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ABSTRACT

The accuracy of genomic prediction determines re-
sponse to selection. It has been hypothesized that ac-
curacy of genomic breeding values can be increased by 
a higher density of variants. We used imputed whole-
genome sequence data and various single nucleotide 
polymorphism (SNP) selection criteria to estimate 
genomic breeding values in Brown Swiss cattle. The 
extreme scenarios were 50K SNP chip data and whole-
genome sequence data with intermediate scenarios 
using linkage disequilibrium-pruned whole-genome se-
quence variants, only variants predicted to be missense, 
or the top 50K variants from genome-wide association 
studies. We estimated genomic breeding values for 3 
traits (somatic cell score, nonreturn rate in heifers, 
and stature) and found differences in accuracy levels 
between traits. However, among different SNP sets, ac-
curacy was very similar. In our analyses, sequence data 
led to a marginal increase in accuracy for 1 trait and 
was lower than 50K for the other traits. We concluded 
that the inclusion of imputed whole-genome sequence 
data does not lead to increased accuracy of genomic 
prediction with the methods.
Key words: genomic prediction, Brown Swiss, whole-
genome sequence data

Short Communication

Genomic prediction has had a great effect world-
wide, especially on dairy breeding programs. Currently, 
routine genomic evaluations in dairy cattle are often 
based on 50K SNP chip data. However, it has been 
shown in simulation studies that using higher-density 
SNP information could increase accuracy of genomic 
breeding values (e.g., Meuwissen and Goddard, 2010; 
Druet et al., 2014; Iheshiulor et al., 2016). It has been 
hypothesized that the use of whole-genome sequence 
data should in particular increase accuracy of genomic 
estimated breeding values (GEBV), as sequence data 
includes the causal variants. Thanks to the 1000 Bull 
Genomes Project an unprecedented amount of sequence 
data became available to all project partners (Daetwy-
ler et al., 2014). In 2015, the fifth run of the project was 
released, including sequences of 1,682 bulls and cows. 
However, these individuals still represent only a small 
fraction of all individuals of the global cattle popula-
tion. An alternative to sequencing more individuals is to 
impute sequence data into target individuals genotyped 
for a smaller amount of SNP. Using this approach, se-
quence information of a large number of individuals 
becomes accessible. It has been shown that imputation 
using the reference panel from the 1000 Bull Genomes 
Project is highly accurate (e.g., Daetwyler et al., 2014; 
Frischknecht et al., 2016); however, Druet et al. (2014) 
showed, in a simulation study, that especially for traits 
influenced mainly by QTL with low minor allele fre-
quency (MAF), the increase in accuracy compared 
with 50K scenarios is limited. A few studies using real 
data to evaluate accuracy of genomic prediction have 
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been published [e.g., in Holstein (van Binsbergen et 
al., 2015; Veerkamp et al., 2016) or Fleckvieh (Erbe 
et al., 2016)]; those studies found no advantage in the 
accuracy of genomic prediction using sequencing data 
over 50K SNP chip data.

The objective of the current study was to examine 
the effect of different SNP selection strategies on the 
accuracy of genomic prediction in Brown Swiss cattle. 
The main goal was to investigate the effect of imputed 
whole-genome sequence data on accuracy of genomic 
prediction. We estimated genomic breeding values in 
the Brown Swiss population using different densities 
of SNP data from 50K SNP data to whole-genome 
sequence level. Deregressed breeding values (DRBV; 
Garrick et al., 2009) were used as input phenotypes. 
Sequence genotypes were derived from a 2-step imputa-
tion: 50K to HD (800K) with FImpute (Sargolzaei et 
al., 2011), and from HD to full sequence with Beagle 
(Browning and Browning, 2009) and Minimac (Fuchs-
berger et al., 2015) using 123 Brown Swiss and Origi-
nal Braunvieh animals from the 1000 Bull Genomes 
Project data set (Daetwyler et al., 2014) as reference 
individuals (Frischknecht et al., 2016). For the estima-
tion of SNP effects, we used imputed allele dosage. 
For imputation, our data set, including sequenced and 
imputed individuals, comprised 23,001 animals with 
16,184,800 SNP and small insertions or deletions. For 
further analyses, we excluded the small insertions or 
deletions and SNP with MAF <1% within the whole 
population and an imputation R2 <0.1 (value provided 
by Minimac).

We evaluated the effect of SNP panel density on 3 
traits: a reproduction trait [nonreturn rate in heifers 
(NRH); reference individuals (ref): n = 2,018, valida-
tion individuals (val): n = 240], a conformation trait 
[stature (STA); ref: n = 5,294, val: n = 596], and SCS 
(ref: n = 4,786, val: n = 560; Table 1). We calculated 
the proportion of variance that can be attributed to the 
SNP ( / ,σ σSNP P

2 2  where σSNP is the genetic variance at-
tributed to SNP and σP is the phenotypic variance) in 
the data set with gcta using the reml function (Yang et 
al., 2010, 2011). Individuals for genomic prediction 
were chosen according to the reliability of the breeding 
value and, among these, the 10% youngest individuals 
were selected as validation individuals.

We estimated SNP effects for 5 different SNP selec-
tion scenarios: (1) 50K SNP chip data was used (50K; 
38,436 SNP; average MAF: 0.247); (2) the full sequence 
panel was used (SEQ; 12,413,067 SNP; average MAF: 
0.191); (3) variants with annotation missense from the 
Variant Effect Predictor (McLaren et al., 2016) were 
used (MISS; 33,037 SNP; average MAF: 0.182); (4) we 
randomly removed 1 SNP in SNP pairs from the full 

sequence panel that were located within a window of 
10,000 SNP and showed almost perfect linkage disequi-
librium (LD; r2 ≥0.999999; 5,353,086 SNPs; average 
MAF: 0.203); (5) we performed a genome-wide asso-
ciation study (GWAS) with the full sequence panel 
using the bulls of the reference population and selected 
the 50,000 SNP with the lowest P-values [TOP; 50,000 
SNP; average MAF: 0.268 (NRH), 0.241 (SCS), 0.265 
(STA)]. Consequently, the number of SNP in the TOP 
scenario was similar to the 50K scenario. For GWAS, 
a mixed linear model was fitted in EMMAX (Kang et 
al., 2010) with allele dosage as input data using a G-
Matrix from GCTA (Yang et al., 2011) and proportion 
of Original Braunvieh genes calculated from pedigree 
data as covariate. We estimated genomic breeding val-
ues using the program gbcpp (Iheshiulor et al., 2015). 
Using gbcpp we fitted marker effects as in BayesC (cap-
tures variants with larger effects) and a polygenic effect 
as a genomic BLUP term (captures genomic relation-
ships due to polygenes; BayesC-L), which in addition to 
SNP makes use of the genomic relationship matrix. The 
model for BayesC-L can be described as

	 y = 1′μ + g + Xβ + e,	 [1]

where y is a vector of DRBV; g G~ ,N 0 2σg( ) is a vector 
of random polygenic effects (G = the genomic relation-
ship matrix and σg = variance of the polygenic effect); 
and β is a vector of SNP effects with elements, which 
are distributed N 0 2,σSNP( ) with a probability π and with 
probability (1 − π) equal to zero (σSNP = variance of 
SNP effects); X is a matrix of marker genotypes; and 
e we i~ , /N 0 2σ( ) is the residual variance (σe = variance 
of residuals), with wi being the weight of the yi, which 
is in our analysis the reliability of the DRBV. For π we 
used a fixed value per trait, which we scaled according 
to the number of SNP (Supplemental Table S1; https://​
doi​.org/​10​.3168/​jds​.2017​-12890). Accuracy of genomic 

Table 1. Accuracy of genomic breeding values for all scenarios1

Scenario2 SCS STA NRH

50K 0.556 0.538 0.397
TOP 0.502 0.478 0.324
MISS 0.504 0.495 0.347
LD 0.542 0.530 0.401
SEQ 0.548 0.527 0.403
1STA = stature; NRH = nonreturn rate in heifers. 
2Scenario: 50K = SNP from 50K SNP chip; TOP = top associated 
variants from GWAS; MISS = variants with annotation Missense; LD 
= linkage disequilibrium pruned sequence data; SEQ = whole-genome 
sequence data.
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breeding values was calculated as the Pearson correla-
tion of the DRBV and the GEBV.

We compared the accuracies of the 5 different SNP 
density scenarios. For the 50K scenario, across all traits 
we observed accuracies from 0.397 for NRH to 0.556 for 
SCS (Table 1). Variation in accuracy between traits 
was expected due to differences in the number of refer-
ence individuals per trait and the different heritabilities 
of the traits. For SCS and STA, similar levels of GEBV 
accuracy were found, likely due to a similar number of 
individuals in the experiment and a similar proportion 
of the variance explained by the SNP. Within-trait dif-
ferences observed for the different SNP selection sce-
narios were much smaller than the differences between 
traits. We found the lowest accuracies with the TOP 
scenario, which indicates that including only the top 
associated variants in the prediction will not increase 
accuracy. It is likely that with this method we included 
a large number of SNP in high linkage disequilibrium, 
which may have adversely affected the analysis. Addi-
tionally, those SNP were no longer distributed across 
the whole genome, but were rather concentrated in 
some regions (Figure 1 for STA). Therefore, relation-
ships between individuals might be captured less pre-
cisely, which might explain part of the decrease in ac-
curacy. The scenario MISS was included, as missense 
variants should be more likely to be causal because 
they are variants that have a direct effect on proteins. 
Including more causal variants would be expected to 
explain a larger fraction of the genetic variation. How-
ever, looking at the σ σSNP P

2 2/  ratio (Supplemental Table 
S1; https://​doi​.org/​10​.316/​jds​.2017​-12890), we found 
the opposite: less variance was explained by missense 
variants than other choices of SNP. This could be as-
sociated to the lower average MAF compared with 50K 
and a low number of SNP compared with SEQ, for ex-
ample. For all traits, MISS leads to slightly lower ac-
curacies than 50K; compared with 50K, LD and SEQ 
led only to very moderate increase for NRH and to a 
very moderate decrease for SCS and STA (Table 1). For 
STA, LD gives slightly higher accuracies, indicating 
that filtering of SNP can be beneficial to the accuracy. 
This may be due to the fact that we excluded highly 
redundant information, which may not be properly ac-
counted for by the algorithm. The QTL effects distrib-
uted across a large number of redundant SNP in high 
linkage disequilibrium are harder to distinguish from 
residual error, because the SNP effects of the QTL can 
be smeared across multiple SNP and, therefore, the ef-
fect of a single SNP can be reduced to a similar level as 
SNP with no effect (Veerkamp et al., 2016).

Our results support the findings of published stud-
ies performed in other breeds that the increase of ac-

curacy of genomic prediction is marginal, if anything, 
by increasing marker density from 50K SNP chip to 
sequence data. In a recent study, a small increase in ac-
curacy was found by adding selected sequence variants 
to an HD panel (VanRaden et al., 2017). We ran our 
analyses only with selected variants and did not include 
all 50K data. A combination of 50K data and selected 
variants might have led to a higher accuracy in our 
data. Further possible reasons for this small increase 
in accuracy probably include sequence genotypes being 
imputed, thus losing recombination events occurring in 
the genome of imputed individuals; additionally, im-
putation accuracy is lower for rare variants (van Bins-
bergen et al., 2014; Pausch et al., 2017). In our study, 
imputation was based on a low number of reference 
individuals (n = 123), which means we could only cap-
ture the variance covered by those 123 individuals. As 
the individuals were chosen to explain a major fraction 
of the genetic variance, we expected to cover common 
haplotypes relatively well. However, rare haplotypes 
could also have a large effect on the trait (Gonzalez-
Recio et al., 2015), and they cannot be detected if not 
present in the reference population from imputation. In 
a simulation study by Druet et al. (2014), it has been 
shown that when using imputed data the increase in 
accuracy is decreased depending on the MAF distri-
bution of the QTL influencing the trait. Additionally, 
increasing the number of parameters to estimate with-
out increasing the number of observations in general 
leads to a decrease in accuracy (Berger et al., 2015). In 
the present study, this was somewhat compensated by 
using a variable selection model (Bayes C-L); however, 
only limited data are available, which hinders optimiza-
tion within the extremely high-dimensional parameter 
space. Additionally the used data has a large influence 
on the outcome of the study; the number of individuals 
was relatively small and changes in the training or the 
validation population could have had a large effect on 
the results. Overall, currently it is not recommended 
to implement SNP effect estimation based on sequence 
data for routine genomic prediction.
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