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Abstract  13	

The effects of two commercially available immobilized enzymes (namely the glycosidase pectinase and the protease 14	

subtilisin A) at sub-lethal concentrations were investigated in terms of their influence on biofilm genesis, on the 15	

composition of the biofilm matrix, and their antibiotic synergy against Escherichia coli biofilm, used as a model system 16	

of bacterial biofilms. The best antibiofilm performance of solid-supported hydrolases was obtained at the surface 17	

concentration of 0.022 and 0.095 U/cm2 with a reduction of 1.2 and 2.3 log CFU/biofilm for pectinase and subtilisin, 18	

respectively. At these enzyme surface concentrations, the biocatalysts affected the structural composition of the biofilm 19	

matrix, impacting biofilm thickness. Finally, the immobilized hydrolases enhanced biofilm sensitivity to a clinically 20	

relevant concentration of the antibiotic ampicillin. At the final antibiotic concentration of 0.1 mg/ml, a reduction of 2 21	

and 3.5 log10 units in presence of 0.022 Upectinase/cm2 and 0.095 Usubtilisin/cm2 was obtained respectively in comparison 22	

the antibiotic alone. Immobilized pectinase and subtilisin at sub-lethal concentrations demonstrated a great potential for 23	

antibiofilm applications. 24	
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Introduction 28	

Any abiotic surface exposed to minimal conditions required for life is prone to microbial colonization leading to the 29	

development of surface-associated multicellular communities embedded in a self-produced polymeric matrix called 30	

biofilms. Biofilm microorganisms undergo processes of cell specialization, developing coordinated and efficient 31	

survival strategies [35].  32	

Synthetic polymers do not escape from the problem that biofilms might cause. Well-known examples of unwanted 33	

biofilms on plastics include chronic infection of medical devices [53-54], microbial corrosion of pipelines and storage 34	

tanks [30, 56], biodeterioration of artistic materials [6, 14] and fouling in food processing equipment [5, 43, 48]. 35	

Despite the availability of control practices, the consequences of the biofilm mode of life are far-reaching. 36	

Microorganisms in biofilms exhibit increased tolerance toward antimicrobial agents, making some traditional biocide-37	

based antibiofilm strategies ineffective [12, 18, 37]. The biofilm resistance to antimicrobials has profound consequences 38	

in our lifes, posing serious challenges to its eradication. Thus, to preserve surface functionality, guaranteeing suitable 39	

application lifetime, and to keep the growing human population in a healthy environment, new alternatives to replace or 40	

integrate the presently dominant antimicrobial regime are urgently required [50]. 41	
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One strategy might be to destabilize biofilm organization and its physical integrity, disrupting its multicellular structure 42	

rather than affecting essential cellular functions that are crucial for microbial survival. In addition, if the multicellularity 43	

of the biofilm is compromised, the planktonic state might be forced, restoring the efficacy of antimicrobial agents. 44	

Potential strategies include enzymes that degrade the structural components of the biofilm matrix, compromising 45	

cohesiveness and destroying the backbone of the biofilm [22]. In addition, since biofilm matrix-degrading enzymes do 46	

not kill bacteria or inhibit their growth, the chances that resistance to these agents will evolve are reduced [20]. Finally, 47	

some enzymes are currently available at affordable prices and are therefore viable for industrial use, and since they are 48	

biodegradable and have a low toxicity, they might be attractive as environmentally friendly antibiofilm agents [8]. 49	

Starting from the assumption that polysaccharides and proteins are the major fractions of the matrix [13], hydrolytic 50	

enzymes such as glycosidases and proteases have been envisaged as interesting biofilm matrix-degrading agents [22]. 51	

Although the concept of using enzymes to counteract the formation of unwanted biofilms is not new, the scientific 52	

literature still lacks important information about the effects of immobilized biocatalysts at sub-lethal concentrations and 53	

their impacts on biofilm structural development. Until now, the attention has mainly focused on the antimicrobial 54	

activity of enzymes in solution, and such effects were investigated focusing the attention only on the initial surface 55	

attachment phase or on the biofilm dispersion phase [inter alia 24, 26-27, 29, 31, 58]. Few papers address the 56	

incorporation of enzymes into coatings yielding surfaces with antibiofilm spectrum [11, 36, 38, 44-45, 57]. However, 57	

even in these latter cases, the scientific community underestimated or neglected the impacts of immobilized enzymes at 58	

sub-lethal concentrations on biofilm structure and resistance to traditional antimicrobial agents. 59	

In light of the previous considerations, the present work aimed to study the effects of two immobilized enzyme (namely 60	

the glycosidase pectinase and the protease subtilisin A) on i) biofilm genesis, ii) the structural composition of the 61	

biofilm matrix, iii) biofilm thickness and morphology, and iv) their antibiotic synergy against Escherichia coli biofilm, 62	

used as model system of bacterial biofilms. We demonstrated the antibiofilm performance of the two immobilized 63	

enzymes at sub-lethal concentrations, and their efficacy in destabilizing biofilm organization and its multicellular 64	

structure rather than affecting essential cellular functions that are crucial for microbial survival. 65	

 66	

Materials and Methods 67	

 68	

Materials. Pectinase from Aspergillus niger >1 U/mg solid (one unit (U) corresponds to the amount of enzyme which 69	

liberates 1 µmol galacturonic acid from polygalacturonic acid per minute at pH 4.0 and 50 °C), subtilisin from Bacillus 70	

licheniformis (subtilisin A) 8.6 U/mg solid (one U will hydrolyze casein to produce color equivalent to 1.0 µmole (181 71	

µg) of tyrosine per min at pH 7.5 at 37 °C (color by Folin-Ciocalteu reagent) and methoxypoly(ethylene glycol) (5 72	
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kDa) (PEG) were purchased from Sigma-Aldrich (Italy). Fifty % glutaraldehyde (GA) was obtained from Alfa-Aesar. 73	

Nitrocellulose membranes (0.45 µm) were purchased from Sigma Aldrich (N9763–5EA, Italy). 74	

 75	

Enzyme immobilization. Pectinase and subtilisin were immobilized on nitrocellulose membranes (2.25 cm2) by 76	

loading and fixing the biocatalysts by glutaraldehyde crosslinking in order to increase the stability and retention of the 77	

enzymes on the nitrocellulose membrane [3, 19, 23]. Seventy µl containing 45 µl of 0.02 mol/l potassium phosphate 78	

buffer, pH 7, with 0.025, 0.05, 0.1 or 0.2 mg enzyme and 25 µl polyethylene glycol (PEG) solution (4 g/l) were used. 79	

PEG acts as a stabilizing additive [42]. The final enzyme surface concentrations were 0.011, 0.022, 0.044, 0.088 U/cm2 80	

and 0.095, 0.189, 0.378, 0.757 U/cm2 for pectinase and subtilisin, respectively. Aliquots of enzyme were taken from a 4 81	

g/l stock solution. Next, 10 ml of glutaraldehyde (0.1% in the case of pectinase or 0.05% in the case subtilisin) were 82	

added, and just after, the final solution was loaded on the membrane. The membranes were allowed to dry overnight at 83	

25 °C. Control membranes were prepared by the same procedures, without adding enzyme solution. 84	

 85	

Escherichia coli strain and growth conditions. The best characterized Escherichia coli strain K-12 (American Type 86	

Culture Collection ATCC 25404, wild type) was used throughout the study [39]. The microorganism was maintained at 87	

-80 °C in a suspension containing 40% glycerol and 4% peptone and it was routinely grown overnight in Luria-Bertani 88	

(LB, Sigma Aldrich, Italy) at 30°C.  89	

 90	

Planktonic growth in presence of the enzymes both in solution and immobilized.  91	

Planktonic growth of E. coli in LB medium supplemented with 2.86 mg/ml of hydrolases was carried out in 96-well 92	

microtiter plates as previously reported [49]. The experiments have been run with each enzyme separately. In addition, 93	

the immobilized enzymes at the maximum surface concentrations of 0.088 and 0.757 U/cm2 for pectinase and subtilisin 94	

respectively (representing the concentration of a solution 2.86 mg/ml of hydrolases), were tested for their ability to 95	

affect the planktonic growth of E. coli. The membranes were immersed in 1 ml of a growth solution containing LB 96	

medium. The solution was inoculated with 50 µl (5% vol/vol) of an overnight culture of E. coli. Growth curves at 37°C 97	

were generated using the PowerWave XS2 microplate reader (Biotek). Growth was followed by measuring the optical 98	

density at 600 nm (OD600) for over 24 h. OD-based growth kinetics were constructed by plotting the OD of suspensions 99	

minus the OD of the non-inoculated medium against incubation time. The polynomial Gompertz model [59] was used 100	

to fit the growth curves to calculate the maximum specific growth rate (µmax) and lag time (λ), using GraphPad Prism 101	

software (version 5.0, San Diego, CA, USA). Three biological replicates of each treatment were performed. 102	

 103	
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Biofilm formation on enzyme-functionalized surfaces and biomass quantification. The effects of immobilized 104	

enzymes were studied using the agar-grown biofilm system (colony biofilms) representing static unsaturated biofilms 105	

[55]. In addition, this technique permitted us to directly investigate the effect of the immobilized enzymes on biofilm 106	

structural development and organization bypassing the effect on the adhesion phase [49]. Colony biofilms of E. coli 107	

were obtained as reported by Villa et al. [52] with few modifications. Briefly, 15 µl cell suspension containing 7.5 x 105 108	

cells were used to inoculate untreated and treated nitrocellulose membranes resting on tryptic soy agar (TSA, Sigma 109	

Aldrich, Italy) culture medium. The plates were inverted and incubated at 30°C for 5 days, with the membrane-110	

supported biofilm transferred to fresh culture medium every 24 h. Membranes were collected at the fifth day and 111	

transferred to 5 ml glass test tubes pre-filled with 5 ml sterile phosphate buffered saline (PBS, 10 mmol/l phosphate 112	

buffer, 0.3 mol/l NaCl pH 7.4 at 25 °C, Sigma-Aldrich, Italy). Biofilms were vortexed for 1 min to separate the cells 113	

from the membrane. In order to break apart clumps of cells, two cycles of 30 s at 20% power sonication (Branson 3510, 114	

Branson Ultrasonic Corporation, Dunburry, CT) followed by 30 s vortex mixing were applied. The resulting cell 115	

suspensions were serially diluted, plated on TSA, incubated 36 h at 30°C, and colony forming units (CFU) per 116	

membrane were enumerated using the drop-plate method [16].  117	

 118	

Extraction and characterization of the extracellular polymeric matrix (EPS). Biofilm biomass was collected at the 119	

fifth day and resuspended in 2 ml 2% ethylenediaminetetraacetic acid (EDTA, Sigma Aldrich, Italy). Biofilm cell 120	

suspensions were shaken at 300 rpm for 3 h at 4°C. After incubation, the samples were centrifuged for 20 min, 8000 x g 121	

at 4°C and the supernatant filtered through 0.2 µm polyethersulfone membranes (S623; Whatman, Inc., Florhan Park, 122	

NJ). Then, one half of the eluate was used for quantification of proteins and carbohydrates and cell lysis analysis, while 123	

the second half was used for extracellular DNA (eDNA) precipitation by the cetyltrimethylammonium bromide 124	

(CTAB)-DNA method as described by Corinaldesi et al. [9]. The method of Bradford [4] was applied for analyzing 125	

protein concentrations, whereas the optimized microplate phenol–sulfuric acid assay was applied for carbohydrate 126	

determination using glucose as the standard [33]. The results obtained were normalized by the weight of the wet biofilm 127	

biomass. Experiments were performed in triplicate. 128	

 129	

Biofilm cryosectioning, staining and microscopic examination. Five days-old colony biofilms were covered carefully 130	

with a layer of Killik (Bio Optica, Italy) and placed on dry ice until completely frozen. Frozen samples were sectioned 131	

at -19°C using a Leitz 1720 digital cryostat (Leica, Italy). The 10-µm thick cryosections were mounted on glass slides 132	

treated with Vectabond (Vector laboratories, Italy), a non-protein tissue section adhesive. The lectin Concanavalin A-133	

Texas Red conjugate (ConA, Invitrogen, Italy) was used to visualize the polysaccharide component of EPS, whereas the 134	
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amino-reactive dye Bodipy 630/650-X SE (Invitrogen, Italy) was used to visualize the protein in the EPS. Syto 9 green 135	

fluorescent nucleic acid stain (Invitrogen, Italy) was used to display biofilm cells. Biofilm sections were incubated with 136	

200 µg/µl ConA and Bodipy and 5 mmol/l Sito-9 (Invitrogen) dye solution in PBS at room temperature in the dark for 137	

30 min and then rinsed with PBS. Biofilm sections were visualized using a Leica TCSNT confocal laser scanning 138	

microscope with excitation at 488 nm, and emission ≥ 530 nm. Images were captured with a 10X/NA 0.45 dry lens 139	

objective and analyzed with the software Imaris (Bitplane Scientific Software, Zurich, Switzerland). The sections were 140	

also examined by fluorescence microscopy using a Leica DM 4000 B microscope at a magnification of 10X and biofilm 141	

thickness was measured as reported by Villa et al. [51]. 142	

 143	

Biofilm susceptibility assay. Powdered ampicillin was dissolved in sterile nanopure water, and the antibiotic solutions 144	

were added to the molten culture medium to create antibiotic-amended agar for biofilm experiments. The final 145	

antibiotic concentration used in biofilm assays was 0.1 mg/ml, a clinically relevant concentration. Antibiotic penetration 146	

of colony biofilms has been studied extensively suggesting the agent readily moves throughout the biofilm [60]. Five-147	

day old biofilms were aseptically transferred to either antibiotic-containing agar or a control plate where they were 148	

incubated for an additional 24 h at room temperature. After this time, biofilm biomass was collected, physically 149	

disaggregated, serially diluted and plated on TSA as reported above. Antimicrobial efficacy was expressed as log10 150	

microbial reduction. The log10 reduction was calculated relative to the cell count in the control samples without the 151	

antibiotic. All antimicrobial experiments were conducted in triplicate. 152	

 153	

Statistical analysis. Analysis of variance (ANOVA) via a software run in MATLAB environment (Version 7.0, The 154	

MathWorks Inc, Natick, USA) was applied to statistically evaluate any significant differences among the samples. 155	

Tukey’s honestly significant different test (HSD) was used for pairwise comparison to determine the significance of the 156	

data. Statistically significant results were depicted by p-values < 0.05. 157	

 158	

Results and Discussion 159	

Hydrolases are known to have antibiofilm properties against both gram-positive and gram-negative bacteria. They 160	

successfully counteract both biofilms from the paper industry [31] and invasion ability and biofilm formation in Listeria 161	

monocytogenes [29]. They also show a wide antifouling activity against different bacterial strains isolated from food-162	

processing lines [25] and inhibit the extent of co-aggregation of Actinomyces naeslundii, Streptococcus oralis, 163	

Porphyromonas gingivalis and Fusobacterium nucleatum [24]. However, in these scientific works, the antibiofilm 164	
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performances of the enzymes were investigated in solution, underestimating the effectiveness of immobilized enzymes 165	

at sub-lethal concentrations to resist biofilm formation over a working timescale.  166	

Before evaluating the antibiofilm performance of immobilized pectinase and subtilisin, we studied their impact on E. 167	

coli planktonic growth (Table 1). In this work, the hydrolases, both in solution and immobilized, did not affect bacterial 168	

growth at the concentrations tested, showing their potential as biocide-free antibiofilm strategy.  169	

The results of the antibiofilm activity of immobilized enzymes are presented in Fig. 1. The best antibiofilm performance 170	

of immobilized hydrolases was obtained at the surface concentration of 0.022 and 0.095 U/cm2 with a reduction of 1.2 171	

and 2.3 log CFU/biofilm for pectinase and subtilisin, respectively. In addition, the results suggested that subtilisin is 172	

more effective in hindering biofilm formation of E. coli than pectinase. Noteworthy was the observation that the best 173	

antibiofilm performances of both the immobilized enzymes were obtained at a specific threshold level, which does not 174	

correspond to the maximum enzyme surface concentration tested. Overall, these results demonstrated that hydrolases 175	

could either reduce biofilm biomass effectively, or conversely promote biofilm growth, depending on the enzymatic 176	

concentrations tested [26]. The non-linear response patterns followed a parabola-like shape profile, resembling a 177	

hormetic property, a situation in which the response to an environmental stressor varies with the level of exposure [50]. 178	

This adaptive response not only enhances survival by providing resistance to environmental stresses, but it also helps 179	

regulate the allocation of resources in a manner that ensures stability and fitness of cells [50]. As the biofilm lifestyle is 180	

considered an adaptive response of microorganisms to cope with a harsh environment, likely high sub-lethal 181	

concentrations of enzymes might induce a direct or indirect stress, stimulating biofilm formation. 182	

The hormesis phenomenon is not new in the biofilm world. Villa and colleagues [51] observed that the best antibiofilm 183	

performance of sub-lethal concentrations of the phenolic compound zosteric acid against Candida albicans biofilm was 184	

obtained at the specific concentration of 10 mg/l. As the concentration fell below or above that threshold level, an 185	

increase in biofilm biomass was observed. The biphasic profile is also induced by the biofilm mediators homoserine 186	

lactones, which act in a concentration-dependent manner, where upper and lower threshold concentrations trigger the 187	

formation of a biofilm [40].  188	

The recent demonstration that antibiotics exert the phenomenon of hormesis provides a further explanation for the dual 189	

activities of microbially derived natural products like enzymes. Migliore and colleagues [34] showed the ability of sub-190	

inhibitory concentrations of tetracycline to induce a hormetic response in the model organism E. coli MG1655. The 191	

results demonstrated that low concentrations of tetracycline led to an increase in the biomass, and the dose-response 192	

curve describing this numerical increase is an inverted-U-shaped curve. Such dose-response dependence has been 193	

demonstrated by several published studies, reporting that at high concentrations, antibiotics eradicate bacteria, while at 194	

low concentrations biofilm formation is induced [17, 28, 41]. These findings confirm that hormesis is common to many 195	
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living systems, including bacteria, underlying the need of an in-depth knowledge of both the effects and the possible 196	

consequences of exposure to different doses of bioactive molecules, including enzymes. 197	

The EPS matrix is the main component of biofilms and plays several roles in their life that can be listed as constructive, 198	

informative, sorptive, (redox)-active, surface active, and nutritive functions [13]. The matrix is involved in the adhesion 199	

of biofilms to surfaces, mediating the mechanical stability of biofilms and determining biofilm architecture [47]. The 200	

effects of immobilized enzymes on EPS composition were investigated by comparing the content of proteins, total 201	

polysaccharides, and extracellular DNA of EPS (Fig. 2). The investigation showed that mainly proteins and 202	

polysaccharides compose the biofilm matrix of E. coli biofilm, as no detectable amount of extracellular DNA was 203	

measured. With the immobilized pectinase at the surface concentration of 0.022 U/cm2, the extracellular protein and 204	

polysaccharide contents were reduced by 91.8% and 85.7%, respectively (Fig. 2a). A significant reduction in protein (-205	

61.4%) and polysaccharide concentrations (-76.1%) was also observed with the subtilisin at the surface concentration of 206	

0.095 U/cm2 as compared with the respective control (Fig. 2b). 207	

The results obtained by the biochemical analysis of the matrix were further confirmed by microscopic examination of 208	

biofilm cryosections (Fig. 3). Images captured from frozen sections showed that biofilms grown on the immobilized 209	

enzymes retained similar morphological patterns as those grown on the control. However, a reduction in the fluorescent 210	

signals corresponding to the protein and polysaccharide contents was observed in the treated samples. E. coli biofilms 211	

exposed to immobilized enzymes were significantly thinner (biofilm thickness(protease 0,022 U/cm2): 239.5 ± 24.1 µm; biofilm 212	

thickness(subtilisin 0,095 U/cm2): 225.7 ± 25.2 µm) than the biofilm grown on the control (biofilm thickness 334 ± 28.2 µm), 213	

corroborating the ability of the immobilized biocatalysts to reduce biofilm biomass. 214	

Our findings suggested that the mechanisms by which the immobilized enzymes might exert their antibiofilm effects 215	

include the degradation of the matrix, thereby weakening the biofilm structure. Leroy and colleagues [27] reported that 216	

free subtilisin was more effective in inhibiting adhesion than in enabling biofilm detachment of the marine bacteria 217	

Pseudoalteromonas sp. D41, suggesting its ineffectiveness on structural composition of the biofilm matrix. In contrast, 218	

Hangler et al. [15] observed that the serine protease Esperase HPF (subtilisin) affected both the attachment and the 219	

detachment of a multispecies biofilm, suggesting that, in this case, the enzyme effectively degraded both protein-based 220	

adhesives and proteins contained in the matrix. Recent work also showed that differences in the chemical composition 221	

of the EPS are reflected in the vulnerability of biofilms to enzymatic treatments [2, 7, 25].  222	

It is widely recognized that the susceptibility of E. coli biofilm to many conventional antimicrobial agents is reduced 223	

compared to the susceptibility of planktonic cells. Therefore, the sensitivity of biofilms grown in the presence of the 224	

immobilized hydrolases was examined to determine whether the same recalcitrance occurred. The graphs reported in 225	

Fig. 4a-b showed a biofilm reduction of 2 and 3.5 log10 units in presence of 0.022 U/cm2  pectinase and 0.095 U/cm2 226	
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subtilisin, respectively, when exposed to clinically relevant concentration of ampicillin. As expected, the heavily 227	

perturbed matrix of biofilms grown on immobilized enzymes increased the activity of the antibiotic ampicillin. 228	

Darouiche and colleagues [10] reported that the combination of the antiseptic triclosan and the enzymatic product 229	

Dispersin B in solution showed synergistic antimicrobial and antibiofilm activity against Staphylococcus aureus, S. 230	

epidermidis and E. coli. Co-administration of alginate lyase (20 U/ml) with gentamicin (64 µg/ml) increased the killing 231	

of biofilms of mucoid P. aeruginosa growing in conditions similar to those found in the respiratory tract [1]. Tetz et al. 232	

[46] reported a strong negative impact of deoxyribonuclease I (DNase I) on the structures of biofilms formed by 233	

Acinetobacter baumannii, Haemophilus influenzae, K. pneumoniae, E. coli, P. aeruginosa, S. aureus, and Streptococcus 234	

pyogenes. Azithromycin, rifampin, levofloxacin, ampicillin, and cefotaxime were more effective in the presence of 235	

DNase I (5 µg/ml). Furthermore, the antibiofilm activity of deoxyribonuclease I (130 µg/ml) in combination with 236	

selected antibiotics toward C. albicans biofilms was estimated [32]. A reduction of viable counts by 0.5 log10 units was 237	

observed for biofilm-growing C. albicans incubated with DNase I. Treating C. albicans with amphotericin B alone 238	

(1 µg/ml) resulted in a 1 log10 unit reduction in cell viability, which increased to 3.5 log10 units in combination with 239	

DNase I. Cell viability was reduced by 5 log10 units at higher concentrations of amphotericin B (>2 µg /ml) and DNase I 240	

[32]. Kiran et al. [21] identified lactonase as a potential antibiofilm agent, as 0.3 U/ml of the enzyme disrupted the 241	

biofilm structure and led to increased ciprofloxacin and gentamycin penetration and antimicrobial activity. However, all 242	

the enzymes were tested in solution and no information was available about their lethal concentrations. Thus, the 243	

present work represents an important step forward in the development of antibiofilm materials, showing the synergistic 244	

effects of immobilized hydrolytic enzymes (at sub-lethal concentrations) and antibiotics on E. coli. 245	

Therefore, solid-supported hydrolytic enzymes considered in this study might hold great potential for antibiofilm 246	

applications in both the medical and industrial domains. Future works will aim at evaluating the antibiofilm 247	

performance of the two enzymes together once immobilized onto a polymeric surface at sub-lethal concentrations. 248	
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Tables and Figures 405	

 406	

Table 1: The table summarizes the growth parameters lag time (λ) and maximum growth rate (μmax) and the 407	

Goodness of Fit (R2) obtained by the Gombertz models. Different superscript letters indicate significant differences 408	

(Tukey's HSD, p<0.05) between the means of three independent replicates.  409	

 410	

Figure 1: Effects of immobilized enzymes on biofilm growth. Data represent the mean ± standard deviation of three 411	

independent measurements. The graph provides the p-values obtained by ANOVA analysis. According to post-hoc 412	

analysis (Tukey's HSD, p<0.05), means sharing the same letter are not significantly different from each other.  413	

 414	

Figures 2: Effects of immobilized enzymes on EPS composition. Data represent the mean ± standard deviation of three 415	

independent measurements. The graph provides the p-values obtained by ANOVA analysis. According to post-hoc 416	

analysis (Tukey's HSD, p<0.05), means sharing the same letter are not significantly different from each other.  417	

 418	

Figures 3: Cryosectioning images of E. coli biofilms grown without and with the immobilized enzymes. Live cells 419	

were stained in green with Syto9, whereas the polysaccharide (a-b) or the protein (c-d) components of the biofilm 420	

matrix were stained in red. Scale bars represent 150 µm. 421	

 422	

Figure 4: Effects of immobilized enzymes on antibiotic resistance of E. coli biofilm. The graphs report the value of 423	

log10 unit reductions. Data represent the mean ± standard deviation of three independent measurements. The graph 424	

provides the p-values obtained by ANOVA analysis. According to post-hoc analysis (Tukey's HSD, p<0.05), means 425	

sharing the same letter are not significantly different from each other.  426	


