the attraction, which favors particle aggregation, and the

repulsion, which prevents the coalescence of clusters and the transition into two macroscopic

liquid and vapor phases.

Nevertheless, in both instances the attitude to self-assembly rests upon the same property

of the Fourier transform of the pair potential (or, for hard-core particles, of its non-singular

part), namely, the fact that it takes its absolute minimum at a non-vanishing wave vector

k0. This favors the spontaneous occurrence of density modulations with characteristic length

λ ∼ 2π/k0 which, under suitable thermodynamic conditions, can lead to genuinely periodic

inhomogeneous phases. For soft repulsive interactions, potentials of this kind are said to

belong to the Q± class [22].

However, this does not imply that soft- and hard-core interactions which share such a

property have the same kind of phase portrait. In fact, while ultra-soft Q± potentials are

predicted to form only crystals of strongly localized, globular clusters [2], hard-core SALR

potentials display a more complex behavior. Specifically, on increasing the density one goes

through a sequence featuring globular cluster, tubular, lamellar as well as inverted-tubular

and inverted-cluster mesophases, in which the particle-rich and particle-depleted regions

are switched with respect to their “direct” counterpart. Moreover, bicontinuous phases are
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observed in two domains nested between the tubular and lamellar or lamellar and inverted-

tubular phases.

This pattern has emerged many times in a number of theoretical studies based on coarse-

grained [11–15, 20] or microscopic [18, 19] free-energy functionals, and also in recent nu-

merical simulations [16]. In fact, it had been uncovered before in a different system where

frustration inhibits a macroscopic phase separation, namely, block copolymer melts [23, 24].

For fluids of unconnected particles such as those considered here, it is not even peculiar

to the SALR potential, but is found more generally provided the hard core is followed by

an interaction featuring the minimum at k0 6= 0 in Fourier space, such as a soft repulsive

shoulder [12, 25, 26].

The fact that these fluids can be described in terms of a common coarse-grained ef-

fective functional [12] already provides an explanation for their similar phase behavior.

But what is the physical mechanism leading to it? The purpose of this paper is to con-

tribute to answer this question by providing a simple explanation of the general aspects

of mesophase formation in hard-core fluids: specifically, what is the origin of the sequence

clusters/bars/lamellae/inverted bars/inverted clusters found for increasing density in sys-

tems with different tail interactions, and why this behavior differs from that of soft-core Q±

potentials.

Accordingly, our treatment will be mostly qualitative and rely on a simple variational

expression of the free energy similar to that developed in Ref. [2] for soft-core potentials, in

which the features specific to the interaction are conveyed into a small number of param-

eters. Because of the simplified character of the description, we shall not be considering

bicontinuous phases such as the gyroid which, albeit interesting, are generally found only in

a narrow domain of the phase diagram [12, 16, 19], similarly to block copolymers [24].

We also find that, in the limit of vanishing temperature, our approach easily yields some

predictions for the densities at which the transitions between different mesophases take

place, as well as for the size of the globular, tubular, or lamellar domains at the transitions.

We have tested these predictions against the results which we had obtained for a specific

SALR interaction in a former study [19] based on the numerical minimization of the full

free-energy functional, and found a rather satisfactory agreement, especially considering the

approximate character of the present treatment.

The paper is organized as follows: in Section II we describe the method which we have
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adopted, starting from a mean-field density functional for the Helmholtz free energy and

introducing additional approximations. In Section III the application to soft-core Q± po-

tentials is considered. The results basically reproduce those obtained in Ref. [2] for this kind

of interactions, but we thought it useful to include them in order to keep the presentation

self-contained. Hard-core interactions are addressed in Sections IV and V, which deal with

direct and inverted phases respectively. The limits of the present approximate treatment are

discussed in Section VI, together with a comparison between the threshold temperatures of

the various mesophases determined here and the results of a recent simulation study [16]. In

Section VII the behavior of the theory at zero temperature is illustrated, and the values of

the densities and sizes of the various phases at the transitions are obtained. The comparison

between the predicted sizes and those determined in Ref. [19] for a specific SALR potential

at finite temperature is performed in Section VIII. Finally, in Section IX we summarize our

findings and draw our conclusions.

II. ANALYTICAL APPROXIMATION

We shall be considering a fluid of particles interacting via a spherically symmetric pair

potential which consists of a hard core and a non-singular tail w(r) whose Fourier transform

assumes its negative minimum at a wave vector k0 6= 0, and shall compare its phase behavior

with that of an ultra-soft Q± potential. Even though we are clearly abusing the term since

the Fourier transform of w(r) does not necessarily have to change sign, hereafter we shall

refer to such a hard-core fluid as hard-core Q± for convenience.

In order to describe the regular structures formed by these systems, we shall start from a

simple density functional for the Helmholtz free energy F which has already been employed

a number of times to this purpose in both the soft- [1, 2] and hard-core case [10, 19]. The

contribution to F due to w(r) is described in the mean-field approximation:

βF =

∫
d3r ρ(r)fref [ρ(r)] +

β

2

∫
d3r

∫
d3r′ ρ(r)ρ(r′)w(r− r′) , (1)

where fref(ρ) is the Helmholtz free energy per particle and unit temperature of the unper-

turbed or “reference” fluid such that w(r) ≡ 0, ρ(r) is the density profile, and β = 1/kBT ,

kB being the Boltzmann constant. For a hard-core fluid, the reference term of Eq. (1) is also

approximate, and for fref the standard Carnahan-Starling expression [27] has been used in
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this study. For a soft-core interaction, instead, w(r) coincides with the full potential, and

fref(ρ) with the corresponding quantity for the ideal gas, which is exactly described by the

reference term of Eq. (1).

If ρ(r) is periodic, Eq. (1) can be rewritten as

βF

V
=

1

v

∫
v

d3r ρ(r)fref [ρ(r)] +
β

2v2

∑
k

ρ̂kρ̂−kw̃(k) , (2)

where v is the volume of a primitive cell of the Bravais lattice, and the sum runs over the

sites of the reciprocal lattice. The Fourier integral ρ̂k of the density profile is performed over

the volume of the primitive cell:

ρ̂k =

∫
v

d3r eik·rρ(r) , (3)

while the Fourier transform w̃(k) of the interaction, which is not a periodic function, is

performed over the whole space. Let us assume that the density profile can be represented

by a sum of characteristic functions centered at the lattice sites R:

ρ(r) = ρ̄
∑
R

χ(r−R) . (4)

Here, χ(r) denotes the characteristic function of a domain which we take as a sphere (S), a

cylinder (C), or a lamella (L):

χS(r) =

 1 |r| < γ ,

0 |r| > γ .
(5)

χC(r) =

 1 |r⊥| < γ ,

0 |r⊥| > γ .
(6)

χL(r) =

 1 |r‖| < γ ,

0 |r‖| > γ ,
(7)

where r⊥ and r‖ are respectively the transverse and longitudinal components of r, and γ is

the radius of the sphere for χS, the radius of the cylinder for χC, and the half-width of the

lamella for χL.

Strictly speaking, the above assumption is quantitatively justified only in the strong-

segregation regime at low temperatures, when ρ(r) does have a sharp interface which sepa-

rates very populated and nearly empty domains, and the mesophases can then be regarded
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as made by compact “objects” with a well-defined shape. Within this description, the most

accurate way to proceed would consist in determining the interaction between such objects

by integrating a la Hamaker w(r) over their volume. However, our main task here is not so

much quantitative accuracy, as to give a simple picture of the general features of mesophase

formation in hard-core fluids, and we feel that the expressions thus obtained do not lend

themselves well to this purpose, because they are involved, and may mask the underlying

mechanism, instead of bringing it out. Accordingly, we shall rely on a different strategy

based on Eq. (2), along the lines put forth in Ref. [2] for soft-core interactions.

Let us first consider the density ρ̄ inside an aggregate: this is related to the average

density ρ =
∫
d3r ρ(r)/V by

ρ̄S =
3 ρv

4πγ3
, (8)

ρ̄C =
ρs

πγ2
, (9)

ρ̄L =
ρl

2γ
, (10)

for spheres, cylinders, and lamellae respectively. Here, s is the surface of the primitive cell

of the two-dimensional lattice formed by cylinders, and l is the length of the primitive cell

of the one-dimensional lattice formed by lamellae. If we use Eqs. (4), (5)–(7) and (8)–(10)

in Eq. (2) we obtain for the free energy per particle

βF

N
= fref(ρ̄) +

βρ

2

∑
k

w̃(k)ϕ(γk) , (11)

where the form factor ϕ is a positive, monotonically decreasing function of its dimensionless

argument λ such that ϕ(0) = 1, whose expression depends on whether one is considering

spheres, cylinders, or lamellae. Specifically, we have:

ϕS(λ)=

[
3

λ3
(sinλ− λ cosλ)

]2

, (12)

ϕC(λ)=

[
2
J1(λ)

λ

]2

, (13)

ϕL(λ)=

[
sinλ

λ

]2

, (14)

where J1(λ) is the Bessel function of order 1. If Eq. (4) is to represent a localized arrangement

of spheres, cylinders or lamellae, the size of the aggregates γ and the nearest-neighbor

distance a must satisfy the relation

2γ < a . (15)
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Moreover, a can be expressed as

a =
θ

κ
, (16)

where κ is the nearest-neighbor distance of the reciprocal lattice and θ is a lattice-dependent

constant which is given by

θbcc =
√

6π , (17)

θtriang =
4
√

3π

3
, (18)

θ1d = 2π , (19)

for the bcc, two-dimensional triangular and one-dimensional lattices respectively. Here the

bcc and triangular lattices have been considered instead of other possibilities such as the

simple cubic, the fcc, the hcp, or the square lattices because, according to the present

treatment, they correspond to the most stable configurations in three and two dimensions,

as will be discussed in the following.

Equations (15) and (16) lead to

γκ < θ/2 . (20)

From now on, we shall set λ = γκ. Figure 1 displays the functions ϕS, ϕC, ϕL in the interval

0 < λ < θ/2. One has ϕL(λ) < ϕC(λ) < ϕS(λ) over the whole interval communal to their

domains.

Let us now turn to Eqs. (8)–(10) for ρ̄. These expressions contain the size of the primitive

cell, which can be written as ζad, where d is the dimension of the lattice and ζ is a lattice-

dependent constant. If a is subsequently expressed as function of κ via Eqs. (17)–(19), we

obtain

ρ̄ =
αρ

λd
, (21)

where α is a lattice-dependent constant given by

αbcc = 6
√

2π2 ' 83.7 , (22)

αtriang =
8
√

3π

3
' 14.5 , (23)

α1d = π ' 3.14 . (24)

We observe that α increases considerably on increasing d. As will be discussed in the

following, this property plays a key role in determining the sequence of mesophases commonly

observed in hard-core fluids.
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FIG. 1. Form factors ϕ(λ) of Eqs. (12)–(14) as a function of the dimensionless domain size λ = γκ

for spheres (black line), cylinders (red line), and lamellae (blue line).

By substituting Eq. (21) in Eq. (11) and taking into account that the argument of the

sum over k is spherically symmetric, Eq. (11) can be rewritten as

βF

N
= fref

(αρ
λd

)
+
βρ

2
w̃(0) +

βρ

2

∞∑
i=1

niw̃(νiκ)ϕ(νiλ) , (25)

where the sum is carried out over all neighbor shells in the reciprocal space, ni is the

coordination number of shell i, and νi are lattice-dependent constants expressing the radius

of shell i in terms of the nearest-neighbor distance κ. Clearly, one has ν1 = 1. We must now

look for the minimum of Eq. (25) as a function of the lattice spacing a and the aggregate

size γ at fixed ρ and β. Since the relation between (a, γ) and (κ, λ) is invertible, we can

switch to κ, λ as independent variables, and minimize Eq. (25) with respect to them. By

differentiating Eq. (25) with respect to κ and λ we find straightforwardly

∞∑
i=1

niνiw̃
′(νiκ)ϕ(νiλ) = 0 , (26)

− d

λ
Zref

(αρ
λd

)
+
βρ

2

∞∑
i=1

niνiw̃(νiκ)ϕ′(νiλ) = 0 , (27)

where Zref is the compressibility factor of the reference system and the primes denote the

derivatives of the functions w̃(k) and ϕ(λ).
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From now on, we shall make the approximation of truncating the sum in Eqs. (25)–(27) to

the nearest-neighbor shell in reciprocal space, following Ref. [2] for soft-core Q± potentials.

That is not to say that Fourier components beyond nearest neighbors are not there, as this

would be inconsistent with Eqs. (5)–(7), but rather that the first shell accounts for the

largest part of the free energy due to the off-core part of the interaction. We are aware that

such an assumption is questionable and shall come back to it in Section VI. Nevertheless,

even though we shall admittedly give up accuracy for simplicity sake, we are willing to do

so as long as this allows a qualitative picture of the phase behavior and of the role played

by the different contributions to the free energy.

Equation (25) becomes then

β∆F

N
= fref

(αρ
λd

)
− fref(ρ) +

βρ

2
qw̃(κ)ϕ(λ) , (28)

where we have introduced the difference ∆F between the Helmholtz free energy of the

inhomogeneous phase and that of the homogeneous phase at the same temperature and

density in the mean-field approximation. The latter is obtained by setting ρ(r) ≡ ρ in

Eq. (1).

Conditions (26) and (27) become

w̃ ′(κ)ϕ(λ) = 0 , (29)

− d

λ
Zref

(αρ
λd

)
+
βρ

2
qw̃(κ)ϕ′(λ) = 0 , (30)

where q ≡ n1 is the number of nearest neighbors of the reciprocal lattice. We observe that

ϕ(λ) vanishes only for the lamellar phase at λ = π, which corresponds to the homogeneous

phase such that γ = a/2. Hence, according to Eq. (29) an inhomogeneous phase must

necessarily satisfy w̃ ′(κ) = 0. The root at κ = 0 can be ruled out, since it would give λ = 0

and therefore a divergence of ρ̄. One has then to look for roots at κ 6= 0, if they exist. If this

is the case, then Eq. (28) shows that the lowest free energy corresponds to κ = k0, where k0

is the wave vector at which w̃(k) reaches its absolute minimum. Therefore, in the present

one-shell approximation, the lattice constant is a state-independent quantity intrinsic to

w(r), as already discussed in Ref. [2] for soft Q± interactions. Since Eq. (29) is the same

irrespective of the reference system, the same conclusion holds also for the hard-core plus

tail potentials considered here, although it should be pointed out that this hinges on the

approximate description of the hard-sphere reference system given by functional (1). What
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determines the different behavior between hard- and soft-core fluids is Eq. (30) for λ, as will

be discussed in the following.

III. SOFT-CORE Q± POTENTIALS

It is first instructive to consider the case of soft-core potentials studied in Refs. [1, 2]. In

fact, for this class of interactions the choice of Eq. (4) to parametrize ρ(r) is rather artificial,

since in those works it was shown that ρ(r) is described almost exactly by a superposition

of Gaussians. Nevertheless, we shall stick to Eq. (4) because, as stated above, here we are

mainly interested in the qualitative features of the phase diagram, and would like to compare

the soft- and hard-core cases on as much an equal footing as possible. In this respect, Eq. (4),

though not particularly accurate, can be considered as the roughest example of a density

profile which includes an amplitude ρ̄ and a width γ.

For soft-core potentials, the reference system coincides with the ideal gas and we have

fref(ρ) = ln ρ−1, Zref = 1. The discussion then follows closely that of Ref. [2]. Equations (28)

and (30) become

β∆F

N
= ln

( α
λd

)
− qw0

2
βρϕ(λ) , (31)

− q

2d
λϕ′(λ) =

1

w0βρ
, (32)

where we have set w0 ≡ |w̃(k0)|. The graphical solution of Eq. (32) for spheres, cylinders

and lamellae is displayed in Fig. (2). When a solution exists, the smaller root corresponds to

a minimum of the free energy, while the larger root corresponds to a maximum. We observe

that, since ϕS(λ), ϕC(λ) and ϕL(λ) are similar, the largest value of the l.h.s. of Eq. (32) for

a given λ pertains to the phase with the largest ratio q/d between the coordination number

q of the reciprocal lattice and the dimensionality d of the modulation. Hence, if one moves

from the homogeneous domain, the bcc cluster phase with q/d = 4 is met for smaller values

of βρ than the triangular tubular phase with q/d = 3, which in turn is met for smaller βρ

than the lamellar phase with q/d = 2.

Moreover, even when βρ is large enough to allow also for tubular or both tubular and

lamellar phases, the cluster phase is always that which has the largest q and the smallest

λ at a given thermodynamic state. Both of these features go in the direction of making

the excess term in Eq. (31) more negative, thus leading to a lower free energy. It might be
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FIG. 2. Graphical solution of Eq. (32) for the dimensionless domain size λ. H(λ) is the l.h.s. of

Eq. (32) for spheres (black line), cylinders (red line), and lamellae (blue line). The solution at

given β and ρ is the smaller λ at which H(λ) intersects the dash-dotted line.

argued that the effect on the reference part in Eq. (31) goes in the opposite direction, since

the cluster phase also has the largest α and the largest d, which gives the largest cluster

density ρ̄ and the largest fref(ρ̄). However, the weak logarithmic dependence on ρ̄ of the

ideal-gas fref is not sufficient to contrast the decrease of the excess contribution. This is

made evident by substituting Eq. (32) in Eq. (31) to obtain

β∆F

N
= ln

( α
λd

)
+
dϕ(λ)

λϕ′(λ)
, (33)

As pointed out in Ref. [2], the density and temperature appear in Eq. (33) only via λ and

hence only via the combination βρ. When λ is varied, Eqs. (32) and (33) give the free energy

as a function of density and temperature in parametric form.

Figure 2 shows that, as βρ increases, the solution of Eq. (32) which corresponds to a

minimum of the free energy gets smaller and smaller, i.e., particles become more and more

localized. At small λ, the divergence of the logarithmic term in Eq. (33) is swamped by the

power-law divergence of the (negative) excess contribution. The latter behaves as − A/λ2,

with AS = 15/2, AC = 4, AL = 3/2 for spheres, cylinders, and lamellae respectively. Hence,
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FIG. 3. Difference ∆F between the reduced Helmholtz free energy of the inhomogeneous phase

and that of the homogeneous fluid for spheres (solid black line), cylinders (solid red line), lamellae

(solid blue line), inverted cylinders (dashed red line), and inverted spheres (dashed black line) for

soft-core Q± fluids. Only the region of negative ∆F has been displayed. The inset shows ∆F at

large βρ for spheres, cylinders, and lamellae compared with βρS/2, where S is the lattice sum of

Eq. (55) over the bcc (black dotted line), triangular (red dotted line), and one-dimensional (blue

dotted line) reciprocal lattices for the GEM-4 potential w(r) = exp[−(r/σ)4], see Section VI.

for large values of βρ the excess term dominates and Eq. (31) becomes simply

β∆F

N
∼

βρ�1
− qw0

2
βρ . (34)

Figure 3 displays ∆F as a function of βρ for spheres, cylinders, and lamellae. For each phase,

∆F is indeed a monotonically decreasing, nearly linear function of βρ such that the lowest

∆F always pertains to the phase with the largest q. Therefore, spherical clusters always

win over cylinders and lamellae. The request that ∆F be negative in order for the cluster

phase to be stable with respect to the homogeneous fluid leads to λ < λ0 ' 1.461. The

melting line at which ∆F vanishes is obtained by estimating Eq. (32) at λ = λ0 and is given

by 1/(βρ) = 1.173w0, to be compared with the (more accurate) result 1/(βρ) = 1.393w0

obtained in Ref. [2] by representing ρ(r) as a sum of Gaussians.

To summarize: for soft-core Q± potentials such that particle overlap is allowed, regular
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arrangements of aggregates of many particles are always favored with respect to the homo-

geneous phase below a threshold value of T/ρ. As T/ρ decreases, the size of the aggregates

γ decreases indefinitely, while their density increases indefinitely according to Eq. (21). Fi-

nally, according to the one-shell approximation (31), the bcc crystal of spherical aggregates

is always preferred to either a two-dimensional crystal of bars or a one-dimensional crystal

of lamellae, owing to the larger number of neighbors q of its reciprocal lattice.

IV. HARD-CORE Q± POTENTIALS

The scenario described above changes completely as one moves from soft- to hard-core

potentials. In this case, both fref(ρ) and Zref(ρ) diverge at finite ρ. According to the

Carnahan-Starling equation used here, one has

fref(ρ) = ln ρ− 1 +
η(4− 3η)

(1− η)2
, (35)

Zref(ρ) =
1 + η + η2 − η3

(1− η)3
, (36)

where η = πρσ3/6 is the packing fraction, σ being the hard-sphere diameter. In fact, the

true upper limit for η is set by the value at close packing, so that the density ρ̄ inside a

domain cannot exceed ρcp =
√

2/σ3. In the following, density and temperature will be

measured in reduced units such that

ρ∗ ≡ ρσ3 , (37)

T ∗ ≡ kBTσ
3

w0

(38)

For a given average density ρ, Eq. (21) gives a lower bound on λ:

λ >

(
αρ∗√

2

)1/d

, (39)

If this condition is combined with the upper bound on λ given by Eq. (20) which forbids over-

lap between neighboring aggregates, one obtains an upper bound ρ∗B on ρ∗ for the existence

of a given mesophase. In particular, one has

ρ∗ < ρ∗B, bcc =

√
6π

8
' 0.96 , (40)

ρ∗ < ρ∗B, triang =

√
6π

6
' 1.28 , (41)

ρ∗ < ρ∗B, 1d =
√

2 ' 1.41 (42)
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for the bcc, triangular, and lamellar phase respectively. For the lamellar phase, ρ∗B coincides

with ρ∗cp because it is possible to obtain a close-packed arrangement of spheres over the

whole space by taking a close-packed arrangement of spheres over each stripe, and having

the stripes coalesce so as to fill the space. For tubular and cluster phases, the analogous

process would always leave empty gaps between neighboring aggregates, so that ρ̄ reaches

the value at close packing before ρ does. This, however, says nothing about the relative

stability of these phases at the densities at which all of them are allowed, such as those we

are interested in.

Let us then turn to Eq. (30) with Zref(ρ) given by Eq. (36). In order to solve this equation

over the ρ-axis at fixed β, we may express ρ in terms of ρ̄ via Eq. (21) to get

− qλd+1

2αd
ϕ′(λ) =

Zref(ρ̄)

w0βρ̄
. (43)

For each phase, Eq. (43) is solved with respect to ρ̄. An example of the solution procedure is

sketched in Fig. 4 for T ∗ = 0.022. For a given λ, the r.h.s. of Eq. (43) is read from Fig.4(a),

and the corresponding value of Zref(ρ̄)/ρ̄ is obtained. The densities ρ̄ are then found from

Fig. 4(b), and the average density ρ is determined from λ and ρ̄ via Eq. (21). The values

of ρ̄ and ρ are then inserted into Eq. (28) for the free energy. As λ varies in the interval

0 < λ < θ/2, one gets the free energy as a function of ρ in parametric form.

Unlike in the soft-core case considered in the previous Section, the r.h.s. of Eq. (43) now

depends separately on β and ρ instead of being a function of the single variable βρ, and the

same applies to the quantity β∆F/N . In particular, it is clear from Fig. 4 that there is a

temperature above which no solution to Eq. (43) is found irrespective of the density. This

is due to the fact that in Eq. (43) the l.h.s. has a maximum as a function of λ, while the

r.h.s. has a minimum as a function of ρ̄. As a consequence, for Eq. (43) to have solutions

at all, it is necessary that β satisfies the condition

1

w0β

Zref(ρ̄m)

ρ̄m

≤ − q

2αd
λd+1

M ϕ′(λM) , (44)

where ρ̄m and λM are the values of ρ̄ and λ at which the r.h.s. and l.h.s. of Eq. (43) assume

respectively their minimum and maximum. Since the largest maximum of the l.h.s. of

Eq. (43) pertains to the lamellae, the lamellar phase is the first to appear as the temperature

is lowered, to be followed by the bar triangular and the cluster bcc phases. However, the

requirement that Eq. (43) admits solutions is only a necessary condition for the occurrence
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FIG. 4. Graphical solution of Eq. (43). In panel (a), K(λ) is the l.h.s. of Eq. (43) for spheres

(black line), cylinders (red line), and lamellae (blue line). For a given reduced temperature T ∗

(here, T ∗ = 0.022), K(λ) yields Zref(ρ̄)/ρ̄. The solutions at given λ and T ∗ are obtained by the

values of ρ̄ at which the solid curve in panel (b) intersects the horizontal dash-dotted line. The

corresponding values of ρ are then obtained by Eq. (21).

of a given phase. In order for that phase to be actually stable, it is also required that its ∆F

be negative and larger in absolute value than those of the other phases at the same density,

if they exist. This leads to the following maximum allowed temperatures Tmax for each of

the phases in hand:

T ∗max, bcc = 0.0439, T ∗max, triang = 0.0569, T ∗max, 1d = 0.0629 . (45)

These values can be compared with the temperature on the top of the so-called λ-line. This

is defined as the boundary of the domain of the T -ρ plane inside which the homogeneous

phase becomes thermodynamically unstable against the formation of mesophases, and is

then akin to the spinodal line for the liquid-vapor transition. According to functional (1),

the λ-line is given by
1

w0β
= ρχR

ref(ρ) , (46)

where χR
ref(ρ) is the reduced isothermal compressibility of the reference hard-sphere fluid

obtained from Eq. (36). The temperature along the λ-line reaches its maximum at ρ∗λ =

0.249, T ∗λ = 0.0901, so that, even for the lamellar phase, T ∗max is significantly lower than T ∗λ .

The reason for such a discrepancy is that, according to the mean-field functional (1) on which

Eq. (28) for ∆F is based, at the top of the λ-line the transition from the inhomogeneous to
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FIG. 5. Dimensionless size λ = γκ of spheres (black line), cylinders (red line), and lamellae (blue

line) according to Eq. (43) for hard-core Q± fluids at T ∗ = 0.022 as a function of the reduced

density. Only the region of negative ∆F has been displayed.

the homogeneous fluid is second-order, i.e., the amplitude of the density modulation tends

to zero as one approaches Tλ. This behavior cannot be represented by the density profile

of Eq. (4), in which the amplitude jumps discontinuously from ρ̄ to 0. As observed above,

this parameterization is justifed only at low temperatures. Near the top of the λ-line, a

treatment in which ρ(r) is regarded as a perturbation superimposed to a uniform density is

definitely more adequate [11, 13].

At temperatures such that Eq. (43) admits solutions, we see from panel (b) that a given

value of Zref(ρ̄)/ρ̄ corresponds to two values of ρ̄, and hence to two values of ρ. Moreover,

the l.h.s. of Eq. (43) is a non-monotonic function of λ so that, as λ is changed, a part or

even the whole interval of allowed values of ρ̄ may be spanned twice. As a consequence, a

part or even the whole interval of the resulting values of ρ may be obtained for two different

λ and hence two different ρ̄, resulting in two branches for λ and ∆F as a function of ρ.

Clearly, in such an instance the branch which gives the lower ∆F is chosen.

The results thus obtained for λ and ∆F as a function of ρ are displayed in Figs. 5 and 6

for T ∗ = 0.022. Except for a narrow interval at small ρ, now λ increases with ρ, at variance

with soft-core fluids. Moreover, for each phase, either bcc, triangular, or lamellar, ∆F is not
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FIG. 6. Difference ∆F between the Helmholtz free energy of the inhomogeneous phase and that of

the homogeneous fluid for spheres (solid black line), cylinders (solid red line), lamellae (solid blue

line), inverted cylinders (dashed red line), and inverted spheres (dashed black line) for hard-core

Q± fluids at T ∗ = 0.022. Only the region of negative ∆F has been displayed.

a monotonically decreasing function of ρ anymore, but has instead a minimum at a certain

ρ. The reason for this behavior is the strong divergence of fref(ρ) of Eq. (35) at high density:

according to Eq. (21), having λ decrease as ρ increases would lead to a rapid increase of

ρ̄ and hence to the uncontrolled growth of fref(ρ̄) in Eq. (28). To prevent this unfavorable

situation, λ must increase with ρ so as to keep ρ̄ well below close packing, except possibly

at very small ρ such that ρ̄ would still remain small even on decreasing λ. This state of

affairs has an important consequence: while for soft-core fluids increasing ρ also leads to an

increase of ϕ(λ) (recall that ϕ(λ) is a monotonically decreasing function of λ), and thus to

a decrease of the (negative) interaction contribution to the free energy in Eq. (28), now ρ

and ϕ(λ) have competing effects on this contribution. At first, as ρ increases it is ρ itself

which prevails. However, ρ cannot increase indefinitely, while at the upper bound for λ

given by Eq. (20), ϕ(λ) vanishes (for lamellae) or nearly so (for spheres and cylinders). As a

consequence, ϕ(λ) eventually wins and the free energy starts to increase, thereby assuming

a minimum as a function of ρ.

The same mechanism lies at the heart of the different phase behavior of hard- and soft-
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core fluids: as shown again in Fig. 6, as the density is increased at fixed temperature,

the most stable phase changes from spheres to cylinders to lamellae, at variance with the

behavior depicted in Fig. 3. As in the soft-core case, as far as the coordination number

q is concerned, lamellae are unfavored compared to cylinders, which are in turn unfavored

compared to spheres. However, now one has to take into account also the aforementioned

decrease of ϕ(λ) on increasing ρ, which tends to increase the free energy by making its off-

core contribution less negative. The key point is that the coefficient α in Eq. (21) decreases

substantially when the dimension d of the aggregates decreases, see Eqs. (22)–(24). As a

consequence, decreasing d at fixed ρ allows one to keep the hard-sphere contribution to

the free energy at bay by obtaining a similar, or possibly even smaller ρ̄ at the price of a

significantly smaller λ. Although one has ϕL(λ) < ϕC(λ) < ϕS(λ) for the same λ, these

functions are similar to one another, so that one obtains a larger ϕ(λ) for the phase at lower

d, provided the decrease in λ is substantial. At high enough ρ, the ensuing gain in the

off-core part of the free energy more than compensates for the loss due to the lower q, and

the phase with the lower dimension takes over. At the transition, there is a considerable

decrease in λ, and hence in the size γ of the mesophase domains, as pointed out in Ref. [19].

Therefore, the sequence clusters/bars/lamellae as the density is increased emerges as the

result of the competition between the preference for large values of q, which favors high

d, and the preference for phases which pack more efficiently, which favors low d. For soft-

core potentials the latter requirement is not an issue, and high-d cluster phases are always

favored.

The above considerations rest on the dependence of λ on ρ at fixed T . The dependence

of λ on T at fixed ρ is best elucidated by turning back from Eq. (43) to Eq. (30) and casting

it into the form

− q

2d

λϕ′(λ)

Zref(αρ/λd)
=

1

w0βρ
. (47)

By comparing Eq. (47) with Eq. (32) one sees immediately that the l.h.s. of Eq. (47) vanishes

at the lower bound of λ at which Zref diverges, and initially increases on increasing λ. The

graphical solution of Eq. (47) at fixed ρ is then similar to that of Eq. (32) shown in Fig. 2:

the λ which minimizes the free energy is located in the increasing region, while the root

in the decreasing region, if it exists, corresponds to a maximum. When the temperature is

decreased, the r.h.s. of Eq. (47) decreases, and hence λ must also decrease. Figure 7 displays
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line) according to Eq. (43) for hard-core Q± fluids at ρ∗ = 0.15 as a function of the reduced

temperature. Only the region of negative ∆F has been displayed.

λ as a function of T ∗ at fixed density ρ∗ = 0.15 for clusters, bars, and lamellae. While λ as

a function of ρ behaves very differently for soft- and hard-core interactions, the behavior as

a function of T is qualitatively similar, inasmuch as λ is an increasing function of T in both

cases. However, in soft-core systems λ vanishes for T → 0. This never happens in hard-core

systems, where the lower bound of λ is dictated by the condition ρ̄ < ρcp. The behavior in

the limit T → 0 will be discussed in Section VII.

V. INVERTED PHASES

Considerations similar to those developed in the previous Section explain another impor-

tant feature of the phase behavior of hard-core Q± potentials which is not found in soft-core

systems, namely, the occurrence at high density of inverted cluster and inverted cylinder

phases. In these phases the spherical or columnar domains are basically empty, and the

particles are distributed in the remaining space, so that they can be obtained from those al-

ready considered by exchanging the filled and empty regions. Within the present treatment
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this is done straightforwardly by replacing the density profile of Eq. (4) by

ρ(r) = ρ̄ [ 1−
∑
R

χ(r−R) ] , (48)

where ρ̄ now represents the density outside the empty holes. Equation (21) is then replaced

by

ρ̄ =
αρ

α− λd
. (49)

By performing the Fourier integral of ρ(r), substituting in into Eq. (2) and truncating the

sum over the reciprocal lattice vectors to the nearest-neighbor shell as before, we obtain

instead of Eq. (28)

β∆F

N
= fref

(
αρ

α− λd

)
− fref(ρ) +

βρ

2
qw̃(κ)ψ(λ) , (50)

where we have set

ψ(λ) =

(
λd

α− λd

)2

ϕ(λ) . (51)

We observe that the free energy of the inverted-lamellar phase is mapped into that of the

lamellar phase under the transformation λ→ π − λ as one would expect, since for lamellae

a phase with empty regions of size λ is identical to a phase with filled regions of size π − λ.

By minimizing the above expression for the free energy with respect to κ, one finds again

that κ has to coincide with the wave vector k0 of the absolute minimum of w̃(k). The

minimization with respect to λ gives

qλd+1

2αd

( α
λd
− 1
)2

ψ′(λ) =
Zref(ρ̄)

w0βρ̄
, (52)

which replaces Eq. (43).

For soft-core interactions such that fref(ρ) = ln ρ − 1, Zref = 1, Eqs. (32) and (33) are

replaced by

q

2d

α− λd

λd−1
ψ′(λ) =

1

w0βρ
, (53)

β∆F

N
= ln

(
α

α− λd

)
− dλd−1

α− λd
ψ(λ)

ψ′(λ)
, (54)

where the minimum of the free energy at given βρ corresponds to the larger root of Eq. (53).

It is found that, at variance with the solution of Eq. (32) for “direct” phases, here λ increases

on increasing βρ. However, since in this case λ represents the size of the holes, the effect

is that as βρ is increased, particles are squeezed into a smaller region for both direct and
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FIG. 8. Panel (a): quantity qψ(λ)/2 for spheres (black line), cylinders (red line), and lamellae (blue

line) as a function of λ, where ψ(λ) is the form factor of the inverted phases defined in Eq. (51) and

λ = γκ is the dimensionless size of the spherical, cylindrical, or lamellar holes. Panel (b): same

quantity as a function of λd/α, where α is the lattice-dependent constant of Eqs. (22)–(24). The

inset is a magnification of the region at small λ.

inverted phases. In fact, the present representation of the inverted phases is valid provided

the density is not so high, that λ exceeds the upper limit set by Eq. (20).

In Fig. 3 the free energies of the inverted cluster and inverted cylinder phases have been

plotted together with those of the direct phases discussed before. Although the inverted

phases are favored with respect to the homogeneous fluid provided βρ is high enough, they

are no match for any of the direct phases, and a fortiori for the cluster phase which has

the lowest free energy of them all. This is due to the fact that, as observed in Section III,

for soft-core systems the free energy is dominated by its excess contribution. The quantity

qψ(λ)/2 which gives the strength of that contribution has been plotted as a function of λ

in panel (a) of Fig. 8. For the lamellar phase, ψ(λ) coincides with ϕ(π − λ) because of the

aforementioned invariance. However, for clusters and cylinders, the factor [λd/(α − λd)]2

strongly depresses ψ(λ) with respect to ϕ(λ), to the point that qψ(λ) lies always well below

the corresponding quantity of the lamellae despite the lower q of the latter. The difference is

even larger when ψ(λ) is pitted against ϕ(λ) for the same kind of aggregates, either clusters

or cylinders, as shown by the comparison between Fig. 8 and Fig. 1 (please note that in

Fig. 1 the factor q is not included, and that the difference is further amplified by including
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it). Hence, for soft-core potentials inverted phases represent a poor strategy to minimize

the free energy.

The reason why this is not always the case with hard-core potentials is due, once more,

to the fact that in these systems it is imperative to counteract the growth of ρ̄. According

to Eq. (49), with inverted phases this can be achieved by decreasing λ as ρ increases. Hence,

unlike what found for soft-core interactions, the size of the holes decreases on increasing ρ,

so as to leave more room for particles. At this point, the relation αbcc � αtriang � α1d

comes into play: at given ρ, spherical holes allow one to obtain a similar value of ρ̄ by a

value of λ substantially higher than that necessary for cylindrical holes, which in turn allow

for a substantially higher λ compared to lamellae. Since ψ(λ) is an increasing function of

λ, this gain in λ counterbalances the decrease in qψ(λ) at fixed λ as the dimension d of the

holes is increased, and may tip the competition so as to favor the phase with larger d. This

is shown more clearly in panel (b) of Fig. 8, where qψ(λ)/2 has been plotted as a function of

λd/α, so that for a certain ρ a given value of the abscissa corresponds to the same ρ̄. When

compared at the same ρ̄, inverted cylinders become more favorable than lamellae as ρ is

increased, and inverted spheres eventually become more favorable than inverted cylinders,

as shown in the inset. At the transition to the inverted phase of higher dimensionality, λ

and hence the hole size γ increases considerably [19].

Figure 6 reports the free energies per particle of the inverted cylinder and inverted spheri-

cal phases at T ∗ = 0.022 together with those of the direct phases, and shows the expected se-

quence spheres/cylinders/lamellae/inverted cylinders/inverted spheres on increasing ρ. One

also notes that the free energies of the inverted phases are generally closer to each other,

than either of them is to that of the lamellar phase.

VI. LIMITS OF THE THEORY

Besides the mean-field form (1) of the Helmholtz free energy upon which the whole

theory rests, the other approximations introduced here are the assumption (4) that ρ(r)

can be represented by a sum of characteristic functions, and the truncation of the sum over

neighbor shells of the reciprocal lattice in Eq. (25) at nearest neighbors. As for the latter

approximation, its rationale is that in Eq. (25) the monotonically decreasing function ϕ(νiλ)

acts as a form factor which depresses the contributions of the outer shells. If w̃(k) decays
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rapidly enough and λ is relatively large, the decrease of ϕ(νiλ) from one shell to the next

can be substantial enough to justify dropping all the shells from the second neighbor on.

Therefore, for a given system the accuracy of the one-shell approximation depends in general

on the behavior of λ as a function of the thermodynamic state.

As shown in Section III, for soft-core potentials λ is a decreasing function of βρ. Indeed,

for βρ→∞ one has λ→ 0. In this limit, ϕ(νiλ)→ 1 irrespective of νi, and in Eq. (25) the

energetic contribution at k 6= 0 reduces to βρS/2, where S is the lattice sum

S =
∑
k 6=0

w̃(k) =
∞∑
i=1

niw̃(νiκ). (55)

Hence, at large ρ or low T , the contribution of the outer cells is not screened by ϕ, and

will in general be non negligible, depending on how quickly w̃(k) goes to zero for large

k. Accordingly, the most stable phase may differ from the bcc predicted by the one-shell

approximation. This situation is discussed in detail in Ref. [2], specifically with regard

to the competition between the bcc and fcc phases, corresponding respectively to the fcc

and bcc reciprocal lattices. Compared to the fcc, the bcc has a lower number of nearest

neighbors, but its first- and second-neighbor shells are closer. Which of the two lattices

probes more efficiently the region of the minimum of w̃(k) depends on the interaction. For

the generalized exponential model of order four (GEM-4) considered in Ref. [2] such that

w(r) = exp[−(r/σ)4], the bcc reciprocal lattice does give a lower S, so that the fcc phase

prevails at large βρ. As observed in Ref. [2], for a different form of w(r) one might find that

the bcc phase is preempted by the fcc in the whole inhomogeneous region.

By the same token, in principle suitably chosen interactions might even stabilize bars or

lamellae over cluster phases. This, however, is not the case for the GEM-4 potential, as can

be concluded by calculating S and minimizing it with respect to κ for the bcc, triangular,

and one-dimensional reciprocal lattices. In the inset to Fig. 3, the results for βρS/2 are

compared with the one-shell approximation of Eqs. (31), (32) at large values of βρ, where it

reduces to Eq. (34). Clearly, the effect of including the outer shells of the reciprocal lattice

is rather small, and does not change the balance between cluster, tubular, and lamellar

phases with respect to what predicted by the one-shell approximation, notwithstanding the

change in the lattice of the cluster phase. This situation is to be expected whenever the

neighborhood of the minimum of w̃(k) accounts for the largest contribution to Eq. (55), even

though such a contribution may result from two or even more reciprocal lattice shells. In this

23



respect, the larger coordination numbers attainable by three-dimensional lattices remains an

advantage over lattices of lower dimensionality. In order to stabilize tubular or, a fortiori,

lamellar phases, one could engineer the interaction so that w̃(k) would have narrow negative

peaks at the reciprocal lattice vectors of the phase of lower dimensionality. This, however,

looks like a rather ad hoc procedure.

Turning to hard-core potentials, we may point out as a preliminary observation that the

mechanism behind the clusters/bars/lamellae sequence described in Section IV cannot be

invoked to promote a transition from the bcc phase to more tightly packed cluster crystals.

Let us consider for instance the fcc: for this lattice, the coefficient α which relates ρ with ρ̄

according to Eq. (21) is given by

αfcc =
9
√

3π2

2
' 76.9 . (56)

The comparison with Eq. (22) shows that αfcc < αbcc. However, the two values are similar,

the relative difference amounting to less than 10%. This is to be contrasted with the decrease

of α by a factor ∼ 6 when going from the bcc to the triangular bar phase, and ∼ 4.5 from

the bar phase to the one-dimensional lamellar phase. Hence, the decrease in λ entailed by a

transition from the bcc to the fcc phase is rather insubstantial, and does not compensate the

decrease in the coordination number q of the reciprocal lattice. According to the one-shell

approximation, the bcc phase would be always favored over the fcc.

As for soft-core potentials, the competition between the bcc phase and other three-

dimensional cluster crystals is instead due to the contributions to Eq. (25) beyond nearest

neighbors. According to the discussion of Sections IV and V, for hard-core potentials the

dependence of λ on the thermodynamic state is not expressed any more by the sole quantity

βρ. At constant ρ, λ is an increasing function of T as in the soft-core case. We then expect

that for each phase the effect of the outer shells of the reciprocal lattice will become more

relevant on decreasing T .

This is qualitatively confirmed by the phase diagram of the SALR potential obtained by

numerical minimization of functional (1) in Ref. [19], which we have reproduced in Fig. 9.

In that study, we considered a hard-core two-Yukawa fluid (HCTYF) such that

w(r) =
σ

r

[
−εe−z1(r/σ−1) + Ae−z2(r/σ−1)

]
(57)

with z1 = 1, z2 = 0.5, and A/ε = 7/19. Please note that in Ref. [19] the reduced temperature
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FIG. 9. Phase diagram of the HCTYF with w(r) given by Eq. (57) and interaction parameters

specified in the text in the temperature-density plane. The filled black circles represent the phase

boundaries obtained in Ref. [19] by numerical minimization of functional (1). The black dashed

lines are a guide for the eye. The grey shaded regions are coexistence domains. The green dashed

lines and shaded regions denote the extrapolation of the phase diagram to T = 0, see Section VII.

The filled squares refer to the transition densities at T = 0 given by Eqs. (69), (70) and (83)–(86).

The red dashed line is the λ-line. The triangles along the left and right temperature axes display

the threshold reduced temperatures T ∗max for the cluster, bar, and lamellar phases predicted by

Eq. (45) (left), and estimated from Fig. 2 of Ref. [16] (right) for a SALR square-well plus ramp

interaction. In both cases, black triangles refer to clusters, red triangles to bars, and blue triangles

to lamellae.

was defined as T ∗ ≡ kBT/ε, whereas here it has been rescaled according to Eq. (38) with w0

given by w0 = 9.108 εσ3.

Aside of the gyroid phase which we shall not be concerned with here, the phase diagram

shows the expected sequence cluster/bars/lamellae/inverted bars/inverted clusters. How-

ever, instead of a single cluster (or inverted cluster) phase, we find both a bcc and a hcp

phase. The hcp phase has nearly the same free energy as the fcc, and for the purpose of the

present discussion the two lattices can be considered equivalent, even though the two-point

basis of the hcp makes it more cumbersome to deal with. For the hcp, Eq. (11) is replaced
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by
βF

N
= fref(ρ̄) +

βρ

2

∑
k

1

2
[1 + cos(k·r0)]w̃(k)ϕ(γk) , (58)

where k runs over the sites of a hexagonal lattice with nearest-neighbor distance κ, and r0

is the vector of coordinates

r0 ≡

(√
6π

4κ
,

√
2π

4κ
,
π

κ

)
. (59)

While for the fcc phase the (bcc) reciprocal lattice shells which contribute most to the free

energy correspond to the first and second neighbors, for the hcp the contribution of the

nearest-neighbor shell vanishes because of the phase factor in Eq. (58), and the most impor-

tant contributions come from the second, third, and fourth-neighbor shells. Irrespective of

these details, what we would like to point out here is that the more tightly packed lattice, be

it fcc or hcp, prevails at low temperature, whereas at high temperature the bcc predicted by

the one-shell approximation wins, in agreement with the expectation based on the behavior

of λ.

The effect of the thermodynamic state on the accuracy of the one-shell approximation is

represented more quantitatively in Fig. 10. The Figure reproduces panel (a) of Figs. 11, 12,

and 13 of Ref. [19], and displays the wave vector kM of the main Bragg peak of the cluster,

bar, lamellar, inverted bar, and inverted cluster phases of the SALR HCTYF obtained by

the numerical minimization of functional (1). In each panel, kM has been plotted as a

function of ρ along an isotherm, corresponding to T ∗ = 0.077, T ∗ = 0.044, and T ∗ = 0.022

for panels (a), (b), and (c) respectively, and compared to the wave vector k0 of the minimum

of w̃(k). As shown in Fig. 9, the cluster phase is bcc at T ∗ = 0.077, and hcp at T ∗ = 0.044

and T ∗ = 0.022. For the bar, lamellar, and cluster bcc phases kM is equal to the wave vector

κ of the nearest-neighbor shell of the reciprocal lattice. For the hcp phase, kM is located at

the third neighbor shell of the reciprocal lattice, and is almost identical to the κ of the fcc

phase.

At T ∗ = 0.077, kM is nearly density-independent and undistinguishable from k0, in agree-

ment with the prediction of the one-shell approximation, see Section II. As the temperature

is lowered, the contributions to the free energy from reciprocal lattice vectors beyond near-

est neighbors become more important, and the difference between kM and k0, albeit still

remaining relatively small in absolute terms, nevertheless increases appreciably, with the

cluster phases showing the largest deviations.
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FIG. 10. Reduced wave vector k∗M of the main Bragg peak of ρ(r) as a function of reduced

density obtained by the numerical minimization of functional (1) for the HCTYF of Eq. (57)

with parameters specified in the text. Circles: spheres. Squares: cylinders. Diamonds: lamellae.

Triangles up: inverted cylinders. Triangles down: inverted spheres. Filled symbols denote stable

phases, whereas empty symbols denote phases that are either metastable or at coexistence. Lines

are a guide for the eye. Panels (a), (b), and (c) refer to reduced temperatures T ∗ = 0.077,

T ∗ = 0.044, and T ∗ = 0.022 respectively. The spherical cluster phase is bcc in panel (a) and hcp

in panels (b) and (c). The dashed horizontal line represents the wave vector of the minimum of

the Fourier transform of the tail potential w̃(k).

In Ref. [2], Likos et al. have suggested to quantify the relative weight of the second

neighbor shell with respect to the first by the ratio ∆ of the absolute values of the first two

terms in the summation of Eq. (25), namely

∆ =
n2|w̃(ν2κ)|ϕ(ν2λ)

q|w̃(κ)|ϕ(λ)
. (60)

We have evaluated ∆ at T ∗ = 0.022 by feeding into Eq. (60) the values of κ and λ obtained
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FIG. 11. Dimensionless ratio ∆ defined in Eq. (60) as a function of reduced density at T ∗ = 0.022

for the HCTYF with parameters specified in the text. Solid black lines: spheres. Solid red line:

cylinders. Solid blue line: lamellae. Dashed red line: inverted cylinders. Dashed black lines:

inverted spheres. For spherical phases, the lower line refers to the bcc phase, and the upper line

to the fcc phase.

from the one-shell approximation used throughout this study, so that the resulting quantity

gives an indication of the consistency of the approximation. In Fig. 11, ∆ for clusters, bars,

lamellae, inverted bars, and inverted clusters is plotted as a function of ρ in intervals roughly

corresponding to those of panel (c) of Fig. 10. For clusters, the curves corresponding to both

bcc and fcc phases have been displayed. The latter has been chosen instead of the hcp so

as to avoid the additional complication entailed by the phase factor in Eq. (58). The Figure

shows that, on the one hand, the fcc phase has by far the largest ∆, in qualitative agreement

with the behavior shown in Fig. 10: in order to explain the stability of the fcc (or hcp) phase,

reciprocal lattice shells beyond the first must be considered. On the other hand, even at

this relatively low temperature, the first shell accounts for most of the excess free energy of

both the triangular bar and the lamellar phases, at least in the region where either phase is

stable, and same applies to the metastable bcc phase.

The dependence of ∆ on ρ is due to λ. We recall that at constant T , λ is an increasing

function of ρ for direct phases, and a decreasing function of ρ for inverted phases. As the
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density moves from the outer to the inner region of the phase diagram, ν2λ increases and,

since obviously ν2 > 1, it may exceed the upper bound for λ set by Eq. (20), and probe the

domain where ϕ is non-monotonic. This is indeed the case for bars and lamellae, for which

∆ reaches a vanishing minimum at densities such that ϕ(ν2λ) vanishes. We observe that the

minima of ∆ do correspond to the rounded maxima of kM exhibited by bars and lamellae

in Fig. 10, for which kM is closest to the value k0 predicted by the one-shell approximation.

For cluster phases, instead, ϕ(ν2λ) does not vanish in the region where the phase is stable,

and ∆ is a monotonically decreasing or increasing function of ρ for the direct and inverted

phase respectively. This behavior is consistent with the effect of ρ on the bcc-hcp transition

at temperatures (higher than that of Fig. 11) at which both phases are present, see Fig. 9:

for direct cluster phases, as ρ increases the contribution of the outer shells becomes smaller,

and the bcc phase prevails. This should be contrasted with the situation found in soft-core

potentials [2], where, more intuitively, on increasing ρ one goes from the more loosely to the

more tightly packed lattice. For inverted clusters, ∆ decreases on decreasing ρ, so that the

bcc wins at lower ρ.

We may then say that, even though the one-shell approximation adopted here erroneously

predicts that the bcc is always the most stable cluster phase, the dependence of λ on the ther-

modynamic state accounts qualitatively for the possibility that other, more tightly packed

lattices can be favored. Nevertheless, this should not prevent us from pointing out the lim-

its of this approach. Let us go back, in particular, to Eq. (45): according to it, the bcc

cluster phase should appear for T ∗ < 0.0439. However, the phase diagram obtained by the

numerical DFT minimization of the SALR HCTYF displayed in Fig. 9 shows that, in fact,

for those values of T ∗, the hcp phase already prevails in the whole cluster region. This state

of affairs points at an inconsistency intrinsic to the present treatment: at temperatures low

enough that the representation of ρ(r) by characteristic functions makes sense, the contri-

butions to the free energy due to the outer shells of the reciprocal lattice may well become

substantial enough, that the bcc is no longer the preferred cluster phase. In this situation,

a truncation of the excess free energy to nearest neighbors in direct space would probably

be more accurate.

For the purpose of this study, such a deficiency is less serious than it sounds. Here we

are not so much interested in the identification of the most stable lattice of cluster phases

(or bar phases for that matter), as in elucidating the reason why the periodicity of these
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phases changes from triple to double to simple and vice versa on increasing ρ, and why this

pattern is common to many interactions which, when compared in real space, appear to be

quite different. We believe that the mechanism described in Sections IV and V captures

the essential ingredients behind such a pattern, irrespective of whether a specific cluster

arrangement is stabilized by a single reciprocal lattice shell at k0 as the bcc phase, or by

two (or even more) shells in the neighborhood of k0 as the fcc or hcp phases. Clearly, within

the present approximation we must stick to the bcc lattice for d = 3 and to the triangular

lattice for d = 2, because they are the most stable three- and two-dimensional lattices when

only the first neighbor shell of the reciprocal lattice is taken into account, and for them the

contributions of the other shells is indeed small, as shown in Fig. 11.

A conceptually more important issue is that, although this approach is clearly mean-field

in nature, the assumption of a sharp interface for ρ(r) is not consistent with the topology

of the mean-field phase diagram at high temperature, according to which the coexistence

domains should coalesce at the top of the λ-line, see Fig. 9. As discussed in Sec. IV, here

instead we find that, on increasing the temperature, the cluster phase will be the first to

disappear, to be followed by the bars, and finally by the lamellae.

Actually, the outcome of both numerical simulations [16] and theoretical methods in

which fluctuations are taken into account [20] shows that the latter picture is the correct

one, so that this might be considered as an asset rather than a liability. In this respect,

it is interesting to compare the reduced temperatures T ∗max of Eq. (45) with the simulation

results of Ref. [16], where a SALR fluid consisting of a square well and a repulsive ramp such

that w0 = 9.586 εσ3 was considered. The temperatures above which the lamellar, bar, and

cluster phases disappear can be estimated from Fig. 2 of that study (please note that there

the cluster phase is fcc rather than bcc), and converted into the reduced units adopted here

via Eq. (38). This gives T ∗max, fcc = 0.043, T ∗max, triang = 0.051, and T ∗max, 1d = 0.055, in fair to

good agreement with of Eq. (45). The two sets of values have also been displayed in Fig. 9.

However, here such a result is obtained, so to speak, as a compensation of two errors: on

the one hand, fluctuations are disregarded by adopting a mean-field free energy functional.

On the other hand, one enforces first-order phase transitions by imposing a step-like density

profile quite different from that which the functional would spontaneouly choose at high

temperature, if it were granted the freedom to do so. Clearly, a satisfactory description of

mesophase formation should tackle both problems.
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As a side remark, one cannot but notice that, as also observed in Ref. [20], in these

systems fluctuations appear to play a much more important role, than they do in the liquid-

vapor transition. In a Lennard-Jones like fluid, fluctuations depress the critical temperature

by less than 10% with respect to the mean-field prediction [28]. In the present case, by

contrast, the difference between the temperature T ∗λ below which mesophases should appear

according to mean-field theory and the simulation result for T ∗max, 1d amounts to more than

60% of the latter.

In the next two Sections we shall use the approach discussed so far in a more quanti-

tative way to obtain some predictions concerning the transitions between clusters and bars

and bars and lamellae in the low-temperature regime, which is the best suited [26] to the

representation of ρ(r) by Eqs.(5)–(7). We are aware that, for each phase, the actual lattice

may differ from that predicted here, but we expect that a more refined treatment, while

leading to the correct identification of each lattice, would not alter significantly the balance

between phases of different dimensionality.

VII. BEHAVIOR FOR T → 0

Sections IV and V have highlighted the fundamental role of the hard-sphere free energy

in generating the sequence of phases commonly observed in hard-core Q± potentials, as

opposed to the situation in which particles are mutually penetrable. Let us now consider

what this implies in the limit T → 0.

If Zref(ρ̄)/ρ̄ remains finite in this limit, then the r.h.s. of Eq. (43) vanishes, which implies

either λ = 0 or d = 1, λ = π, see panel (a) of Fig. 4. The former solution is unphysical,

since it gives a diverging density ρ̄ inside the aggregates, while the latter corresponds to the

homogeneous phase such that ∆F = 0. Hence, in order to obtain a physical inhomogeneous

phase with a negative ∆F , Zref(ρ̄)/ρ̄ must diverge so as to compensate for the divergence

of β. The divergence issuing from ρ̄ = 0 is to be discarded, since it implies ρ = 0. This

leaves as the only possibility the divergence of Zref(ρ̄), which occurs at the close-packing

density ρ∗cp =
√

2. Therefore, as T → 0, ρ̄ must approach ρcp. As observed at the beginning

of Section IV, Eq. (36) for Zref(ρ̄) is actually unaware of close packing and, although it

does diverge at high density, it places the divergence at the unphysically high value η = 1.

If we assume that the functional form of Zref(ρ̄) in the neighborhood of close packing is
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still described by Eq. (36) provided its pole is moved at the physical close packing, the

requirement that the r.h.s. of Eq. (43) be of order 1 as T → 0 leads to

β ∼ 1

(ρcp − ρ̄)3
, (61)

while Eq. (35) for fref(ρ̄) gives

fref(ρ̄) ∼ 1

(ρcp − ρ̄)2
. (62)

It may be argued that such an assumption is unjustified. In fact, more accurate calculations

of the equation of state [29] predict a simple pole for Zref(ρ̄) at close packing. Equations. (61),

(62) should then be replaced by

β ∼ 1

ρcp − ρ̄
, (63)

fref(ρ̄) ∼ − ln(ρcp − ρ̄) . (64)

However, the precise form of the divergence is not important here as long as Zref(ρ̄) has

some kind of power-law divergence for ρ̄ → ρcp, such that the divergence of fref(ρ̄) in the

same limit is weaker. As a consequence, as shown by both Eqs. (61), (62) and (63), (64),

the divergence of β as a function of ρ̄ is stronger than that of fref(ρ̄). If Eq. (28) for ∆F is

divided by β, then both fref(ρ̄) and, a fortiori, fref(ρ) disappear in the limit T → 0, and we

obtain
∆FT=0

N
= − qw0

2
ρϕ(λ) , (65)

where the value of λ is determined by setting ρ̄ = ρcp =
√

2/σ3 in Eq. (21) so that

λ =

(
αρ∗√

2

)1/d

. (66)

If we turn to the inverted phases and divide Eq. (50) by β, we find

∆FT=0

N
= − qw0

2
ρψ(λ) , (67)

where λ is given by Eq. (49) with ρ̄ = ρcp:

λ =

[
α

(
1− ρ∗√

2

)]1/d

. (68)

Hence, at T = 0 the Helmholtz free energy reduces to its purely energetic part, as one would

expect. However, the legacy of the hard-core entropic part is still contained in the condition

ρ̄ = ρcp that determines λ.
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FIG. 12. Difference ∆F ∗T=0 between the reduced Helmholtz free energy F ∗ ≡ Fσ3/w0 of the

inhomogeneous phase and that of the homogeneous fluid for hard-core Q± fluids at T = 0. Lines

as in Fig. 6.

Clearly, according to Eqs. (66), (68) the size of the aggregates of the direct phases in-

creases with ρ, while the size of the holes of the inverted phases decreases with ρ, as for

T 6= 0. The sequence of phases is then determined by the same mechanism discussed in Sec-

tions IV, V, and remains unaltered. This is shown in Fig. 12, where the quantity ∆FT=0/N

given by Eqs. (65), (67) has been plotted as a function of density for all the phases considered

in this study. We recall that for direct phases, the upper limit on λ set by Eq. (20) together

with Eq. (66) determine an upper limit ρB on ρ∗ given by Eqs. (40)–(42). Similarly, for

inverted phases Eqs. (20) and (68) determine a lower limit on ρ∗ given by
√

2− ρB, with ρB

expressed again by Eqs. (40)–(42). The Figure also shows that at T = 0 the inhomogeneous

region spans the whole density axis from zero to close packing, as obtained straightforwardly

by setting ∆FT=0 = 0 in Eqs. (65), (67). For Eq. (65), this condition is met by

ρ∗fluid−bcc = 0 , (69)

which because of Eq. (66) implies λ = 0. For Eq. (67), the same condition is satisfied by

having ψ(λ) vanish, which again gives λ = 0 and hence by virtue of Eq. (68)

ρ∗bcc′−fluid =
√

2 . (70)
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We remark that this does not imply that at T = 0 mesophases will still exist down to

ρ = 0 or up to ρ = ρcp. Indeed, at such densities their free energy might not even be

convex, and one expects coexistence between phases with different ρ. What Eqs. (69), (70)

indicate is that on the low- and high-density side of the phase diagram, the mesophases

coexist respectively with a gas of vanishing ρ and with an atomic crystal [17].

Interestingly, at T = 0 we can obtain simple expressions for the size of clusters, bars,

lamellae and the corresponding inverted domains at the phase boundary. As just stated,

such a boundary is actually a coexistence region with a non vanishing amplitude in density,

but in the following we shall disregard this, and assume that at the transition between two

phases A and B we may estimate the coexistence density by setting ρA=ρB =ρ×, where ρ×

is the density at which the Helmholtz free energies of those phases coincide. Equation (66)

then implies

λB =

(
αB
αA

λdAA

)1/dB

. (71)

If we impose the equality of the free energies of the two phases, Eq. (65) gives

qAϕA(λA) = qBϕB

[(
αB
αA

λdAA

)1/dB
]
, (72)

where we have used Eq. (71) to express λB in terms of λA. By using Eqs. (12)–(14) for ϕ(λ)

and Eqs. (22)–(24) for α, we find

λbcc−triang
bcc = 2.577 λbcc−triang

triang = 1.722 , (73)

λtriang−1d
triang = 2.364 λtriang−1d

1d = 1.210 , (74)

where Eq. (73) refers to the transition between the bcc cluster and the triangular bar phases,

and Eq. (74) to that between the triangular bar and lamellar phases.

The above results are straightforwardly extended to the inverted phases. Because of

Eq. (68), setting ρA = ρB implies that the sizes of the holes λA, λB are related by Eq. (71),

just as the sizes of the aggregates of the “direct” phases. Moreover, the factor λd/(α − λd)

in the r.h.s. of Eq. (51) is, once more, the same for the two phases. As a consequence, by

equating the free energies given by Eq. (67), one finds again Eq. (72). If we denote by a

prime the inverted phases at the transition, we have then

λtriang′−bcc′

triang′ = λbcc−triang
triang λtriang′−bcc′

bcc′ = λbcc−triang
bcc , (75)

λ1d′−triang′

1d′ = λtriang−1d
1d λ1d′−triang′

triang′ = λtriang−1d
triang , (76)
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so that at the phase boundaries the size of the filled domains of the “direct” phases, be

they clusters, bars, or lamellae, is predicted to be the same as that of the holes of the

corresponding inverted phases. For the lamellae, it is perhaps more natural to consider the

size of the filled domains instead of that of the holes also for the inverted phase. As observed

in Section V, the two are related by λ = π − λ′. Therefore, we find

λ1d−triang′

1d = π − λ1d′−triang′

1d′ = 1.932 . (77)

We recall that the half-width γ of the aggregates is related to λ by γ = λ/κ and that in the

present approximation we have κ = k0, where k0 is the wave vector of the minimum of w̃(k).

The dependence of the values of γ at the transition on the specific form of the interaction

then enters only via k0.

A set of interaction-independent values can be obtained by considering the ratio between

γ at the transition and the nearest-neighbor distance in real space a. Since a = θ/κ with

θ given by Eqs. (17)–(19), we find γ/a = λ/θ, which, like λ, depends only on the kind of

equilibrium one is considering:

(γ/a)bcc−triang
bcc = (γ/a)triang′−bcc′

bcc′ = 0.335 (78)

(γ/a)bcc−triang
triang = (γ/a)triang′−bcc′

triang′ = 0.237 , (79)

(γ/a)triang−1d
triang = (γ/a)1d−triang′

triang′ = 0.326 , (80)

(γ/a)triang−1d
1d = 0.193 , (81)

(γ/a)1d−triang′

1d = 0.307 , (82)

where the last two values refer to the size of the lamellae for the equilibrium between bars

and lamellae and between lamellae and inverted bars respectively. According to the above

result, when a direct phase appears, the half-size γ of its aggregates is ∼ 1/5 of the nearest-

neighbors distance a, and as ρ is increased it grows to ∼ 1/3 of this distance, at which point

another phase takes over. Conversely, for inverted phases the half-size of the holes shrinks to

∼ a/3 to ∼ a/5 on increasing ρ. This implies that neither aggregates nor holes ever achieve

the maximum packing γ = a/2.

Finally, if we substitute the above values of λ into Eqs. (66), (68) and solve with respect
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to ρ∗, we obtain for the transtion densities at T = 0

ρ∗bcc−triang = 0.289 , (83)

ρ∗triang−1d = 0.545 , (84)

ρ∗1d−triang′ = 0.870 , (85)

ρ∗triang′−bcc′ = 1.125 . (86)

which are again independent of the interaction.

In order to assess the reliability of this prediction, we have turned to the phase diagram

obtained by numerical minimization of functional (1) for the SALR HCTYF of Ref. [19],

and extrapolated its phase boundaries to T = 0. Even though extrapolation is always ques-

tionable, we chose to do so instead of pushing the numerical minimization to extremely low

temperatures. The reason for this is that the hard-sphere fluid in the reference term of func-

tional (1) has been described by the Carnahan-Starling expressions (35), (36), and therefore

is unable to handle properly the close packing of particles within the aggregates which, as

highlighted throughout this Section, has to be taken into account as T → 0. The unphysical

behavior of the Carnahan-Starling equation of state at very low temperatures is apparent

from the λ-line shown in Fig. 9, which extends well beyond the physical close packing. In

this respect, extrapolating to T = 0 the numerical results obtained at temperatures such

that Eqs. (35), (36) are still reliable looks like a safer procedure.

The comparison with the results thus obtained and those of Eqs. (83)–(86) is displayed

again in Fig. 9. Aside of the extrapolation, there is some degree of uncertainty due to the

fact that the width of the coexistence regions is non negligible, unlike what assumed in

the present calculation. Moreover, the coexistence domain between lamellae and bars (or

inverted bars) is actually split into a lamellae-gyroid and a gyroid-bar domain because of

the gyroid phase, which has been disregarded here. Having said so, the agreement between

the two sets of results is surprisingly good. We also note that extrapolation to T = 0

of the high-density phase boundary between inverted clusters and homogeneous fluid does

correspond to the physical close packing, in agreement with Eq. (70). This is remarkable,

given that no notion of it is contained in the free-energy functional. Nevertheless, we do not

expect that the inverted cluster phase will actually persist at arbitrarily low temperatures,

since according to Eq. (86), at T = 0 this phase should appear at densities higher than the

freezing density of the hard-sphere fluid. Hence, below some temperature it will be most
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likely preempted by freezing, and the atomic crystal will coexist with a mesophase of lower

dimensionality.

VIII. AGGREGATE SIZE AT THE TRANSITIONS

It is tempting, albeit somewhat hazardous, to surmise that the relations obtained in

Section VII for the size of coexisting aggregates at T = 0 may be applied also at T 6= 0.

If we identify as before the densities at coexistence ρ× between phases A and B at a given

temperature with that at which the Helmholtz free energies of those phases coincide, ρ×

and the dimensionless sizes λA and λB of the phases at the transition are determined by

equating the free energies of Eq. (28) for the two phases, and solving numerically this

condition together with the two equations obtained by substituting into Eq. (30) ρ×, λA

and ρ×, λB respectively. Instead of doing so, we shall assume that the densities ρ̄ inside

two aggregates at the transition are very similar, to the point that their differences can be

neglected. As shown before, this assumption is actually correct in the limit of vanishing

temperature, when ρ̄ always goes to ρcp. At low but non vanishing temperature, it is a

further approximation on the top of those already introduced in the present treatment. Its

rationale lies in the fact that, except at very low density, ρ̄ is a rather slowly varying function

of ρ, and as ρ is increased it reaches a plateau whose height depends weakly on the kind of

aggregate. In fact, as observed above, at T 6= 0 it is the necessity to prevent ρ̄ from growing

too much that prompts the kind of phase behavior observed in Q± hard-core fluids. Two

phases with very different values of ρ̄ could hardly coexist with each other, since the phase

at lower ρ̄ would always have the lower free energy.

Under this assumption, at the transition we have then not only ρA = ρB, but also ρ̄A = ρ̄B.

This leads again to Eq. (71). Moreover, when imposing the equality of the free energies, the

reference terms in Eq. (28) can be dropped, since they are evaluated at the same densities

for both phases, and one gets again Eq. (72). Therefore, we obtain once more Eqs. (73), (74)

for the values of λ at the transition, irrespective of the values of ρ×. The latter cannot be

obtained from Eqs. (71), (72) since they do not contain the density and, unlike in the T = 0

case, now ρ̄ is not known a priori. If we turn to the inverted phases and assume again the

same value of ρ̄ for the density outside the empty domains of two phases at the transition,

we can similarly drop the reference terms in Eq. (50), and by going through the same line
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FIG. 13. Points: reduced half-width γ∗ of the aggregates as a function of the reduced density

ρ∗ for the HCTYF of Eq. (57) with parameters specified in the text obtained by numerical DFT

minimization at T ∗ = 0.044 (panel (a)) and T ∗ = 0.022 (panel (b)). Symbols as in Fig. 10. Vertical

black bars: results for γ∗ = λ/κ∗ at the transition according to Eqs. (73)–(77) with κ∗=k∗0 =0.655.

Red vertical bars in panel (b): results for γ∗ obtained from Eqs. (87). Red bars have been given a

small horizontal offset to make them more easily distinguishable.

of reasoning put forth in Section VII, we find once more Eqs. (75)–(77) relating the size of

the holes to that of the aggregates of the direct phases.

We have tested Eqs. (73)–(77) by determining the half-width γ = λ/k0 for the SALR

HCTYF of Eq. (57), for which the wave vector k0 of the minimum of w̃(k) is k∗0 = 0.655 in

reduced units. If at all, the resulting values are expected to hold at low temperature since,

as discussed in Section VI, the modelization of mesophases as compact objects is justified

only in this regime. As one approaches the maximum temperature for mesophase formation,

it even makes little sense to talk about the size of the aggregates, since ρ(r) is more akin to

a periodic modulation of a uniform background.

Figure 13 reproduces panel (c) of Figs. 12 and 13 of Ref. [19]. In panel (a) we have plotted

γ as a function of density determined as the half width at half maximum of the density peaks

obtained from the numerical minimization of functional (1) at T ∗ = 0.044, about half the

value at the top of the coexistence region. At the densities at which phase coexistence occurs
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according to the numerical calculation, we have also displayed the predictions for γ given by

Eqs. (73)–(77). In the light of all the approximations involved, the agreement is remarkable,

to the point that it raises a feeling of suspicion and calls for further checks. Accordingly,

in panel (b) we have displayed a similar comparison for T ∗ = 0.022, which is the lowest

temperature investigated numerically in Ref. [19]. We see that the agreement between the

numerical result and the prediction of Eqs. (73)–(77) gets worse, especially for the cluster-bar

and inverted cluster-inverted bar transitions. Since the modelization of the density profile

as a sum of characteristic functions is expected to become more accurate as T gets smaller,

this loss of accuracy could be traced back to some of the other approximations made, either

the truncation of the excess free energy at the nearest-neighbor shell in reciprocal space, or

the additional assumption ρ̄A = ρ̄B for two phases A and B at the transition. As discussed

in Section VI, the one-shell approximation is indeed expected to become less accurate at

low T . In fact, at both temperatures considered in Fig. 13, the lattice of the cluster and

inverted cluster phases is hcp, whereas Eq. (28) gives the bcc as the most stable lattice.

This means that at these temperatures the contribution to the free energy given by shells

beyond nearest neighbors in reciprocal space in non negligible.

The calculation can be straightforwardly generalized to include this contribution, pro-

vided the hypothesis ρ̄A = ρ̄B for the phases at the transition is maintained. In this case,

imposing the equality of the free energies gives

∞∑
i=1

nAi w̃(νAi κ
A)ϕA(νAi λ) =

∞∑
i=1

nBi w̃(νBi κ
B)ϕB(νBi λ) . (87)

We remark that now the nearest-neighbor distance in reciprocal space κ does not coincide

any more with the wave vector k0 of the minimum of w̃(k), and has to be determined by

solving Eq. (26) for both phases. This can be done via Raphson-Newton iteration starting

from an initial guess for κ, e.g. κ0 = k0. Strictly speaking, Eq. (87) holds for a simple

Bravais lattice, whereas the hcp lattice formed by the cluster and inverted cluster phases

has a two-point basis. In this case, Eq. (11) is replaced by Eq. (58), and Eq. (87) is modified

accordingly. For the purpose of the present discussion, one might as well replace the hcp

lattice with the fcc, and stick to Eq. (87), since the results for the two lattices are found to

be undistinguishable for any practical matter.

The wave vectors κA, κB at the transition as well as the sizes of the coexisting aggregates

are still predicted to be state-independent, just as in the simpler treatment based on Eq. (72).
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However, the dimensionless size λ now depends on the specific form of the interaction. This

is true a fortiori for γ, whose dependence on the interaction is not conveyed any more by

the sole wave vector k0. Moreover, the independence of κA, κB on the thermodynamic

state granted by the assumption ρ̄A = ρ̄B pertains only to the transition between two

specified phases. As discussed in Section VI, when contributions beyond nearest neighbors

are included in Eq. (26), κ will be in general state-dependent.

For the SALR HCTYF in hand, the values of γ thus obtained have been displayed in

panel (b) of Fig. 13 together with those given by Eqs. (73)–(77). The comparison does

not show a clear overall improvement, but rather that, while the values of Eqs. (73)–(77)

underestimate the results of the numerical minimization, those obtained by solving Eq. (87)

overestimate them. As T is lowered, there is a definite trend for γ to move towards the

values predicted by Eq. (87) which, however, at T ∗ = 0.022 is still in progress. This indicates

that, even at such a low temperature, the relation ρ̄A = ρ̄B expected to hold at T → 0 is

only approximately satisfied, as can be checked directly on a plot of ρ̄ vs. ρ. Hence, the

remarkable performance of Eqs. (73)–(77) in panel (a) has to be considered an accident due

to a compensation of errors. As T is lowered, an agreement of the kind displayed in panel (b)

is more realistic.

Notwithstanding the above considerations, it is fair to point out that the discrepancy

between the two sets of γ amounts to ∼ 10%. Since the actual γ are bracketed by these

sets, such a difference, although far from being undetectable, is not very important for

the purpose of getting a sensible estimate of the size of the aggregates. In this respect,

the simpler treatment based on Eq. (72) leading to Eqs. (73)–(77) has the advantage of

embodying the dependence on the interaction only via k0.

IX. CONCLUSIONS

We have investigated the formation of periodic mesophases in fluids with hard-core plus

tail interactions. This study does not aim at a detailed description of the phase diagram

for a specific choice of the interaction such as that carried out in Ref. [19] for the hard-core

two-Yukawa fluid (HCTYF) with competing short-range attractive and long-range repulsive

(SALR) forces. Instead, its purpose is mostly qualitative, i.e., to explain why a common

pattern for the phase diagram is found for interactions which are apparently quite different,
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such as the aforementioned SALR potential [11, 13, 15, 16, 18] and potentials featuring

purely repulsive shoulders [12, 26] with no competing attraction. In all of those cases,

mesophases are found only below a certain temperature, and as the density is increased

at constant temperature, they follow a common sequence ranging from clusters to bars,

lamellae, inverted bars, and inverted clusters.

The method which we have adopted is similar to that developed in Ref. [2] for soft-core

potentials, and is based on a simple free-energy functional, whereby the hard-core part of

the interaction is treated in local-density approximation, while mean-field approximation is

used for the off-core contribution. In order to keep the theory analytically tractable, the

density profile ρ(r) is described by a given functional form depending on two parameters,

which determine the width and mutual distance of the density peaks, and the off-core part of

the free energy is truncated at the nearest-neighbor shell of the reciprocal lattice. Following

the strong-segregation limit expected to hold at low temperature, the peaks of ρ(r) have

been represented by characteristic functions in the shape of spherical clusters, cylindrical

bars, or flat lamellae.

The resulting description is admittedly oversimplified, and misses a number of important

points: for one thing, disregarding the contributions of the outer shells in the reciprocal

space may not lead to the correct identification of the most stable lattice, since it necessarily

privileges, for each dimensionality of the density modulations, the reciprocal lattice with the

highest number of nearest neighbors. Moreover, it rules out the possibility of describing

bicontinuous structures such as the gyroid phase, which is found in a narrow region between

the lamellar and bar (or inverted bar) phases. As is well known [11, 13, 30], in order to recover

this phase, the free energy must take into account at least the first two neighbor shells of the

reciprocal lattice. Even more importantly, although the theory does reproduce the sequence

of phases as observed in numerical simulations [16], the assumption that mesophases can

be described by a density profile which is either constant or vanishing is bound to become

unrealistic as the temperature is raised.

Nevertheless, in our opinion the theory achieves the task for which it has been introduced:

first, it incorporates the information according to which the essential ingredient leading to

mesophases is that the Fourier transform of the tail potential w̃(k) has its absolute minimum

at a non vanishing wave vector k0 so as to favor density modulations of period ∼ 2π/k0.

Of course, this notion is far from being new, as it has long been acknowledged not only for
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soft-core [1, 2], but for hard-core interactions as well. However, in the latter case it has been

mostly implemented within Landau-Brazovskǐı effective free-energy functionals [11, 13, 20] or

lattice models [12], rather than within a microscopic theory such as that developed in Ref. [2]

for soft-core potentials, of which the present treatment can be considered the counterpart

for hard-core systems. There are certainly other ways to develop a theory of mesophase

formation in these systems, most notably in the strong-segregation limit, by integrating a

la Hamaker the microscopic interaction over the volume of the spheres, bars, and lamellae

so as to obtain the effective potentials between the aggregates [26]. Notwithstanding the

usefulness and accuracy of this method, we deemed it unsuited for our purpose of getting

a general picture of the process, because the resulting expressions, even assuming that they

can be handled analytically, are involved, highly dependent on the microscopic interaction,

and do not bring forward the link between the shape of the interaction in Fourier space and

the attitude to form mesophases.

Moreover, the present description does explain why the cluster/bar/lamellae sequence

takes place, why inverted phases occur, and why neither of these features are found in

purely soft-core systems. In both soft- and hard-core mesophase-forming fluids, the distance

between neighboring aggregates is, to a large extent, determined by k0, so that its dependence

on the average density ρ is weak or altogether negligible [1, 2]. As a consequence, an increase

in ρ is obtained not by creating more aggregates, but by increasing their population. Soft-

and hard-core systems differ in the way by which they pursue this task, the key point being

the behavior of the local density ρ̄ inside the aggregates as the average density ρ increases.

For soft-core systems, the entropic contribution to the free energy per particle increases

very slowly with ρ̄, and there is no need to control its growth. As ρ increases, ρ̄ increases

unboundedly, the size of the aggregates γ becomes arbitrarily small, and the free energy is

more and more dominated by the internal energy, which favors higher-dimensionality cluster

phases because of the higher number of neighbors q of their reciprocal lattice.

This scenario does no longer take place in hard-core systems where, as ρ is increased, ρ̄

must increase at a much lower rate or even remain nearly constant [19] in order to prevent

the singular entropic term from increasing beyond control. Hence, γ must increase with

ρ, and this determines the decrease of the form factor ϕ of the aggregates, which is a

decreasing function of γ via its dimensionless argument λ = γk0. Such a situation prompts

a competition in the internal energy per particle: on the one hand, periodic phases with lower
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dimensionality, such as bars or lamellae, are disfavored by the lower coordination number

q of their reciprocal lattice. On the other hand, they are favored by the slower decrease of

their form factor. This is not due to the differences between the form factors themselves

which are, in fact, quite similar to one another, but rather to the different values of their

arguments. Specifically, phases with lower dimensionality pack more efficiently, so that for

a certain value of ρ, a value of ρ̄ similar, or even smaller than that required by aggregates

of higher dimensionality is obtained by narrower aggregates with a smaller γ, a smaller λ,

and hence a larger ϕ. For each phase, the (negative) internal energy per particle is initially

dominated by ρ and decreases as ρ increases, but at large ρ the decrease of ϕ prevails, and

the internal energy starts increasing, i.e., it becomes smaller in absolute value. Eventually,

by moving to a phase of lower dimensionality the decrease in q is overcompensated by the

larger ϕ, and the transition takes place. Conversely, for inverted phases the form factor is

an increasing function of the size of the empty regions. As a consequence, at high density

holes of higher dimensionality are favored, since they allow to obtain a given ρ̄ by a larger

γ.

Hence, even at risk of oversimplifying, we may say that the sequence of phase transitions

commonly observed in mesophase-forming hard-core fluids is driven by the internal energy,

but the behavior of the internal energy rests crucially on the dependence of the mesophase

size γ on ρ, which is ultimately dictated by entropy. This is particularly evident in the limit

T → 0, in which the free energy reduces to its energetic part, but γ is determined by the

requirement that ρ̄ must coincide with the density at close packing.

In addition to the qualitative considerations above, we have determined the threshold

temperatures for the formation of cluster, bar, and lamellar phases, and found that they

compare rather favorably with those obtained in a recent simulation study of a square-well

plus ramp SALR potential [16]. Moreover, we have employed the scheme presented here to

obtain some quantitative results in the aforementioned limit T → 0. One result concerns

a rough estimate of the reduced densities at the transition between different mesophases,

which are predicted to attain the same values for any hard-core system, irrespective of the

form of the tail interaction which causes the formation of the mesophases. The other one

concerns the sizes γ of the coexisting mesophases, which are predicted to depend on the

interaction only via the wave vector k0 of the minimum of w̃(k), so that universal quantities

are again obtained by expressing them by in units of 1/k0 via the dimensionless quantity λ
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or, equivalently, in units of the nearest-neighbor distance of the direct lattice. The latter

result can be extended to T 6= 0 under the assumption that ρ̄ is roughly the same at the

transition between different phases.

Clearly, the “universality” of these predictions does not rest on any deep reason, but

just on the approximation used to obtain them, whereby the interaction enters only via its

minimum at k0. Nevertheless, we felt that they deserved at least to be tested. To this end,

we compared them to the results presented in Ref. [19] for the phase diagram of the SALR

HCTYF obtained by numerical minimization of the free-energy functional. Extrapolation

of the phase diagram of Ref. [19] to T = 0 shows a surprising agreement with the densities

obtained here. At the same time, it also shows that these values are of little use at T 6= 0,

since the phase boundaries deviate appreciably from them as the temperature is raised,

especially at high density. As for the predictions on γ, they were compared directly with

the results of the numerical minimization at low temperature and the deviations, although

far from being unappreciable, were found to be at most of the order of ∼ 10%. Hence, they

may be of some usefulness also at T 6= 0, provided T is still low enough that regarding the

aggregates as objects with a given size makes sense. A feature of these predictions which we

consider attractive is that they do not rely on the detailed shape of the interaction, and do

not try to explain the equilibrium size of the aggregates in terms of the interplay between its

components in real space. The latter may not be quite obvious, especially when it is unclear

how those components should be identified, as in the case of purely repulsive interactions.

It could then be worthwhile to check if the above numerical values for the size of the coex-

isting phases remain predictive also for other systems besides the SALR HCTYF of Ref. [19]

which was considered here for comparison, such as the SALR fluid simulated in Ref. [16].

Moreover, numerical values corresponding to those presented here can be straightforwardly

obtained also for mesophase-forming hard-core two-dimensional systems, for which a number

of results have been obtained both at vanishing [25] and non vanishing [6, 10] temperature.
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[15] K. von Konigslow, E. D. Cardenas-Mendez, R. B. Thompson, and K. Ø. Rasmussen, J. Phys.:

Condens. Matter 25, 325101 (2013).

[16] Y. Zhuang, K. Zhang, and P. Charbonneau, Phys. Rev. Lett. 116, 098301 (2016).

[17] Y. Zhuang and P. Charbonneau, J. Phys. Chem. B 120, 7775 (2016).

[18] M. Edelmann and R. Roth, Phys. Rev. E 93, 062146 (2016).

[19] D. Pini and A. Parola, Soft Matter 13, 9259 (2017).

45



[20] A. Ciach, arXiv:1803.07800v1 (2018).

[21] B. M. Mladek, P. Charbonneau, C. N. Likos, D. Frenkel, and G. Kahl, J. Phys.: Condens.

Matter 20, 494245 (2008).

[22] C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys. Rev. E 63, 031206 (2001).
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