1	Title: Low-P, h <u>Granulite-facies</u> igh-T metamorphic overprint in ultramafic and mafic	
2	eclogite-facies rocks of the Central Alps: clues from srilankite ($(ZrTi_2O_6)$)- and spinel ±	Formattato: Pedice
3	sapphirine ± corundum-bearing symplectites	Formattato: Pedice
4		
5	Running title: LP-HT overprint in eclogites from Central Alps	
6		
7	Simone Tumiati ^(1,*) , Stefano Zanchetta ⁽²⁾ , Luca Pellegrino ⁽²⁾ , Claudia Ferrario ⁽¹⁾ , Stefano	Formattato: Apice
8	Casartelli ⁽¹⁾ , Nadia Malaspina ⁽²⁾	
9		
10	(1) Dipartimento di Scienze della Terra, Università degli Studi di Milano	
11	Via Mangiagalli 34, 20133 – MILANO (Italy)	
12	(2) Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano	
13	Bicocca. Piazza della Scienza 4, 20126 – MILANO (Italy)	
14		
15	*Corresponding author: Phone: +39-0250315625; FAX: +39-0250315597; E-mail:	
16	simone.tumiati@unimi.it	
17		
18	Key words: Duria, granulite, peridotite, geothermobarometry, zirconium	
19		
20	Abstract: max 300 words no abbreviations and citations	
21	Eclogite-facies garnet peridotites and different types of eclogites with a broadly MORB	
22	signature crop out around Monte Duria (Italy;) in the Adula nappe of the Central Alps)	
23	display - High-pressure peaks at $P_{\underline{P}} \xrightarrow{P} 2.6-3.09$ GPa and $T_{\underline{T}} \xrightarrow{T} = \frac{860720-740900}{0}$ °C for	Formattato: Tipo di carattere:
24	peridotites, and $\underline{\text{atP}}_{P} = 2.8 - 3.0 \text{ GPa}_{2.5}$ and $\underline{T}_{T} = -\frac{720 - 700740}{700740} \text{°C}$ for eclogites, have	Corsivo
25	been retrieved by conventional thermobarometry, <u>and</u> thermodynamic modelling and on the	Corsivo
26	basis of the presence in eclogites of pargasite and K feldspar. High-pressure minerals are	Formattato: Tipo di carattere: Corsivo
27	replaced both in peridotites and in eclogites by low <u>er</u> P, high-T assemblages. In peridotites,	Formattato: Tipo di carattere: Corsivo
28	<u>the zirconium titanate</u> srilankite $(Zr_{0.33}Ti_{0.66})O_2$ -occurs as µm-sized crystals in textural	
29	equilibrium with spinel, clinopyroxene and orthopyroxene in coronas and symplectites	Formattato: Tipo di carattere: Corsivo
30	surrounding garnetolivine. By using a new ZrO ₂ TiO ₂ solid-solution model, we	Formattato: Tipo di carattere: Corsivo
31	interpreted evidence that srilankite has formed after is stable in peridotites against zircon +	Formattato: Tipo di carattere:
32	rutileat- $\underline{T}_{\underline{T}} \xrightarrow{P} = 900800^{\circ}C$ at $P \approx 1.0$ GPa. , which is consistent with $\underline{T} \ge 850^{\circ}CP - \underline{T}$ at $P \le \sqrt{2}$	Formattato: Tipo di carattere:
33	1.58 GPa estimateds by conventional thermobarometry of for symplectites replacing garnet	Corsivo Formattato: Tipo di carattere:
34	<u>bearing</u> ic phases sapphirine + spinel + orthopyroxene + amphibole ($T \approx 850$ °C at 1.0 GPa).	Corsivo

35	In eclogites, high P phases kyanite and zoisite are is replaced by symplectites made of	
36	anorthite-rich plagioclase + spinel $\pm \frac{\text{Al-rich}}{\text{peraluminous}}$ sapphirine \pm corundum.	
37	Thermobarometry suggests that these symplectites formed at $T_T \simeq 850^{\circ}C$ at and $P_P =$	
38	<u>40.80</u> 1.02 GPa, conditions which are similar coincident to the low P, high-T overprint	
39	observed in peridotites. Thermodynamic modelling coupled with a material-transfer study	$\overline{\ }$
40	suggests that at these $P, T-P-T$ conditions corundum and sapphirine are stable only in the	
41	miero-domain surroundingpseudomorphs after kyanite-and zoisite, resulting from the local	$\overline{\ }$
42	enrichment-high content in aluminium of these micro-domains, which could not fully	
43	equilibrate with the surrounding rock due to the "inert" character of this component (i.e.,	
44	mosaic equilibrium). This is the first report of eclogite-facies rocks showing a LP-	
45	HTgranulite-facies metamorphic overprint in the Central Alps, which is instead well	
46	documented in other pre-Alpine complexes. On these basis, alternative than available models	
47	are needed to explain the subduction-exhumation evolution of garnet peridotites and hosting	
48	eclogites of the Adula-Cima Lunga unit.	
49		
50	INTRODUCTION	
51	Outcrops of eclogite-facies rocks showing granulite-facies overprint are worldwide	
52	restricted to a few localities. These rocks often show spectacular examples of metamorphic	
53	reactions, where relicts of high-pressure (HP) minerals are partially replaced by low pressure	
54	(LP), high-temperature (HT) symplectitic assemblages (e.g., (Morishita et al., 2001;	
55	Nakamura and Hirajima, 2000; Scott et al., 2013), commonly forming symplectitic	
56	intergrowths. The study of these symplectites is not always straightforward, because of the	
57	tiny dimension of the phases and the possible differences in bulk composition between the	
58	symplectite micro-domain and the surrounding rock due to variable element mobility and the	
59	opening of the system (e.g., (Godard and Mabit, 1998; Godard and Martin, 2000).	
60	Nevertheless, their understanding can provide unrivalled records of the eclogite-granulite-	
61	facies transition.	
62	LP HT sSpinel + orthopyroxene + clinopyroxene symplectites (kelyphites) surrounding	
63	HP garnet in deep mantle peridotites are relatively common and similar, resulting from the	
64	LP HT <u>retrograde</u> reaction between garnet and olivine (see review of Godard & Martin, 2000).	
65	In the Alps, nice examples can be found in garnet peridotites from the Central Alps (Adula-	
66	Cima Lunga unit) and the Eastern Alps (Ulten zone,) (see review of (Morten and	
67	Trommsdorff ₇ 2003).	
68	LP-HT overprint in eclogites can lead to complex assemblages, varying in function of the	

Formattato: Tipo di carattere:
CorsivoFormattato: Tipo di carattere:
Corsivo

69	bulk chemistry and the availability of fluids. In kyanite-bearing eclogites, spinel ± corundum
70	\pm sapphirine symplectites have been described in different granulite terranes from the
71	Precambrian to the Caledonides and the Variscides (Baldwin et al., 2007; Carswell et al.,
72	1989; Johansson and Möller, 1986; Liati and Seidel, 1996); O'Brien, 1992; Godard & Mabit,
73	1998; Möller, 1999).
74	Here we present an integrated approach to study the LP-HT overprint on garnet
75	peridotites and different types of eclogites cropping out in the Duria area in the southern part
76	of the Adula Nappe in the Central Alps. In particular, we focused on: i) a rare-Zr-bearing
77	symplectites containing the zirconium titanate srilankite (Zr,Ti2)O ₆₄ ; ii) -sapphirine + spinel-
78	<u>bearing symplectites replacing garnet occurring in garnet peridotite; iii) spinel \pm sapphirine \pm</u>
79	corundum-bearing symplectites replacing kyanite and zoisite occurring-in eclogites.
80	Thermodynamic modelling of Zr-bearing symplectites in peridotites has been accomplished
81	by developing a new binary solution model between ZrO_2 (baddeleyite) and TiO_2 (rutile) with
82	the intermediate compound srilankite, calibrated against published experimental data at high-
83	pressure conditions. A material-material-transfer study has been performed by calculating <u>P</u>
84	<u><i>T</i>-</u> <i>X</i> and aH_2O - <u><i>X</i></u> phase diagrams to address-assess the stability of spinel, sapphirine and
85	corundum in symplectites replacing garnet (in peridotite) and kyanite (in eclogite), and zoisite
86	in eclogitesThe integration of conventional thermobarometry, thermodynamic modelling and
87	material-material-transfer study allowed to retrieve the petrological processes that occurred in
88	these rocks from the eclogite to the granulite-granulite-facies transition, and to provide new P-
89	-T estimates of the eclogite-facies peak and the <u>LP-HTgranulite-facies</u>
90	metamorphismmetamorphic overprint, which are discussed in the framework of the pre-
91	Alpine and Alpine metamorphism of this polycyclic basement.

92

93 GEOLOGICAL SETTING

94 The Adula-Cima Lunga nappe complex is located on the eastern flank of the Lepontine 95 Dome (Fig. 1) and it represents the highest of the so-called-Lower Penninic units of the 96 Central Alps (e.g. (Milnes, 1974; Schmid et al., 1996). Its position in the Central Alps edifice 97 is comprised between the Lower Penninie-nappe stack formed by the Leventina-Lucomagno 98 (L-L), Maggia and Simano (Sm) units at the bottom, and the Middle Penninice units at the top 99 (Tambo-units, Chiavenna metaophiolites and Suretta unit, (Maggia - Mg, Tambo - Tb, 100 Suretta - Su; Fig.1). The contact with the Middle Pennninic nappes occurs along the Misox 101 Zone, a thin unit made of metasediments, MORB-derived amphibolites and slivers of 102 continental basement ((Steinmann and Stille, 1999; Stucki et al., 2003). The lower contact of Formattato: Pedice

 Formattato: Tipo di carattere: Corsivo

 103 the Adula nappe is somewhat less defined due do lithological similarities with the Simano 104 gneiss and the Tertiary high-high-grade metamorphism of the Lepontine Dome that 105 overprinted existing tectonic structures (Nagel, 2008). To the south, a lithologically 106 heterogeneous E-W trending zone, namely the Southern Step Belt (SSB) or Bellinzona-107 Dascio Zone (Schmid et al., 1996), is interposed between the Adula nappe and the western 108 tail of the Bergell pluton, which is dextrally displaced along the Insubric Fault (Fig. 1). To the 109 East, the Gruf Complex, considered part of the Adula nappe (Berger et al., 2005), but see 110 (Galli et al., 2013) for alternative interpretation), is separated from the main units of the nappe 111 complex by the Forcola normal fault (Ciancaleoni and Marquer, 2006). It is worth noting here 112 that the interpretation of the Gruf Complex as pertaining to the Adula Nappe has been 113 recently challenged by Galli et al. (2013), who suggest a pre-Alpine history for this complex.

The Adula nappe largely consists of orthogneiss and paragneiss of pre-Mesozoic origin (Frey and Ferreiro-Mählmann, 1999; Liati *et al.*, 2009; Rubatto *et al.*, 2009), variably retrogressed eclogites preserved as boudins within paragneiss, minor ultramafic bodies and metasedimentary rocks of presumed Mesozoic age (Galster *et al.*, 2012), with references), the latter chiefly preserved in the middle and northern domains of the nappe.

Paleogeographic reconstructions locate the Adula nappe in the former distal European
margin (Schmid *et al.*, 1990), to the north of the North Penninic Ocean, opened since the
Jurassic and later closed during the Late Cretaceous-Eocene phase of -convergence between
Europe and Africa-Adria (Dewey *et al.*, 1989).

During the Tertiary Alpine orogenic cycle the Adula nappe and the crustal slivers that now made the SSB, were subducted to mantle depths (Becker, 1993; Evans and Trommsdorff, 1978; Gebauer, 1996; Heinrich, 1986). Metamorphic conditions at peak pressure are found to increase southward, from $-\approx$ 1.7 GPa and $-\approx$ 650°C in the north, to 2.5–3.0 GPa and $-\approx$ 750°C in the south (Brouwer *et al.*, 2005; Dale and Holland, 2003).

Even <u>more severe higher</u> conditions have been estimated for the peridotite and metaperidotite lenses that occur at the southern, western and eastern margins of the nappe (Fumasoli, 1974; Pfiffner and Trommsdorff, 1998). Garnet lherzolite bodies crop out at three localities, from west to east: Cima di Gagnone, Alpe Arami and Monte Duria (Fig. 1). Such mantle-derived rocks equilibrated at pressure in excess of \approx 3.0 GPa and temperature of 800-850°C (e.g. (Hermann *et al.*, 2006; Nimis and Trommsdorff, 2001).

An older high-high-pressure event of Variscan age (Herwartz *et al.*, 2011; Liati *et al.*,
2009) is seldom preserved within eclogitic boudins of the central and northern sector of the
Adula nappe.

137 After the partial subduction of the European distal margin beneath the Africa-Adria 138 margin, the high-high-pressure rocks of the Adula nappe and the SSB were overprinted by an 139 upper amphibolite-amphibolite-facies metamorphism (Todd and Engi, 1997; Wenk, 1970), 140 which that postdates the main phase of nappe-stacking. In the southern sector of the 141 Lepontine Dome, adjacent to the Insubric Fault (Fig. 1), metamorphic conditions promoted 142 extensive migmatization of both metasedimentary and metagranitoid rocks ("Migmatite 143 belt": (Burri et al., 2005)). Partial melting occurred in the 32-22 time interval (Rubatto et al., 144 2009) and was promoted essentially by fluid-present processes (Berger et al., 2008), whereas 145 fluid-absent melting of white mica was restricted to a narrow zone between Bellinzona and 146 Lake Como (Fig. 1) in the Adula nappe and the SSB (Burri et al., 2005).

147

148 Field aspects of peridotites and hosting crustal rocks

149 Two sites of the Duria area have been investigated in detail: (i) the outcrop of Borgo and150 (ii) outcrops within sight to Monte Duria (Figs. 1, 2).

151 At Borgo (Fig. 2), a hm-sized peridotite body is in contact with amphibole-bearing 152 migmatites with preserved boudins of mafic eclogites. The peridotite body and its mafic rocks 153 rim are hosted within migmatitic gneisses, like those hosting peridotites at Monte Duria (Fig. 154 2). In the peridotite body, garnet was not observed (Fig. 3a,b), but rounded chlorite-rich 155 pseudomorphs that likely formed after garnet porphyroclasts are abundant; -mMm- to cm-156 sized garnet (up to 3 cm), often partially replaced by chlorite and/or kelyphite, has been found 157 downstream in close-by loose blocks on-downstream in the Rio Ledù stream bed (Fig. 3 a). In 158 the Borgo body, a compositional layering marked by chlorite-rich and chlorite-poor layers 159 represents the main fabric element at the mesoscale (Fig. 3_b). Such layering is locally 160 transposed by a second foliation marked by chlorite. The contact between the peridotite and 161 hosting crustal rocks is characterized by the occurrence of a few decimeters-decimeter-thick 162 metasomatic rim rich in amphibole (amph) and phlogopite (phl). Lenses rich in amph + phl 163 have been also found as cm-sized boudins embedded in the surrounding mafic rock (Fig. 2). 164 A phl-rich pegmatite intruded the peridotite-mafic rocks contact and is folded together with 165 chlorite-<u>defined</u> foliation in the peridotite and the main foliation of hosting mafic gneiss. -The 166 heterogeneous rocks association that makesde the rim of the peridotite body consists chiefly 167 of amphibole-bearing migmatitic gneiss (AG in Fig. 2) with boudins of mafic rocks (Fig. 2, 168 3c, 3d) that show differences in terms of mineralogical composition and deformation. Fine 169 grained, partially retrogressed, dark green eclogites (ME in Fig. 2) occur as boudins (dm to m 170 in size, Fig. 3c) included in plagioclase (pl)- and amphibole-rich gneisses. A second type of

171 eclogite occurs in larger light-green colored boudins (Fig. 2 and 3d). The contact between the 172 second type eclogites (E in Fig. 2) and surrounding pl+amph gneisses is locally marked by mm-sized layers (Fig. 3e, HAE in Fig. 2), where cm-sized crystals of emerald-green zoisite 173 174 surrounded by reddish coronae have been found (Fig. 3f). 175 On the southest ridge of Monte Duria, about 250 m from the summit (Fig. 1), several 176 scattered peridotite bodies (Fig. 3g) occur within migmatitic gneisses (Fumasoli, 1974). 177 Peridotites are often garnet-bearing, although garnet (gt) (mm- to cm-sized) is invariably 178 surrounded by symplectitic intergrowths ("kelyphite", Fig. 3h; cf. Godard and Martin, 2000) 179 and commonly retrogressed to pseudomorphic assemblages. Orthopyroxene (opx) and 180 emerald-green clinopyroxene (cpx) are often visible occur often as mm- to cm-sized erystals 181 embedded in an oriented porphyroclasts in an oriented dark fine-grained olivine matrix. Cpx_± 182 gt-rich veins cut at places these peridotite bodies. 183 The peridotite lenses commonly display a strongly foliated rim (Fig. $\frac{3h}{3g}$), with a chlorite 184 foliation parallel to the main foliation of hosting gneisses, and a core where a compositional 185 layering with gt- rich and gt-poor levels occur.

186

187 MATERIALS AND METHODS

188 More than 50 thin sections of rocks from the Duria area have been analysed at the
 189 petrographic and scanning electron microscopes. For this study, we selected 12 rocks,
 190 representative of peridotite and mafic rocks cropping out at Monte Duria and Borgo.

191 Major-elements whole-rock analysis was performed by inductively-coupled plasma mass 192 spectrometry (ICP-MS) and LECO combustion analysis (total C, S) (Bureau Veritas ACME 193 Mineral Laboratories, Canada). Bulk-rock chemistry has been evaluated by using bivariate 194 plots (supplementary Fig. SM 1) and using the principal component analysis (supplementary 195 Fig. SM 2)PCA). In particular, this method was used to classify mafic rocks in groups 196 showing similar element correlation. PCA is a statistical procedure that transforms a number 197 of possibly correlated variables into the same number of uncorrelated variables given by the 198 eigenvectors of the covariance matrix, and called principal components. The first principal 199 component (F1) account for as much of the variability in the data as possible, and thus 200 corresponds to the highest eigenvalue of the covariance matrix; each of the succeeding 201 components (F2, F3...) accounts for as much of the remaining variability as possible. For 202 other details and examples of PCA applied to geosciences, refer for instance to (Tumiati et al., 203 2005, 2008, 2010, 2013).

204 Quantitative analyses of minerals were performed using a JEOL 8200 wavelength-205 dispersive electron microprobe (EMP), at 15-kV accelerating potential, 5-nA sample current and 1-µm beam diameter. Standards used were omphacite (Na), grossular (Ca, Al and Si), 206 207 fayalite (Fe), olivine (Mg), orthoclase (K), rhodonite (Mn), ilmenite (Ti), niccolite (Ni), pure 208 Cr (Cr) and zircon (Zr, Hf). A counting time of 30 s was applied for all elements. Ti traces in 209 quartz and-Zr traces in rutile have been measured at 15-kV accelerating potential and 100-nA 210 sample current, with a counting time of 300 s (150 s for background). Hf traces in µm-sized 211 zircon, srilankite and baddeleyite in peridotite have been measured at 15-kV accelerating 212 potential and 5-nA sample current (15 nA for larger zircon crystals in eclogite), with a counting time of 300 s (150 s for background). The Fe³⁺/Fe_{TOT} ratio in minerals reported in 213 Table 2 has been calculated by stoichiometry. Cathodoluminescence images of quartz has 214 215 been collected at 15-kV accelerating potential and 100-nA sample current.

216 Thermodynamic modelling has been performed-using the software package Perple_X 217 (http://www.perplex.ethz.ch; (Connolly, 2005), using the thermodynamic database of 218 (Holland and Powell, (1998) revised to 2002 (hp02ver.dat), and the following solution 219 models, described in (Holland and Powell, (1998) (HP), (Diener IENER and POWELL Powell, 220 (2012) (GHP2), (Holland and Powell, (2003) (11,HP), and (Dale et al., (2000) (DHP): Gt(HP) 221 for garnett, Opx(HP) for orthopyroxene, O(HP) for olivine, Cpx(HP) for clinopyroxene, 222 Chl(HP) for chlorite, Sp(HP) for spinel, Pheng(HP) for white mica, Sapp(HP) for sapphirine, 223 Omph(GHP2) for elinopyroxeneomphacite, Pl(H11,HP) for ternary feldspars, Sp(HP) for 224 spinel, Pheng(HP) for white mica, Amph(DHP) for amphibole, and Sapp(HP) for 225 sapphirineand the water equation of state of Holland and Powell (1998). Thermodynamic 226 modelling of Zr-bearing systems was accomplished first by creating the ordered srilankite 227 end-member as a linear combination of 2/3 rutile (TiO₂) and 1/3 baddeleyite (ZrO₂). The 228 srilankite Gibbs free energy of formation was corrected according to (Cancarevic et $al_{.\tau}$ 229 (2006). A The bbaddelevite-srilankite-rutile solution model was then we presented in this 230 study is calibrated against the experimental data of (Troitzsch et al., (2004) and (TOMKINS 231 Tomkins et al., (2007) at 2 GPa and 800-1200° C. Retrieved activity-composition relations 232 are expressed according to the van Laar formulation (Holland & Powell, 2003), which allows 233 describing asymmetrical miscibility gaps. Other details about the solid solution model are 234 provided as Supplementary Information.

235

236 PETROGRAPHY, BULK-ROCK CHEMISTRY AND MINERAL CHEMISTRY OF237 DURIA ROCKS

239 Garnet peridotites

240	Garnet-bearing peridotites from the Duria area have been sampled from: i) one of the		
241	several migmatite-hosted boudins occurring close to Monte Duria (A2C2, MD20 and MD25		
242	in Table 1 and 2); ii) loose blocks found downstream in the Rio Ledù stream bed cutting the		
243	Borgo outcrop (B1 and B3A in Table 1 and 2). Borgo peridotites are indistinguishable from		
244	the peridotite of Monte Duria in terms of microtexture, mineral assemblage and bulk-		
245	rock/mineral chemistry. Slight variations in SiO ₂ , CaO, Al ₂ O ₃ (Table 1) are imputable to		
246	differences in modal proportion of cpx, gt and opx.		
247	Garnet-bearing peridotites are composed by more than 90 vol% of polygonal olivine (100-		
248	200 µm), partially serpentinised especially along late fractures (Fig. 4a,b,c). The occurrence		
249	of serpentine accounts for the relatively high bulk loss-on-ignition (LOI) (Table 1). The XMg		
250	(=Mg/Fe+Mg) of olivine is 0.89-0.91 (Table 2), comparable to the bulk rock XMg = 0.90.		
251	Minor phases are clinopyroxene (cpx), orthopyroxene (opx), garnet, spinel (sp), amphibole		
252	and accessory ilmenite, pyrrhotite and pentlandite. In sample A2C2, we observed tiny crystals		
253	(~1 μ m) of srilankite (Zr _{0.33} Ti _{0.66} O ₂) and a single crystal of baddeleyite (Zr _{0.99} Ti _{0.01} O ₂) in a		
254	double coronas formed at the contact between olivine and garnet (Fig. 5a). These Zr		
255	phasesSrilankite occur both in the opx corona replacing the former olivine (Fig. 5b) and in the		
256	opx+ cpx + sp opx+cpx+sp crystals in-kelyphite replacing garnet (Fig. 5 d). In this latter		
257	intergrowth, we found also few crystals of zircon and baddeleyite (Zr0.99Ti0.01O2) (Fig. 5 c, e,		
258	f). The Hf content in zircon, srilankite and baddeleyite is highly scattered (Table 3).		
259	Maximum contents are 0.72 wt% HfO ₂ in baddeleyite [Hf/(Zr+Hf) = 0.005], 0.40 wt% HfO ₂	 Formattato: Pedice	
260	in srilankite [Hf/(Zr+Hf) = 0.007] and 0.05 wt% HfO ₂ in zircon [Hf/(Zr+Hf) = 0.001].		
261	Gt occurs as porphyroblasts and porphyroclasts of variable size up to 3 cm (Fig. 4 a, c; Fig.		
262	<u>6 a)</u> . It is <u>only</u> slightly zoned from core to rim (supplementary figure SM3), with displaying		
263	an average $XMg = 0.80-79$ (Py ₆₈₇₀ Alm ₁₉₇ Gr ₉ Uv ₄₁₃) in the core and an average $XMg = 0.767$	 Formattato: Non Apice / P	edice
264	(Py ₆₆₇ Alm ₂₁₀ Gr ₂ Uv ₄₄₃) in the rim in the rim, with Cr content up to 2.49 wt% Cr ₂ O ₃ (0.14	Formattato: Pedice	
265	a.p.f.u.). In samples MD20 and MD25, symplectites developed along fractures in garnet	Formattato: Non Apice / P	edice
266	contain sapphirine, in textural equilibrium with spinel, orthopyroxene and amphibole (Fig.		
267	7a). Sapphirine is characterised by $XMg = 0.93-0.95$ and is Al-rich (17.36-17.61 a.p.u.f. on a		
268	basis of 28 cations), close to the sapphirine end-member (7:9:3).		
269	Cpx, opx, sp and amph occurs as mm- to cm-sized porphyroclasts, found both in the matrix		
270	(Fig. 4 b; Fig. 6 a) and included in garnet, and as fine grained kelyphitein coronas		
271	surrounding garnet (Fig. <u>4 c; Fig. 5b6 a</u>).		

238

272	Porphyroclastic cpx is diopside-rich with $XMg = 0.95$, Cr up to 0.04 a.p.f.u. and jadeite			
273	content up to 7%. Cpx in kelyphite displays negligible jadeite contents and higher Al (0.018			
274	a.p.f.u.). In sample B3, μ m-sized inclusions of edenitic amphibole (<i>X</i> Mg = 0.94) and dolomite			
275	$(Ca_{1.01}Mg_{0.94}Fe_{0.05})(CO_3)_2$ have been observed in cpx porphyroclasts.			
276	Porphyroclastic opx is enstatite rich $(XMg = 0.92)$ and Al poor (0.03 a.p.f.u.), while opx			
277	and in the kelyphitic assemblage becomes richer in Fe ($XMg = 0.89-0.92$) and Al (up to 0.08)			
278	a.p.f.u. in sapphirine-free symplectites; up to 0.20 a.p.f.u. in sapphirine-bearing symplectites)			
279	(Table 2) in the kelyphitic assemblage.			
280	Primary sSpinel occurs both as porphyroclasts in the matrix (Fig. 6 a) and rarely included			
281	in garnet. Often, former spinel inclusions in garnet are now embedded in kelyphites, which			
282	contain a second generation of spinel forming vermicular intergrowths with opx and cpx.			
283	Spinel composition shows dramatic variations, being spinel porphyroclasts and inclusions rich			
284	in Fe (XMg = 0.47) and Cr (Cr/Al+Cr = 0.56), especially at the core, while kelyphitic			
285	<u>symplectitic</u> spinel and rims of spinel porphyroclasts are is Fe poor ($XMg = 0.76-0.84$) and Cr			
286	poor $(Cr/Al+Cr = 0.04)$ (Fig. SM 3 b).			
287	Amphibole porphyroclasts are pargasitic to edenitic in composition, while kelyphitic			
288	amphibole is tschermakite to magnesiohornblendeie. In sample B3A, we observed a late			
289	generation of kelyphitic intergrowth composed of chlorite, anthophyllite and phlogopite.			
290				
291	Mafic rocks			
292	Mafic rocks were sampled systematically in the Borgo outcrop, where these rocks are in			
293	contact with peridotites (Figs. 2,- 3). The different types of mafic rocks are not easy to			
294	distinguish in the field. Therefore, these rRocks have been classified on the basis of their			
295	bulk-rock chemistry (Table 1) and petrographic features described below. In particular, the			
296	principal component analysis (PCA) has been applied in order to identify groups of rocks			
297	showing similar element correlation (Fig. 6). Overall, As a general consideration, tthe			
298	compositions of the Borgo mafic rocks are <u>broadly comparable ascribable</u> to N-MORB	 Format	tato: Non Evic	denziato
299	basalts gabbros showing various degrees of differentiation(cf. Klein, 2003), showing resulting	 Format	tato: Non Evic	denziato
300	<u>in</u> variable XMg (from 0.61 to 0.84), and Al_2O_3 (from 14.61 to 20.83 wt%), CaO (from 9.57	 Format	tato: Pedice	
301	to 13.24 wt%) and TiO ₂ (from 0.16 to 1.65 wt%) contents (supplementary Fig. 1). A more			
302	detailed characterization of these rocks is beyond the purpose of this paper and will be given			
303	elsewhere. In this study, the principal component analysis (PCA) has been applied in order to			
304	identify groups of rocks showing similar element correlation (supplementary Fig. SM 2).			

305	PCA distinguishes among mafic rocks: i) kyanite eclogites (E), samples D3 and B5,		
306	showing anthe lowest covariance average content for all elements; ii) mafic eclogites (ME),:		
307	samples D6 and D4, showing the highest contents in Fe, Ti, P. P. and Mn (dark green on the		Formattato: Tipo di carattere:
308	field); iii) high-Al eclogites (HAE) ₂ : samples D1, D8 and D9, showing the highest contents in		Formattato: Tipo di carattere:
309	Al, Si, Na and K; iv) pl+amph gneisses (AG), sources and D2, showing the highest		Corsivo
310	contents in Ca and Cr. The mineralogy and petrography of these lithotypes is provided below.		
311			
312	Kyanite eclogites (E)		
313	In these rocks, a symplectitic matrix composed of diopside-rich and jadeite-poor		
314	clinopyroxene ($\underline{Di_{81}Hed_{15}Jd_{6}XMg = 0.87-0.88}$) and albite-rich plagioclase (up to $\underline{Ab_{73}Ab_{43}}$) is		Formattato: Pedice
315	dominant (<u>Table 2;</u> Fig. <u>4e6b</u> ; Fig. <u>7</u> <u>5b,ce</u>). In sample D3, these symplectites appear as	$\overline{\ }$	Formattato: Pedice
316	pseudomorphs after former mm-sized stubby prismatic crystals embedded in quartz.		Formattato: Pedice
317	associated to Ca-rich plagioclase pseudomorphs likely after zoisite (Fig. 7f; see also eclogites		
318	<u>HAE below</u>). The average <u>bulk</u> composition of a representative $cpx + pl$ symplectite has been		
319	measured by averaging 400 EMP analyses (1 μ m step) over a 20 μ m × 20 μ m area, and it		
320	would corresponds to a mixed composition between quartz and to a mixed composition of		
321	83.7 mol% omphacitic clinopyroxene Di ₅₈ Jd ₃₂ Hd ₁₀ and -16.3 mol% quartz, strongly		
322	suggesting that symplectites formed due to the reaction Ab (in pl) = Jd (in cpx) + qtz		
323	(Holland, 1980). <u>A It is noteworthy that ff</u> ew inclusions of relict omphacite have been		
324	observed in a-kyanite (Fig. 6c) and garnet porphyroclasts (Fig. 5d) in sample B5, displaying		
325	an almost identical composition $Di_{58}Jd_{33}Hd_9$ (Table 2). Other porphyroclasts consist of		
326	slightly zoned homogeneous garnet (core: Py3844Alm3736Gr24Sp1; rim: Alm42Py35Gr20Sp2; see		Formattato: Non Apice / Pedice
327	also supplementary Fig. SM 4 a, b ₃), quartz, K-feldspar (Or₉₇₋₉₈ in sample D3) and p argasitic	$\overline{\ }$	Formattato: Non Apice / Pedice
328	amphibole (XMg = 0.82) (Fig. 5e6b) and $\frac{1}{2}$ K-feldspar (Or ₉₇₋₉₈) in sample D3.		Formattato: Non Apice / Pedice
329	Cathodoluminescence images of monocrystalline quartz revealed a grain core showing a		
330	peculiar layered zonation, resembling twinning planes of a former phase surrounded by a		
331	polycrystalline rim (Fig. 6 d), now fully recovered. Rutile is an accessory mineral, commonly		
332	found included in garnet and kyanite porphyroclasts. Other accessory phases are ilmenite		
333	(replacing rutile in symplectites), zircon and apatite. Traces of Zr in rutile included in garnet,		
334	and of Ti in porphyroclastic quartz have been measured for thermometric purposes and will		
335	be given in the next Section. Garnet and kyanite are typically replaced by symplectitic		
336	intergrowths (Fig. 7 b, c5e). Symplectites surrounding garnet (Fig. 4e,f) usually consist of		
337	plagioclase and magnesiohornblende, although relict symplectites containing orthopyroxene		
338	(XMg = 0.74; Table 2)-and plagioclase have been observed (Fig. 7 b). Symplectites		

339	surronding kyanite (Figs. <u>4 d, e, f; 6 b, c,; 4 d, e, f7 c</u>) consist of anorthite-rich plagioclase
340	(An_{847}) , spinel $(XMg = 0.558)$ and minor Al-richperaluminous sapphirine $(XMg = 0.834; Al)$
341	4.77 <u>19</u> a.p.f.u. on the basis of 7- <u>28</u> cations). <u>An outer corona of orthopyroxene ($XMg = 0.70$;</u>
342	Table 2) surrounds sometimes these symplectites (supplementary Fig. SM e, f). Sapphirine in
343	these symplectites is very rich in Al (19.00 a.p.f.u. on the basis of 28 cations), being
344	intermediate between the $(7:9:3)$ and the $(3:5:1)$ end-members.
345	
346	Mafic eclogites (ME)
347	Compared to the kyanite the eclogites E, mafic eclogites (ME) contain a higher amount of
348	garnet (Fig. 4_g). Garnet is zoned (supplementary figure SM4 c, d), displaying an average
349	core composition $Alm_{40}Py_{35}Gr_{24}Sp_1$, which is only slightly enriched in Fe compared to <u>garnet</u>
350	cores in type E eclogites. However, garnet rims in contact with surrounding plagioclase +
351	magnesiohornblende symplectites are considerably Fe-and Mn-richer up to
352	$Alm_{55}Gr_{20}Py_{19}Sp_{6}$. Often, garnet porphyroclasts are completely replaced by amph + pl
353	symplectitic intergrowths. Magnesiohornblende, associated with albite-rich plagioclase, is a
354	common phase also in symplectites after omphacite. In ME eclogites, cpx + pl symplectites
355	are rarely preserved. One of these cpx + pl symplectites has been analysed using the same
356	method described above for eclogites E, yielding the composition Di ₅₈ Jd ₂₈ Hd ₁₅ for the former
357	omphacite, showing higher Fe and lower Jd contents compared to eclogites E. Among relict
358	eclogite-facies minerals, quartz occurs in mafic eclogites, but its modal abundance is lower
359	compared to eclogites E. Zoisite, K-feldspar (Or_{99}) and pargasitic amphibole ($XMg = 0.68$)
360	occur as >100 μ m porphyroclasts (Fig. <u>6</u> 5e, f). Accessory phases rutile, ilmenite, apatite and
361	Fe-Cu sulphides are abundant. A single 30-µm crystal of dolomite (Ca _{1.00} Mg _{0.88} Fe _{0.12})(CO ₃) ₂
362	has been observed included in a garnet core (supplementary figure SM4 d). Nor kEither
363	kyanite neither nor symplectites after kyanite were observed in mafic eclogites.
364	
365	High-Al eclogites (HAE)
366	These rocks contain no or very minor garnet. Porphyroclastic kyanite, quartz, emerald-
367	green Fe- and Cr-bearing zoisite (up to 2 cm in size, Fig. 3f; 0.95 wt% FeO and 0.24 wt%
368	Cr_2O_3) are accessory minerals. Zoisite contains minor inclusions of pargasite, and is
369	commonly replaced by symplectites consisting of almost pure anorthite (An ₂₉) (Fig. 4 h)
370	The rock matrix is mainly constituted by <u>simplectites made of cpx+pllow-Jd</u>
371	clinopyroxene, high-Ab plagioclase and magnesiohondblendeand pl+sp+sapp+cor
372	symplectites in equal amounts (Fig. 5). On the basis of the modal abundance of cpx and pl in

Formattato: Tipo di carattere: Corsivo

Formattato: Pedice

Formattato: Rientro: Prima riga: 0,5 cm

373	symplectites after omphacite, the composition of the latter has been reconstructed as
374	$Di_{59}Jd_{33}Hd_8$, which is nearly identical to that of omphacite observed in eclogites E. <u>Similarly</u>
375	to eclogites E, sSymplectites after kyanite contain anorthite-rich plagioclase (An878), spinel
376	(XMg = 0.5961) and Al-rich sapphirine $(XMg = 0.857; Al 4.8919.50]$ a.p.f.u. on the basis of
377	<u>728 cations), similarly to eclogites E. Symplectites after kyanite contain anorthite-rich</u>
378	plagioclase (An ₈₈), spinel (XMg = 0.61) and Al-rich sapphirine (XMg = 0.87; Al 4.89 a.p.f.u.
379	on the basis of 7 cations), similarly to celogites E. However, in HAE eclogites these
380	symplectites often contain also corundum (Fig. 7 d, e) - (Fig. 5h). Late margarite and
381	laumontite areis also commonly observed as alteration products of in these symplectites.
382	Corundum has been found also in symplectites surrounding zoisite (Fig. h), associated to
383	anorthite rich plagioclase (An ₉₃), spinel and sapphirine (Fig. 5g).

386 Amphibole-plagioclase gneisses (AG) - retrogressed eclogites

387 These rocks display a broadly layered microtexture both aty the meso- and microscale, 388 with mm-sized layers rich in plagioclase and layers rich in amphibole. Plagioclase is typically 389 Ca-rich (An₉₀), comparable to plagioclase found in coronas surrounding zoisite (cf. eclogites 390 HAE) and in symplectites replacing kyanite (cf. eclogites E and HAE). However, neither 391 spinel nor sapphirine nor corundum were observed in these plagioclase layers. Amphibole is 392 magnesiohornblende (XMg = 0.82), partially replaced by tremolite. Phlogopite also occurs, 393 partially replaced by chlorite. Occasionally, relict cpx + pl symplectites after omphacite can 394 be observed. The reconstructed composition of the former omphacite is Di₆₇Jd₂₄Hd₉, 395 displaying lower jadeite content with respect to the more preserved eclogites described above.

396

384 385

397 PETROLOGY AND GEOTHERMOBAROMETRY OF DURIA ROCKS

398 In the previous sections, we characterized different types of rocks from the Duria area 399 displaying relict eclogite-facies minerals, namely garnet in peridotites, and omphacite, garnet, 400 and kyanite and zoisite-in eclogites, partially replaced by symplectitic intergrowths containing 401 at times srilankite and sapphirine in peridotites, and sapphirine, spinel and corundum in 402 eclogites. In detail, we focused on i) garnet bearing peridotites from Monte Duria and Borgo, 403 and ii) eclogites, from the Borgo outcrop only. In order to constrain the petrological processes 404 occurred in these rocks and the P, T_T conditions in force during eclogite-facies and post-405 eclogitic metamorphism, we performed classical thermobarometry and thermodynamic 406 modelling of both peridotites and mafic rocks.

Formattato: Rientro: Prima riga: 0,5 cm

Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

407						
408	Garnet peridotites					
409	Thermobarometry					
410	P, T_Temperature conditions of the eclogite_facies and post eclogitic metamorphism have	 Form	nattato:	Tipo di car	attere: No	n
411	been estimated in peridotites using i) the cpx-opx pyroxene solvus thermometers of (Brey and	Form	nattato:	Tipo di car	attere: No	n
412	Koehler, 1990) and (Taylor, (1998) (TaOpx/Cpx; red in Fig. 8); ii), and the Ca-in-opx	Cors	ivo	·		_
413	thermometer of Brey & Köhler (1990) corrected by (Nimis and Grütter, (2010)					
414	(BKOpx corrNG; purple in Fig. 8); iii) the thermometer of Nimis and Grütter (2010), based					
415	on the Fe-Mg exchange between opx and gt (NGOpx/Gt; black in Fig. 8) and iv) the single					
416	cpx thermometer of (Nimis & and Taylor, (2000), based on the enstatite content of cpx					
417	(NTCpx; pink in Fig. 8)					
418	Minimum pPressure estimates of the eclogite facies were retrieved using i) the barometer					
419	of (O'Neill, (1981) (PoNSI), based on the transition between spinel lherzolite and					
420	garnet+spinel lherzolite, which is dependent on the Cr/Al+Cr ratio of spinel (O'NSp/Gt; blue					
421	in Fig. 8); ii) - the barometer of Taylor (1998), based on the Al exchange between opx and gt					
422	(TaOpx/Gt; grey in Fig. 8); iii) the Cr-in-Cpx barometer of (Nimis & and Taylor, (2000),					
423	based on the Cr exchange between cpx and gt (NTCrCpx; green in Fig. 8). Because					
424	O'NSp/GtPONST estimates were retrieved using the most Cr-rich composition of relict spinel					
425	included in garnet or in the matrix, they should be considered as minimum estimates.					
426	Other estimates of the eclogitic peak were retrieved using also the thermometer of (Nimis					
427	and Grütter, 2010), based on the Fe Mg exchange between opx and gt, and the barometer of					
428	Taylor (1998), based on the Al exchange between opx and gt.					
429	The minerals in Estimates for the Duria peridotite sample A2C2 have been retrieved by					
430	considering the core compositions of porphyroblastic garnet, of orthopyroxene and spinel in					
431	the matrix, and of clinopyroxene included in garnet (Table 2). Minerals display a good degree					
432	of equilibration, as the seven independent geothermobarometers yield concordant values and					
433	intersect one to another at 2.8 \pm 0.2 GPa and 730 \pm 20 °C (Fig. 8). In the other peridotites					
434	from Mt. Duria (MD20, MD25) and Borgo (B1, B3), are not in equilibrium with respect to all					
435	elements, resulting in FeMg and pyroxene-solvus temperatures are often discordant.					
436	suggesting disequilibrium among the considered phases (Fig. 7). In particular, although the					
437	TaOpx/Cpx and the NTCpx thermometers are broadly comparable to sample A2C2,					
438	intersecting the barometers at 700–760°C (with the remarkable exception of sample B3 at $T =$	 Form	nattato:	Tipo di car	attere:	
439	830-840°C), the BKOpx_corrNG thermometer yields generally lower temperatures, down to	Cors	IVO			
440	680°C in sample MD20. On the contrary, the NGOpx/Gt appears to be shifted at higher					

441	temperatures, intersecting the O'NSp/Gt barometer at 2.8 GPa and 880°C in sample B1 and at		
442	3 GPa and 920°C in sample B3. Excluding sample A2C2, in all other samples the NGOpx/Gt		
443	thermometer displays a second intersection point with both the barometers TaOpx/Gt and		
444	NTCrCpx at anomalously high <u>P-T conditions, up to around 4 GPa and 1100°C in sample B3</u>		Formattato: Tipo di carattere:
445	(Fig. 8) The apparently highest temperatures for the eclogite-facies stage are those based on		Formattato: Tipo di carattere:
446	the pyroxene solvus thermometers in sample A2C2 from Monte Duria (T = 869° C at P _{ON81} =		Corsivo
447	2.69 GPa) and those based on the Fe-Mg exchange between opx and gt in sample B1 from		
448	Borgo (T = 903°C at $P_{O'N81}$ = 2.87 GPa). In sample B3 from Borgo, the thermometers of Brey		
449	& Köhler (1990) and (Nimis and Grütter, 2010) yields concordant T = $860 \pm 2 \degree C$ at $P_{O'N81}$ =		
450	2.86 GPa. Because PONSI estimates were retrieved using the most Cr-rich composition of		
451	relict spinel included in garnet or in the matrix, they should be considered as minimum		
452	estimates.		
453	Temperature for the post eclogitic peak were estimated by using the thermometers		
454	TaOpx/Cpx, BKOpx_corrNG, NTCpx and the experimentally calibrated thermometer of Sato		
455	et al. (2006), based on the Fe-Mg exchange between spinel and sapphirine (SSp/Sapp; brown		
456	in Fig. 9). Maximum pressure estimates were retrieved by using the barometer O'NSp/Gt,		
457	which represent the upper boundary of the garnet-free field in the presence of low Cr/Al+Cr		
458	keyphitic spinel. The composition of minerals forming kelyphites replacing garnet and opx		
459	coronas replacing olivine was considered for the calculations.		
460	Mineral compositions in symplectites-kelyphites post-dating eclogite-facies metamorphism		
461	result in discordant temperature estimates, suggesting also in this case a high degree of		
462	disequilibrium. The highest apparent temperatures of $T = 880^{\circ}$ C at $P_{\text{max}} = 1.6-1.7$ GPa, based		
463	onretrieved using the the SSp/Sapp thermometerpyroxene solvus thermometers, has have		
464	been observed in Monte Duria peridotites MD20 and MD25 (Fig. 9) $(T = 858^{\circ}C \text{ at } P_{ON81} =$		Formattato: Tipo di carattere:
465	1.58 GPa). Similar temperatures have been calculated for sample A2C2 using the pyroxene-		Formattato: Tipo di carattere:
466	solvus thermometers TaOpx/Cpx and NTCpx, which yield concordant temperatures of 840°C		Corsivo
467	at $\underline{P_{max}} = 1.4$ GPa. However, in the same sample the thermometer BKOpx_corrNG provides		Corsivo
468	lower temperatures of 635°C at $P_{\text{max}} = 1.4$ GPa. Pyroxene–solvus temperatures are low and	\sum	Formattato: Tipo di carattere: Corsivo
469	often discordant also in the other peridotitesGiven the partial low-P (LP), high-T (HT) re-	\backslash	Formattato: Pedice
470	equilibration, suggesting that these temperatures merely represent minimum estimates of the		Formattato: Tipo di carattere: Corsivo
471	LP-post-eclogitic peak temperature.e, while PONSI-estimates should be considered as		
472	maximum estimates of the LP HT sp bearing, gt free metamorphic stage.		
473			
474			

po di carattere: po di carattere: Non po di carattere: edice po di carattere: Non

475	Thermodynamic modelling of sapphirine-bearing symplectites	
476	In all Duria peridotites we observed kelyphites developing at the contact between olivine and	
477	garnet consisting of orthopyroxene, spinel and clinopyroxene. By mass-balancing the mineral	
478	compositions of sample MD20 (sympl1 in Table 2), we obtained the following reaction	
479	accounting for the formation of these kelyphites:	
480		
481	$1.25 \text{ ol} + 1.00 \text{ gt} = 1.73 \text{ opx} + 1.00 \text{ sp} + 0.42 \text{ cpx} + 0.25 \text{ Fe}_{+1}\text{Mg}_{-1} $ (1)	
482		
483	However, in the same sample we observed also kelyphites containing sapphirine associated	
484	with low-Cr spinel, Al-rich orthopyroxene and magnesiohornblende, developed along garnet	
485	fractures. The chemical bulk composition of the symplectite (MD_20 X1 in supplementary	
486	Table SM2) has been retrieved using the kelyphite mineral compositions (sympl2 in Table 2)	
487	and the phase proportions obtained by image analysis of elemental X-ray maps	
488	(supplementary Fig. SM7). The reaction accounting for the formation of sapp-bearing	
489	kelyphites is:	
490		
491	$\underline{0.88 \text{ ol} + 0.81 \text{ gt} + 0.17 \text{ H}_2\text{O} + 0.4 \text{ Al}_2\text{O}_3 + 0.04 \text{ Na}_2\text{O} = 1.00 \text{ sympl2} + 0.33 \text{ Fe}_{\pm\pm}\text{Mg}_{\pm\pm} (2)$	
492		
493	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphite	
493 494	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphite normalized to 10 cations, and $Fe_{\pm 1}Mg_{-1}$ represents a vector accounting for the Fe-Mg	Formattato: Pedice
493 494 495	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphite normalized to 10 cations, and Fe _{t1} Mg ₋₁ represents a vector accounting for the Fe–Mg exchange between reactants and products. Reaction (2) suggests that the growth of sapp-	Formattato: Pedice
493 494 495 496	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphite normalized to 10 cations, and Fe _{t-1} Mg ₋₁ represents a vector accounting for the Fe–Mg exchange between reactants and products. Reaction (2) suggests that the growth of sapp- bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of water	Formattato: Pedice
493 494 495 496 497	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphite normalized to 10 cations, and Fe _{e1} Mg ₋₁ represents a vector accounting for the Fe-Mg exchange between reactants and products. Reaction (2) suggests that the growth of sapp- bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of water and the addition of Na and extra Al in the system.	Formattato: Pedice
493 494 495 496 497 498	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and Fe _{c+1} Mg ₋₁ represents a vector accounting for the Fe–Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra Al in the system.The P–T pseudosection calculated for sympl2 composition in the system NCFMASH at	Formattato: Pedice
493 494 495 496 497 498 499	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and Fet Mg_1 represents a vector accounting for the Fe-Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra Al in the system.The P-T pseudosection calculated for sympl2 composition in the system NCFMASH atwater-saturated conditions shows that sapphirine is stable only at relatively low pressure,	Formattato: Pedice
493 494 495 496 497 498 499 500	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and Fe _{e1} Mg ₋₁ represents a vector accounting for the Fe–Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra Al in the system.The P–T pseudosection calculated for sympl2 composition in the system NCFMASH atwater-saturated conditions shows that sapphirine is stable only at relatively low pressure,below 1.0–1.1 GPa for temperatures ranging from 800 °C to 1000°C (Fig. 10 a). Sapphirine	Formattato: Pedice
493 494 495 496 497 498 499 500 501	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and Fe _{e1} Mg ₋₁ represents a vector accounting for the Fe-Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra Al in the system.The P-T pseudosection calculated for sympl2 composition in the system NCFMASH atwater-saturated conditions shows that sapphirine is stable only at relatively low pressure,below 1.0-1.1 GPa for temperatures ranging from 800 °C to 1000°C (Fig. 10 a). Sapphirineassociated with orthopyroxene, spinel and amphibole is restricted to a narrow field extending	Formattato: Pedice
493 494 495 496 497 498 499 500 501 502	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and $Fe_{t-1}Mg_{-1}$ represents a vector accounting for the Fe-Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra Al in the system.The $P-T$ pseudosection calculated for sympl2 composition in the system NCFMASH atwater-saturated conditions shows that sapphirine is stable only at relatively low pressure,below 1.0-1.1 GPa for temperatures ranging from 800 °C to 1000°C (Fig. 10 a). Sapphirineassociated with orthopyroxene, spinel and amphibole is restricted to a narrow field extendingfrom 0.8 to 1.0 GPa and $T > 720°C$. The intersection of this field and the thermometer	Formattato: Tipo di carattere:
493 494 495 496 497 498 499 500 501 502 503	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and $Fe_{e^1}Mg_{-1}$ represents a vector accounting for the Fe–Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra Al in the system.The $P-T$ pseudosection calculated for sympl2 composition in the system NCFMASH atwater-saturated conditions shows that sapphirine is stable only at relatively low pressure,below 1.0–1.1 GPa for temperatures ranging from 800 °C to 1000°C (Fig. 10 a). Sapphirineassociated with orthopyroxene, spinel and amphibole is restricted to a narrow field extendingfrom 0.8 to 1.0 GPa and $T > 720$ °C. The intersection of this field and the thermometerSSp/Sapp occurs at $P = 0.8-0.9$ GPa and $T \approx 850$ °C.	Formattato: Pedice Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere:
493 494 495 496 497 498 499 500 501 502 503 504	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and $Fe_{t+1}Mg_{t-1}$ represents a vector accounting for the Fe-Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra Al in the system.The <i>P</i> - <i>T</i> pseudosection calculated for sympl2 composition in the system NCFMASH atwater-saturated conditions shows that sapphirine is stable only at relatively low pressure,below 1.0-1.1 GPa for temperatures ranging from 800 °C to 1000°C (Fig. 10 a). Sapphirineassociated with orthopyroxene, spinel and amphibole is restricted to a narrow field extendingfrom 0.8 to 1.0 GPa and $T > 720°C$. The intersection of this field and the thermometerSSp/Sapp occurs at $P = 0.8-0.9$ GPa and $T \approx 850°C$.A <i>T</i> - <i>X</i> binary phase diagram has been calculated at fixed $P = 0.9$ GPa (Fig. 10 b), where $X =$	Formattato: Pedice Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
493 494 495 496 497 498 499 500 501 502 503 503 504 505	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and $Fe_{e^-1}Mg_{e^-1}$ represents a vector accounting for the Fe-Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp- bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of water and the addition of Na and extra Al in the system.The $P-T$ pseudosection calculated for sympl2 composition in the system NCFMASH at water-saturated conditions shows that sapphirine is stable only at relatively low pressure, below 1.0-1.1 GPa for temperatures ranging from 800 °C to 1000°C (Fig. 10 a). Sapphirine associated with orthopyroxene, spinel and amphibole is restricted to a narrow field extending from 0.8 to 1.0 GPa and $T > 720$ °C. The intersection of this field and the thermometerSSp/Sapp occurs at $P = 0.8-0.9$ GPa and $T \approx 850$ °C.A $T-X$ binary phase diagram has been calculated at fixed $P = 0.9$ GPa (Fig. 10 b), where $X =$ 0 represents the composition of opx + cpx + sp kelyphites (sympl1 in Table 2), derived from	Formattato: Pedice Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
493 494 495 496 497 498 499 500 501 502 503 504 505 506	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and $Fe_{t+1}Mg_{-1}$ represents a vector accounting for the Fe-Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra A1 in the system.The $P-T$ pseudosection calculated for sympl2 composition in the system NCFMASH atwater-saturated conditions shows that sapphirine is stable only at relatively low pressure,below 1.0-1.1 GPa for temperatures ranging from 800 °C to 1000°C (Fig. 10 a). Sapphirineassociated with orthopyroxene, spinel and amphibole is restricted to a narrow field extendingfrom 0.8 to 1.0 GPa and $T > 720°C$. The intersection of this field and the thermometerSSp/Sapp occurs at $P = 0.8-0.9$ GPa and $T \approx 850°C$.A $T-X$ binary phase diagram has been calculated at fixed $P = 0.9$ GPa (Fig. 10 b), where $X =$ 0 represents the composition of opx + cpx + sp kelyphites (sympl1 in Table 2), derived fromreaction (1), and $X = 1$ represents the bulk composition sympl2 (Fig. 10 b). Sapphirine is	Formattato: Pedice Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
493 494 495 497 498 499 500 501 502 503 504 505 506 507	where sympl2 is the reconstructed bulk composition of the sapph-bearing kelyphitenormalized to 10 cations, and $Fe_{c1}Mg_{-1}$ represents a vector accounting for the Fe-Mgexchange between reactants and products. Reaction (2) suggests that the growth of sapp-bearing kelyphites requires higher gt/ol ratios compared to reaction (1), the presence of waterand the addition of Na and extra AI in the system.The $P-T$ pseudosection calculated for sympl2 composition in the system NCFMASH atwater-saturated conditions shows that sapphirine is stable only at relatively low pressure,below 1.0-1.1 GPa for temperatures ranging from 800 °C to 1000°C (Fig. 10 a). Sapphirineassociated with orthopyroxene, spinel and amphibole is restricted to a narrow field extendingfrom 0.8 to 1.0 GPa and $T > 720°C$. The intersection of this field and the thermometerSSp/Sapp occurs at $P = 0.8-0.9$ GPa and $T \approx 850°C$.A $T-X$ binary phase diagram has been calculated at fixed $P = 0.9$ GPa (Fig. 10 b), where $X \equiv$ 0 represents the composition of opx + cpx + sp kelyphites (sympl1 in Table 2), derived fromreaction (1), and $X = 1$ represents the bulk composition sympl2 (Fig. 10 b). Sapphirine isnever stable for bulk compositions towards $X = 0$, where the assemblage opx + cpx + sp is	Formattato: Pedice Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

509	corundum, forming at $X = 1$ the assemblage opx + sapp + amph + sp + cpx for $T > 820^{\circ}$ C.	 Formattato: Tipo di carattere:
510	With the exception of clinopyroxene, this last assemblage is consistent with that observed in	Formattato: Tipo di carattere:
511	sapp-bearing kelyphites.	Corsivo
512		
513		
514	Thermodynamic modelling of srilankite-bearing symplectites	
515	The occurrence of srilankite $(Zr_{0.33}Ti_{0.66}O_2)$ and zircon in a corona replacing garnet and	
516	olivine in sample A2C2 from Monte-Mt. Duria (Fig. 5) gave us the opportunity to perform a	
517	thermodynamic modelling in order to retrieve additional <u><i>P</i>, <i>P</i>_T</u> constraints for the post-	 Formattato: Tipo di carattere:
518	eclogitic metamorphic stage.	Formattato: Tipo di carattere:
519	Although it is known that the Zr content in rutile is temperature dependent (e.g., (Zack et	Corsivo
520	al., 2004), the solid solution between TiO_2 and ZrO_2 has been investigated experimentally in	
521	detail only in a few works (McHale & Roth, 1983; (TOMKINS et al., 2007; Troitzsch et al.,	
522	2004; Troitzsch and Ellis, 2004; Tomkins et al., 2007). In particular, Troitzsch et al. (2004)	
523	dealt with the solid solutions among rutile (TiO ₂), baddeleyite (ZrO ₂) and the intermediate	
524	compound srilankite (Zr,Ti) ₂ O ₄ -at 800–1220°C up to 2 GPa, demonstrating that the	
525	composition of ordered srilankite is depending on P and T, ranging from XTi	
526	(=TiO₂/ZrO₂+TiO₂) 0.60 at 1200°C and 2 GPa, to 0.68 at 800°C and 2 GPa. These	
527	experimental data allowed us to develop a solid solution model and to calculate $T-X$ and $P-T$	
528	phase diagrams in petrological systems of increasing complexity (Fig. 810; supplementary	
529	Fig. SM6). Details on the solution model can be found as Supplementary information.	
530	The T X phase diagram calculated for the TiO ₂ ZrO ₂ system at 2.0 GPa (Fig. 8a)	 Formattato: Evidenziato
531	reproduces almost perfectly the experimental Ti contents of baddeleyite and the Zr content of	
532	rutile in function of T. However, the model overestimates the XTi of the intermediate	
533	compound $(Zr,Ti)_2O_4$ (XTi ^{sril}) at T > 800°C. On the basis of the experimental data of	
534	Troitzsch et al. (2004), the measured composition of srilankite in sample A2C2 (XTi = 0.66)	
535	is consistent with T - 900°C, which is close to the temperatures estimated for the post-	
536	eclogitic peak using the pyroxene solvus thermometers.	
537	Because srilankite has been found included in an opx corona replacing olivine (Fig. 5 b),	
538	and associated to opx+cpx+sp in a kelyphite replacing garnet (Fig. 5 d), thermodynamic	
539	modelling has been performed also in the more complex in the systems MSMgO-SiO2-	Formattato: Pedice
540	+TiO ₂ -ZrO ₂ (grey chemographies and dashed line in Fig. 11) and CaO-FeO-MgO-Al ₂ O ₃ -	 Formattato: Pedice
541	SiO ₂ _FMAS+TiO ₂ _ZrO ₂ (black solid lines in Fig. 11).	Formattato: Pedice
		Formattato: Pedice

542	In the system MgO-SiO ₂ -TiO ₂ -ZrO ₂ MS+TiO ₂ +ZrO ₂ , chemographies in Figure 8b show		
543	that the assemblage a peridotitic assemblage forsterite + enstatite should always coexist with		
544	<u>+ zircon + and rutile is stable independently from the bulk composition at relatively low</u>		
545	temperatures (e.g., $T < 830^{\circ}$ C at <u>P = 0.9 GPa; Fig. 11)</u> . relatively low temperatures. At higher		Formattato: Tipo di carattere:
546	temperatures, the stable assemblage is dependent on the bulk XTi ratio (XTi_{\pm})	l	Corsivo
547	$\underline{\text{TiO}_{2}/(\text{ZrO}_{2}+\text{TiO}_{2})}$, becoming eit <u>h</u> er forsterite+enstatite+zircon+srilankite for XTi ^{bulk} <		Formattato: Pedice
548	XTi ^{sril} (green star above the sril-en tie line) or forsterite+enstatite+srilankite+rutile for XTi ^{bulk}	\square	Formattato: Pedice
549	$> X Ti^{sril}$ (blue star below the sril-en tie line). The reaction leading to the formation of	Y	Formattato: Pedice
550	srilankite <u>in the MgO-SiO₂-TiO₂-ZrO₂ system</u> therefore is:		
551			
552	Mg_2SiO_4 (fo) + 2 TiO ₂ (ru) + ZrSiO ₄ (zrc) = (Zr_5Ti)_2O_{64} (sril) + $Mg_2Si_2O_6$ (en)		Formattato: Pedice
553	(43)		
554			
555	which is represented with a grey dashed line in the $P-T$ field shown on a P T diagram in		Formattato: Tipo di carattere:
556	Figure 8 b(Fig. 11). Our model predicts that the above univariant reaction occurs at		Corsivo
557	temperatures of about <u>79-10300</u> °C at <u>0.5</u> 1 GPa and <u>900°C at 1.7 GPa in the MS+TiO₂-ZrO₂</u>		Corsivo
558	system.		
559	A P T pseudosection (i.e., isochemical section) has been calculated for the system <u>CaO</u> -		Formattato: Tipo di carattere:
560	<u>FeO-MgO-Al₂O₃-SiO₂-TiO₂-ZrO₂. CFMAS+TiO₂+ZrO₂-in order to check how the stability</u>		Corsivo
561	of srilankite is influenced by other components CaO, FeO and Al ₂ O ₃ . In this system By adding		Corsivo
562	FeO, the srilankite-forming reaction univariant above becomes divariant, because olivine and		Formattato: Pedice
563	orthopyroxene form solid solutions between their Mg- and Fe-endmembers By adding also	l	
564	CaO and Al ₂ O ₃ , (unbalanced) becomes: clinopyroxene and spinel become stable, so that the		Formattato: Pedice
565	actual phase assemblage of the srilankite-bearing kelyphite observed in sample A2C2 can be		Formattato: Pedice
566	modelled.		
567			
568	$(Mg,Fe)_2SiO_4-(ol) + (Mg,Fe,Ca)_3Al_2Si_3O_8-(gt) + ZrSiO_4-(zrc) + TiO_2-(ru) =$		
569	$\frac{1}{2} = \frac{1}{2} O_6 \frac{1}{2} O_7 \frac{1}{2$		
570			
571	<u>(2)</u> Therefore, in order to calculate the pseudosection In order to model the low P,		
572	high T reaction between garnet and olivine in a Zr and Ti bearing system, www e considered a		
573	the bulk composition of the kelyphite, retrieved by mass-balancing the compositions of the		
574	reactant $gt + ol$, and the kelyphite products $opx + cpx + sp$ occurring in sample A2C2 (Table		
575	2), doped with 3 mol% rutile and 1 mol% zircon (Table SM 2), consisting of garnet and		

576	olivine in equal amounts, using the mineral compositions measured in garnet peridotite A2C2,		
577	and assuming a bulk XTi_=_0.75 (Fig. 9c) and XTi=0.25 (Fig. 9d). In this more complex		
578	system, the stability of srilankite is expanded shifted at lower temperatures at lower		
579	temperaturesby around 20°C (Fig. 11) - and is not dependent on the bulk XTi. In this system,		
580	the srilankite-forming reaction (unbalanced) becomes:		
581			
582	$(Mg,Fc)_2SiO_4-(ol) + (Mg,Fc,Ca)_3Al_2Si_3O_8-(gt) + ZrSiO_4-(zrc) + TiO_2-(ru) = $		
583	$= (Mg,Fe)_2Si_2\Theta_6 + (opx) + Ca(Mg,Fe)Si_2\Theta_6 + (epx) + (Mg,Fe)Al_2\Theta_4 + (sp) + (Zr,Ti)_2\Theta_4 + (sril)$		
584	(2)		
585	meaning that		
586	In the pseudosections, srilankite in equilibrium with $opx_{-\pm}sp = a \pm nd cpx + should be$		
587	formed stable againstat the expenses of either zircon + (Fig. 8c) or rutile-(Fig. 8d), depending		
588	on XTi ^{bulk} , at $T_{\underline{T}} = \ge 810970 \cdot 1000^{\circ}$ C at 0.9 GPa. This temperature is higher consistent		Formattato: Tipo di carattere:
589	withcompared to that estimated those retrieved for the post-eclogitic peak by using the		Corsivo
590	TaOpx/Cpx and NTCpx thermometers (820-830°C at 0.9 GPa; sample A2C2) and the		
591	SSp/Sapp thermometer (850°C at 0.9 GPa; samples MD20 and MD25). for the post eclogitic		
592	peak using the pyroxene solvus thermometers.		
593	However, at this stage the uncertainties associated to the temperatures retrieved from this		Formattato: Evidenziato
593 594	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental		Formattato: Evidenziato
593 594 595	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of		Formattato: Evidenziato
593 594 595 596	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50–100°C.		Formattato: Evidenziato
593 594 595 596 597	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50–100°C.		Formattato: Evidenziato
593 594 595 596 597 598	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50–100°C. Eclogites		Formattato: Evidenziato
593 594 595 596 597 598 599	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50-100°C. Eclogites Thermobarometry		Formattato: Evidenziato
593 594 595 596 597 598 599 600	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50-100°C. Eclogites Thermobarometry <u>Temperatures-P_T</u> conditions of the eclogite-facies and of the post eclogitic peaks have		Formattato: Evidenziato
593 594 595 596 597 598 599 600 601	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50–100°C. Eclogites Thermobarometry <i>Temperatures P_T</i> conditions of the eclogite-facies and of the post eclogitic peaks have been estimated for type "E" eclogites (sample B5), representative of the average mafic rocks		Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere:
593 594 595 596 597 598 599 600 601 602	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of orilankite could be shifted most likely at lower temperatures by 50–100°C. Eclogites Thermobarometry <u>Temperatures-P-T</u> conditions of the eclogite-facies and of the post eclogitic peaks have been estimated for type "E" eclogites (sample B5), representative of the average mafic rocks of Duria.		Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
593 594 595 596 597 598 599 600 601 602 603	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50-100°C. Eclogites Thermobarometry <u>Temperatures-P-T</u> conditions of the eclogite-facies and of the post eclogitic peaks have been estimated for type "E" eclogites (sample B5), representative of the average mafic rocks of Duria. Temperatures for the eclogitic peak have been retrieved by using the thermometer of	\langle	Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
593 594 595 596 597 598 599 600 601 602 603 604	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50-100°C. Eclogites Thermobarometry <i>Temperatures-P_T</i> conditions of the eclogite-facies and of the post eclogitic peaks have been estimated for type "E" eclogites (sample B5), representative of the average mafic rocks of Duria. Temperatures for the eclogitic peak have been retrieved by using the thermometer of (Krogh-Ravna; (2000), based on the FeMg exchange between cpx and gt (cpx-gt in Fig. 12	\langle	Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
593 594 595 596 597 598 599 600 601 602 603 604 605	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50-100°C. Eclogites <i>Thermobarometry Temperatures P_T</i> conditions of the eclogite-facies and of the post eclogitic peaks have been estimated for type "E" eclogites (sample B5), representative of the average mafic rocks of Duria. Temperatures for the eclogitic peak have been retrieved by using the thermometer of (Krogh-Ravna; (2000), based on the FeMg exchange between cpx and gt_(cpx-gt in Fig. 12 a). Peak pressures were estimated by using the barometer of Ravna and Terry (2004), based		Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
593 594 595 596 597 598 599 600 601 602 603 604 605 606	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50-100°C. Eclogites Thermobarometry <u>Femperatures P-T</u> conditions of the eclogite-facies and of the post eclogitic peaks have been estimated for type "E" eclogites (sample B5), representative of the average mafic rocks of Duria. Temperatures for the eclogitic peak have been retrieved by using the thermometer of (KroghRavna-(2000), based on the FeMg exchange between cpx and gt (cpx-gt in Fig. 12 a). Peak pressures were estimated by using the barometer of Ravna and Terry (2004), based on the net transfer reaction diopside + kyanite = grossular + pyrope + quartz/coesite (gt-cpx-		Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50-100°C. Eclogites <i>Thermobarometry Femperatures</i> - <i>P</i> - <i>T</i> conditions of the eclogite-facies and of the post eclogitic peaks have been estimated for type "E" eclogites (sample B5), representative of the average mafic rocks of Duria. Temperatures for the eclogitic peak have been retrieved by using the thermometer of (KroghRavna; (2000), based on the FeMg exchange between cpx and gt (cpx-gt in Fig. 12 a). Peak pressures were estimated by using the barometer of Ravna and Terry (2004), based on the net transfer reaction diopside + kyanite = grossular + pyrope + quartz/coesite (gt-cpx- ky-qtz/coe in Fig. 12 a). The composition of preserved omphacite crystals included in kyanite		Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608	However, at this stage the uncertainties associated to the temperatures retrieved from this new thermodynamic model are difficult to predict. Looking forward to experimental constraints in more complex systems, we can infer that in natural systems the stability field of srilankite could be shifted most likely at lower temperatures by 50–100°C. Eclogites <i>Thermobarometry</i> <i>Temperatures-P_T</i> conditions of the eclogite-facies and of the post eclogitic peaks have been estimated for type "E" eclogites (sample B5), representative of the average mafic rocks of Duria. <u>Temperatures for the eclogitic peak have been retrieved by</u> using the thermometer of (Krogh-Ravna; (2000), based on the FeMg exchange between cpx and gt (cpx-gt in Fig. 12 a). Peak pressures were estimated by using the barometer of Ravna and Terry (2004), based on the net transfer reaction diopside + kyanite = grossular + pyrope + quartz/coesite (gt-cpx- ky-qtz/coe in Fig. 12 a). The composition of preserved omphacite crystals included in kyanite and of porphyroclastic garnet cores have been used for the calculations (Table 2). Additional		Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

610	calibration after by Tomkins et al. (-2007) (Zr-in-ru in Fig. 12). calibration after Tomkins et		
611	al., 2007), considering the Zr content in rutile included in garnet (343–352 ppm Zr; see Table		
612	4).; ii) Ti in quartz (calibration after Wark & Watson, 2006), considering the Ti content of		
613	porphyroclastic quartz. Zr-in-rutile ranges from 343 to 621 ppm, which corresponds to a T		
614	range from 660°C to 712°C, while the average Ti content in quartz is 43 ppm, corresponding		
615	to $T = 654^{\circ}C$ (Fig. 9). This temperature range intersects the temperatures estimated using the		
616	epx-gt thermometer at pressures between 1.5 and 2.5 GPa.		
617	The intersection of the thermometers cpx-gt and Zr-in-ru with the barometer gt-cpx-ky-		
618	gtz/coe provides a concordant estimate of peak conditions at $P = 3.0$ GP a and $T = 740$ –		Formattato: Tipo di carattere:
619	750°C, slightly above the quartz/coesite transition (dashed line in Fig. 12 a) These pressures		Formattato: Tipo di carattere:
620	are higher than those estimated by using the Jd in cpx barometer of Holland (1980) (1.35-GPa	l	Corsivo
621	at 700°C), based on the reaction albite = jadeite + quartz and the jadeite content in omphacite,		
622	which provides minimum estimates for omph-bearing assemblages. P	(Formattato: Non Evidenziato
623	\leq 2.5 GPa at T ~ 700°C are consistent with the presence of pargasitic amphibole in the	(Formattato: Evidenziato
624	eclogite-facies peak assemblage, which should disappear at ~2.4 GPa at 700°C for MORB		
625	compositions at H ₂ O-saturated conditions ((Schmidt and Poli, 1998); Fig. 9). It is noteworthy		Formattato: Evidenziato
626	that the estimated P, T conditions for the eclogitic peak are close to the experimental wet	٦	Formattato: Evidenziato
627	solidus of MORB basalts, but dehydration melting temperatures in fluid-absent zoisite-		
628	bearing eclogites are as high as ~1000°C at 2.4 GPa (Skjerlie and Patino Douce, 2002).		
629	The <u>P, T_T</u> conditions of the post-eclogitic peak have been estimated using the		Formattato: Tipo di carattere:
630	compositions of the minerals forming symplectites replacing kyanite, garnet and omphacite,	\searrow	Formattato: Tipo di carattere:
631	and those of garnet rims in contact with them. In particular, orthopyroxene found in a relict	l	Corsivo
632	opx+pl -symplectite replacing garnet kyanite in contact with relict garnet (Fig. 7 c;		
633	supplementary Fig. SM7) wasas considered for the Ca-in-opx thermometer of Brey & Köhler		
634	(1990) corrected by Nimis and Grütter (2010), and for the barometer of Lal (1993), based on		
635	the <u>net transfer reaction</u> reactions enstatite_+ anorthite= pyrope+ grossular+ quartz <u>(gt-</u>		
636	opx-pl-q in Fig. 12 b). Clinopyroxene forming cpx+pl symplectites replacing omphacite in		
637	contact with <u>relict</u> garnet was used for the barometer of (Eckert et al., 1991), based on the		
638	reaction_net_transfer_diopside+ anorthite_ = pyrope+ grossular+ quartz (gt-cpx-pl-q in Fig.		
639	<u>12 b</u>). Temperature for the post eclogitic peak were estimated also by using the thermometer		
640	of (Sato et al., (2006), based on the FeMg exchange between spinel and sapphirine (sapp-sp		
641	in Fig. 12), assemblage found in symplectites replacing kyanite (e.g., Fig. 7 c), and by using		
642	the thermometer Zr-in-ru, considering the Zr content of rutile embedded in symplectites (567-		
643	<u>845 ppm Zr; Table 4)</u>		

644	The highest- <u>P-<i>T</i> conditions</u> and T, <u><i>T</i> = 85840-8508</u> °C at <u><i>P</i> = $\frac{1.2}{0.8-1.0}$ GPa, are</u>		Formattato: Tipo di carattere: Corsivo
645	provided by the intersection of the barometers gt-opx-pl-q and gt-cpx-pl-q, barometer and the	\mathbb{N}	Formattato: Tipo di carattere: Non
646	thermometer sapp-sp-thermometer, while <u>T_T</u> estimated using the Ca-in-opx (755–760°C at	$\langle \rangle \rangle$	Corsivo Formattato: Tipo di carattere:
647	0.85–0.95 GPa) and the Zr-in-ru (690–740°C at 0.85–0.95 GPa) themrometer thermometers is	$ \setminus $	Corsivo
648	are slightly considerably lower, suggesting partial ri-equilibration during retrogression (822°C		Formattato: Tipo di carattere: Corsivo
649	at 1.2 GPa) .		Formattato: Tipo di carattere:
650	<u>Peak These P, T-P-T conditions retrieved for type "E" eclogites, which are very close to</u>		Formattato: Tipo di carattere:
651	the experimental gt-in and well above the wet solidus reported by Schmidt & Poli (1998)	\searrow	Corsivo
652	(grey dashed lines in Fig. 9), are comparable to <u>P, T_T</u> conditions retrieved estimated in		Corsivo
653	<u>Duria peridotites</u> for both the eclogite-facies ($P \approx 3.0$ GPa and $T \approx 750^{\circ}$ C) and the post-	\mathbb{N}	Formattato: Tipo di carattere: Corsivo
654	eclogitic LP HT metamorphism ($P \approx 0.9$ GPa and $T \approx 850^{\circ}$ C) in peridotites.	\mathbb{N}	Formattato: Tipo di carattere:
655		\mathbb{N}	Formattato: Tipo di carattere:
656	Thermodynamic modelling		
657	The bulk composition of type "E" eclogite B5 was considered for the calculation of $\underline{P-H_2O}$		Corsivo
658	and P. T. P. T. (Fig. 10a) and P-X (Fig. 10b, Fig. 11a) pseudosections in the system	$\langle \rangle \rangle$	Formattato: Tipo di carattere: Corsivo
659	<u>KNCFMASH (Fig. 13)</u> . The $P-H_2O$ pseudosection (Fig. 13 a), calculated at fixed <u>$T = 750^{\circ}C$</u>	\mathbb{N}	Formattato: Tipo di carattere:
660	in the light of <u><i>T</i></u> estimated by means of conventional thermometry, serves to estimate the	$\langle \rangle$	Formattato: Pedice
661	amount of the component H ₂ O accounting for the presence of K-feldspar in Duria mafic	$\langle \rangle$	Formattato: Tipo di carattere:
662	rocks, occurring as a relict eclogite-facies phase together with garnet, omphacite, kyanite and	$\left \right \right $	Formattato: Tipo di carattere:
663	quartz. In figure 13 a, X represents the H ₂ O component added to the dry bulk composition B5	. \ \ \	Corsivo
664	(Table 1; see also supplementary Table SM2). K-feldspar is stable with garnet, omphacite,	//	Formattato: Tipo di carattere: Corsivo
665	kyanite quartz and phengite for $P > 1.8$ GPa and a maximum bulk H ₂ O content of 0.1 wt%,	$ \rangle $	Formattato: Tipo di carattere: Corsivo
666	above which K-feldspar disappears. Therefore, a H_2O undersaturated conditions with bulk	()	Formattato: Pedice
667	H_2O contents below 1 wt% are needed to stabilise K feldspar at P > 1.7 GPa (Fig. 10b),		Formattato: Tipo di carattere: Corsivo
668	observed as porphyroclasts in Borgo eclogites type "E" and "ME". However, at these		Formattato: Pedice
669	pressures bulk H_2O contents > 1 wt% are necessary for the stability of pargasitic amphibole,		Formattato: Tipo di carattere:
670	often found in type "E" eclogites. P, T_T pseudosection shown in Figure 10a ishas been		Formattato: Pedice
671	calculated with assuming an intermediate bulk H_2O content of = 0.0054 wt% (Fig. 13 a).	\backslash	Formattato: Tipo di carattere:
672	Pseudosections indicate that the XOr of K-feldspar increases as pressure increases, being 0.97		Formattato: Tipo di carattere:
673	at 2.5 GPa, 0.98 at 2.7 GPa and 0.99 at 3.0 GPa and 750°C. These values are comparable to		Corsivo
674	the K-feldspar compositions measured in samples D3 (0.970-0.978; eclogite type E) and D6		
675	(0.986; eclogite type ME), thus confirming high-pressure conditions up to 3 GPa for these		
676	rocks, suggested by conventional thermobarometry.		

677	For this relatively low H ₂ OFor this low water content, the amphibole-out is shifted at lower		Formattato: Pedice
678	P_P_compared with the wet amphibole-out found experimentally by Schmidt & Poli (1998)		Formattato: Tipo di carattere:
679	(black dashed line in Fig. 10a13 b), and the predicted phase assemblage at 2.5 GPa and 700°C	l	Conside
680	is omphacite (57 vol%), garnet (29 vol%), quartz (6 vol%), kyanite (5 vol%), K feldspar (2		
681	vol%) and phengite (<1 vol%). At $T = 750^{\circ}$ C, amphibole (pargasite) is predicted to be stable		Formattato: Tipo di carattere:
682	only at $P < 1.75$ GPa in equilibrium with Na-rich plagioclase, so it is not thought to be a peak		Formattato: Tipo di carattere:
683	<u>high-pressure phase.</u> Amphibole + K-feldspar assemblage is stable at $P < 1.7$ GPa and $T =$	l	Corsivo
684	700°C independently form the bulk H ₂ O content. However, at these <u>P, T conditions the</u>		Formattato: Tipo di carattere:
685	predicted composition of K feldspar is relatively Ab rich and Or poor (Or75 at 1.65 GPa and	l	Corsivo
686	700°C). K-feldspar compositions XOr = 0.970-0.978, measured in type "E" eclogites, are		
687	stable at P = 2.4 2.6 GPa at 700°C (fig. 10 a, b), which are comparable to P, T conditions		
688	estimated for the eclogitic peak through conventional thermobarometry.		
689	In the <u>P, T pseudosection, oO</u> rthopyroxene and spinel, found in symplectites replacing		Formattato: Tipo di carattere:
690	garnet and kyanite and garnet, respectively, are is stable at P_P < 0.91.0 GPa at 850°C (Fig. 13		Formattato: Tipo di carattere:
691	b). However, symplectites after kyanite contain also sapphirine + spinel, which are is never	l	Corsivo
692	stable for the composition B5. Bearing in mind that aluminium is a relatively inert		
693	component, we modelled <u>LP-HT</u> <u>coronitic</u> reactions involving kyanite by calculating a <u>$PT-X$</u>		Formattato: Tipo di carattere:
694	pseudosection at fixed $P = 0.9$ GPa in the system KNCFMAS, where the sliding composition	\geq	Formattato: Tipo di carattere:
695	X represents a decreasing amount of kyanite <u>component</u> added to the <u>a</u> bulk <u>rock-symplectite</u>		Corsivo
696	<u>composition B5-from 2530 wt%</u> ($X = 0$ in Fig. <u>14</u> 14a) to 0 wt% ($X = 1$ in Fig. <u>14</u> 4a) (see	\setminus	Corsivo
697	supplementary Table SM2). The symplectite compositions has been retrieved by considering	\mathbb{N}	Formattato: Tipo di carattere: Corsivo
698	the phase proportions in the micro-domain, obtained by means of image analysis of X-ray		Formattato: Tipo di carattere:
699	maps, and the phase compositions (sample B5 - Symp2 in Table 2). The retrieved phase		Formattato: Tipo di carattere:
700	proportions in this micro-domain, excluding the non-symplectitic phases garnet, quartz,	l	Corsivo
701	amphibole and rutile, is: Ab-rich plagioclase 37 vol%; clinopyroxene 25 vol%; An-rich		
702	plagioclase 21 vol%; spinel 10 vol%; orthopyroxene 5 vol%; sapphirine 1.5 vol%. In this		
703	way, we modelled the phase stability fields for micro-domains close to kyanite porphyroclasts		
704	interacting with the surrounding rock assuming perfectly dry conditions. The $\underline{TP} - X$		Formattato: Tipo di carattere:
705	pseudosection calculated at 850°C, assuming a low bulk H2O content of 0.01 wt%, shows that	l	Corsivo
706	for kyanite-enriched compositions sapphirine		
707	the orthopyroxene stability field is expanded at higher pressures, up to 1.25 GPa, which is		
708	nearly coincident with the P, T estimated using conventional thermobarometry. By balancing		
709	the phase compositions predicted by the thermodynamic model at 2.5 GPa and 700°C		

710	(reagents), and at 1.2 GPa, 850°C and X=0.33 (products), we obtained the following opx-	
711	producing reaction:	
712		
713	<mark>-0.81 gt (Py₄₅Alm_{0.32}Gr_{0.33}) + 1.57 q =</mark>	Formattato: Evidenziato
714	1.00 opx (En₂₂) + 0.87 pl (An₆₁) + 0.56 FeMg₋₁ (3)	
715		
716	where FeMg ₊ represents a vector accounting for the Fe-Mg exchange between gt and opx.	
717	The P-X pseudosection shows also that sapphirine-bearing assemblages become stable at P	Formattato: Tipo di carattere:
718	<u><i>P</i></u> < 0.88 GPa for bulk compositions enriched in ky (> 23 wt%; $X < 0.25$ in figure 11 a), but at	Corsivo
719	these conditions sapphirine coexists with cordierite, which has never been observed in	
720	symplectites. The stability field of sapphirine is expanded up to $\frac{P_P}{P} = 0.91$ GPa if $\frac{20}{100}$ wt%	Formattato: Tipo di carattere:
721	kyanite is added to the bulk rock B5 ($X = 0.33$ in figure 11 a). At these P, T, X conditions,	Corsivo
722	sapphirine is in equilibrium with opx, gt, amph and pl. By decreasing the ky content towards	
723	the composition B5, the adjacent fields contain also spinel. This suggests that a small	
724	fluctuation in the kyanite/bulk rock ratio in the micro-domain surrounding a kyanite	
725	porphyroclast that is getting destabilised during LP-HT metamorphism can lead to the	
726	assemblage plagioclase + sapphirine towards the inner part of the reaction front and	
727	plagioclase + spinel towards the outer part of the reaction front. By balancing the phase	
728	compositions predicted by the model at 2.5 GPa and 700°C (reagentsreactants), and at 0.90	
729	GPa, 850°C and X_=_0.33 (products), we obtained the following sapp-producing reaction:	
730		
731	7.83 ky + 5.31 omph (Jd_{38}) + 0.25 gt $(Py_{45}Alm_{0.32}Gr_{0.33})$ =	
732	$= 5.63 \text{ pl} (\text{An}_{63}) + 1.25 \text{ albite} + 1.00 \text{ sapp} (\text{Sapp}_{85}) $ (4)	
733		
734	(cf. Carswell <u>at-et</u> al., 1989)	
735	and, using the sp and pl compositions predicted at 0.88 GPa, 850°C and X=0.4, the	
736	following sp-bearing reaction:	
737		
738	$1.54 \text{ ky} + 0.58 \text{ omph } (Jd_{38}) + 0.25 \text{ gt} (Py_{45}Alm_{0.32}Gr_{0.33}) =$	
739	$= 0.94 \text{ pl} (\text{An}_{61}) + 1.00 \text{ sp} (\text{Sp}_{68}) + 0.38 \text{ albite} $ (5)	Commento [OU1]: wo
740		"mosaic" equilibrium, with An at
741	Corundum has been found in symplectites replacing kyanite in eclogites type "HAE",	the place of kyanite (and zoisite?)
742	associated to sapphirine, spinel and An-rich plagioclase. In order to constrain the stability	and An59 after omphacite.
743	field of this assemblage, we performed also for these rocks a P-X pseudosection at fixed $T_{\underline{T}}$	Formattato: Tipo di carattere: Corsivo

744	= 850°C, where X = 1 accounts for the bulk composition of sample D9 + 0.01 wt% H_2O , and		
745	$X = \Theta - \Omega$ represents bulk D9 with 30 wt% added kyanite (Fig. 11b). At these conditions,		
746	corundum is stable with sapphirine at \underline{P} = 1.28 GPa for the composition D9 (X = 1). By		Formattato: Tipo di carattere:
747	increasing the kyanite/rock ratio, the assemblage corundum + sapphirine becomes stable at		Corsivo
748	lower P, down to 1.03 GPa at $X = 0$. Considering the omphacite composition predicted at 2.5		
749	GPa and 700°C, a possible corundum-forming reaction could be:		
750			
751	2.8 omph $(Jd_{35}) + 1.00$ kyanite = 1.82 cpx $(Di_{0.93}Hed_{0.07}) + 1$ corundum + 1 albite (6)		
752			
753	(Johansson and Möller, 1986).		
754	The P-X pseudosection of Figure 11b shows that spinel never coexists with corundum +		
755	sapphirine. Spinel occurs with sapphirine at \underline{P} \underline{P} < 0.87 GPa and X > $\underline{\sim}$ 0.3, corresponding to		Formattato: Tipo di carattere:
756	$< -\simeq 20$ wt% of kyanite added to the bulk rock D9, or at <u>P_P</u> up to 1.23 for composition D9		Formattato: Tipo di carattere:
757	without addition of kyanite.		Corsivo
758	Togliere il discorso zoisite A double corona replacing cm-sized zoisite has been found in		Formattato: Evidenziato
759	the HAE eclogite D1 (Fig. 5g). The inner corona consists of An-rich plagioclase, while the		
760	outer part is formed by a symplectitic intergrowth of pl+sapp+sp+cor. Because this		
761	symplectite is almost identical to symplectites surrounding kyanite, we developed a model in		
762	order to investigate whether this assemblage can develop also by LP-HT reactions involving		
763	zoisite. Analogously to P-X pseudosections calculated at 850 °C for samples B5 and D9, we		
764	considered a sliding composition from bulk rock $D1 + 0.01$ wt% of H_2O (X = 1 in figure 12a)		
765	to D1 enriched with 100 wt% of zoisite (X = 0). Furthermore, we calculated also a X- aH_2O		
766			
767	pseudosection at fixed $P_{\underline{P}} = 1.2$ GPa and $T_{\underline{T}} = 850^{\circ}$ C (Fig. 12b) in order to investigate the		Formattato: Tipo di carattere:
	pseudosection at fixed $P_{\underline{P}} = 1.2$ GPa and $T_{\underline{T}} = 850^{\circ}$ C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_{\underline{P}} = 1.0$ GPa for X	K	Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato
768	pseudosection at fixed $P_P = 1.2$ GPa and $T_T = 850^{\circ}$ C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite,		Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere:
768 769	pseudosection at fixed $P_P = 1.2$ GPa and $T_T = 850^{\circ}$ C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_P = 1.2$ GPa, zoisite disappears		Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato
768 769 770	pseudosection at fixed $P_P = 1.2$ GPa and $T_T = 850^{\circ}$ C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_P = 1.2$ GPa, zoisite disappears at X > 0.55, where the stable assemblage is amph+pl+cpx+H ₂ O. At X > 0.9, sapphirine		Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere: Formattato: Tipo di carattere:
768 769 770 771	pseudosection at fixed $P_P = 1.2$ GPa and $T_T = 850$ °C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_P = 1.2$ GPa, zoisite disappears at X > 0.55, where the stable assemblage is amph+pl+cpx+H ₂ O. At X > 0.9, sapphirine becomes a stable phase. For compositions close to D1, the assemblage corundum + sapphirine		Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato
768 769 770 771 772	pseudosection at fixed $P_P = 1.2$ GPa and $T_T = 850$ °C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_P = 1.2$ GPa, zoisite disappears at X > 0.55, where the stable assemblage is amph+pl+cpx+H ₂ O. At X > 0.9, sapphirine becomes a stable phase. For compositions close to D1, the assemblage corundum + sapphirine is stable slightly above 1.2 GPa while spinel + sapphirine are stable slightly below. However,		Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Evidenziato Formattato: Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere:
768 769 770 771 772 773	pseudosection at fixed- $P_P = 1.2$ GPa and $T_T = 850$ °C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_P = 1.2$ GPa, zoisite disappears at X > 0.55, where the stable assemblage is amph+pl+cpx+H ₂ O. At X > 0.9, sapphirine becomes a stable phase. For compositions close to D1, the assemblage corundum + sapphirine is stable slightly above 1.2 GPa while spinel + sapphirine are stable slightly below. However, X- <i>a</i> H ₂ O pseudosection calculated at 1.2 GPa and 850°C shows that LP-HT assemblages after		Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato
768 769 770 771 772 773 774	pseudosection at fixed $P_P = 1.2$ GPa and $T_T = 850$ °C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_P = 1.2$ GPa, zoisite disappears at X > 0.55, where the stable assemblage is amph+pl+cpx+H ₂ O. At X > 0.9, sapphirine becomes a stable phase. For compositions close to D1, the assemblage corundum + sapphirine is stable slightly above 1.2 GPa while spinel + sapphirine are stable slightly below. However, X- <i>a</i> H ₂ O pseudosection calculated at 1.2 GPa and 850°C shows that LP-HT assemblages after zoisite are highly dependent on water activity (i.e., on the H ₂ O chemical potential). For <i>a</i> H ₂ O		Formattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Evidenziato
768 769 770 771 772 773 774 775	pseudosection at fixed $P_P = 1.2$ GPa and $T_T = 850$ °C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_P = 1.2$ GPa, zoisite disappears at X > 0.55, where the stable assemblage is amph+pl+cpx+H ₂ O. At X > 0.9, sapphirine becomes a stable phase. For compositions close to D1, the assemblage corundum + sapphirine is stable slightly above 1.2 GPa while spinel + sapphirine are stable slightly below. However, X- <i>a</i> H ₂ O pseudosection calculated at 1.2 GPa and 850°C shows that LP-HT assemblages after zoisite are highly dependent on water activity (i.e., on the H ₂ O chemical potential). For <i>a</i> H ₂ O < -1.50, the breakdown of zoisite will produce An-rich plagioclase only up to X = 0.45 (added		Formattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: Evidenziato
768 769 770 771 772 773 774 775 776	pseudosection at fixed $P_P = 1.2$ GPa and $T_T = 850$ °C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_P = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_P = 1.2$ GPa, zoisite disappears at X > 0.55, where the stable assemblage is amph+pl+cpx+H ₂ O. At X > 0.9, sapphirine becomes a stable phase. For compositions close to D1, the assemblage corundum + sapphirine is stable slightly above 1.2 GPa while spinel + sapphirine are stable slightly below. However, X- <i>a</i> H ₂ O pseudosection calculated at 1.2 GPa and 850°C shows that LP-HT assemblages after zoisite are highly dependent on water activity (i.e., on the H ₂ O chemical potential). For <i>a</i> H ₂ O < -1.50, the breakdown of zoisite will produce An-rich plagioclase only up to X = 0.45 (added zoisite 54 wt%), which is accomplished by the following reaction:		Formattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: Evidenziato
768 769 770 771 772 773 774 775 776 777	pseudosection at fixed $P_{\underline{P}} = 1.2$ GPa and $T_{\underline{T}} = 850^{\circ}$ C (Fig. 12b) in order to investigate the role of H ₂ O. The P-X pseudosection shows that zoisite is stable down to $P_{\underline{P}} = 1.0$ GPa for X < 0.55, corresponding to 45 wt% of added zoisite. By decreasing the amount of added zoisite, the stability field of zoisite is shifted at higher pressures. At $P_{\underline{P}} = 1.2$ GPa, zoisite disappears at X > 0.55, where the stable assemblage is amph+pl+cpx+H ₂ O. At X > 0.9, sapphirine becomes a stable phase. For compositions close to D1, the assemblage corundum + sapphirine is stable slightly above 1.2 GPa while spinel + sapphirine are stable slightly below. However, X- <i>a</i> H ₂ O pseudosection calculated at 1.2 GPa and 850°C shows that LP-HT assemblages after zoisite are highly dependent on water activity (i.e., on the H ₂ O chemical potential). For <i>a</i> H ₂ O < -1.50, the breakdown of zoisite will produce An-rich plagioclase only up to X = 0.45 (added zoisite 54 wt%), which is accomplished by the following reaction:		Formattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: EvidenziatoFormattato: Tipo di carattere: Corsivo, EvidenziatoFormattato: Evidenziato

778	2 zoisite + 1 kyanite + 1 quartz = 4 anorthite + 1 H_2O (7)
779	
780	By decreasing the zoisite content towards composition D1, corundum + plagioclase are
781	stabilized first, suggesting the following reaction:
782	
783	1 zoisite + 1 kyanite = 2 anorthite + 0.5 corundum + 0.5 H_2O (8)
784	
785	(cf. O'Brien et al, 1992)
786	A further decrease in added zoisite results in the assemblages spinel + corundum +
787	plagioclase, spinel + plagioclase, sapphirine + spinel + plagioclase and eventually sapphirine
788	+ plagioclase for the composition D1. The following reactions can be retrieved by considering
789	as reactants the omphacite predicted at 2.5 GPa and 700°C, and as products spinel, sapphirine
790	and plagioclase predicted at 1.2 GPa and 850°C.
791	
792	2.83 kyanite + 1.00 zoisite + 0.27 omph $(Jd_{31}) =$
793	$= 2.94 \text{ plagioclase (An_{77})} + 1.67 \text{ corundum} + 0.21 \text{ spinel (Sp}_{65}) + 0.5 \text{ H}_2\text{O} $ (9)
794	
795	and
795 796	and
795 796 797	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) =
795 796 797 798	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10)
795 796 797 798 799	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10)
795 796 797 798 799 800	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite
795 796 797 798 799 800 801	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at
795 796 797 798 799 800 801 802	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between
795 796 797 798 799 800 801 802 803	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between kyanite/zoisite and the other surrounding high-pressure phases, in particular omphacite and
795 796 797 798 799 800 801 802 803 804	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between kyanite/zoisite and the other surrounding high-pressure phases, in particular omphacite and garnet.
795 796 797 798 799 800 801 802 803 803 804 805	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between kyanite/zoisite and the other surrounding high-pressure phases, in particular omphacite and garnet.
795 796 797 798 799 800 801 802 803 803 804 805 806	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between kyanite/zoisite and the other surrounding high-pressure phases, in particular omphacite and garnet. DISCUSSION
795 796 797 798 799 800 801 802 803 804 805 806 807	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between kyanite/zoisite and the other surrounding high-pressure phases, in particular omphacite and garnet. DISCUSSION
795 796 797 798 799 800 801 802 803 804 805 806 805 806 807 808	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between kyanite/zoisite and the other surrounding high-pressure phases, in particular omphacite and garnet. DISCUSSION It is noteworthy that the estimated P, <i>T</i> conditions for the eclogitic peak are slightly above
795 796 797 798 799 800 801 802 803 804 803 804 805 806 807 808 809	and 1.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between kyanite/zoisite and the other surrounding high-pressure phases, in particular omphacite and garnet. DISCUSSION It is noteworthy that the estimated P, <i>T</i> conditions for the eclogitic peak are slightly above the experimental wet solidus of MOR compositions at H ₂ O-saturated conditions (Schmidt
795 796 797 798 799 800 801 802 803 804 803 804 805 806 807 808 809 810	and I.47 kyanite + 1.00 zoisite + 0.69 omph (Jd31) = = 2.18 anorthite + 0.51 pl (An ₅₉) + 0.12 sapp (Sapp ₈₆) + 0.5 H ₂ O (10) Pseudosections suggest that in eclogites HAE the breakdown of both kyanite and zoisite can end up with anorthite-rich plagioclase associated to spinel, sapphirine and corundum at 1.2 GPa and 850°C, for low H ₂ O activities and a proper degree of interaction between kyanite/zoisite and the other surrounding high-pressure phases, in particular omphacite and garnet. DISCUSSION It is noteworthy that the estimated P, <i>T</i> conditions for the eclogitic peak are slightly above the experimental wet solidus of MOR compositions at H ₂ O-saturated conditions (Schmidt and Poli, 1998), but dehydration melting temperatures in fluid-absent zoisite-bearing eclogites

812

813		In the Duria area, relict eclogite-facies assemblages are still preserved both in garnet-
814		bearing peridotites and in different types of eclogites. In these rocks, high-pressure phases are
815		partially or completely replaced by low-P/high-T symplectitic intergrowths (Fig. 4 and 5).
816		Thermodynamic models and thermobarometric data estimated for the Duria garnet
817		peridotites are consistent with an equilibration at 90-100 kmXX GPa depth and temperatures
818		of 850-900°C. In garnet peridotites, LP-HT rReactions between garnet and olivine produced
819	1	opx coronas on the olivine side, and opx+cpx+sp symplectites on the garnet side. Srilankite
820		and zircon have been observed in textural equilibrium with these LP-HT minerals (Fig. 5a).
821		Srilankite is a very uncommon phase in peridotites, and its presence suggests that a certain
822		degree of metasomatism by a crust-derived Zr-bearing agent, has occurred during the post-
823		eclogitic stage. Magmatic srilankite has been reported in gabbroic veins cutting oceanic
824		peridotite in the Southwest Indian Ridge (Morishita et al., 2004), and srilankite inclusions in
825		upper-mantle pyrope-rich garnet equilibrated at 1.5-3.0 GPa and 600-800 °C have been found
826		in xenoliths from the Navajo Volcanic Field on the Colorado Plateau (Wang et al., 1999).
827		Srilankite formed through reaction between ilmenite and baddeleyite has been reported also in
828		mafic granulites from the Bergen Arcs in Western Norway equilibrated at $\frac{P}{P} < 1$ GPa and
829	1	800-850°C (Bingen et al., 2001). At Duria, srilankite composition Zr _{0.33} Ti _{0.66} O ₂ suggests
830		temperatures of equilibration of 850-900°C, which is consistent with temperatures estimated
831		by Ca-in-opx and opx-gt thermometry. Coherently with the absence of garnet in LP-HT
832	l	symplectites and the <u>low</u> Cr-content of symplectitic spinel, conventional barometry suggests
833		that post-eclogitic methamorphism metamorphism of garnet peridotites occurred below $\sim \frac{50}{2}$
834		50-km depth. Chlorite, anthophyllite, phlogopite and magnesiohornblende represent late-
835		stage, amphibolite-facies intergrowths overprinting high-temperature symplectites.
836		Eclogites from Duria are characterised by a broad major-element N-MORB signature.
837		Kyanite eclogites (KE), mafic eclogites (ME) and high-Al eclogites (HAE) have been
838		distinguished on the basis of the bulk chemistry using principal component analysis (Fig. 6).
839		Magnesiohornblende+plagioclase gneisses (AG) are interpreted as rocks recrystallised in
840	l	fluid-rich domains under amphibolite-facies conditions after the high-temperature event and
841		showing ductile flow deformation, and they have not been investigated in detail in this study.
842		Thermodynamic models and conventional thermobarometric data suggest that kyanite
843		eclogites from Duria underwent a high-pressure peak at ~80 km depth at temperature of about
844		700°C. The occurrence of K-feldspar as a high-pressure phase associated with pargasitic
845	l	amphibole and zoisite indicates water undersaturated conditions during the eclogitic peak,
	۰.	

Formattato: Tipo di carattere: Corsivo therefore characterised by a very low amount of the component H₂O-(Fig. 10b). In eclogites,
the following LP-HT symplectitic intergrowths have been observed: i) opx + pl replacing
garnet; ii) Di-rich, Jd-poor cpx + Ab-rich pl replacing omphacite; iii) An-rich pl ± sp ± sapp ±
cor replacing kyanite and zoisite. Conventional thermobarometry suggests that post-eclogitic
assemblages should have equilibrated below-above ~40 km depth at temperatures of about
850°C.

852 However, calculated P T pseudosections (i.e. isochemical phase diagrams) fail to 853 reproduce tThe mineral assemblages (iii) observed in symplectites could only be stablilised in Al₂O₃-rich compositional microdomains derived from destabilisation of kyanite.- In 854 855 particular, sapphirine bearing assemblages are never stable if the bulk composition of kyanite eclogites (E) is considered. We approached this issue by performing a material transfer study, 856 857 assuming that Al₂O₃ did not behave as a perfectly mobile component and, consequently, that 858 the composition of the micro-domain surrounding a high-pressure Al2O3-rich phase replaced 859 by LP HT minerals (i.e., kyanite and zoisite) is not equivalent to the composition of the bulk 860 rock. Because of the "inert" character of the component Al₂O₃ (cf. (Korzhinskii, 1959), we 861 preferred to express the variable content of Al₂O₃ as an extensive variable (weight amount of 862 the component Al₂SiO₅ (kyanite) or Ca₂Al₃Si₃O₁₂(OH) (zoisite) added to the bulk-rock 863 composition), rather than an intensive variable (e.g., μAl_2O_3) (see also (Tumiati et al., 2015)). 864 In the phase diagrams performed in order to model the LP-HT symplectites replacing kyanite 865 (Fig. 11a,b), X represents a sliding bulk composition where X=1 stands for the real bulk-rock 866 compositions B5 (kyanite eclogite; Fig. 11a) and D9 (high-Al eclogite; Fig. 11b) reported in 867 Table 1, and X=0 stands for 70 wt% of the same bulk compositions and 30 wt% of added 868 kyanite component. Phase diagrams demonstrate that sapphirine becomes stable in kyanite-869 eclogites only for a relatively high added kyanite component (X < 0.4) (Fig. 13) and, 870 therefore, this mineral should form in those areas of the symplectite micro-domain where the 871 component Al₂SiO₅ poorly riequilibrated with the surrounding rock. The material transfer 872 study performed through thermodynamic modelling is the best way to model the mineral 873 distribution observed in symplectites, 874 Far from these domains, sapphirine-free, spinel+plagioclase symplectites should-would 875 occur. Thermodynamic modelling also shows-predicts that considering the kyanite eclogite 876 composition, corundum is should never be stable in LP-HT symplectites replacing kyanite,

consistent with the absence of . In fact, corundum has never been observed in this eclogite

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt Formattato: Tipo di carattere:

(Predefinito) Times New Roman, 12 pt, Pedice

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt, Pedice

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt

878 type.

877

879 Accordingly to petrographic observations, cCorundum is instead predicted to may form in 880 high-Al eclogites. This is again consistent with petrographic evidence, since corundum occurs 881 The material transfer study performed through thermodynamic modelling is the best way to 882 model the mineral distribution observed in symplectites, where corundum occurs in the inner 883 part of the symplectitic pseudomorph after kyanite (X < 0.2), and it disappears in the outer 884 part of the symplectites, where sapphirine and eventually spinel form (Fig. 13). 885 886 **Duria in the Alpine framework** 887 The estimated P-, T-T conditions of Duria rocks, 850°C and 1.0 GPa, point to a granulitic 888 granulite-facies metamorphic stage, shared by both peridotites and mafic rocks, postdating a 889 former eclogite-facies peak at 700-750°C and 2.5-3.0 GPa. Granulite-facies assemblages are 890 in turn overprinted by late Barrovian amphibolite-facies metamorphism. Previous P-T 891 estimates for the high-pressure metamorphism displayed-evidenced inby garnet peridotite

892 from Duria $(3.0 \pm 0.2 \text{ GPa} \text{ and } 829 \pm 33^{\circ}\text{C}$ after (Nimis and Trommsdorff, 2001); 2.8 GPa 893 and 830°C after (Hermann et al., 2006)) are concordant with our new estimates. Hermann et 894 al. (2006) provided also P, T_T estimates of 0.7-1.0 GPa and 720°C for opx+sp+amph 895 symplectites surrounding garnet. These P, T_{T} conditions are lower compared to our 896 estimates on opx+cpx+sp, amph-free symplectites replacing garnet., Tthus, they may refer to 897 the post-granulitic, amphibolite-facies stage that we observed in both peridotite and mafic 898 rocks. On the basis of U-Pb SHRIMP data on zircons found in amph-bearing symplectites, 899 this stage occurred at 33-34 Ma and corresponds to the equilibration in the spinel peridotite 900 field (Hermann et al., 2006)..

Wy-bearing eclogites from the Duria area were only briefly acknowledged by Heinrich
(1986), but no evidence of high-temperature, post-eclogitic overprint was reported. However,
the author stressed out that the eclogites from the southern Adula Nappe record an eclogitefacies peak characterized by higher pressure and temperatures (c. 800°C and 2.4 GPa)
compared to northern Adula (500°C and 1.2 GPa).

Plagioclase + spinel coronas replacing kyanite have been reported by (Brouwer *et al.*,
2005) in eclogites from Borgoglio in Onsernone Valley, -ca. 50 km west from Monte Duria.
However, the authors do not claim a post-eclogitic high-temperature event for these rocks,
which are thought to have reiequilibrated at ~630°C and 0.6 GPa during regional Barrovian
metamorphism. Plagioclase + spinel + corundum symplectites after kyanite were described in
eclogite-amphibolites from Gorduno/Alpe Arami (-(ca. 15 km W from Mt Duria) by

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt

Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

912	(Brouwer, 2000), but the author did not provide P, <u>T</u> constraints for symplectite formation,		Formattat
913	suggesting $T_{\underline{T}} < 1050^{\circ}$ C on the basis of the absence of sapphirine. In fact, except in		Formattat
914	eclogites from Duria described in our study, sapphirine was never observed in symplectites in		Corsivo
915	eclogites from the Central Alps. However, sapphirine occurs as a rock-forming phase and as a		
916	symplectite constituent in granulites and charnokites from the Gruf Complex in Val Codera		
917	(Barker, 1964; Galli et al., 2011), ~ 20 km ENE from Monte Duria (Fig. 1). In these rocks,		
918	Permian in age, sapphirine occurs with opx, cordierite, gt, sillimanite and corundum,		
919	suggesting $\underline{T}_{\underline{T}} > 900^{\circ}$ C and $\underline{P}_{\underline{P}} = 0.85 \cdot 0.95$ GPa (Galli <i>et al.</i> , 2011). The high temperatures		Formattat
920	attained in the Gruf Complex haves been considered so far an unique evidence for UHT		Formattat
921	metamorphism in the Central Alps.		Corsivo
922	Other significant occurrences of UHT metamorphism overprinting eclogite-facies rocks		
923	are reported from the Rhodope massif and various localities of the Variscan basement in		
924	Europe. Plagioclase \pm sapphirine \pm corundum \pm spinel symplectites have been described in		
925	retrogressed eclogites from the central Rhodope in Greece (Liati and Seidel, 1996), and		
926	estimated <u>P, T_T</u> conditions for the granulite facies were T_800°C and <u>P_P</u> > 1.5 GPa.		Formattat
927	Discussing Rhodope granulitized eclogites, the authors stressed out that kyanite eclogites	$\langle \rangle$	Formattat
928	overprinted under granulite-facies conditions are known from the Variscan basement in	\setminus	Corsivo
929	Europe but not from the eclogites of Alpine age (cf. also Galli et al., 2011), voicing the		Corsivo
930	suspicion that these rocks could belong to a separate (pre-Alpine) tectonic unit. It should be		
931	noted, however, that this high-T granulite-facies metamorphism in central Rhodope was later		
932	questioned by (Moulas et al., 2013). Nevertheless, similar sapphirine-bearing symplectites		
933	overprinting eclogiteie phases have been described in Variscan units in Europe, for instance:		
934	i) Armorican Massif, France (Godard and Mabit, 1998); ii) Bohemian Massif, Moldanubian		
935	zone, Austria ((Carswell et al., 1989; Faryad et al., 2006; O'Brien, 1997); iii) Golfo Aranci,		
936	Sardinia, Italy (Franceschelli et al., 2007; Giacomini et al., 2005); iv) Lotru Metamorphic		
937	Suite, South Carpatians (Săbău et al., 2002); v) Pohorje, Estern Alps, Slovenia (Vrabec et al.,		
938	2012).		
939	Although new pressure and temperature estimated for the eclogitie-faciese peak in the		
940	Duria area are consistent with previous estimates concerning the Central Alps, in particular		
941	with garnet peridotites (e.g., Nimis & Trommsdorff, 2001) and eclogites (Brouwer et al.,		
942	2005) cropping out at Alpe Arami in the Southern Adula Nappe, a post-eclogiteie, high-		
943	temperature overprint involving ultramafic and mafic rocks has been never reported so far in		
944	Central Alps. Peridotites and eclogites from the Southern Adula display Alpine ages (Becker,		
945	1993; Brouwer et al., 2005; Gebauer, 1996; Gebauer et al., 1992). However, pre-Alpine high-		

Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

946	pressure metamorphic events have been dated by Liati et al. (2009) at 330-340 Ma in the
947	northern and c. 370 Ma in the middle Adula. Moreover, (Herwartz et al., 2011) report the case
948	of an eclogite of the Central Adula (Trescolmen) showing two distinct age populations, being
949	the older Variscan (332.7 Ma) and the younger Alpine (38 Ma). Therefore, these authors
950	suggested that Trescolmen eclogite was subducted during Varican orogeny and, later, it has
951	been subducted again during the Alpine orogeny. Variscan eclogite-facies rocks, namely
952	garnet peridotite and eclogite, dated back to ~330 Ma (Tumiati et al., 2003, 2007) are known
953	also in the Ulten zone (Eastern Alps; 150 km ENE from Duria). Pre-Alpine, low-P, high-T
954	metamorphism has been evidenced in Central Alps in some rocks from the Gruf Complex,
955	hosted in migmatites and characterized by UHT dated back to 282-260 Ma, followed by
956	Alpine (34-29 Ma) amphibolite-facies metamorphism at 720-740°C and 0.65-0.75 GPa (Galli
957	et al., 2013, 2011). The latter P, <u>T</u> conditions and ages are similar to those retrieved by
958	Hermann et al. (2006) from amphibole-bearing symplectites in retrogressed garnet peridotites
959	of Duria area, This LP-HT stage overprinting eclogite-facies rocks has never been reported
960	before in the Adula-Cima Lunga nappe. Our new data add one more piece to the puzzle of the
961	Central Alps, where Variscan and Alpine geodynamics interplayed, complicating the effort of
962	deciphering the age and tectonometamorphic evolution of each unit (Biino et al., 1997;
963	Brueckner, 2011; Liati et al., 2009).
964	
965	Our new low P, high T conditions estimated for the post eclogitic peak suggest that a re-
966	evaluation of the subduction-exhumation history and likely also of the age of pressure-peak in
967	garnet peridotites and eclogites of Duria are needed.
968	
969	CONCLUSIONS
970	Eclogite-facies rocks from Duria (Central Alps) share a common low-pressure, high-
971	temperature metamorphic event at c. 1 GPa and 850-900°C. The metamorphic conditions and
972	the petrological processes recorded by occurred in these rocks have been addressed by
973	performing conventional thermobarometry and complex thermodynamic forward modelling
974	of granulite-facies reactions involving Zr-bearing phases in peridotites and the high-pressure
975	minerals kyanite and zoisite in eclogites, resulting in spinel \pm sapphirine \pm corundum
976	symplectites. We have readily-modelled the LP-HT mineral assemblages characterising these
977	rocks by:

Formattato: Tipo di carattere: Corsivo

i) developing and integrating a new solid-solution model between ZrO_2 and TiO_2 with the
intermediate compound srilankite (Zr, Ti)2O4, calibrated against previously published high-
pressure experimental data.
ii) performing a material-transfer study using extensive properties, as the amount of poorly
mobile chemical components, rather than intensive properties (i.e., chemical potentials),
which are suitable only for perfectly mobile components.
This LP-HT stage overprinting eclogite-facies rocks has never been reported before in the
Adula-Cima Lunga nappe. Our new data add one more piece to the puzzle of the Central
Alps, where Varisean and Alpine geodynamics interplayed, complicating the effort of
deciphering the age and tectonometamorphic evolution of each unit (Biino et al., 1997;
Brueekner, 2011; Liati et al., 2009). Our new low-P, high-T conditions estimated for the post-
eclogitic peak suggest that a re-evaluation of the subduction-exhumation history and likely
also of the age of pressure-peak in garnet peridotites and eclogites of Duria are needed.
FUNDING
This work was supported by Italian Ministry of University and Research, [PRIN-
2012R33ECR]. This work also benefited from the University of Milano Bicocca FAR12/13
(12-1-2009100-139) and 2015-ATE-14440.
ACKNOWLEDGEMENTS
G.Godard, P. Nimis and an anonymous review, the editor J. Hermann
We thank Andrea Risplendente for the assistance at the scanning electron microscope and
electron microprobe. Discussion with J. Hermann and S. Poli helped to improve the
manuscript.
REFERENCES:
Baldwin, J. a., Powell, R., Williams, M. L. & Goncalves, P. (2007). Formation of eclogite,
and reaction during exhumation to mid-crustal levels, Snowbird tectonic zone, western
Canadian Shield. Journal of Metamorphic Geology 25, 953–973.
Becker, H. (1993). Garnet peridotite and eclogite Sm-Nd mineral ages from the Lepontine
dome (Swiss Alps): New evidence for Eocene high-pressure metamorphism in the
central Alps. Geology 21, 599.

- 1012 Berger, A., Burri, T., Alt-Epping, P. & Engi, M. (2008). Tectonically controlled fluid flow
- and water-assisted melting in the middle crust: an example from the Central Alps. *Lithos*1014 102, 598–615.
- 1015 Berger, A., Mercolli, I. & Engi, M. (2005). The central Lepontine Alps: notes accompanying
 1016 the tectonicpetrographic map sheet Sopra Ceneri (1:100 000). *Schweizerische*
- 1017 *Mineralogische Und Petrographische Mitteilungen* **85**, 109–146.
- Biino, G. G., Marquer, D. & Nussbaum, C. (1997). Alpine and pre-Alpine subduction events
 in polycyclic basements of the Swiss Alps. *Geology* 25, 751.
- 1020 Bingen, B., Austrheim, H. & Whitehouse, M. (2001). Ilmenite as a Source for Zirconium
- during High-grade Metamorphism? Textural Evidence from the Caledonides of Western
 Norway and Implications for Zircon Geochronology. *Journal of Petrology* 42, 355–375.
- Brouwer, F. M. (2000). Thermal Evolution of High-Pressure Metamorphic Rocks in the Alps.Utrecht University.
- Brouwer, F. M., Burri, T., Engi, M. & Berger, a (2005). Eclogite relics in the Central Alps:
 PT-evolution, Lu-Hf ages and implications for formation of tectonic melange zones. *Schweizerische Mineralogische Und Petrographische Mitteilungen* 85, 147–174.
- Brueckner, H. K. (2011). Geodynamics: Double-dunk tectonics. *Nature Geoscience*. Nature
 Publishing Group 4, 136–138.
- Burri, T., Berger, a & Engi, M. (2005). Tertiary migmatites in the Central Alps: Regional
 distribution, field relations, conditions of formation, and tectonic implications.
- 1032 Schweizerische Mineralogische Und Petrographische Mitteilungen 85, 215–232.
- 1033 Cancarevic, M., Zinkevich, M. & Aldinger, F. (2006). Thermodynamic Assessment of the
 1034 PZT System. *Journal of the Ceramic Society of Japan* 114, 937–949.
- 1035 Carswell, D. A., Moller, C. & O'Brien, P. J. (1989). Origin of sapphirine-plagioclase
 1036 symplectites in metabasites from Mitterbachgraben, Dunkelsteinerwald granulite
 1037 complex, Lower Austria . *Eur. Journal Mineral* 1, 455–466.
- 1038 Ciancaleoni, L. & Marquer, D. (2006). Syn-extension leucogranite deformation during
 1039 convergence in the Eastern Central Alps: example of the Novate intrusion. *Terra Nova*1040 18, 170–180.
- 1041 Connolly, J. a D. (2005). Computation of phase equilibria by linear programming: A tool for
 1042 geodynamic modeling and its application to subduction zone decarbonation. *Earth and*1043 *Planetary Science Letters* 236, 524–541.
- 1044 Dale, J. & Holland, T. J. B. (2003). Geothermobarometry, P-T paths and metamorphic field
- 1045 gradients of high-pressure rocks from the Adula Nappe, Central Alps. *Journal of*

1046 *Metamorphic Geology* **21**, 813–829.

- 1047 Dale, J., Holland, T. & Powell, R. (2000). Hornblende–garnet–plagioclase thermobarometry:
 1048 a natural assemblage calibration of the thermodynamics of hornblende. *Contributions to*1049 *Mineralogy and Petrology*. Springer Berlin Heidelberg 140, 353–362.
- 1050 Dewey, J. F., Helman, M. L., Knott, S. D., Turco, E. & Hutton, D. H. W. (1989). Kinematics
 1051 of the western Mediterranean. *Geological Society Special Publications* 45, 265–283.
- 1052 DIENER, J. F. A. & POWELL, R. (2012). Revised activity-composition models for
- 1053 clinopyroxene and amphibole. *Journal of Metamorphic Geology*. Blackwell Publishing
 1054 Ltd **30**, 131–142.
- Eckert, J. O., Newton, R. C. & Kleppa, O. J. (1991). The DH of reaction and recalibration of
 garnet–pyroxene–plagioclase–quartz geo- barometers in the CMAS system by solution
 calorimetry. *American Mineralogist* 76, 148–160.
- Evans, B. W. & Trommsdorff, V. (1978). Petrogenesis of garnet lherzolite, Cima di Gagnone,
 Lepontine Alps. *Earth and Planetary Science Letters* 40, 333–348.
- Faryad, S. W., Perraki, M. & Vrána, S. (2006). P-T evolution and reaction textures in
 retrogressed eclogites from Svetlik, the Moldanubian Zone (Czech Republic). *Mineralogy and Petrology* 88, 297–319.
- Franceschelli, M., Puxeddu, M., Cruciani, G. & Utzeri, D. (2007). Metabasites with eclogite
 facies relics from Variscides in Sardinia, Italy: A review. *International Journal of Earth Sciences* 96, 795–815.
- Frey, M. & Ferreiro-Mählmann, R. (1999). Alpine metamorphism in the Central Alps. *Schweizerische Mineralogische und Petrographische Mitteilungen* 79, 135–154.
- Fumasoli, M. W. (1974). Geologie des Gebietes nördlich und südlich der Jorio-Tonale-Linie
 im Westen von Gravedone (Como, Italia). Universität Zürich.
- 1070 Galli, A., Le Bayon, B., Schmidt, M. W., Burg, J. P. & Reusser, E. (2013).

1071 Tectonometamorphic history of the Gruf complex (Central Alps): Exhumation of a

granulite-migmatite complex with the Bergell pluton. *Swiss Journal of Geosciences* 106,
33–62.

- Galli, a., Le Bayon, B., Schmidt, M. W., Burg, J. P., Caddick, M. J. & Reusser, E. (2011).
 Granulites and charnockites of the Gruf Complex: Evidence for Permian ultra-high
- 1076 temperature metamorphism in the Central Alps. *Lithos*. Elsevier B.V. **124**, 17–45.
- 1077 Galster, F., Cavargna-Sani, M., Epard, J. & Masson, H. (2012). New stratigraphic data from
- 1078 the Lower Penninic between the Adula nappe and the Gotthard massif and consequences
- 1079 for the tectonics and the paleogeography of the Central Alps. *Tectonophysics* 579, 37–

1080 55.

1081	Gebauer, D. (1996). A P-T-t Path for an (Ultra?-) High-pressure Ultramafic/Mafic Rock-
1082	Association and its Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and
1083	Metamorphic Zircon Domains. Example: Alpe Arami (Central Swiss Alps). Geophysical
1084	Monograph Series 95 , 307–329.
1085	Gebauer, D., Grunenfelder, M., Tilton, G., Trommsdorff, V. & Sschimd, S. (1992). The
1086	geodynamic evolution of garnet-peridotites, garnet pyroxenites and eclogites of Alpe
1087	Arami and Cima Gagnone (Central Alps) from Early Proterozoic to Oligocene. Schweiz.
1088	Min. Petr. Mitt. 72, 107–111.
1089	Giacomini, F., Bomparola, R. M. & Ghezzo, C. (2005). Petrology and geochronology of
1090	metabasites with eclogite facies relics from NE Sardinia: Constraints for the Palaeozoic
1091	evolution of Southern Europe. Lithos 82, 221–248.
1092	Godard, G. & Mabit, J. L. (1998). Peraluminous sapphirine formed during retrogression of a
1093	kyanite-bearing ecologite from Pays de Leon, Armorican Massif, France. Lithos 43, 15-
1094	29.
1095	Godard, G. & Martin, S. (2000). Petrogenesis of kelyphites in garnet peridotites: A case study
1096	from the Ulten zone, Italian Alps. Journal of Geodynamics 30, 117–145.
1097	Heinrich, C. A. (1986). Eclogite facies regional metamorphism of hydrous mafic rocks in the
1098	Central Alpine Adula nappe. Journal of Petrology 27, 123-154.
1099	Hermann, J., Rubatto, D. & Trommsdorff, V. (2006). Sub-solidus Oligocene zircon formation
1100	in garnet peridotite during fast decompression and fluid infiltration (Duria, Central
1101	Alps). Mineralogy and Petrology 88, 181–206.
1102	Herwartz, D., Nagel, T. J., Münker, C., Scherer, E. E. & Froitzheim, N. (2011). Tracing two
1103	orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry. Nature
1104	Geoscience. Nature Publishing Group 4, 178–183.
1105	Holland, T. (1980). The reaction albite = jadeite * quartz determined experimentally in the
1106	range 600-1200.c. American Mineralogkt 65, 129–134.
1107	Holland, T. J. B. & Powell, R. (1998). An internally consistent thermodynamic data set for
1108	phases pf petrological interest. Journal of Metamorphic Geology 16, 309-343.
1109	Holland, T. & Powell, R. (2003). Activity?composition relations for phases in petrological
1110	calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy
1111	and Petrology. Springer-Verlag 145, 492-501.
1112	Johansson, L. & Möller, C. (1986). Formation of sapphirine during retrogression of a basaltic
1113	high-pressure granulite, Roan, Western Gneiss Region, Norway. Contributions to

1114 *Mineralogy and Petrology* **94**, 29–41.

- 1115 Korzhinskii, D. S. (1959). *Physicochemical Basis of the Analysis of the Paragenesis of*1116 *Minerals*. New York: Consultants bureau, inc.
- 1117 Krogh Ravna, E. (2000). The garnet clinopyroxene Fe 2 + Mg geothermometer**u**: an
 1118 updated calibration. *Journal of Metamorphic Geology* 18, 211–219.
- Liati, A., Gebauer, D. & Fanning, C. M. (2009). Geochronological evolution of HP
 metamorphic rocks of the Adula nappe, Central Alps, in pre-Alpine and Alpine
 subduction cycles. *Journal of the Geological Society* 166, 797–810.
- Liati, A. & Seidel, E. (1996). Metamorphic evolution and geochemistry of kyanite eclogites
 in central Rhodope, northern Greece. *Contributions to Mineralogy and Petrology* 123,
 293–307.
- Milnes, A. G. (1974). Structure of the Pennine Zone (Central Alps): a new working
 hypothesis. Bulletin of the Geological Society of America. *Bulletin of the Geological Society of America* 85, 1727–1732.
- Morishita, T., Arai, S. & Gervilla, F. (2001). High-pressure aluminous mafic rocks from the
 Ronda peridotite massif, southern Spain: Significance of sapphirine- and corundumbearing mineral assemblages. *Lithos* 57, 143–161.
- 1131 Morishita, T., Maeda, J., Miyashita, S., Matsumoto, T. & Dick, H. J. B. (2004). Magmatic
- 1132 srilankite (Ti2ZrO6) in gabbroic vein cutting oceanic peridotites**I**: An unusual product
- of peridotite-melt interactions beneath slow-spreading ridges. *American Mineralogist* 89, 759–766.
- Morten, L. & Trommsdorff, V. (2003). Metamorphism and textures of dry and hydrous garnet
 peridotites. *EMU*, 443–466.
- Moulas, E., Kostopoulos, D., Connolly, J. A. D. & Burg, J. P. (2013). P-T estimates and
 timing of the sapphirine-bearing metamorphic overprint in kyanite eclogites from
 Central Rhodope, northern Greece. *Petrology* 21, 507–521.
- 1140 Nagel, T. J. (2008). Tertiary subduction, collision and exhumation recorded in the Adula
 1141 nappe, central Alps. *Geological Society, London, Special Publications* 298, 365–392.
- 1142 Nakamura, D. & Hirajima, T. (2000). Granulite-facies overprinting of ultrahigh-pressure
- 1143 metamorphic rocks, northeastern Su-Lu region, eastern China. *Journal of Petrology* 41,
 1144 563–582.
- 1145 Nimis, P. & Grütter, H. (2010). Internally consistent geothermometers for garnet peridotites
 1146 and pyroxenites. *Contributions to Mineralogy and Petrology* 159, 411–427.

1147 Nimis, P. & Taylor, W. R. (2000). Single clinopyroxene thermobarometry for garnet

1148 peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-

- 1149 Cpx thermometer. *Contributions to Mineralogy and Petrology*. Springer Berlin
- 1150 Heidelberg **139**, 541–554.
- Nimis, P. & Trommsdorff, V. (2001). Revised Thermobarometry of Alpe Arami and other
 Garnet Peridotites from the Central Alps. *Journal of Petrology* 42, 103–115.
- O'Brien, P. J. (1997). Garnet zoning and reaction textures in overprinted eclogites, Bohemian
 Massif, European variscides: a record of their thermal history during exhumation. *Lithos*41, 119–133.
- O'Neill, H. S. C. (1981). The transition between spinel lherzolites and garnet lherzolites, and
 its use as a geobarometer. *Contributions to Mineralogy and Petrology* 77, 185–194.
- Pfiffner, M. & Trommsdorff, V. (1998). The high-pressure ultramafic-mafic-carbonate suite
 of Cima Lunga-Adula, Central Alps: Excursions to Cima di Gagnone and Alpe Arami. *Schweizerische Mineralogische und Petrographische Mitteilungen* 78, 337–354.
- 1161 Ravna, E. J. K. & Terry, M. P. (2004). Geothermobarometry of UHP and HP eclogites and
 1162 schists An evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite1163 coesite/quartz. *Journal of Metamorphic Geology* 22, 579–592.
- Rubatto, D., Hermann, J., Berger, A. & Engi, M. (2009). Protracted fluid-present melting
 during Barrovian metamorphism in the Central Alps. *Contributions to Mineralogy and Petrology* 158, 703–722.
- Săbău, G., Alberico, A. & Negulescu, E. (2002). Peraluminous Sapphirine in Retrogressed
 Kyanite-bearing Eclogites from the South Carpathians: Status and Implications. *International Geology Review* 44, 859–876.
- 1170 Sato, K., Miyamoto, T. & Kawasaki, T. (2006). Experimental Calibration of Sapphirine1171 Spinel Fe2+-Mg Exchange Thermometer: Implication for Constraints on P?T Condition
- 1172 of Howard Hills, Napier Complex, East Antarctica. *Gondwana Research* 9, 398–408.
- Schmid, S. M., O.A., P., Froitzheim, N., Schönborn, G. & Kissingl, E. (1996). Geophysicalgeological transect and tectonic evolution of the Swiss-Italian Alps. *Tectonics* 15, 1036–
 1064.
- Schmidt, M. W. & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs
 and consequences for arc magma generation. *Earth and Planetary Science Letters* 163,
 361–379.
- 1179 Scott, J. M., Konrad-Schmolke, M., O'brien, P. J. & Günter, C. (2013). High-T, low-P
- 1180 formation of rare olivine-bearing symplectites invariscan eclogite. *Journal of Petrology*

, 1375–1398.

1182	Skjerlie, K. P. & Patino Douce, A. E. (2002). The Fluid-absent Partial Melting of a Zoisite-
1183	bearing Quartz Eclogite from 1{middle dot}0 to 3{middle dot}2 GPa; Implications for
1184	Melting in Thickened Continental Crust and for Subduction-zone Processes. J. Petrology
1185	43 , 291–314.
1186	Steinmann, M. & Stille, P. (1999). Geochemical evidence for the nature of the crust beneath
1187	the eastern North Penninic basin of the Mesozoic Tethys ocean. Geologische Rundschau
1188	87 , 633–643.
1189	Stucki, A., Rubatto, D. & Trommsdorff, V. (2003). Mesozoic ophiolite relics in the Southern
1190	Steep Belt of the Central Alps. Schweizerische Mineralogische und Petrographische
1191	Mitteilungen 83 , 285–299.
1192	Taylor, W. R. (1998). An experimental test of some geothermometer and geobarometer
1193	formulations for upper mantle peridotites with application to the thermobarometry of
1194	fertile lherzolite and garnet websterite. Neues Jahrbuch fur Mineralogie, Abhandlungen
1195	172 , 381–408.
1196	Todd, C. S. & Engi, M. (1997). No Title. Metamorphic field gradients in the Central Alps.
1197	Journal of Metamorphic Geology 15, 513–530.
1198	TOMKINS, H. S., POWELL, R. & Ellis, D. J. (2007). The pressure dependence of the
1199	zirconium-in-rutile thermometer. Journal of Metamorphic Geology. Blackwell
1200	Publishing Ltd 25 , 703–713.
1201	Troitzsch, U., Christy, A. G. & Ellis, D. J. (2004). Synthesis of ordered zirconium titanate
1202	(Zr,Ti)(2)O-4 from the oxides using fluxes. Journal of the American Ceramic Society 87,
1203	2058–2063.
1204	Troitzsch, U. & Ellis, D. J. (2004). High-PT study of solid solutions in the system
1205	ZrO ₂ -TiO ₂ : The stability of srilankite. <i>European</i>
1206	Journal of Mineralogy 16, 577–584.
1207	Tumiati, S., Godard, G., Martin, S., Klötzli, U. & Monticelli, D. (2007). Fluid-controlled
1208	crustal metasomatism within a high-pressure subducted mélange (Mt. Hochwart, Eastern
1209	Italian Alps). Lithos 94, 148–167.
1210	Tumiati, S., Godard, G., Martin, S., Malaspina, N. & Poli, S. (2015). Lithos Ultra-oxidized
1211	rocks in subduction mélanges ¹ ? Decoupling between oxygen fugacity and oxygen
1212	availability in a Mn-rich metasomatic environment. LITHOS. Elsevier B.V.
1213	Tumiati, S., Thöni, M., Nimis, P., Martin, S. & Mair, V. (2003). Mantle-crust interactions
1214	during Variscan subduction in the Eastern Alps (Nonsberg-Ulten zone): Geochronology

1215	and new petrological constraints. Earth and Planetary Science Letters 210, 509-526.
1216	Vrabec, M., Janák, M., Froitzheim, N. & De Hoog, J. C. M. (2012). Phase relations during
1217	peak metamorphism and decompression of the UHP kyanite eclogites, Pohorje
1218	Mountains (Eastern Alps, Slovenia). Lithos. Elsevier B.V. 144-145, 40-55.
1219	Wang, L., Essene, E. J. & Zhang, Y. (1999). Mineral inclusions in pyrope crystals from
1220	Garnet Ridge, Arizona, USA: Implications for processes in the upper mantle.
1221	Contributions to Mineralogy and Petrology 135, 164–178.
1222	Wenk, E. (1970). Zur Regionalmetamorphose und Ultrametamorphose der Zentralalpen.
1223	Fortschritte der Mineralogie 47, 555–565.
1224	Zack, T., Moraes, R. & Kronz, a. (2004). Temperature dependence of Zr in rutile: Empirical
1225	calibration of a rutile thermometer. Contributions to Mineralogy and Petrology 148,
1226	471–488.
1227	
1228	TABLES
1229	
1230	Table 1: Bulk-rock composition of selected samples from Duria. All rocks were sampled at
1231	the outcrop of Borgo (Figs. 1, 2), with the exception of garnet peridotite A2C2 (Monte Duria).
1232	
1233	Table 2: Representative microprobe analyses of olivine (Ol), clinopyroxene (Cpx), and
1234	orthopyroxene (Opx) in selected samples (see Table 1). Fine: fine-grained; C: core; R: rim;
1235	InGt: included in garnet; InCpx: included in clinopyroxene; Sym: in symplectite. Fe ²⁺ and
1236	Fe ³⁺ are calculated from stoichiometry.
1237	
1238	Table 3: Representative microprobe analyses of garnet (Gt), amphibole (Amp), spinel (Sp),
1239	sapphirine (Sapp), plagioclase (Pl) and phlogopite (Bt) in selected peridotite and eclogite
1240	samples from Duria (see Table 1). Fine: fine-grained; C: core; R: rim; Sym: in symplectite.
1241	Fe^{2+} and Fe^{3+} are calculated from stoichiometry.
1242	
1243	FIGURES
1244	
1245	Figure 1. (a) Tectonic scheme of the Lepontine Dome in the Central Alps. Isotherms of the
1246	post nappe-stacking barrovian metamorphic event and the extent of the migmatite belt are
1247	from Todd and Engi (1997) and Burri et al. (2005), respectively. (b) Detailed geological

1248	scheme of the Duria area with the locations of Monte Duria and Borgo outcrops. Main
1249	geological features are modified from Berger et al. (2005).
1250	
1251	Figure 2. Form surface mappingMap of the Borgo outcrop along the Ledù stream. AG:
1252	amphibolic migmatitic gneiss; E: kyanite eclogites; HAE: high-Al ₂ O ₃ rim between kyanite
1253	eclogites and hosting amphibole-bearing migmatitic gneiss; ME: mafic eclogites; MG:
1254	migmatitic gneiss; OGN: orthogneiss; PDT: retrogressed garnet peridotite.(a)
1255	
1256	Figure 3. Field aspect of peridotite lenses at Borgo (a, b, c, d, e, f) and Monte Duria (g, h).
1257	(a) Loose block of partially retrogressed garnet peridotite downstream of the Borgo outcrop;
1258	(b) compositional layering made by garnet-rich and garnet-garnet-poor layers in the Borgo
1259	peridotite; a pervasive chlorite- <u>defined</u> foliation overprinting the layering occurs within 45
1260	m from the contact with hosting crustal rocks; (c) a boudin of mafic eclogite (ME) within
1261	amphibole-bearing migmatitic gneiss (AG); (d) a large ($ca7 m x_5 m$) boudin of kyanite
1262	eclogite (E); (e) detail of the contact between kyanite eclogite and hosting gneiss with the red-
1263	to pink-coloured Al ₂ O ₃ -rich rim (HAE); (f) emerald green zoisite crystal within the HAE rim;
1264	(g) peridotite lens on the SE ridge of Monte Duria (L. Pellegrino for scale): garnet
1265	porphyroclasts are preserved only at cores, whereas a chlorite foliation, associated to the
1266	retrogression in the spinel stability field occurs on the outer rim; (h) detail of anhedral to sub-
1267	euhedral garnet porphyroclasts with dark-coloured thin symplectitic-kelyphitic rims.
1268	
1269	Figure 4. Representative transmitted light pPhotomicrographs of Duria rocks: (a) peridotite
1270	sample B3A showing garnet porphyroclast (gt) surrounded by kelyphite, in a matrix of
1271	fractured olivine (ol); (b) detail of the olivine matrix showing a porphyroclast of
1272	orthopyroxene (opx); (c) detail of a double corona surrounding garnet, with secondary
1273	orthopyroxene developing towards olivine and kelyphite towards garnet.; (d) kyanite
1274	porphyroclast (ky) in eclogite sample B5, surrounded by symplectite and a plagioclase corona
1275	(pl) towards the host symplectitic matrix; (e, f) parallel- and crossed-polarised light
1276	micrographs showing the symplectitic matrix of sample B5, with garnet (gt), kyanite (ky) and
1277	amphibole (amp) porphyroclasts; (g) mafic eclogite D6, showing garnet porphyroclasts (gt)
1278	embedded in a symplectitic matrix; (h) zoisite porphyroclast (zo) replaced by symplectite in
1279	high-Al ₂ O ₃ eclogite sample D1.
1280	

1281	Figure 5. Back-scattered electron (BSE) images of Duria rocks: (a) olivine (ol) in former
1282	contact with garnet (out of sight) surrounded by a double corona consisting of orthopyroxene
1283	(opx) in the inner part, and orthopyroxene (opx) + clinopyroxene (cpx) and spinel (sp) in the
1284	outer part; apatite (ap), zircon (zrc), baddeleyite (bdy) and srilankite (sril) occur in textural
1285	equilibrium the coronitic assemblages (sample A2C2); (b) overview of garnet (gt) in former
1286	contact with olivine (ol), replaced by opx+cpx+sp kelyphite; olivine is replaced by secondary
1287	orthopyroxene (opx); Cr-rich spinel (Cr-sp) and clinopyroxene (cpx) porphyroclasts occur in
1288	the peridotite matrix (sample B1); (c) mineral assemblages in eclogite B5, showing kyanite
1289	(ky), garnet (gt), amphibole (amp) and quartz (q) porphyroclasts embedded in a symplectitic
1290	intergrowth of clinopyroxene (cpx) and plagioclase (pl). Coronitic assemblages are
1291	plagioclase + amphibole surrounding relict garnet and plagioclase + spinel (sp) + sapphirine
1292	(sapp) replacing kyanite; (d) relict omphacite (omph) in kyanite porphyroclast replaced by
1293	pl+sp sumplectite (sample B5); (e) relict coronitic assemblage pl+orthopyroxene (opx)
1294	replacing garnet in mafic eclogote D6; (f) K-feldspar porphyroclasts in mafic eclogite D6; (g)
1295	zoisite porphyroclast replaced by a corona of plagioclase in the inner part and a pl +
1296	corundum (cor) + sapp + sp symplectite in the outer part towards the eclogite matrix (sample
1297	D1); (h) kyanite porphyroclast completely replaced by a composite symplectite; cor rich in
1298	the core, pl-rich in the rim and sp+sapp-bearing in the middle-(sample D9).
1299	
1300	Figure 6. Principal component analysis of the bulk-rock compositions shown in Table 1.
1301	Kyanite-eclogites (E) B5 and D3 display the lowest absolute eigenvalues F1-F2 coordinates
1302	and their composition can be considered the reference point for eclogites outcropping at
1303	Borgo. Mafic eclogites (ME) D4 and D6 display the highest value coordinate for the principal

component F1, which represent the relative enrichment of Fe, Mn, Ti and P. The high-Al₂O₃
ecleogites (HAE) D1, B8 and D9 are characterised by the lowest F1 valuecoordinate, being
enriched-rich in Al₂O₃ and SiO₂, while the retrogressed amphibole-gneisses (AG) D2 and D5
show relatively high contents in CaO and MgO.

- 1308
 1309 Figure 7. Conventional thermobarometry of Duria peridotites. HP, LP: calculations performed
 1310 using the compositions of the phases belonging to the high-pressure and low-pressure
 1311 assemblages, respectively. NG: Nimis and Grütter, 2010; Ta: Taylor, 1998; BK: Brey and
 1312 Köhler, 1990; O'N81: O'Neill (1981). Further details provided in text.
- 1313

1314	Figure 8. Thermodynamic modelling of Zr-bearing symplectites. (a) Binary ZrO ₂ -TiO ₂ T-X		
1315	diagram calculated at fixed P_P = 2.0 GPa using the Perple_X package		Formattato: Tipo di carattere:
1316	(http://www.perplex.ethz.ch) and a new baddeleyite-rutile solid-solution model calibrated	l	Corsivo
1317	against the experimental data of Troitzsch et al. (2004) (red dots). Activity-composition		
1318	relations among baddeleyite, rutile and srilankite are retrieved using the van Laar formulation		
1319	(Holland and Powell, 2003), which allows describing asymmetrical miscibility gaps (α_{bdy}		
1320	0.35, 0.000546, 0.0; α_{sril} 1.1, 0.0, 0.0; α_{ru} 0.7, 0.0, 0.0); (b) Calculated P-T diagram showing		
1321	the univariant srilankite-in reaction forterite + rutile + zircon = srilankite + enstatite in the		
1322	system <u>MSMgO+SiO₂+TiO₂+ZrO₂. Ternary SiO₂-+TiO₂+ZrO₂chemographies (forsterite</u>		Formattato: Pedice
1323	always in excess) are calculated at <u>T_T < srilankite-in and T_T > srilankite-in. Rutile-</u>		Formattato: Tipo di carattere:
1324	enriched (blue star) and zircon-enriched (green star) bulk compositions are shown for		Formattato: Tipo di carattere:
1325	reference; (c, d) P, <u>T</u> pseudosections in the system CFMAS+TiO ₂ +ZrO ₂ calculated for a		Corsivo
1326	fixed bulk composition corresponding to 1 mol garnet + 1 mol olivine, with components TiO_2		Formattato: Tipo di carattere: Corsivo
1327	and ZrO_2 added in minor amounts with XTi (=TiO_2/ZrO_2+TiO_2) = 0.75 in (c) and 0.25 in (d);		
1328	the srilankite-in reaction in the MS- TiO_2 +ZrO ₂ is shown for reference as dashed line.		
1329			
1330	Figure 9. Conventional thermobarometry of Duria eclogites. (a) blue lines: clinopyroxene-		
1331	garnet thermometer after Krogh (2000) and jadeite-in-clinopyroxene barometer after Holland		
1332	(1980); green shaded field: range of temperatures retrieved using the Zr-in-rutile thermometer		
1333	of Tomkins et al. (2007); red dashed line: Ti-in-quartz thermometer of Wark and Watson		
1334	(2006); grey dashed lines: experimental amp- and zo-out from Schmidt and Poli (1998), and		
1335	coesite-quartz transition; (b) blue lines: Ca-in-orthopyroxene thermometer of Brey and Köhler		
1336	(1990) and barometers of Lal (1993) (gt-opx-pl-q) and Eckert et al. (1991) (gt-cpx-pl-q);		
1337	green line: sapphirine-spinel thermometer of Sato et al. (2006); grey dashed lines:		
1338	experimental wet solidus and garnet-in from Schmidt and Poli (1998).		
1339			
1340	Figure 10. Thermodynamic modelling of E-type kyanite eclogites from Duria. (a) P-T		
1341	isochemical section calculated for the composition B5, assuming $H_2O = 0.01$ wt%; isopleths		
1342	of the calculated molar fraction of the component $KAlSi_3O_8$ in K-feldspar (XOr) are shown as		
1343	dotted lines; the experimental wet solidus of Schmidt and Poli (1998) is shown for		
1344	comparison as dashed line; (b) P-X isothermal section calculated at fixed $T_{\underline{T}} = 700^{\circ}$ C, where		Formattato: Tipo di carattere:
1345	$X = \Theta_{-0}$ stands for the anhydrous bulk composition B5 and $X = 1$ represents the composition		COISIVO
1346	B5 with wt% added H ₂ O component.		Formattato: Evidenziato
1347			

1348	Figure 11. Thermodynamic modelling of symplectites replacing kyanite in E-type and HAE-
1349	type eclogites from Duria. (c, d)-P-X isothermal sections calculated at fixed $T_{\underline{T}} = 850^{\circ}$ C,
1350	where $X = 1$ represents composition B5 (c, E-type clogites) or D9 (d, HAE-type eclogites)
1351	with 0.01 wt% added H ₂ O, and $X = \underline{0}\Theta$ accounts for 30 wt% added kyanite component
1352	Al ₂ SiO ₅ .

1353

1360

1354	Figure 12. Thermodynamic modelling of symplectites replacing zoisite in HAE-type eclogites
1355	from Duria (e) P-X isothermal section calculated at fixed $\frac{T}{T} = 850^{\circ}$ C, where X = 1
1356	represents composition D1 with 0.01 wt% added H_2O , and X = O accounts for 50 wt% added
1357	zoisite component CaAl₃Si₃O₁₂(OH) ; (f) log a H ₂ O vs. X section calculated at fixed <u>P_P = 1.2</u>
1358	GPa and $T_T = 850^{\circ}$ C, where X = 1 represents composition D1 with 0.01 wt% added H ₂ O,
1359	and $X = 0\Theta$ accounts for 50 wt% added zoisite component CaAl ₃ Si ₃ O ₁₂ (OH).

1361 Figure 13. Schematic cartoon showing symplectites replacing kyanite in type E eclogites (a, 1362 b) and HAE eclogites (c, d) on the basis of the thermodynamic modelling and related 1363 material-transfer study. (a) Former HP kyanite porphyroclast in kyanite eclogite B5 redrawn 1364 from the BSE inset (detail of Fig. 5c), embedded in a matrix of omphacite and garnet; (b) LP-1365 HT reactions 4 (ky + omph + gt = pl + sapp) and 5 (ky + omph + gt = pl + sp) (see text) result 1366 in symplectites made of An-rich plagioclase together with sapphirine (sapp; blue fields in 1367 inset, cf. Fig. 11a) or spinel (sp; pink fields), depending on the amount of Al₂SiO₅ (kyanite) 1368 component added to the bulk rock. Compositional isopleths can be drawn in the symplectite 1369 in order to reproduce the microstructure of the symplectite. (c, d) In eclogite D9, symplectite 1370 replacing kyanite, shown in the inset (cf. Fig. 5h) contains corundum (cor) in its inner part 1371 (green fields in inset, cf. Fig. 11b), due to reaction 6 (ky + omph = cpx + pl + cor). Sapphirine 1372 + corundum (grey fields), sapphirine + spinel (yellow fields) and spinel only (pink fields) 1373 occur in symplectite towards the rock matrix. The observed microstructure can be modelled 1374 perfectly assuming also in this case a decreasing amount of the component Al₂SiO₅ from the 1375 core to the rim in the micro-domain surrounding the kyanite crystal that has been replaced by 1376 LP-HT mineral assemblages. Dashed red arrows in figures b and d indicates possible paths 1377 from the Al₂SiO₅-rich symplectite core towards the host bulk-rock.

Formattato: Tipo di carattere: Corsivo

Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato Formattato: Tipo di carattere: Corsivo, Evidenziato Formattato: Evidenziato