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General Introduction 

The use of cytotoxic agents (i.e. chemical compounds capable of killing cells) is a core 

component of pharmacological approaches for the therapy of cancer. Ideally, cytotoxic agents 

should preferentially kill tumor cells while sparing healthy tissue. In practice, the scenario is 

much more complex: many anticancer drugs inhibit cells in rapid proliferation and thus act 

against healthy tissues, in which they accumulate. This drawback typically results in severe 

side-effects, limiting therapeutic benefits. 

Different approaches to overcome the drawbacks of traditional chemotherapy have been 

investigated so far, pointing at the selective delivery of cytotoxic agents to cancer cells. This 

goal has been pursued by improving the tumor accumulation of anticancer drugs through their 

covalent conjugation to specific ligands (antibodies or ‘small molecules’) of tumor-associated 

receptors. While Antibody-Drug Conjugates (ADCs) represent a mature technology, which has 

already reached the market, increasing research efforts have been recently put into Small 

Molecule-Drug Conjugates (SMDCs), which have the potential advantage of better 

pharmacokinetic properties and more sustainable preparation. 

One of the tumor receptors that has been studied as target for SMDCs is integrin αVβ3 (a 

heterodimeric transmembrane glycoprotein), owing to its high expression in the tumor 

neovasculature as well as on the surface of several tumor cells. Thus, in this PhD thesis, the 

synthesis of new SMDCs targeting αvβ3 integrin is described. The structure of such SMDCs 

consists in the connection of three core components: i) LIGAND - the cyclo[DKP-RGD] 

peptidomimetic, developed by the Gennari and Piarulli group, has been used as integrin-

targeting moiety in all the new constructs; ii) CYTOTOXIC PAYLOAD - three different cytotoxic 

agents (i.e. paclitaxel, monomethyl auristatin E and monomethyl auristatin F) have been 

included as anticancer drugs; iii) LINKER - specific functional groups (i.e. peptides) have been 

used to connect the drug and ligand, aiming at the selective drug release in the intra or 

extracellular tumor environment. 

These new SMDCs have been subjected to a panel of biochemical and biological assays, for 

the assessment of both their structural features (e.g. stability, cleavage experiments of the 



 

 

2 General Introduction 

linkers, kinetics of drug release, etc.) and biological activity (e.g. affinity for the purified integrin 

αVβ3 receptor, selective cytotoxicity against αvβ3-expressing or non-expressing cells, etc.). 

Thus, the main structure of the present PhD thesis is reported here: 

• Chapter I provides a general overview of the tumor-targeting research area through an 

in-depth survey of the most relevant and recent literature in the field. The contribution 

of our group in the field is also reported here.  

• Chapter II describes the development of a new library of multimeric cyclo[DKP-RGD]-

PTX conjugates (monomeric, dimeric, trimeric and tetrameric conjugates) bearing 

lysosomally-cleavable linkers and their full biological in vitro evaluation. The results 

achieved with these first compounds prompted the design of next-generation 

cyclo[DKP-RGD]-PTX conjugates, reported in the following chapters. 

• Chapter III describes the synthesis and in vitro evaluation of cyclo[DKP-RGD]-PTX 

conjugates bearing extracellularly-cleavable peptide linkers, capable of releasing the 

payload in the tumor microenvironment, rather than inside cancer cells: this mechanism 

can be promoted by tumor-associated enzymes present in the tumor stroma (e.g. 

elastase), which can efficiently cleave the linker and set the drug free to diffuse within 

the tumor mass. 

• Chapter IV consists in the development of a small library of conjugates containing the 

cyclo[DKP-RGD] ligand, a lysosomally-cleavable peptide linker and the highly potent 

toxins monomethyl auristatin E or F (MMAE and MMAF) as the cytotoxic payloads, 

which are state-of-the-art tools for targeted anticancer therapy. 

• Finally, all the experimental details of synthetic and biological procedures are included 

in Experimental Section, together with spectroscopic data and HPLC profiles of the 

newly synthesized compounds. 
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Drug Targeting to Cancer 

 





 

 

 

DRUG TARGETING TO CANCER 

1.1 General Introduction 

Cancer is one of the main causes of human mortality and morbidity in both developed and 

developing countries.[1] As stated by the World Health Organization (WHO), approximately 14 

million new incidences and 8.2 million cancer-related deaths were reported in 2014, affecting 

populations in all continents (Figure 1). The number of incidences is expected to increase to 

22 million within the next two decades. Among the world population, the most common 

identified cancer types were lung, breast, colon/rectum, liver, prostate and stomach (Figure 

1).[2] Cancer is triggered by complex processes, which are directly connected to the alteration 

of a fundamental process of life, i.e. cell division (mitosis). Cancer might be induced by down 

and/or upregulation of endogenous molecules, being characterized by uncontrolled cell growth 

and fast proliferation properties leading to tumor formation. 

 

Figure 1. Estimated world cancer incidences and mortality proportions by WHO, in both genders, 2014.[1] 

Treatment of cancer has been one of the key goals of medicine and medicinal chemistry 

research. Combinations of surgery, radiotherapy and chemotherapy interventions remain the 

backbone of cancer treatment. The traditional pharmaceutical approaches consist on the 

administration of small cytotoxic molecules aimed at stopping the rapid cell proliferation and 

inducing apoptosis by interfering with fundamental cellular functions (e.g. DNA replication, cell 

division).[3] 

Cytotoxic agents are commonly classified on the basis of their biological targets:[4,5] 



 

 

6 Drug Targeting to Cancer 

• DNA-targeting groups:[6] these class of compounds are divided into DNA-alkylating agents 

(e.g. mechlorethamine, chlorambucil, Figure 2) and DNA metalating agents (e.g. cisplatin, 

oxaliplatin, picoplatin, Figure 2). DNA-alkylating agents are known as a class of compounds 

that directly modify DNA bases, forming crosslinks in DNA or intercalating between bases. 

Developed as a derivative of nitrogen mustard gas, Mechlorethamine (1, Figure 2) can be 

considered the first compound of such class to be evaluated as anticancer agent: it is a 

bifunctional alkylating agent, containing electrophilic residues, which react with guanine 

bases on the DNA sequence.  

On the other hand, DNA-metalating agents are described as a panel of molecules 

containing Pt(II)-complexes, capable of irreversibly crosslink DNA strands, upon reaction 

with N7-position of guanine bases. 

• Antimetabolites and Nucleoside analogs: this group of anticancer drugs consists on 

synthetic variants of endogenous fundamental building blocks, which interfere with the 

elongation of DNA strands (e.g. thioguanine, 5-fluoruracil, gemcitabine, Figure 2). 

• Anti-folates:[6,7] This class consists of inhibitors of crucial enzymes involved in the synthesis 

of DNA and its precursors. Methotrexate and pemetrexed (see Figure 2) are the most 

representative examples of this class. Their mechanism of action involves the inhibition of 

DHFR (dihydrofolate reductase) preventing the formation of tetrahydrofolate, an essential 

intermediate of purine and pyrimidine biosynthesis. Particularly, interferences with FH4 

(tetrahydrofolate cofactors - series of the reduced form of folate) metabolism hamper 

important biochemical processes, such as methylation reactions, that essential for the 

biosynthesis of purine ribonucleotides and thymidine monophosphate (TMP). 

• Topoisomerase Inhibitors:[6] this class of anticancer drugs interferes with DNA synthesis 

by inhibiting topoisomerase I and II. These enzymes are involved in crucial steps of the 

DNA structure organization. Topoisomerase I permits the passage of single DNA strands 

through a temporary single-strand break, originated in the complementary strand of the 

double helix. Topoisomerase II cleaves both double helix strands to allow the passage of a 

complete helix to the supercoiled DNA (unwind form). For example, camptothecin (11, 

Figure 2) and its analogs stabilize the DNA-topoisomerase I cleavable complex, thus 

inhibiting the rejoin step of DNA. On the other hand, topoisomerase II is one of the targets 

of Anthracyclines antibiotics (e.g. doxorubicin, daunorubicin, epirubicin and idarubicin, 

Figure 2), which are known to intercalate DNA leading to cell death.[8] 

• Antimitotic drugs:[9] this class of cytotoxic agents interfere with microtubule dynamics, 

which are crucial in the mitosis process. Microtubule destabilizing agents, such as Vinca 

Alkaloids (e.g. Vinblastine and Vincristine, Figure 2), inhibit tubulin polymerization, thus 

blocking the formation of microtubules. By contrast, Taxanes (e.g. Paclitaxel and Docetaxel, 
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Figure 2) are the most known microtubule-stabilizing agents, which also trigger apoptosis 

in highly-proliferating cells. These drugs, inhibit tubulin depolymerization, thus blocking the 

formation of free tubulin. 

 

Figure 2. Molecular structures of selected conventional chemotherapeutics divided by different groups. 



 

 

8 Drug Targeting to Cancer 

In general, the systemic administration of traditional anticancer agents does not result in the 

selective drug accumulation to the diseased tissue. In fact, these compounds can interact with 

healthy cells, leading to considerable side effects (low molecular-weight cytotoxic drugs do not 

preferentially accumulate in solid tumors)[10] and preventing the administration of anticancer 

drugs to doses that are high enough to be effective.[11] This low accumulation of 

chemotherapeutics at the tumor site can be ascribed to different factors, such as the increased 

interstitial pressure in several solid tumors and the rapid elimination from systemic circulation 

of small molecule drugs, which eventually accumulate in excreting organs (e.g. liver and 

kidney).[12] 

Studies in mice have shown that injection of paclitaxel (PTX),[13] or doxorubicin (DOX)[14] led to 

poor tumor accumulation compared to the amount of injected drug detected in healthy organs 

such as liver and lung (1:10 – 1:20, after organ weight normalization). The same trend has 

been observed in human patients treated with a bolus injection of 11C-docetaxel: the product 

did not show any significant accumulation in the hepatic tumor.[15] 

Another drawback is the so-called drug resistance, which heavily affects the chemotherapy 

efficacy. In particular, due to their high heterogenicity and mutation rates, tumor cells can be 

considered as rapidly changing targets. A certain population of cancer cells may be less 

affected by the treatment and it can then overgrow, leading to a drug-resistant tumor mass.[16]  

 

Figure 3. Molecular structures and mechanism of action of some potent cytotoxic agents used in chemotherapy. 

As consequence of all these facts, traditional anticancer agents are characterized by a small 

“therapeutic window”, which is commonly described as the difference between the lowest 
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administered dose resulting to clinical benefits (minimum effective dose, MED) and the highest 

dose found to be free of undesired toxicities (maximum tolerated dose, MTD). To overcome 

the drawbacks mentioned above, multidrug therapy was one of the first approaches tried by 

the clinic.[12] Unlikely, severe side-effects were observed in patients. During the past three 

decades, efforts have been done to discover new more potent small anticancer agents with 

improved anticancer efficacy. A wide range of new anticancer drugs have been discovered 

from natural sources and developed as anticancer agents (Figure 3). New DNA- and RNA-

targeting agents (e.g. derivatives of calicheamicin, indolinobenzodiazepines and α-amanitin) 

and tubulin-targeting molecules (e.g. cryptophycins, maytansinoids, dolastatins) were found to 

inhibit cell proliferation at the picomolar and subnanomolar range.[17,18,19,20,21,22] However, most 

of these new cytotoxic molecules showed harsh side effects at low administration doses, 

indicating that the increased potency does not extend the therapeutic window of systemic 

cytotoxics. As a result, these ultrapotent cytotoxic agents were discontinued from the clinic at 

early stages, unveiling the need for new pharmacologic approaches. 

1.2. Targeted Therapies for Cancer 

The selective delivery of cytotoxic agents at the tumor site is still a major concern to improve 

current chemotherapy outcome. Regarding this issue, targeted delivery approaches rely on 

the ability of specific molecular constructs to selectively accumulate at the diseased site, 

improving the therapeutic window of cytotoxic agents. A particular group of such molecules 

(e.g. micelles, liposomes, polymers, nanoparticles and macromolecules) can have tumor-topic 

activity (i.e. the ability to passively accumulate into solid tumors).[12] The so-called EPR 

(Enhanced Permeability and Retention) effect has been described as the main mechanism of 

action of these large molecules , which take advantage of the absence of lymphatic drainage 

and the leakage of tumor vasculature.[23] For example, different types of nanoparticles have 

been used to encapsulate cytotoxic agents, with the aim to force drug accumulation within the 

tumor vasculature, following different mechanisms of action.[24] However, clinical success of 

nanomedicine has been limited so far to pegylated (Doxil™) and non-pegylated (Myocet™) 

liposomal forms of doxorubicin for the treatment of metastatic ovarian cancer, liposome-

encapsulated daunorubicin (DaunoXome™) for the treatment of leukemia, and albumin-based 

paclitaxel (Abraxane™) for the treatments of breast cancer.[25]  

On the contrary, active drug targeting systems use ligands (e.g. monoclonal antibodies, small 

molecule ligands such as vitamins, peptides or peptidomimetics) directed against specific 

tumor antigens (i.e. particular proteins showing predominant expression in tumors, located 

either on the surface of cancer cells, or in the tumor stroma or vasculature, see Fig. 4).[26] 
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Typically, one or more cytotoxic drugs are 

covalently attached to the targeting ligand through 

a specific linkers. Such systems will be hereafter 

referred to as ligand-drug conjugates. These 

conjugates are generally administered 

systemically to patients and the efficient 

extravasation (i.e. the migration from the 

circulation to the tissues) is fundamental for the 

conjugate to reach and bind the tumor antigen. 

Ideally, the binding leads to the selective 

conjugate accumulation in the diseased tissue 

expressing the target antigen, (Fig. 4), whereas in 

healthy tissues, binding does not occur and the 

conjugate is cleared quickly. Upon ligand binding, 

it has previously been described that target 

antigen-conjugate complexes must internalize into 

the diseased cells (i.e. internalization of the conjugate through receptor-mediated 

endocytosis).[20,27] The modified intracellular environment (e.g. lysosomal proteases, 

endosomal reducing agents, lowered pH) would then trigger the linker cleavage and the 

release of the cytotoxic cargo.[28] By contrast, other approaches have been investigated, where 

the drug release takes place in the extracellular space (i.e. “non-internalizing” tumor targeting). 

In this strategy, the drug can later act against tumor cells and other cellular targets (e.g. tumor 

endothelial cells or tumor cells with low antigen expression) by passive diffusion.[29] 

 

Figure 5. Strategy for the optimization of the therapeutic index of anticancer ligand-drug constructs.[30] 

A variety of ligand-drug conjugates have been successfully developed to treat cancer 

according to these strategies. Generally, by combining a homing device (e.g. antibodies or 

small molecule ligands) with an active drug, it is possible to locally increase the concentration 

of the anticancer drug, thus decreasing the dose-limiting toxicities and improving the overall 

Figure 4. Active drug targeting approach. A 

ligand-drug conjugate (green-yellow-red) diffuses 

to the tumor stroma and interacts with its tumor-

associated antigen. After internalization, the smart 

linker (yellow) between the ligand (green) and 

drug (red) is intracellularly cleaved, releasing its 

cytotoxic drug. Adapted from[20]  
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therapeutic index of the drug (Figure 5).[30] As a result, while some of these constructs have 

already reached the market, others can be considered as promising technologies for future 

oncology. 

1.3 Antibody-Drug Conjugates (ADCs) 

1.3.1. Antibodies – an overview 

Antibodies, also known as immunoglobulins (Igs), are endogenous-occurring proteins 

biosynthesized by plasma cells and B-lymphocytes in mammals.[31] Antibodies can bind with 

high affinity and selectivity to virtually any kind of antigen, expressed in viruses, bacteria, 

cancer cells or other disease-causing organisms. In the context of immune response, 

antibodies play two main functions: 1) recognition (i.e. specific binding and blockade of 

pathogen molecules), and 2) recruitment of humoral immune components (e.g. complement 

proteins) and cellular immune components (e.g. cytotoxic T-lymphocytes or phagocytes 

activation for the release of cytokines and interaction with the antigen of interest) with the goal 

of destroying the pathogen.[31] 

1.3.2. From Discovery to Development 

In 1890, Emil von Behring and Kitasato Shibasaburo described a “molecule” that could 

neutralize diphtheria infection in the blood stream. Hence, rats, rabbits and pigs were 

immunized with attenuated forms of the infectious molecules causing diphtheria. Then, the 

serum produced by these animals was later injected in non-immunized animals that had 

previously been infected with diphtheria bacterium: all animals recovered from the infection.[32] 

Some years after, in 1987, Paul Ehrlich developed the concept of “magic bullets” (i.e. 

antibodies), being secreted on the cell membrane surface of immune system in response to 

“strange” antigens.[33] Such “magic bullets” would only attack specific pathogens (e.g. viruses, 

bacteria). During the decade of 1940, Linus Pauling proved that the theory of Paul Ehrlich was 

correct, fully describing the way of interaction between an antibody and the recognized antigen 

(i.e. lock-and-key theory). In 1976, Susumu Tonegawa showed the first rearrangement of Ig 

genes, being the key role for the development of sequence diversity in antibodies.[34] In 1975, 

Georges Köhler and César Milstein developed the hybridoma technology,[35] which allowed the 

synthesis of large amounts of a single-purified monoclonal antibody (mAb). The hybridoma 

technology made possible the specific targeting of a single epitope of the antigen of interest, 

which was then a springboard to the clinical use of mAbs as therapeutic agents for cancer and 

other indications. Therefore, antibody-based constructs are one of the largest and fastest 



 

 

12 Drug Targeting to Cancer 

growing family of drugs, putting pressure on the development of new targeted anticancer 

molecules. 

1.3.3. Antibody Engineering and Structure 

A typical mAb molecule features a Y-shaped structure, which carries two similar peptidic heavy 

(H) and light (L) chains (Figure 6A). Both heavy (~50 kDa) and light (~25 kDa) chains are 

connected by an intramolecular disulfide bond and heterodimerized by non-covalent 

interactions. Two copies of heterodimers are covalently linked at the level of the heavy chains 

by two extra disulfide bonds at the hinge region, leading to a full antibody structure of ~150 

kDa. Each chain is known to be composed by a variable domain at its N-terminus (VL and VH 

for the light and heavy chain, respectively), which is responsible for antigen biding, and one or 

more C-terminus constant domains (CL and CH for the light and heavy chain, respectively). 

Finally, the general Y-shape of mAbs is divided into Fab (antigen recognition) and Fc (effector) 

domains. The latter is glycosylated at a conserved Asn 297 amino acid residue.[26] 

 

Figure 6. Antibody general structure and evolution of antibody engineering. A. Mouse antibody; B. Chimeric 
antibody; C. Humanized antibody; D. Human antibody. The mAb subdomains are reported. Fab: Fragment antigen-
binding; Fc: fragment crystallizable domain; VH: heavy-chain variable; VL: light-chain variable; CH: heavy-chain 
constant; CL: light-chain constant.[26] 

While the enormous therapeutic potential of mAbs became evident since the early discovery, 

a considerable limitation was identified when murine antibodies showed severe 

immunogenicity in humans. Moreover, murine mAbs show low binding to human Fc receptors 

(i.e. receptor found on the cell surface of, for example, B-lymphocytes and macrophages), 

resulting in inefficient effector functions and leading to fast clearance (Figure 6A). To overcome 

these limitations, advances in recombinant DNA techniques made possible the modification of 

the mAb structure, allowing the generation of engineered mAbs containing human sequences. 

In other words, the variable domains of a murine mAb are installed onto the constant domains 
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of a human mAb, forming the “chimeric antibodies” (Figure 6B). Thus, immunogenic response 

is reduced and stronger binding affinity is allowed for its target antigen (e.g. Fc receptors). 

Later on, “humanized antibodies” were developed, where only the murine complementary 

determining regions (CDRs) are grafted on human antibodies (Figure 6C). The origin of fully 

human antibodies (Figure 6D) was achieved in the 1990s after the development of phage 

display techniques by George P. Smith and the revolutionary work of Sir Gregory Winter on 

mAbs field. Other techniques including the use of transgenic mice (bearing the immunized 

gene loci of human mAb with the antigen of interest) or ribosome and yeast display, have also 

been developed as valuable tools to produces fully human antibodies.[30] 

1.3.4. mAbs as Carriers for the Tumor Targeted Delivery of Anticancer Agents 

Due to the success achieved by the development of “chimeric”, “humanized” and “fully human” 

mAbs (i.e. the half-life of 21 days in humans[36] and 6-8 days in mice[37] is way longer than the 

half-life of murine mAbs), pharmaceutical industry have been using such macromolecules as 

single agents, for cancer treatment. The first mAb to receive marketing authorization for cancer 

treatment was the chimeric mAb Rituxan™ (rituximab, Biogen-Idec in 1997): approved for 

treatment of patients with non-Hodgkin’s lymphoma, it became rapidly a blockbuster.[30] On the 

contrary, the development of antibodies for the treatment of solid tumors is generally more 

cumbersome.[38] Accordingly, mAbs are usually given in combination with traditional anticancer 

drugs or other mAbs. For instance, Roche/Genentech’s Herceptin™ (trastuzumab) was 

approved for the treatment of Her/neu positive metastatic breast cancer in combination with 

doxorubicin or paclitaxel.[30] Moreover, the use of mAbs to stimulate the immune system to 

attack cancer cells should be mentioned here: the success of the so-called checkpoint 

inhibitors (e.g. Nivolumab and Ipilimumab) is now established and the products are receiving 

marketing authorization for an increasing number of indications.[39] 

Over the past two decades, antibodies have been studied as interesting tools to carry several 

cytotoxic agents at the tumor site.[20,30] Since traditional cytotoxic drugs exhibit their action 

inside the cell, the observation that specific antibodies can enter cells upon binding to a 

transmembrane antigen (i.e. receptor-mediated endocytosis) stimulated the mAb 

functionalization with cytotoxic drugs through specific linkers, giving rise to the so-called 

antibody-drug conjugates (ADCs).[20,40] The release of the payload inside the targeted cancer 

cell would increase the selectivity and therapeutic efficacy of these constructs and it is made 

possible either by the linker cleavage or after intracellular degradation of the antibody structure 

– Figure 7A.[20,40] 
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By contrast, it has been recently understood that mAb internalization may not be essential for 

selective drug release (e.g. ADCs specific to extracellular matrix proteins have been showing 

strong anti-tumor activity) if equipped with extracellularly cleavable linkers – Figure 7B.[27,29,41] 

Considering the mechanism of action of ADCs, it is conceivable that the linker plays a key role: 

ideally, this moiety should be stable in circulation for days and be efficiently cleaved during the 

receptor-mediated endocytosis (Fig. 7A) or in the tumor microenvironment (Fig. 7B). In fact, 

premature release of the drug in the blood circulation would lead to systemic toxicity and a 

lower therapeutic index.[29,30] 

 

Figure 7. Structure and different drug delivery mechanisms of ADCs. A) Upon binding to tumor cell surface 
antigens, the ADC-receptor complex is internalized into the cell. This receptor-mediated endocytosis leads to drug 
release in intracellular compartments (e.g. endosomes and lysosomes). B) In case of non-internalizing antigens, 
the ADC remains bound to the receptor on the cell surface. Here, depending on the linker, the cytotoxic drug may 
be released in the extracellular environment and enter the cell by passive diffusion.[29,30] 

In the development of 1st-generation ADCs, the chimeric mAb (BR96), targeting the LewisY 

tetrasaccharide (LeY) tumor antigen, was linked to eight unities of doxorubicin (14, Fig. 2) 

through an acid-labile hydrazone linker.[42] Low anti-tumor activity and undesired cytotoxicity 

were observed. Whereas the non-human form of the mAb structure was associated to 

significant immunogenicity, the occurrence of severe toxicity was probably due to the short 

half-life of the hydrazone linker (t1/2 = 43 h), which was not compatible with the long circulation 

time of the BR96 mAb (t1/2 = 12 days).[43] Another 1st-generation ADC was the K1S/4 mAb, 

which was connected to desacetylvinblastine (a vinca alkaloid), through an esterase-labile 

hemisuccinate or an acid-labile hydrazone linkers. Also in these two cases, no considerable 

anti-tumor activity emerged from clinical trials.[44] 

Following these clinical failures, it was proved that a rational linker development would play an 

essential role in the evolution of the next generations of ADCs, as well as the use of more 

potent cytotoxic drugs. Moreover, “humanized” and “fully human” antibodies were used to 

reduce immunogenicity and the rapid clearance of the ADCs from circulation. 



 

 

15 Drug Targeting to Cancer 

New generations of ADCs were developed accordingly and, so far, four ADCs have been 

approved by the FDA for cancer therapy: the CD30-targeting brentuximab vedotin (Adcetris™ 

from Seattle Genetics, compound 30 – Figure 8) is used for the treatment of Hodgkin 

lymphoma and anaplastic large cell lymphoma, and HER2-targeting ado-trastuzumab 

emtansine (Kadcyla™ from Roche, compound 31 – Figure 8) for the treatment of metastatic 

breast cancer. More recently, the CD33-targeting gemtuzumab ozogamicin (Mylotarg™ from 

Pfizer, compound 32 – Figure 8) was approved for treatment of acute myeloid leukemia. This 

ADC had been withdrawn in 2010, due to an inadequate efficacy/side effect relationship, but 

a dose-treatment revision led to the re-approval of the biotherapeutic (FDA news release, 

2017). [45] Lastly, the newly CD22-targeting inotuzumab ozogamicin (Besponsa™ from Pfizer, 

compound 33 – Figure 8) was approved during the previous year for treatment of acute 

lymphoblastic leukemia.[45] Moreover, around 60 ADCs are now running the clinical trials, while 

many drug candidates are being investigated at preclinical level.[46] 

 

Figure 8. Molecular structures and mAb/linker/drug system of ADCs that were, so far, approved for cancer therapy. 
DM1: mertansine (i.e. a thiol-bearing maytansinoid); MMAE: monomethyl auristatin E.[45]  

1.3.5. Drawbacks of Antibodies 

As already mentioned, mAbs have been chosen as selective targeted delivery vehicles of 

cytotoxic agents, due to their strong binding affinity properties and accumulation at the tumor 

site in patients. Although ADCs show a variety of benefits over traditional anticancer 
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approaches, the in vivo pharmacodelivery of the cytotoxic agent by an antibody is limited by a 

number of factors:[47] 

• the large size of antibodies delays the ADC extravasation and the diffusion into the tissues. 

Moreover, only a little fraction of the conjugates penetrates into the tumor mass, being 

immediately trapped by antigens located on perivascular tumor cells (i.e. the so-called 

antigen barrier effect). This particular feature may prevent the drug to reach all cells in the 

tumor mass; to circumvent this limitation, smaller formats of ADCs (SIP, diabody etc.) have 

been proposed, but this approach is currently being investigated only at the preclinical level. 

• As mentioned above, the ADC efficacy can be substantially affected by the occurrence of 

anti-mAb immune response, not only depending on the type (i.e. chimeric, humanized or 

fully humanized) but also on the format (i.e. diabody, miniantibody or small immune 

proteins) of the mAb structure. 

• From the manufactory point of view, the large-scale assembly of ADCs is an expensive 

process, requiring providers to simultaneously handle biologic materials in sterile conditions 

and manipulate highly potent cytotoxic compounds. As a result, the high manufacturing 

costs limit the clinical evaluation of new ADCs and, importantly, they impact dramatically on 

the final costs of the treatment. 

Considering these drawbacks of the ADC technology, the development of other active 

targeting devices, is now gaining high interest among the pharmaceutical industry. 

1.4. Small Molecule-Drug Conjugates (SMDCs) 

1.4.1. Why SMDCs? – an overview 

The development of low-molecular-weight compounds (i.e. small organic ligands) may 

represent an alternative to antibodies for pharmacodelivery applications.[47] However, while it 

is now possible to develop antibodies against virtually any protein antigen, the development of 

potent small molecular binders is not a general process and so far only few ligands have been 

investigated for drug delivery purposes.[48] Small molecule-drug conjugates (SMDCs) that bind 

with high affinity to tumor-overexpressed receptors are now designed to rapidly extravasate, 

accumulate in the tumor mass homogeneously, without being immunogenic.[48] Moreover, in 

case of absence of good binding (e.g. recognition of extracellular matrix proteins or membrane 

antigens) lower molecular weight compounds quickly diffuse back to blood stream for 

excretion.[48] Furthermore, due to their synthetic accessibility, the large-scale production of 

SMDCs is more sustainable at the industrial level.[48] 
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Similarly to ADCs, the mechanism of drug release for SMDCs depends on the targeted 

receptor (Figure 9).[17] Usually, most of the SMDCs are internalized into the cell through 

receptor-mediated endocytosis. The drug is then released upon linker cleavage by specific 

mechanisms in intracellular compartments. By contrast, in the case of SMDCs bearing a linker 

which can be cleaved in the extracellular milieu, the cytotoxic drug can be released in the tumor 

microenvironment and it can then penetrate the cancer cell by passive diffusion.[49,50] 

 

Figure 9. General structure of small molecule-drug conjugates (SMDCs). Ligand (green) for targeting, Spacer 1 
and Spacer 2 (blue), to modify the conjugate’s physicochemical properties (e.g. solubility) or to improve the kinetic 
of drug release, linker (yellow) to achieve intra or extracellular cytotoxic drug release, and drug (red) to get 
therapeutic effect after release. Adapted from [49] 

Ideally, the cytotoxic payload should be stably connected to the targeting moiety while the 

SMDC is in circulation. On the contrary, the drug should be efficiently released at the tumor 

site in its unmodified form. 

1.4.2. Linkers and Spacers 

The nature of the linker shows direct impact on the efficacy and stability of the SMDC construct. 

Several parameters, such as type of connection bond on the targeting ligand (e.g. ester, 

carbonate, carbamate, oxime), polarity, hydrophobicity and drug release mechanisms, may 

contribute to the SMDC performance.[17,51] Depending on the chemical bonds lability on the 

linker structure, linkers can be divided into two categories: cleavable and uncleavable. The 

latter rely on the complete stability of the whole conjugate, being usually exploited for diagnosis 

purposes (i.e. connection of fluorophores to the targeting ligand). On the other hand, 

environmental factors such as the acidic or reductive conditions of cytoplasm and extracellular 

matrix or the presence of specific enzymes in lysosomes are some of the exploited intra- and 

extracellular promoters of drug release from cleavable linkers.[50,52] 

Regarding that, a variety of chemical structures have been used as linkers to release the drug 

under different conditions at the tumor site: 
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• Reductively cleavable linkers: the high intracellular concentration of reduced glutathione 

(~2-10 mM) and other reductants (e.g. cysteine, thioredoxin, peroxiredoxins, and 

nicotinamide adenine dinucleotides) in cancer cells inspired the development of delivery 

systems containing reducible moieties, such as disulfide linkers. The drug release from 

disulfide bonds mainly occurs in the cytoplasm upon endocytosis, through disulfide 

exchange reactions with glutathione and other cysteine-containing proteins. However, it has 

been claimed that the high reducible environment at the tumor stroma can cleave the 

disulfide bond extracellularly and the drug can be taken up, passively, by the cancer cell. 

Upon S-S bond cleavage, the resulting reduced thiol group triggers the drug release through 

a cyclization onto electrophilic functional groups (e.g. carbonates and carbamates, Scheme 

1).[17,52] 

 

Scheme 1. Drug release mechanism of SMDCs bearing reductively cleavable linkers. After cleavage by 
glutathione, the free drug is released leading to the formation of different byproducts: A) thiirane; B) thioquinone 
methide; C) thiolactone; D) thiirane, 1,3-oxathiolan-2-one, and 1,3-dimethyl-2-imidazolidinone. GSH = 
glutathione; X=NH or O.[52] 

• Acid-labile linkers: the receptor-mediated endocytic process is known to proceed through 

a progressive acidification of the intracellular compartments (i.e. pH 4.5-5.0 in lysosomes 

and 5.0-6.5 in endosomes). Moreover, tumors are often characterized by a remarkable 

acidity of their extracellular milieu, as a result of the high metabolic rates of aggressive 

tumors. Therefore, linkers that are rapidly hydrolyzed under acidic conditions can be 

exploited for delivery of anticancer drugs. An example, in addition to esters, is the acidic 

hydrolysis of the para-alkoxybenzylidene methoxy (Scheme 2A), where the electron-

donating effect of the para-alkoxy functional group in the aromatic ring gives increasing 

stability to a para-alkoxybenzylonium cation, facilitating the cleavage and consecutive drug 

release. Hydrazones are also acid-labile linkers, especially when connected by direct 
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coupling of a carbonyl-containing drug to hydrazide linker. This approach relies on the linker 

hydrolysis within the endosomes (Scheme 2B), but the poor stability of such linker avoids 

significant drug accumulation at the tumor site and negligible release of the payload into the 

blood stream.[17,52] 

 

Scheme 2. Examples of drug release mechanism, upon hydrolysis, of SMDCs bearing acid-labile linkers. A) 
para-alkoxybenzylidene acetal; B) hydrazones; X=NH or O.[52] 

• Enzyme-cleavable linkers: the abundance of hydrolytic enzymes inside cancer cells and 

within the tumor stroma differs from their presence in the blood stream. As a consequence, 

linkers composed by specific peptide sequences or sugar moieties can be selectively 

recognized and cleaved by a variety of enzymes (i.e. proteases or glycosidases). 

Depending on the location of these effectors, the linker cleavage can take place at different 

sites of the cancer cell (e.g. tumor stroma, cell membrane, lysosomes and endosomes). 

Being composed by peptide bonds, enzymatically labile linkers show high stability under 

different pH conditions. In these drug-delivery systems, a self-immolative spacer is often 

present to decrease the steric hindrance around the peptide sequence, thus allowing a more 

efficient enzymatic action. The proteolytic cleavage generates a nucleophilic functional 

groups (e.g. hydroxy, amino, or thiol groups) which reacts intramolecularly through different 

mechanisms (mainly cyclization and electronic cascade over conjugated double bonds), 

releasing the free drug (see Scheme 3).[52] 

• Uncleavable linkers: unlike uncleavable linkers in ADCs (where the mAb structure is 

proteolytically degraded inside the cell, eventually releasing the cytotoxic agent), 

uncleavable linkers in SMDCs are generally stable both in circulation and inside the cell (i.e. 

blood stream and tumor site). The typical functional groups used for these linkers are 

triazoles, carbamates, and amides. Due to this high stability, these bonds are typically not 

indicated for drug delivery purpose, whereas they can be used for diagnosis, conjugating a 

fluorophore to the targeting ligand (i.e. SMDCs for cancer diagnosis).[52] 
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Scheme 3. Examples of enzyme-cleavable linkers bearing a self-immolative spacer. The cleavage by different 
located enzymes (intracellular for cathepsin B, extracellular for MMP-2/9 and intra/extracellular for β-glucuronidase) 
gives rise to liberation of the free drug after 1,6-elimination of the p-amino or p-hydroxy benzoxycarbonyl spacers. 
X= O or NH.[17] 

The choice of the linker is normally dependent on the target protein and its biological features 

(e.g. location in the tumor mass, internalization pathway etc.), as intra- or extracellular 

processes contribute to the fully active drug release.[50,52]  

From the structural point of view, the linker moiety is often functionalized at both sides with 

different kinds of spacers (see Figure 9). As mentioned above, self-immolative spacers 

between linker and payload (spacer 2, Figure 9) are important to release the drug in the active 

form upon linker cleavage (e.g. most common in literature is the 1,6-elimination of the para-

amino benzoxycarbonyl spacers, Scheme 3). Many other self-immolative spacers are reported 

in literature, considering different connection bonds (e.g. 1,8-elimination concerning 

chromanone rings and 1,4-elimination concerning phenyl rings). Moreover, additional chemical 

structures between linker and ligand are often included for different reasons. 

For instance, as linkers and cytotoxic agents are usually highly lipophilic, the spacer between 

the cleavable linker and targeting ligand is often included to improve the solubility in aqueous 

media of the entire SMDC (e.g. through the use of PEG chains or short peptide sequences 

bearing hydrophilic residues - spacer 1, Figure 9).[52] In some cases, the spacer minimizes 

possible steric hindrance from the cytotoxic drug that can interfere with the ligand affinity for 

its receptor. Moreover, modifications of the spacer structure have been used to modulate the 

pharmacokinetic properties of the SMDC, as well as to allow multipresentation of ligands and 

drug moieties.[53] 

It is now established that cancer cells express specific receptors on their surface which are 

present in a higher number of copies compared to healthy cells. In the case of SMDCs, a 
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variety of antigens have been investigated as targeted receptors: among all, some of the most 

studied targeted receptors will be described in the following sections [e.g. folate receptor (FR), 

prostate-specific membrane antigen (PSMA), somatostatin receptor (SSTR), carbonic 

anhydrase IX and integrin receptor]. Moreover, other receptors have been also described [e.g. 

cholecystokin receptor (CCKR), sigma-2 receptor, tropomyosin receptor kinase (Trk), 

hormones receptors (androgen, estrogen and progesterone), biotin receptor, CD13 receptor] 

but they will not be debated here in detail.[56] 

1.4.3. SMDCs Targeting Folate Receptors (FRs) 

Among all vitamin receptors, FRs are the most studied as cancer biomarkers. Vitamins are 

required for the survival of all living cells, and especially tumor cells require them in large 

quantities to sustain fast growth.[54] Folic acid is a crucial dietary factor that is converted by 

enzymatic reduction to a series of tetrahydrofolate (FH4) cofactors, providing methyl groups for 

the synthesis of DNA precursors (e.g. thymines and purines) and RNA (e.g. purines). Due to 

the importance of folic acid for fast-growing cells, FR is overexpressed on the surface of 

different cancer cells.[55] For this reason, folic acid (folate, Figure 10 in green) is considered the 

first small molecule to be used as ligand in SMDCs and the research activity done on folate-

drug conjugates represents a milestone in the development of tumor-targeting cytotoxic 

agents. Impressive work by Philip Low and co-workers at Endocyte, has been done in the 

applications of folate conjugates for tumor targeting.[56] The most studied SMDCs from 

Endocyte are EC145 (vintafolide, Vynfinit™ compound 34, Figure 10) and the analog, 

peptidoglycan-based, EC0489 (compound 35, Figure 10). Both compounds are known to enter 

the cell by FR-mediated endocytosis and, during this internalization pathway, the compounds 

are carried to the endosome.[52] From the structural point of view, both compounds are folate-

desacetylvinblastine hydrazide (DAVBH) conjugates, bearing a disulfide linker and hydrophilic 

spacers. EC145 showed considerable efficacy in preclinical mouse models and it is now being 

evaluated in Phase II clinical trials for solid tumors (i.e. ovarian, neck and colorectal). However, 

the clinical reports of EC145 highlighted side effects such as fatigue and constipation 

ascribable to the hepatic clearance and metabolism of the conjugate, which leads to the 

release of free drug (i.e. vinca alkaloid) to gastrointestinal organs. Subsequently, EC0489 (35), 

containing a peptidoglycan-based spacer was developed to reduce hepatic clearance and 

metabolism. Here, the hydrophilic spacer that connects the drug to the folate (Figure 10) was 

found to allow better affinity for the receptor (i.e. without any further data, authors stated that 

a rigid hydrophilic spacer might avoid the decrease of affinity) which prevents unspecific uptake 

by healthy cells. This conjugate is now undergoing Phase I clinical trials.[52] Other drugs have 

been conjugated to folate ligand by Endocyte, as cryptophycin, through a carbonate bond. 
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Compound 36 (Figure 10) displayed cell cytotoxicity in vitro at low nanomolar concentrations, 

while data of in vivo antitumor activity are currently not available.[57] 

Besides FRs, other vitamin-targeted receptors have been explored.[54] For example, the 

conjugation of potent drugs to biotin has been investigated, due to the overexpression of biotin 

receptors (BR) in tumor cells.[58] 

 

Figure 10. Molecular structures of three examples of FR-targeted SMDCs. 

1.4.4. SMDCs Targeting Prostate-Specific Membrane Antigen (PSMA) 

PSMA (also known as folate hydrolase I or glutamate carboxypeptidase II) is a plasma 

membrane protein, and it is the second most upregulated protein in prostate cancer (PCa).[59] 

This antigen represents an ideal cell surface protein for tumor-specific targeting. In addition to 

its expression on both prostate cancer cells and on the neovascular tissue of other solid 

tumors, PSMA is present at low concentrations in healthy tissues. Physiologically, this 

transmembrane glycoprotein cleaves glutamate residues from biological substrates (e.g. N-

acetylaspartyl glutamate) and, upon ligand binding, this cell-surface receptor undergoes 

endocytosis through clathrin-coated pits, recycling then to the cell surface.[60] 

Also in this case, Endocyte has been doing considerable efforts in PSMA-targeting SMDCs 

field. A variety of analogs of N-acetylaspartyl glutamate have been prepared and linked to 

cytotoxic agents or radioisotopes. For example, in EC0652 (compound 37, Figure 11) the 

ligand 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA, Fig. 11) was conjugated to 

the radioisotope technetium Tc-99m (99mTc), that can potentially be used as a radio-imaging 

agent for PSMA-overexpressing tumor cells. After cell uptake and SPECT (i.e. single-photon 

emission computed tomography) imaging, PSMA-positive tumor cells can be observed and 

identified. Furthermore, PSMA-overexpression has been correlated to the targeting skills and 
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the efficacy of certain PSMA-targeting cytotoxic agents. Compound 37 showed remarkable 

tumor accumulation in seven patients without reported toxicities, being now in phase I/II trials 

with a larger number of patients.[56] Another example of successful radioligand is 177Lu-PSMA-

617 (compound 38, Figure 11) developed by Endocyte and now in Phase III clinical trials.[61] 

The DUPA ligand in 177Lu-PSMA-617, is chemically attached to a therapeutic radioactive 

isotope called Lutetium-177 (177Lu), which releases an energetically active β- particle as a 

cytotoxic radiation at the site of disease (i.e. PSMA-positive cells). DUPA ligand was also 

conjugated to a potent antimitotic agent tubulysin hydrazide through a disulfide linker (EC1169, 

compound 39). Treatment of compound 39 in a in vivo model (i.e. nude mice bearing 

subcutaneous LNCaP tumor) showed regression in all treated animals, with 2/7 achieving 

complete tumor eradication (i.e. no tumor regrowth until 90 days), with no apparent toxicities. 

Compound 39 is now being evaluated in phase I clinical trials.[56] 

 

Figure 11. Molecular structures of three examples of PSMA-targeted SMDCs. DUPA ligand is represented in 
green. 

 

1.4.5. SMDCs Targeting Somatostatin Receptors (SSTRs) 

Specific hormone receptors are considered suitable targets for anticancer therapy, due to their 

high expression in different cancer cells. Among different hormone receptors (e.g. 

gonadotropin-releasing hormone or GnRH, steroid hormones, etc.), hormone somatostatin 

receptors (SSTRs, in particular subtypes 2, 3 and 5) are widely expressed in cancer cells, in 

particular in neuroendocrine tumors.[62] The most studied subtypes are SSTR2 and SSTR5. In 

particular, synthetic cyclic peptides such as octreotide and seglitide have been developed as 

somatostatin analogs. These compounds are particularly selective for SSTR2, rather than 

SSTR5 (14-fold and 130-fold higher affinity for SSTR2 isolated receptor, respectively).[63] 

Interestingly, a correlation was observed between somatostatin and its analogs to bind to the 
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SSTR2 subtype and its capability to constrain angiogenesis (i.e. the growth of new ramified 

blood vessels, which is significantly faster in aggressive and metastatic tumors).[63] For 

instance, somatostatin analog octreotide has been coupled through a labile ester bond at the 

2’-O position of paclitaxel (PTX, 20, Fig. 2), showing considerable antitumor efficacy in mouse 

models, with potent inhibition of tumor growth and lower systemic toxicity compared to PTX 

alone.[64,65,66]  

Moreover, ligands consisting of octreotide analogs have been also used to improve the 

anticancer efficacy of octreotide-DM1 SMDC, through a disulfide cleavable linker, against 

SSTR2-expressing tumor model (Fig. 12). A recent work from Tarveda Therapeutics showed 

the significant in vivo antitumor efficacy of compound 40 (Figure 12) in several SSTR2-positive 

lung xenograft models with. Antitumor activity was superior to that observed with standard of 

cytotoxic agents, cisplatin/etoposide. Remarkably, compound 40 showed no antitumor effect 

in a SSTR2-negative xenograft model.[67] 

 

Figure 12. Molecular structure of PEN-221 conjugate (40) developed by Tarveda Therapeutics and effect on the 
growth of small cell lung cancer NCI-H69 xenograft model in comparison with standard cytotoxic agents.[67] 

1.4.6. SMDCs Targeting Carbonic Anhydrases (CA) 

Carbonic anhydrase is described as a zinc metalloprotein located in cervical cancer cells. This 

metalloenzyme catalyzes the reversible hydration of carbon dioxide to hydrogen carbonate 

and H+ (CO2 + H2O ↔ H+ + HCO3
−), being responsible by physiological pH homeostasis. In 

humans, this enzyme is expressed in 16 known isoforms varying their catalytic activities, 

cellular localizations, and vulnerability to different inhibitors. Among these isoforms, carbonic 

anhydrase IX (CAIX) is considered an excellent tumor antigen, being overexpressed in 

different cancer types (e.g. glioblastoma, colorectal and breast cancer) as a marker of 

hypoxia.[68] 

Due to its high and localized expression, a group of highly specific SMDCs based on CAIX 

ligands has been developed. Although it is now clear that CAIX-targeting ligands do not enter 

the cell through receptor-mediated endocytosis, different CAIX-targeted SMDCs have been 

developed, and their antitumor properties were evaluated in vivo.[69] Over the past decade, 
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Neri and co-workers, have synthesized several SMDCs bearing a CAIX inhibitor 

acetalozamide (AAZ, Figure 13 in green). A first fluorescent conjugate carrying the AAZ CAIX-

targeting ligand, allowed the confirmation of the high affinity of AAZ ligand, which showed 

nanomolar Kd values (Kd = 12.6 nM) for the receptor, while exhibiting good tumor accumulation 

in vivo, 1 hour post-administration (the tumor accumulation was 22-fold higher than the 

negative control ligand confirming the selectivity of the ligand).[69] The development of SMDC 

compounds based on AAZ ligand showed that the combination of a disulfide linker and 

duocarmycin drug led to modest tumor volume inhibition. On the contrary, the use of a 

maytansinoid payload (in compound 41, Fig. 13) resulted in a potent antitumor effect.[69] 

 

Figure 13. Molecular structures of SMDCs bearing CAIX as targeting ligand (41-44), developed by Neri and co-
workers. CAIX ligands are represented in green. Compounds 41-42 have DM1 as payload, while compounds 43-
44 show MMAE (29) as payload. Disulfide linkers are represented in compounds 41-42 and lysosomally-cleavable 
linkers for 43-44. 

In the same frame, a bivalent AAZ-(DM-1) SMDC 42 (Fig. 13) illustrated how the increased 

ligand avidity can lead to substantial modification of the SMDC performances [displayed better 

results when compared with SMDC 41]: In particular, the dimeric ligand showed 1) high affinity 

with no apparent dissociation from CAIX coated surface (binding affinity measured with 

Surface Plasmon Resonance – SPR); 2) approximately 3-fold higher tumor accumulation than 

SMDC 41; and 3) longer tumor residence (24 hours after administration, bivalent 42 showed 

40% total fluorescence signal when compared with 14% of monovalent 41). Moreover, SMDC 

42 showed better antitumor activity in vivo than monomeric 41, which is the result of the 
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improved and extended tumor accumulation.[70] More recently, the same group, showed that 

variations of the linker moiety (i.e. introduction of cathepsin-B cleavable linker Valine-Citruline 

compound 43, Fig. 13) and of the cytotoxic agents (i.e. MMAE and PNU-159682) can improve 

the antitumor activity, leading in some situations to complete cancer eradication in the case of 

conjugate bearing MMAE as payload.[71] Remarkably, with the use of a non-internalizing ligand 

and intracellularly cleavable linker, the authors observed in vivo therapeutic efficacy.[71] Neri 

and co-workers claim that cathepsin B, which is originally an intracellular enzyme, might be 

secreted to the extracellular environment by dying cells but also by tumor cells, initiating 

extracellularly proteolytic cascades to help tumor growth.[71,72] Against the widely-accepted 

assumption that internalization is a strict requirement for the conjugate efficiency, these data 

indicate that the delivery of cytotoxic agents to the tumor extracellular environment is also a 

promising strategy to achieve anticancer efficacy.[71] The ligand fragment of these compounds 

has been recently improved through an innovative affinity-maturation experiment, performed 

through development and screening of DNA-encoded chemical library technologies (DNA-

ECL).[73,74] A new CAIX ligand was achieved from DNA-ECL allowing the development of a 

new SMDC 44, displaying a Kd = 10 nM by SPR.[75] In terms of therapeutic efficacy, SMDC 44 

showed no substantial improvement of the anticancer activity exhibited by compound 43, with 

the authors claiming that the release of the drug might be too slow (i.e. a more labile linker 

could rise the rate of tumor cell killing to show more therapeutic efficacy).[75] 

1.5. Integrin αvβ3 as Tumor Target Receptor 

Another group of receptors that have been largely 

studied in cancer therapy are integrins. These proteins 

are a family of heterodimeric membrane glycoproteins 

formed by non-covalently associated α- and β- subunits 

(Fig. 14).[76] This large group is composed by 18 α and 

10 β subunits that can assemble leading to 24 identified 

heterodimers (Fig. 14), giving the possibility to act in 

crucial biochemical processes of the cell biology (i.e. 

cell replication, survival, migration, and intracellular 

signal transduction).[76,77] For example, it has been 

described that immunoglobulins and cytokines interact 

with integrin receptors and trigger signaling pathways 

by activating receptor tyrosine kinases (i.e. well-known 

receptor overexpressed in different types of cancer).[78] 

Particularly, each subunit is featured by: 1) an 

Figure 14. up) The integrin family; down) 
Schematic representation of the two integrin 
subunits. Adapted from[76] 
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extracellular domain; 2) a single transmembrane domain; and 3) a cytoplasmic region (Figure 

14).[77] As main function, integrins mediate cell-cell and cell-extracellular matrix (ECM) 

adhesion, playing key roles in the cytoskeleton organization during cell adhesion and 

migration.[79] Indeed, the name “integrin” was given to designate the role of such protein as an 

integral membrane complex involved in the transmembrane association between the 

extracellular matrix and the inner part of the cell.[79] This kind of proteins are also responsible 

for the regulation of many biochemical processes at the cellular level which happen during the 

formation and in the progression of several diseases (e.g. prostate carcinoma, breast cancer, 

pancreatic tumor and glioblastoma).[78] It has been reported that tumor cells enhance the 

expression of specific integrins, stimulating their proliferation, invasion and survival.[78]  

Among these integrins, αvβ3 is strongly involved in the regulation of angiogenesis. Particularly, 

the quantity of integrin αvβ3 in tumor neovasculature is often higher with respect to healthy 

tissues, resulting in a continuous stimulation of angiogenesis.[80] The role of integrin αvβ3 is not 

only important in natural biochemical processes (e.g. wound healing, tissues remodeling, 

embryogenesis, and female reproductive cycle), but also for growth and survival of tumors. As 

a matter of fact, αvβ3 integrin is not only overexpressed in angiogenic endothelial cells, but it is 

also upregulated in several tumors (e.g. glioblastoma, pancreatic, breast, prostate and cervical 

carcinoma, and melanoma).[80] Besides, αvβ3 is involved in ECM remodeling and degradation, 

which are crucial processes for tumor invasion and metastasis. For example, αvβ3 integrin is 

able to recruit and activate specific extracellular proteases [i.e. metalloproteinase-2 (MMP-2) 

and plasmin] which degrade different components of the extracellular and interstitial matrixes 

(i.e. angiogenesis event arises from interaction between αvβ3 and MMP-2, which destroys the 

collagen matrix) thus promoting the migration of cancer cells.[80] 

1.5.1 RGD Integrin Ligands 

Endogenous proteins (e.g. fibrinogen, vitronectin, plasminogen) presenting the tripeptide 

sequence arginine-glycine-aspartic acid (Arg-Gly-Asp, or RGD) can interact with different 

integrin receptors (e.g. αvβ3, αvβ5, α5β1), which have been associated to cancer development, 

metastasis and tumor angiogenesis.[81] For instance, Rouslahti and co-workers described that 

the cell-adhesion ability of fibronectin is mediated by the RGD peptide sequence (Fig. 15), 

included in one of the protein domains.[82,83] 

For this reason, different research groups designed and synthesized a variety of peptides and 

peptidomimetics displaying the RGD recognition motif (see Figure 15) to target and bind these 

specific integrins and, among all, some were found to bind integrin αvβ3 with high affinity.[81] 
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Figure 15. The RGD recognition motif. 

So far, several strategies were implemented to exhibit the RGD recognition motif in a stable 

conformation. Indeed, it was reported that the constrain of the RGD sequence in small cyclic 

structures leads to high-affinity ligands, showing low conformational flexibility (i.e. flexibility of 

flanking residues is limited).[84] Numerous RGD-based binders are described in literature. 

Among them, Kessler’s research group was pioneer in developing the potent integrin ligand 

Cilengitide (45, Fig. 16).[85,86] The structural rationale for the observed high ligand-receptor 

affinity was provided by Xiong and co-workers, which reported X-ray analysis of the structure 

of integrin αvβ3 co-crystalized with Cilengitide.[87] The latter study was able to describe an 

extended conformation of the RGD sequence in the binding pocket, characterized by a crucial 

9-Å distance between C-β atoms of the Arg and Asp residues: this essential interaction relies 

on the establishment of two bridge salts, where the first is located between the arginine side 

chain and negatively charged residues in the α subunit, and the other involving the β-

carboxylate moiety of aspartic and the Mn2+
 divalent metal cation of the metal ion-dependent 

adhesion site (MIDAS) region in the β subunit (Figure 16).[88] 

 

Figure 16. The potent integrin ligand Cilengitide showing selectivity for αvβ3 over αvβ5 integrin receptors and 
Cilengitide bound to αvβ3. IC50 values from[89] and figure adapted from[88]  

Due to its high binding affinity to αvβ3 integrin receptor, Cilengitide was first developed as 

antiangiogenic molecule, thus being directly used as anticancer drug. Cilengitide reached 

clinical trials and, although it was found to be well tolerated in patients, its anti-angiogenic 

activity has been debated. By contrast, after the initially reported results, in specific 
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experimental conditions, Cilengitide was shown to act as an angiogenesis agonist, which 

caused the interruption of the clinical evaluation.[76,81,88] 

However, the significant work on the structural information and interaction between Cilengitide 

and αvβ3 integrin led to the development of cyclic RGD peptidomimetic and semi-peptidic 

ligands towards αvβ3 integrin. Some examples are shown in Figure 17, where the common 

feature of ligands 46-51 is the presence of the RGD tripeptide sequence within a cyclic 

structure, to limit the flexibility of the structure backbone.  

 

Figure 17. Selected examples of integrin ligands (46-51) and relative integrin affinity, expressed as IC50 value. The 
IC50 values were taken from literature: for compound 46,[90] 47,[91] 48,[92] 49,[89] 50,[81] and 51[81].  

Even after the clinical failure of Cilengitide, several αvβ3- and αvβ5-targeting ligands were able 

to enter clinical trials as well, due to their potent activity against tumor angiogenesis (i.e. this 

approach in cancer therapy was not successful).[93] Besides the use of αvβ3 integrin ligands as 

anti-angiogenic agents a different strategy arose, consisting in their use as tumor targeting 

agents. Due to the ability of these compounds to recognize overexpressed αvβ3 integrins on the 

membrane of tumor cells, different RGD-based small molecules have been used as carriers to 

deliver selectively: nanoparticles,[94] liposomes,[95] imaging agents,[96,97,98] and 

chemotherapeutics.[50,56,99,100] 
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1.5.2. RGD Integrin Ligands for the Delivery of Cytotoxic Drugs in Tumor Therapy 

Many different radiolabeled constructs containing RGD-based ligands were developed and 

validated in cancer imaging at the clinical level.[97,101,102] Alternatively, RGD-containing SMDCs 

are still under investigation and far from clinic. As previously mentioned, the overexpression of 

integrin αvβ3 by cancer cells can be exploited for the selective delivery of cytotoxic drugs by 

RGD-based SMDCs. Different dynamics of internalization-recycling of integrin receptors have 

been described. Upon interaction with their ligands, these processes are mediated by specific 

proteins (i.e. caveolin and clathrin), capable of activating the receptor insertion into 

characteristic vesicles that are delivered to endosomes.[103] In the case of integrin αvβ3, two 

pathways are available: 1) protein degradation by specific enzymes in endosomes or 

lysosomes and, 2) restoration to the cell membrane (i.e. recycling). Consequences of these 

processes involve cell migration and activation of other receptor families by cross-talk 

mechanisms (e.g. VEGFR-2, involved in angiogenesis).[104] 

Among the cytotoxic drugs used in traditional chemotherapy, doxorubicin (14, Fig. 2) was the 

first chemotherapeutic coupled to an RGD-bearing peptide (RGD4C, Fig. 18) in order to target 

integrin αvβ3. The RGD4C-doxorubicin SMDC developed by Ruoslahti and co-workers, triggered 

tumor growth inhibition of human breast cancer xenografts (i.e. MDA-MB-435 breast cancer cell 

line which features a high level of expression of αv integrins) in nude mice compared to the free 

cytotoxic drug. Furthermore, the RGD4C-doxorubicin SMDC showed decreased cardio- and 

hepatotoxicity than free cytotoxic drug as revealed by histopathological studies.[105] By contrast, the 

presence of stable amide linker showed some unspecific cleavage. For this reason, enzymatically 

cleavable linkers have been investigated to avoid non-specific cleavage. In 2002, De Groot and 

co-workers connected the bicyclic RGD4C ligand (Fig. 18) to doxorubicin, through a peptide 

substrate of protease plasmin (i.e. a tumor-associated enzyme, and involved in tumor invasion and 

metastasis) as cleavable linker, the D-Ala-Phe-Lys tripeptide sequence (52, Figure 18).[106] SMDC 

52 showed inhibition of vitronectin binding to HUVEC (human umbilical vein endothelial cells) 

cells at nanomolar concentration and the efficient linker cleavage by plasmin protease was 

confirmed.[107] However, only 30% of SMDC 52 was found to be converted into free doxorubicin. 

In the presence of protease, SMDC 52 was nearly as potent as the free drug against HT1080 and 

HUVEC cell lines (IC50 = 0.28 µM and IC50 = 0.75 µM).[106] Later on, Ryppa and co-workers 

developed two dimeric integrin-targeted doxorubicin SMDCs conjugated through an amide bond 

(53, Fig 18) and a peptide linker (54, Fig. 18).[108] The conjugates were designed to improve the 

affinity towards the target receptor by exploiting the multi-presentation of the recognition sequence. 

Such constructs were obtained after reaction of the thiolated divalent E-[c(RGDfK)2] linker with: 1) 

a maleimido functionalized doxorubicin, or 2) doxorubicin functionalized with a MMP2/9 cleavable 

octapeptide (53-54, Fig. 18). The MMP2/9 cleavable conjugate was efficiently cleaved in OVCAR-
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3 cancer cells (i.e. human ovarian carcinoma), releasing the free doxorubicin. On the other hand, 

the release of free doxorubicin from the amide-bearing conjugate was not observed, showing the 

specificity of the MMP cleavable octapeptide. Unfortunately both SMDCs did not display 

considerable effect in mice xenograft model bearing the OVCAR-3 cancer cell line.[108] 

 

Figure 18. Integrin-targeted DOXO SMDCs. Molecular structures of SMDCs bearing RGD-based integrin-targeting 
ligand and DOXO through enzymatically cleavable linkers 52 and 54 and amide bond 53. 

Camptothecin (CPT 11, Fig. 2) and hydrophilic derivatives such as Topetocan (12) and SN38 

(13) are another group of cytotoxic drug used for the development of SMDCs targeting integrin 

αvβ3.[107] Dal Pozzo and co-workers reported in 2010 the synthesis and biological evaluation of 

integrin-targeted SMDCs (compounds 55-56, Figure 19), in which a CPT analog was conjugated 

to an RGD cyclopentapeptide through a hydrazone linker. The SMDCs showed good binding 

affinity to αvβ3 (αvβ3 IC50 = 6-11 nM) and the cytotoxic activity of 55-56 was measured against 

PC3, A498 and A2780 cancer cell lines: despite the high cytotoxicity of this compound, the 

linker was reported to be poorly stable in vitro, resulting in a premature hydrazone cleavage 

and an non-specific drug release in vivo.[109] 

SMDC analogs of Cilengitide, conveniently modified with specific groups for conjugation, as 

well as derivatives of CPT at position 7, were described in a patent by Sigma-Tau.[110,111,112] 

The RGD targeting ligand was conjugated to CPT through stable linkers at physiological 

conditions, but promptly cleaved when the conjugate is internalized. Such conjugates present 

an enzymatically peptide cleavable linker, and short PEG spacer to increase the solubility, 

without affecting the RGD ligand binding affinity towards αvβ3/αvβ5 integrins.[107] Indeed, the 

binding affinity to αvβ3/αvβ5 isolated receptors (αvβ3 IC50 = 30-40 nM) and cytotoxicity against 

ovarian and prostate carcinoma cancer, were remarkable for all the SMDCs.[107] Interestingly, 

in vivo ability of SMDC 57 (Fig. 19) showed good antitumor efficacy with full tumor regression 

being observed at 25 mg/kg dose (i.e. in a mouse xenograft model of A2780 ovarian cancer 

cells). Good tolerability and effect persistence were observed after the treatment.[107, 111,112] 
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Figure 19. Integrin-targeted CPT SMDCs. Molecular structures of SMDCs bearing RGD-based integrin-targeting 
ligand and CPT through hydrolytically labile linker 55-56 and enzymatically cleavable linker 57. 

Another class of cytotoxic drugs that has been investigated as payloads in RGD-based SMDCs 

is Crytophycin-52 (27, Cry-52, Fig. 3). The latter was the first derivative of this drug family to 

reach clinical trials (developed by Eli Lilly).[113,114] While the use of free Cryptophycin resulted 

to severe neurotoxicity in patients,[18,115] the synthesis of targeted cryptophycin derivatives, 

aimed at improving the drug’s safety profile, has been an attractive research area, particularly 

pursued by the group of Prof. Sewald. Several cryptophycin derivatives were developed, as 

well as an RGD-(Cry-52) SMDC (58, Fig. 20A), bearing a triazole linkage.[116] Cell viability 

assays were performed in human cervix cancer cell lines KB-V1 and KB-3-1, through cell-

based resazurin assay. SMDC 58 displayed low cytotoxicity when compared with free drug 27 

(58 IC50 = 55.8 nM in KB-3-1 cells and 58 IC50 = 1.8 nM in KB-V1 cells vs. free drug IC50 = 15.5 

pM in KB-3-1 cells and free drug IC50 = 0.26 nM in KB-V1), probably due to the stable triazole 

connection. The RGD-(Cry-52) compound was derivatized with fluorescein, leading to a 

cRGDfK-fluorescein-(Cry-52) conjugate (59), which was used for imaging studies in terms of 

internalization and cell localization. It was proved that in 15 min, 59 was internalized through 

integrin-mediated endocytosis and it was localized in the lysosomes of WM-115 tumor cells 

(see Figure 20A).[116] 

Besides the contribution of Sewald and coworkers, the development of “theranostic” devices 

is now facilitating the overall understanding of the mechanism of αvβ3-targeted drug delivery. 

MMAE (29, Fig. 3) has also been conjugated to RGD peptides for theranostic applications (e.g. 

RGD-PLGC(Me)AG-MMAE-ACPP) by Tsien and co-workers).[117] The RGD ligand was 

conjugated to MMAE via a PEG spacer, an activable cell penetrating peptide (ACPP), a far-

red fluorophore (Cy5), and an intracellularly cleavable linker Val-Cit (SMDC 60, Fig. 20B). 
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ACPPs can help the cell uptake and they are generally structured with a polyanion, a 

polycationic peptide, and a metalloproteinase (MMP2/9) extracellularly cleavable linker 

(PLGC(Me)AG) - Fig. 20B. SMDC 60 displayed increased cellular uptake in U87MG 

glioblastoma cancer cells when compared with the RAD-bearing negative control (i.e. RAD- 

ACPP-PLGC(Me)AG-MMAE), proving the targeting ability of RGD sequence. As for the in vivo 

studies, SMDC 60 displayed better tumor volume regression in MDA-MB-231 breast cancer 

when compared with cyclic-RAD-PEG-6-MMAE and MMAE negative controls (i.e. MMAE 

therapeutic dose of 0.2 mg/kg).[117] 

 

Figure 20. A) Integrin-targeted Cry-52 SMDCs 58-59. On the right: Confocal microscopy. Incubation of WM-115 
melanoma cells with conjugate 59 for (I) 15 min, (II) 40 min, (III) 4 h. (Green) The fluorescent conjugate 59 (λex = 
458 nm) is localized intracellularly. (Red) Lysosomes are stained with LysoTrackerRed (λex = 561 nm). (Yellow) The 
overlay clearly proves colocalization.[116] B) Molecular structure of the “theranostic” (cRGD)-ACPP-PLGC(Me)AG-
MMAE SMDC 60. 
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As already mentioned, an important feature to increase the therapeutic efficacy is the affinity 

and selectivity of the conjugate. This can be achieved by the concept of multivalency (i.e. 

multivalent conjugates can carry two or more targeting units). The development of RAFT (i.e. 

regioselectively-addressable functionalized template) cyclodecapeptide scaffold by Boturyn 

and co-workers helped the synthesis of multi-presented constructs.[118] Moreover, reducible 

Pt(IV) complexes have been proved to be particularly useful as linkers in tumor-targeting. After 

internalization into αvβ3/αvβ5-expressing cells, the Pt(IV) reduction triggers the release of the 

Pt(II) complex (i.e. picoplatin active form). For example, Marchán and co-workers developed a 

mono (62, Fig. 21) and a tetrameric (63, Fig. 21) RGD-containing SMDCs by conjugation of 

the picoplatin Pt(IV) prodrug 61 bearing a succinic axial group.[119] Cytotoxicity assays were 

performed in αvβ3/αvβ5 integrin expressing SK-MEL-28 melanoma cancer cells, and in 1BR3G 

and CAPAN-1 cell lines (both showing low integrin expression). The tetrameric SMDC 63 was 

tested in all three cell lines and IC50 values were compared with IC50 values of monomeric 

conjugate and free drug. Tetrameric conjugate displayed 20-fold and 2.6-fold higher 

cytotoxicity in SK-MEL-28 integrin-expressing cell line when compared to free drug 5 and 

monomeric 62, respectively. No antiproliferative activity was shown in αvβ3-negative cells 

(1BR3G and CAPAN-1). ICP-MS technique was used to measure intracellular accumulation 

of platinum, proving that the increase of cytotoxicity is associated to the level of integrin 

expression of the cell line and, consequently to the number of targeting units of the SMDC.[119] 

 

Figure 21. Molecular structures of integrin-targeted platinum SMDCs 62 (monomeric) and 63 (tetrameric) bearing 

Pt(IV) complexes. 

Finally, paclitaxel (PTX, 20, Fig. 2) is one of the most widely employed in the construction of 

RGD-containing SMDCs. PTX is usually derivatized at the 2’-OH functional group, which is 
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crucial for the biological activity of the drug. This position has been often functionalized with 

targeting agents through ester linkers: this strategy increased the selectivity of paclitaxel in in 

vivo tests.[120] However, such PTX esters showed poor stability even in aqueous buffers and 

the premature release of the drug was observed, limiting the overall applicability of this kind of 

SMDCs. As a representative example of such PTX SMDCs, in 2009 Ryppa and co-workers 

synthesized conjugate 64 (Fig. 22), a divalent RGD compound designed to improve the affinity 

towards the target receptor, and its anti-proliferative activity was studied on HUVEC cell line. 

The short half-life of 64 (ca. 2 hours in phosphate buffer solution at 37 °C) compromised the 

targeting ability of the integrin binding portions.[121] 

 

Figure 22. Molecular structures of integrin-targeted PTX SMDCs 64-66 bearing an RGD-based structure as 
targeting ligand and PTX as cytotoxic drug. The graphic corresponds to the in vivo effect of 66 on ovarian carcinoma 
IGROV-1/Pt1. SMDC 66 was administered every fourth day four times.[122] 

In 2012, Zanardi, Manzoni and co-workers used cyclic RGD ligands based on modified 

aminoproline (Ampro) and azabicycloalkanes (Aba) moieties (Fig. 22).[122] These AmproRGD 

and AbaRGD ligands (i.e. displaying αvβ3 affinity) were used to the targeted delivery of PTX 

(65-66, Fig. 22). The SMDCs were obtained connecting the 2’-O position of PTX with 

AmproRGD and AbaRGD via succinic or diglycolic esters and different spacers (i.e. varying 

the hydrophilicity and length of the spacer). All synthesized conjugates showed good binding 
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affinity to αvβ3 integrin isolated receptor. At the same time, in vitro cytotoxicity assays on a 

panel of αvβ3/αvβ5-expressing cancer cell lines was evaluated. Also in this case, all conjugates 

displayed remarkable cytotoxic activity. Furthermore, in vivo efficacy was evaluated for one of 

the SMDCs (66), in a Pt-resistant (IGROV-1/Pt1) ovarian cancer xenograft model (Fig. 22). 

SMDC 66 displayed improved activity at a molar dose 50% lower than the one of free PTX.[122] 

In an additional study, the same group exploited the potential of multivalency, with the goal of 

increase binding affinity of the SMDCs to αvβ3/αvβ5 integrins. This work will be described in 

Chapter II. 

Other examples of αvβ3-targeted SMDCs are described in literature.[50,56,107,110] In conclusion, 

despite the notable efforts made in this research field, such type of SMDCs are still far from 

being evaluated in the clinic. Preclinical data supporting the potential of this pharmacologic 

approach are still missing and optimizations of each single fragments of integrin-targeted 

SMDCs may lead to deeper understanding of this drug delivery constructs. 

1.6. Work of Our Research Group in the Field – State of the Art 

Between 2009 and 2012, our research group developed a new library of cyclic integrin ligands 

where the 2,5-diketopiperazine (DK1-DK8, Fig. 23A) scaffold had the function of constrain the 

RGD tripeptide sequence. In addition to the decrease of flexibility of the peptide backbone, the 

cyclic peptidomimetic structure prevents metabolic cleavage of amide bonds in α-amino 

peptides. Furthermore, the DKP ring itself is able to participate to ligand-receptor interactions, 

owing to the presence of hydrogen bond donors and acceptors, such as amide protons and 

carbonyl groups, respectively. Thus, a better interaction with the biological target can be 

achieved by introducing diversity in the DKP ring at four positions. In this frame, our research 

group synthesized a small library of DKP scaffolds, varying the configuration at C3 and C6 and 

the substitution at N1 and N4 (DKP1-DKP8, Fig. 23A). Later on, with these DKPs in hands, a 

group cyclo[DKP-RGD] peptidomimetics bearing the RGD recognition motif was prepared (67-

74, Fig. 23B).[123,124] 

Figure 23. A) DKP1-DKP8 scaffold library and the B) corresponding cyclo[DKP-RGD] peptidomimetics (67-74).[124] 

In vitro binding assays on the isolated αvβ3 and αvβ5 integrin receptors (i.e. ability to compete 

with the endogenous ligand fibronectin for binding to integrins) qualified the previously 
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prepared ligands 67-74 as low nanomolar binders for αvβ3 and demonstrated that the DKP ring 

strongly influences the ligand affinity for the receptor.[124] In contrast to reference compound 

Cilengitide (45, Fig. 16), these peptidomimetics displayed a higher αvβ3/αvβ5 selectivity ration 

for αvβ3 integrin receptor.[124] Compounds 67-74 were studied by NMR technique and MC/SD 

simulations, to elucidate their conformational preferences: the highest affinity for the αvβ3 

receptor was associated to a defined and extended arrangement of the RGD tripeptide, due to 

the presence of intramolecular hydrogen bond patterns locking the backbone flexibility. Due to 

its low-nanomolar affinity for the αvβ3 receptor and to its relatively easy synthetic preparation, 

supplementary in vitro biological studies were performed on cyclo[DKP3-RGD] (69): the tested 

compound efficiently inhibited angiogenesis in HUVECs.[125] Additionally, ligand 69 has been 

recently classified as a αvβ3 antagonist, due to its inhibitory effect on integrin-mediated FAK/Akt 

transduction pathways and cell infiltration processes. For this reason, it is important to highlight 

the difference between cyclo[DKP-RGD] ligand (αvβ3 antagonist) and the well-known 

Cilengitide (45, αvβ3 agonist). Besides, ligand 69 did not affect other cellular aspects (e.g. cell 

viability and proliferation).[126] 

 

Figure 24. Molecular structures of cyclo[DKP-RGD] (75) integrin ligand and of cyclo[DKP-RGD]-PTX conjugate 
(76).[127] 

As the cyclo[DKP3-RGD] (69) was selected as hit compound, our research group 

functionalized the DKP scaffold of peptidomimetic 69 with a benzylamino moiety. This 

nucleophilic group on the new cyclo[DKP-RGD] ligand (compound 75, Fig. 24)[127] has been 

used as attaching point for the conjugation of different compounds, such as PTX,[127] a pro-

apoptotic SMAC mimetic compound[128] and an anti-angiogenic peptide.[129] Particularly, PTX 

was connected to the cyclo[DKP-RGD] targeting ligand (cyclo[DKP-RGD]-PTX 76, Fig. 24) 

through a succinate moiety and, despite the increased steric hindrance on the cyclo[DKP-

RGD] part, conjugate 76 retained a low nanomolar affinity and a high selectivity towards αvβ3 

integrin [IC50 (αvβ3) = (5.2 ± 2.3) nM and IC50 (αvβ5) = (219 ± 124) nM]. Antitumor assays of 

conjugate 76 in nude mice xenografted with IGROV-1/Pt1 cancer cells (i.e. an αvβ3-

overexpressing cell line) showed a better efficacy of the conjugate with respect to the free PTX. 
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Indeed, due to the active integrin targeting, the antitumor activity of 76 was superior than the 

free drug despite the lower molar dose administered to the animal (Fig. 25C), thus revealing 

that the conjugation with the cyclo[DKP-RGD] ligand improves the antitumor effect of PTX. 

However, while conjugate 76 showed stability for at least 7 days in physiological solution (Fig. 

25A), the ester linker proved to be less stable in plasma, and the release of free PTX occurred 

with half-lives of 143 min and 165 min in human and murine plasma respectively (Fig. 25B).[127] 

 

Figure 25. A) Stability of conjugate 76 (1.28 mM) in physiological solution; B) Stability of 76 in murine plasma; C) 
biological evaluation of 76 in vivo compared to paclitaxel (PTX) on IGROV-1/Pt1 ovarian carcinoma. Adapted 
from.[127] 

Such in vivo studies with conjugate 76 pointed out the advantage of using cyclo[DKP-RGD] 

integrin ligands as targeting compound for the selective tumor-targeted delivery of cytotoxic 

agents. At the same time, the plasma stability of this ester linker showed to be too low to 

exclude a premature drug release in circulation, confirming that the linker system is a critical 

point for the efficacy of the conjugate and its essential role in the selective release of the 

cytotoxic drug within the tumor site. These findings prompted the development of different 

systems to link the portions of the conjugate. 

In 2015, our research group synthesized the conjugate cyclo[DKP-RGD]-Val-Ala-PTX (77, Fig. 

26).[130] Conjugate 77 was composed by the integrin ligand cyclo[DKP-RGD], the cytotoxic 

agent (PTX), the dipeptide linker (valine-alanine, Val-Ala) and two different spacers (i.e. the 

spacer between the dipeptide linker and PTX allowed the conjugation through a carbamate 

bond, which is known to be more stable in plasma than esters or carbonates). The mechanism 

of drug release of this construct is similar to the one described for enzyme-cleavable linkers 

(Paragraph 1.4.2., Scheme 3A). Conjugate 77, showed a high affinity to the purified αvβ3 

receptor [IC50 (αvβ3) = (13.3 ± 3.6) nM and IC50 (αvβ5) = (924 ± 290) nM]. At the same time, 

noticeable selectivity was displayed for the integrin over-expressing cell line CCRF-CEM αvβ3 

with respect to the isogenic cell line CCRF-CEM devoid of the target receptor [i.e. the ratio 
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between the cytotoxicity in αvβ3(-) and αvβ3(+) cell lines (i.e. IC50 values) highlighted the 

selectivity (S) of such conjugate (S = 66.9)].[130] 

 

Figure 26. Molecular structures of the conjugates cyclo[DKP-RGD]-Val-Ala-PTX (77) and cyclo[DKP-RGD]-
uncleavable-PTX (78). 

The analog conjugate cyclo[DKP-RGD]-uncleavable-PTX 78 was designed to be unable to 

release of PTX, and thus used as negative control in anti-proliferative assays: the conjugate 

showed no cytotoxic activity against the tumor cell lines. Curiously, free PTX itself showed a 

marked selectivity against CCRF-CEM αvβ3(+) cells (S = 7.4), allowing the correction of the 

selectivity value of conjugate 77, by taking into account the different biological activity of PTX 

in the two cell lines (Targeting Index, TI). TI was calculated as follows: 

T. I. =  
𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦SMDC 𝟕𝟕

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦Free Drug
 

Interestingly, conjugate 77 displayed a TI = 9.0, showing a remarkable value for the direct 

evaluation of the tumor-targeting ability of 77 in vitro.[130] Moreover, conjugate 77 has been 

evaluated in vitro with different cellular models.[131] 

Additionally, our research group has also been developing different SMDCs targeting αvβ3 

integrin receptor. In particular, the use of reductively cleavable disulfide linkers was explored 

with the synthesis of a cyclo[DKP-RGD]-SS-CPT conjugate. The compound showed TI = 0 
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due to the low stability of the α,α-unsubstituted disulfide bond in the cell medium.[132] Moreover, 

new payloads were employed, such as the natural product α-amanitin. Conjugates cyclo[DKP-

RGD]-Val-Ala-α-amanitin from our group displayed reduced potency in αvβ3(+) and αvβ3(-) cell 

lines when compared with free drug (i.e. α-amanitin). Moreover, no targeting was observed 

against αvβ3(+) cell line.[133] 

In order to improve the TI value of our conjugates, an intense analysis on the increase of the 

conjugates valency (i.e. exploitation of multivalency concept), the exploration of different linker 

structures and the implementation of more potent cytotoxic payloads have been proposed as 

strategies to achieve and develop more efficient integrin-targeted prodrugs. The mentioned 

topics will be discussed in the following Chapters. 
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Multimeric cyclo[DKP-RGD]-PTX Conjugates 

Part of the work described in this Chapter was published in the following articles: 

• A. Raposo Moreira Dias, A. Pina, A. Dal Corso, D. Arosio, L. Belvisi, L. Pignataro, M. Caruso, 

C. Gennari, Chem. Eur. J. 2017, 23, 14410-14415. 

• P. L. Rivas, I. Ranđelović, A. Raposo Moreira Dias, A. Pina, D. Arosio, J. Tóvári, G. Mező, A 

Dal Corso, L. Pignataro, C. Gennari, Eur. J. Org. Chem. 2018, 2902-2909. 

2.1 Introduction 

The choice of the linker is fundamental for the SMDC efficacy, being the key of the correct 

equilibrium between the linker stability in circulation and its fast cleavage at the tumor site. 

Besides, previous data reported by our research group (Chapter I, Paragraph 1.6) established 

that precise modifications of the linker structure are crucial for the achievement of good 

selectivity. It is important to note that most of the publications in the field of αvβ3-targeted 

chemotherapeutics do not report the required data for the calculation of the Targeting Index 

(TI), such as the in vitro cell antiproliferative activity of conjugate and free drug against two 

cancer cell lines, with different αvβ3 integrin expression. Considering all available literature 

reporting sufficient data for the calculation of this parameter, the TI of 9.0 achieved by 

cyclo[DKP-RGD]-Val-Ala-PTX 77 is still the highest ever reported.[50] Moreover, the TI of 9.0 

demonstrates that the use of the Val-Ala linker may be a promising starting point for the 

development of new-generation SMDCs, based on RGD ligands and the Paclitaxel payload. 

On the other hand, this TI value is still far from the data relative to a large number of ADC 

products. For instance, TI values in the order of 1000-2000 have been frequently reported for 

some ADCs, which indicates these biotherapeutics as the best-in-class in the active drug 

delivery field (Table 1).[50] However, some remarkable TI values can be calculated with 

literature data available for some SMDC products, specific to non-integrin targets. 

Nevertheless, TI values reported for SMDC constructs are often one order of magnitude lower 

than for ADCs. Generally, small molecules as tumor-homing devices are frequently described 

as weaker binders than mAbs. This is due to the different structural basis of antigen 

recognition: while most of small ligands bind to a small and specific binding pocket (e.g. the 

active site of an enzyme), high-affinity antibodies normally interact with a larger antigen surface 

(epitope), whose shape is complementary to the mAb’s variable region. As a result, it is 
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conceivable to correlate such lower binding affinity to the in vitro and in vivo selectivity 

displayed by the corresponding SMDCs, and consequently, the TI values. 

As an example, for ADCs, Table 1A and Fig. 27 demonstrate the highly selective 

antiproliferative activity of the PSMA-targeted ADC 79 against the PSMA expressing cancer 

cell line MDA PCa2b, achieving a TI of 1716.[134] 

Table 1. Antiproliferative activity of the PSMA-targeted ADC 79 (A)[134], Her2-targeted ADC 80 (B)[135], folate 
receptor-targeted SMDC 81 (C)[21], and SMDC 77 from our group (D)[130] against cancer cell lines with different 
expressions of PSMA, Her2, FR and αvβ3, respectively. [a] Selectivity (S): IC50(receptor −)/IC50(receptor +); [b] 
Targeting index (TI): selectivity/selectivity observed with free drug. 

 

Figure 27. Molecular structures of the examples described in Table 1. 

Structure 
IC50 (nM) 

S[a] T.I.[b] 
Negative Antigen  Positive Antigen  

A PC3 (PSMA −) MDA PCa2b (PSMA +)   
Monomethyl auristatin E (MMAE, 29) 0.970 0.363 2.7 1 
mAb(PSMA)-Val-Cit-MMAE (79) 83.4 0.018 4633.3 1716 

B MDA-MB-231 (Her2 −) SK-BR-3 (Her2 +)   
Monomethyl auristatin E (MMAE, 29) 0.038 0.004 9.5 1 
mAb(Her2)-Gal-MMAE (80) No cytotoxicity 0.009 >1000 >1000 

C A549 (FR −) KB (FR +)   
Monomethyl auristatin E (MMAE, 29) 0.872 0.240 3.6 1 
Folate-MMAE (81) 195.2 0.240 813.5 226 

D CCRF-CEM (αvβ3 −) CCRF-CEM (αvβ3 +)   
Paclitaxel (PTX, 20) 155 21 7.4 1 
cyclo[DKP-RGD]-VA-PTX (77) 5153 77 66.9 9.0 



 

 

45 Multimeric cyclo[DKP-RGD]-PTX Conjugates 

Another successful example of selective ADC development is the recent effort of Papot and 

co-workers (Table 1B), where a highly selective ADC construct was designed for the treatment 

of breast cancer.[135] Indeed, this construct displayed better therapeutic efficacy than 

commercial trastuzumab emtansine (Kadcyla 31, Fig. 8). Table 1B shows the noticeable 

antiproliferative activity of the Her2-targeted ADC 80 against the Her2-expressing cancer cell 

line SK-Br-3 (values obtained were in the picomolar range).[135] By contrast, ADC 80 did not 

show activity against Her2-non-expressing MDA-MB-231 cancer cells, leading to a remarkable 

TI. Regarding literature data about SMDCs, the TI value of one of the best conjugates targeting 

folate (compound 81, Fig. 27) was around 226 (Table 1C), indicating that it is actually possible 

to calculate TI values higher than 9.0 using SMDC products.[21]  

A well-known strategy to increase the binding affinity and selectivity of a SMDC towards the 

cells overexpressing integrin αVβ3 is the formation of multivalent interactions between the 

ligand and the target antigen. This strategy is the most common approach to increase this 

binding strength, according to a biomolecular principle often referred to as “avidity”.[136]  

Accordingly, this Chapter aimed at synthesizing new multimeric αvβ3-targeted SMDCs, in order 

to increase their binding avidity, potentially resulting in higher T.I. values. 

2.1.1. Multivalency 

Multivalent interactions are used by nature to generate stronger binding between two units 

(e.g. ligand/receptor). For instance, viruses, antibodies, protein complexes are multivalent 

entities possessing a high number of recognition units or binding moieties (e.g. targeting 

ligands) able to interact with another multivalent entity (Fig. 28).[137] Essentially, the interesting 

feature of multivalent interactions is the ability of enhancing the avidity  of multivalent species, 

resulting in an apparent enhancement of the binding affinity of each individual binding 

unit.[138,139,140] Indeed, the increased ligand binding strength in multivalent constructs can derive 

from several different mechanisms: 1) receptor/protein aggregation or clustering, 2) chelation, 

and 3) statistical rebinding (Fig. 28).[141] 

 

Figure 28. Up) Example of multivalent interactions between two entities to increase the binding strength.[136] Down) 
A) binding to a cluster of receptors; B) chelation to a divalent protein; C) statistical rebinding with the increase of 
ligand concentration, enhancing the rebinding rate and, consequently, the binding strength.[141] 
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Translating this for tumor-targeted therapy or diagnosis, a variety of radiotracers for tumor 

imaging have been conjugated to multimeric RGD peptides, showing increased tumor uptake 

and reduced site accumulation to other organs.[142,143,144,145] Besides the applications for tumor 

imaging in vivo, which have reached the clinic, the advantages of using multimeric ligands 

have been also studied in vitro.[102,120,146,147] In particular, a large contribution in this field has 

been given by Boturyn and co-workers,[148] who developed a RAFT scaffold for the use of 

multipresentation in RGD constructs, as previously mentioned in Paragraph 1.5.2.[149,150,151] 

Notably, it was demonstrated that a tetrameric probe 82 (RAFT-c[RGDfK]4-Cy5) displayed 

higher binding affinity for the isolated integrin αvβ3 receptor when compared to monomeric 

analog (Kd = 3.87 nM for tetrameric construct VS Kd = 41.70 nM for the monomeric analog). 

Interestingly, when the RGD ligand was replaced by a non-targeting RAD ligand (RAFT-

c[RADfK]4-Cy5), the construct lost the affinity for the receptor (Kd > 10000 nM). Later on, the 

same research group proved that the tetrameric construct 82 increased the endocytosis of a 

fluorescent probe in HEK293 cells (i.e. β3-transfected human kidney cell line) by 12%, 

compared to the monomeric analog, after incubation for 10 minutes.[152]  

This study proved that multimeric αvβ3-targeting systems can exhibit higher binding affinity to 

the receptor when compared to monomeric analogs, which reflects in a higher cell adhesion 

and in a more efficient receptor-mediated endocytosis.[153,154]  

 

Figure 29. Molecular structure of RAFT-c(RGDfK)4-Cy5 (82) and confocal analysis on HEK293(β3) cells (A – 
incubation with 1 µM of tetrameric 82 and B - 1 µM of monomeric c(RGDfK)-Cy5 compound) after 10 minutes. Cells 
were analyzed at 633 nm.[152] 

The use of multimeric αvβ3-targeted compounds for delivery of cytotoxic payloads has been 

investigated by Zanardi,[122] Manzoni and co-workers.[155] In 2012, a monomeric and dimeric 

conjugates [i.e. [AmproRGD]-PTX (65) and [AmproRGD]2-PTX (83)] carrying AmproRGD as 

targeting ligand (Fig. 30) were developed. Later on, the same group evaluated the use of 
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AbaRGD (Fig. 30) as targeting ligand, preparing monomeric (66), dimeric (84) and tetrameric 

(85) [AbaRGD]n-PTX SMDCs (n = 1, 2 or 4). 

 

Figure 30. Molecular structures of mono and multimeric conjugates synthesized bearing AmproRGD and AbaRGD 
as targeting ligands. Molecular structures of 65 and 83 taken from ref.[122] and 66, 84 and 85 from ref.[155] 

Table 2. Cytotoxicity assays of conjugates bearing AmproRGD and AbaRGD as targeting ligands and free PTX in 
IGROV-1 and IGROV-1/Pt1 cell lines. Table adapted from[122,155]. 

 

 

 

 

These works represented the proof of concept that the apparent integrin affinity can be 

increased by multipresentation of RGD units.[122,155] However, the increased avidity was not 

found to correlate with the selective anticancer activity of the conjugates for αvβ3-expressing 

cells. In fact, cell antiproliferative tests were run against two cell lines expressing different 

Cpd Structure IC50 (nM) 

  
IGROV-1 

(v3 −) 

IGROV-1/Pt1 

(v3 +) 

  65 [AmproRGD]-PTX 43.1 ± 6.8 3.4 ± 2.4 

83 [AmproRGD]2-PTX 28.0 ± 2.2 1.6 ± 0.5 

20 PTX 23.4 ± 8.2 2.2 ± 0.8 

  
IGROV1 
(αvβ3 −) 

IGROV-1/Pt1 
(αvβ3 +) 

66 [AbaRGD]-PTX 1.6 ± 0.9 1.6 ± 1.1 

84 [AbaRGD]2-PTX 32.67 ± 7.5 6.65 ± 3.76 

85 [AbaRGD]4-PTX 12.18 ± 1.00 8.81 ± 2.14 

20 PTX 58.55 ± 11.71 4.3 ± 1.17 
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integrin levels: in particular, the IC50 values reported for all tested conjugates highlighted a 

remarkable potency of the SMDCs against the αvβ3 integrin-expressing cell line. However, 

such intrinsic selectivity is also displayed by the free PTX. This lack of selectivity is probably 

due to the fast hydrolysis of the ester linker, as already reported in the literature.[127] 

Inspired by these literature data, we set to design new multimeric (cyclo[DKP-RGD]-PEG-4)n-

VA-PTX conjugates (n = 1-4) for tumor targeting (Fig. 31), aiming at improving the binding 

affinity and TI towards αvβ3-expressing cells shown by the monomeric cyclo[DKP-RGD]-VA-

PTX (77). 

 

Figure 31. General structure of multimeric (cyclo[DKP-RGD]-PEG-4)n-VA-PTX conjugates (n = 1-4) and 
retrosynthetic analysis of multimeric conjugates (disconnection into azide 86 and different alkyne intermediates 
bearing multimeric scaffolds 87-90). 
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In order to allow an easy and general synthetic preparation, a mono- (86) and polyalkyne 

scaffolds (87-90) were connected to the N-terminus of the Val-Ala linker. The monomeric 

scaffold (commercial 4-pentynoic acid 87) was included for the synthesis of a monomeric 

conjugate, to be used as control for the biological evaluations of the multimeric analogs. The 

scaffolds were chosen taking into account the central connection of such molecules, which 

need to be balanced in terms of rigidity and flexibility, so that the loss of conformational entropy 

can be minimized.[156] Therefore, the terminal alkyne moieties of the paclitaxel prodrug (Fig. 

31) were used as anchoring point for the installation of one, two, three or four cyclo[DKP-RGD] 

integrin ligands, through Cu-catalyzed azide-alkyne cycloaddition (CuAAC).[157] A derivative of 

the RGD peptidomimetic bearing an azido-tetraethylene glycol spacer (compound 86) was 

designed and synthesized to be coupled to the alkyne moieties, in the final conjugation 

reaction. This particular molecular structure was chosen as it is known that polyethylene glycol 

(PEG) spacers are ”inert” to nonspecific adsorption to proteins, promoting the specific binding 

of each individual unit to the receptor.[158] Moreover, this flexible layout could help the SMDC 

to adapt to the target αvβ3 integrin.[141] Finally, besides improving the SMDC solubility in 

aqueous media, short PEG spacers are known to minimize the generation of bulky loops, that 

can limit the ligand avidity to the antigen.[111] 

2.2. Synthesis and Biological Evaluation of a New Monomeric 

cyclo[DKP-RGD]-PEG-4-VA-PTX Conjugate 

2.2.1. Synthesis of a New Monomeric cyclo[DKP-RGD]-PEG-4-VA-PTX Conjugate 

Following the retrosynthetic scheme represented in Figure 31, the synthesis of fragments 86 

and paclitaxel derivative containing commercial alkyne 87 converged to the final isolation of 

the new PEG-containing monomeric cyclo[DKP-RGD]-PEG-4-VA-PTX conjugate. 

As for the synthesis of the functionalized integrin ligand with the azido-tetraethylene glycol 

spacer 86 is shown in Scheme 4. 

 

Scheme 4. Synthesis of cyclo[DKP-RGD]-PEG-4-Azide (86). Reagents and conditions: a) EDC∙HCl, N-
Hydroxysuccinimide, CH2Cl2, overnight; b) cyclo[DKP-RGD] (75), MeCN/PBS pH 7.5 (1:1), overnight. 
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Azido-acid 91 was synthesized according to a previously reported methodology, starting from 

commercially available tetraethylene glycol.[159] Azido-acid 91 was transformed into the 

corresponding N-hydroxysuccinimidyl ester, which was purified by flash chromatography, 

affording the activated ester 92 with 64% yield. The purified electrophile 92 was then reacted 

with the cyclo[DKP-RGD] ligand (75),[127] affording the final azide 86 in 77% yield, after 

purification by semi-preparative HPLC and freeze-drying. As a well-established procedure from 

our group, this conjugation step was run at controlled pH, since at pH < 7.0 the reaction does 

not proceed, whereas at pH > 7.6 the hydrolysis of the NHS ester competes significantly with 

the desired coupling. The pH was maintained in the 7.3-7.6 range by adding aliquots of 0.2 M 

aq. NaOH to the reaction mixture.[130]  

 

Scheme 5. Synthesis of monomeric cyclo[DKP-RGD]-PEG-4-VA-PTX conjugate 97. Reagents and conditions: a) 
1) piperidine, DMF, r.t., 2 h; 2) 4-pentynoic acid 87, HATU, HOAt, iPr2NEt, DMF, r.t., overnight; b) 1) 1:2 TFA/CH2Cl2, 
45 min; 2) 95, iPr2NEt, DMF, r.t., overnight; c) 86, CuSO4∙5H2O, NaAsc, 1:1 DMF/H2O, 35 ºC, overnight. 

After the synthesis of the necessary azide fragment 86 for the construction of the final 

conjugate, the monomeric cyclo[DKP-RGD]-PEG-4-VA-PTX, featuring the alkyl scaffold (97), 

was synthesized by coupling of the free alkyne present in Val-Ala-PTX (96, Scheme 5) moiety 

with the azide 86 – Scheme 5. The alkyne derivative of PTX (96) was synthesized starting from 

the protected Val-Ala linker 93 (previously synthesized and described by our laboratory)[130] 

that was treated with piperidine for the Fmoc removal and then coupled with commercial 4-

pentynoic acid to give the alkyne 94 (88% yield). Later on, the Boc group in amide 94 was 

removed and the corresponding free amine was reacted with 2’-(4-

nitrophenoxycarbonyl)paclitaxel (95, previously synthesized and described by our 
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laboratory)[130] affording carbamate 96 with 66 % yield over two steps. A Cu-Catalyzed Azide-

Alkyne Cycloaddition (CuAAC)[160] was performed between alkyne 96 and azide 86, affording 

the monomeric conjugate cyclo[DKP-RGD]-PEG-4-VA-PTX (97) in 81% yield after HPLC 

purification and freeze-drying. 

2.2.2. Cell Proliferation Analysis 

In order to first assess the ability of the synthesized monomeric conjugate (97) to selectively 

target αvβ3 integrin in human cancer cells, the antiproliferative activity of cyclo[DKP-RGD]-

PEG-4-VA-PTX (97) was tested in parallel with other monomeric RGD-PTX conjugates 

developed by our research group (Figure 32).[161] In particular, the tested compounds differed 

from the targeting ligand (RGDfK or cyclo[DKP-RGD]), the spacer between the linker and the 

homing-device (glutarate or PEG spacer) and the lysosomally-cleavable peptide linker (Gly-

Phe-Leu-Gly or Val-Ala) (77, 98-101, Fig. 32). 

 

Figure 32. Molecular structures of cyclo[DKP-RGD]-VA-PTX (77), cyclo[DKP-RGD]-GFLG-PTX (98), 
cyclo[RGDfK]-GFLG-PTX (99), cyclo[DKP-RGD]-PEG-4-GFLG-PTX (100) and cyclo[RGDfK]-PEG-4-GFLG-PTX 
(101). 

In collaboration with the National Institute of Oncology in Budapest, Hungary (Prof. József 

Tóvári) all six compounds (77 and 97-101) were tested in two different cell lines expressing 

the integrin receptor at different levels: 1) the human colorectal adenocarcinoma cell line HT29 



 

 

52 Multimeric cyclo[DKP-RGD]-PTX Conjugates 

(αvβ3 −) and, 2) the human glioblastoma cell line U87 (αvβ3 +). The different αvβ3 expression 

on the cell membrane of the two cell lines was confirmed by treatment the cells with a 

fluorescein-labeled αvβ3-selective mAb, followed by cell immunofluorescence analysis and flow 

cytometry (Fluorescence Activated Cell Sorter - FACS). The graphics of αvβ3 expressions for 

each cell line are shown in the Experimental Section (Figures 45-46). 

The two cell lines were incubated with increasing doses of free PTX and conjugates (77 and 

97-101). After 96 hours, the cell viability was analyzed by MTT assay (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl-tetrazolium bromide). 

The measured IC50 values are shown in Table 3. 

Table 3. Cytotoxicity assays of conjugates 77 and 97-101 and free PTX in U87 and HT29 cell lines. 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell viability. Both 

cell lines were treated with different concentrations of PTX and compounds 77, 97-101 for 96 hours. The samples 

were measured in triplicate; [b] Relative Potency in U87 cell line (RPU87): IC50 PTX in U87/ IC50 Conjugate in U87; 

[c] Relative Potency in HT29 cell line (RPHT29): IC50 PTX in HT29/ IC50 Conjugate in HT29; [d] Targeting Index (TI): 

RPU87/RPHT29. 

From the in vitro assays emerged that all conjugates displayed a significant loss of potency 

(higher IC50 values) when compared to the free drug PTX 20 (i.e. for U87 and HT29 cell lines). 

In general, all conjugates featuring a PEG spacer (97 and 100-101) proved 2.4-6.2 times more 

potent (compared to the analogs having a glutarate spacer – 77 and 98-99) against the αvβ3-

expressing cell line (U87). This is in line with the benefits of PEG spacers in terms of 

hydrophilicity and flexibility, possibly facilitating the binding to the antigen.[141] Moreover, the 

replacement of the cyclo[DKP-RGD] ligand moiety with the well-known cyclo[RGDfK] did not 

influence significantly the targeting properties. Relative Potencies (RP) were calculated (i.e. 

RP = IC50PTX / IC50SMDC) for the conjugates in both cell lines. This parameter was introduced 

as a normalization of conjugates’ potency considering the sensitivity of each cell line for free 

PTX. Accordingly, it can be observed that for all conjugates, the RP in HT29 cell line (αvβ3-) 

was 1-2 orders of magnitude lower than in αvβ3-expressing cell line (U87). This suggests that 

the loss of potency of the conjugates with respect to PTX is more evident when αvβ3 receptor 

is not presented on the surface of tumor cells. Moreover, good TI’s were detected for all 

conjugates (Table 3), with values between 30-45. To our delight, the new monomeric conjugate 

Cpd Structure 
IC50 (nM)[a] 

RPU87
[b] RPHT29

[c] TI[d] 
U87 (v3 +) HT29 (v3 −) 

20 PTX 1.8 ± 1.9 32.7 ± 21.8 1 1 1 

77 cyclo[DKP-RGD]-VA-PTX 2686 ± 589 6452 ± 1723 0.01216 0.0002821 43 

97 cyclo[DKP-RGD]-PEG-4-VA-PTX 432.6 ± 129.3 12840 ± 2730 0.07550 0.0001417 533 

98 cyclo[DKP-RGD]-GFLG-PTX 2031 ± 454 3413 ± 983 0.01608 0.00053 30 

99 cyclo[RGDfK]-GFLG-PTX 1250 ± 293.6 2692 ± 676 0.02613 0.000692 38 

100 cyclo[DKP-RGD]-PEG-4-GFLG-PTX 854.7 ± 165.1 1979 ± 252 0.03821 0.0009196 42 

101 cyclo[RGDfK]-PEG-4-GFLG-PTX 
506.20 ± 
113.60 

1272 ± 156 0.06452 0.001431 45 



 

 

53 Multimeric cyclo[DKP-RGD]-PTX Conjugates 

cyclo[DKP-RGD]-PEG-4-VA-PTX (97) displayed a TI = 533, becoming the best throughout the 

series. Additionally, competition experiments demonstrated that the potency of 97 against 

αVβ3-positive cells (U87) was decreased by the presence of a large excess of free ligand 

cyclo[DKP-RGD] in the cell medium, in keeping of the hypothesis of conjugate internalization 

by αVβ3-mediated endocytosis.[161] 

Finally, conjugate cyclo[DKP-RGD]-PEG-4-VA-PTX (97) led to the best targeting 

performances, which prompted its use as starting point for the development of the multimeric 

library (Figure 31) previously mentioned. 

2.3. Synthesis and Biological Evaluation of Multimeric (cyclo[DKP-

RGD]-PEG-4)n-VA-PTX Conjugates (n = 1-4) 

2.3.1. Synthesis of Multimeric (cyclo[DKP-RGD]-PEG-4)n-VA-PTX (n = 1-4) Conjugates 

Following the retrosynthetic analysis shown in Figure 31, four different (cyclo[DKP-RGD]-PEG-

4)n-VA-PTX (n = 1-4) conjugates have been synthesized, and their molecular structures are 

reported in Fig. 33. In addition to the three multimeric (cyclo[DKP-RGD]-PEG-4)n-VA-PTX (n = 

2-4) conjugates (103-105), a new monomeric construct (102) was prepared, in which the 

aliphatic scaffold of monomeric conjugate 97 is replaced by an aromatic scaffold. This 

derivative was designed to investigate the biological contribution of the aromatic scaffolds 

present in the multimeric conjugates (103-105). 

 

Figure 33. Molecular structures of monomeric (102) and multimeric (103-105) (cyclo[DKP-RGD]-PEG-4)n-VA-PTX (n 

= 1-4). 
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As a further step, the mono-alkyne (109, Scheme 6) and polyalkyne scaffolds 87-90 (Schemes 

7-9) were synthesized to be connected to the Val-Ala-PTX module, at the N-terminus of the 

peptide linker. (Fig. 31). The mono-alkyne scaffold 109 was synthesized starting from 4-

hydroxybenzoic acid 106, which was firstly converted in the corresponding ester 107. 

Compound 107 was mixed with propargyl bromide affording 108 and then saponified giving 

109 with high overall yield – Scheme 6. 

 

Scheme 6. Synthesis of monomeric aromatic scaffold (109). Reagents and conditions: a) H2SO4, MeOH, reflux, 4 

h; b) propargyl bromide, K2CO3, acetone, r.t., 24 h; c) NaOH, MeOH/H2O (3:1), r.t., 5 h. 

The dimeric scaffold was synthesized starting from commercially available methyl 3,5-

dihydroxyphenyl acetate (110), which was reacted with propargyl bromide allowing the 

isolation of 111 and then saponified, affording carboxylic acid 88, with quantitative yields – 

Scheme 7. 

 

Scheme 7. Synthesis of dimeric scaffold (88). Reagents and conditions: a) propargyl bromide, K2CO3, acetone, r.t., 
24 h; b) LiOH∙H2O, THF/H2O (2:1), 0 °C, 1.5 h. 

As for the trimeric scaffold 89 (Scheme 8), the commercially available methyl 3,5-

dihydroxyphenylacetate 110 was firstly refluxed in acetone in presence of commercially 

available 2-(Boc-amino)ethyl bromide and base, affording the fully protected diamine 112 in 

87% yield. Later on, two reactions were carried out in parallel: 1) first, the Boc protecting groups 

were removed by reaction with TFA, yielding the salt 113, and 2) dimeric scaffold 88 was 

activated in presence of thionyl chloride for one hour in CH2Cl2 affording the acyl chloride 114. 

The coupling between 113 and 114 was then performed in a 5:1 molar ratio, respectively, at 0 

ºC, leading to the mono amine 115. The latter, without being isolated, was coupled to 

monomeric scaffold 109, affording the trimeric alkyne ester 116 in 30% yield after three steps 

(Scheme 8). Finally, trimeric scaffold 89 was obtained after saponification reaction of 116 in 

presence of LiOH and flash chromatography purification (99% yield). 
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Scheme 8. Synthesis of trimeric scaffold (89). Reagents and conditions: a) 2-(Boc-amino)ethyl bromide, K2CO3, 
acetone, reflux, overnight; b) TFA/CH2Cl2 (1:2), r.t., 45min; c) 114, Et3N, DMF, r.t., overnight; d) 109, HATU, HOAt, 

iPr2NEt, DMF, overnight; e) LiOH∙H2O, THF/H2O (2:1), 0 °C, 1.5 h. 

In the synthesis of the tetrameric aromatic scaffold 90, the commercially available methyl 3,5-

dihydroxyphenylacetate 110 was again refluxed in acetone in the presence of commercially 

available 2-(Boc-amino)ethyl bromide and potassium carbonate, affording the fully protected 

diamine 112 in 87% yield. The Boc protecting groups were removed in the presence of TFA, 

and the resulting diamine-TFA salt 113 was coupled with bis-alkyne 85, which in turn had been 

prepared from methyl 3,5-dihydroxyphenylacetate 110 (by treatment with propargyl bromide 

and ester hydrolysis) – Scheme 7. The coupling of 113 with 88 was carried out in the presence 

of HATU, HOAt and base in DMF, affording amide 117 in 77% yield. The latter compound 117 

was deprotected, affording the desired tetrameric aromatic scaffold 90 in 85% yield (Scheme 

9). 

 

Scheme 9. Synthesis of tetrameric scaffold (90). Reagents and conditions: a) 2-(Boc-amino)ethyl bromide, K2CO3, 
acetone, reflux, overnight; b) TFA/CH2Cl2 (1:2), r.t., 45 min; c) 88, HATU, HOAt, iPr2NEt, DMF, overnight; d) 
LiOH∙H2O, THF/H2O (2:1), 0 °C, 1.5 h. 
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Scheme 10. Synthesis of (cyclo[DKP-RGD]-PEG-4)n-VA-PTX (n = 1-4) conjugates 102-105. Reagents and 
conditions: a) 1) piperidine, DMF, r.t., 2 h; 2) acids 109, 88-90, HATU, HOAt, iPr2NEt, DMF, r.t., overnight (118a-
118d); b) 1) 1:2 TFA/CH2Cl2, 45 min; 2) 95, iPr2NEt, DMF, r.t., overnight; c) 86, 119a (1.5 equiv), CuSO4∙5H2O, 
NaAsc, 1:1 DMF/H2O, 35 ºC, overnight; d) 119b (1 equiv), 86 (3 equiv) CuSO4∙5H2O, NaAsc, 1:1 DMF/H2O, 35 ºC, 
overnight; e) 119c (1 equiv), 86 (3.6 equiv), CuSO4∙5H2O, NaAsc, 1:1 DMF/H2O, 35 ºC, overnight; f) 119d (1 equiv), 
86 (4.8 equiv) CuSO4∙5H2O, NaAsc, 1:1 DMF/H2O, 35 ºC, overnight. 

The monomeric cyclo[DKP-RGD]-PEG-4-VA-PTX, featuring an aromatic scaffold (102, Figure 

33), was synthesized using the same synthetic strategy described above for the monomeric 

conjugate bearing an alkyl scaffold (97, Scheme 5). Thus, conjugate 102 (Figure 33) was 

prepared through the convergent synthesis shown in Scheme 10. Also in this case, the Boc 

group of amide 118a was removed, and the corresponding free amine was reacted with 2’-(4-

nitrophenoxycarbonyl)paclitaxel (95), leading to carbamate 119a in 93% yield. The final 

CuAAC was performed using alkyne 119a and azide 86, affording the cyclo[DKP-RGD]-PEG-

4-VA-PTX (102, Fig. 33) possessing an aromatic scaffold, in 70% yield (after HPLC purification 

and freeze-drying). 

Later on, with the dimeric (88), trimeric (89), and tetrameric (90) scaffolds in hands, the 

synthesis of the multimeric (cyclo[DKP-RGD]-PEG-4)n-VA-PTX (n = 2-4) conjugates (103-105, 

Fig. 33) was performed following the same synthetic pathway (Scheme 10). Protected Val-Ala 

fragment 93 was treated with piperidine for Fmoc removal, and subsequent coupling with the 

acids 88-90 led to compounds 118b-118d with good yields (71-92%, Scheme 10). The Boc 

group of amides 118b-118d was then removed, and the corresponding free amines were 

reacted with 2’-(4-nitrophenoxycarbonyl)paclitaxel (95) to afford carbamates 119b-119d with 

moderately good yields (69-75%, Scheme 10).  

Copper(I)-catalyzed azide-alkyne cycloadditions were performed by varying the relative 

stoichiometric amounts of azide 86 (Scheme 10): while alkyne derivatives of PTX (119b-119d) 
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were used as limiting agent, the amount of azide 86 varied considering the valency of the 

conjugate. As for the dimeric conjugate (103), the excess of azide was 1.5 equivalents for each 

alkyne, affording (cyclo[DKP-RGD]-PEG-4)2-VA-PTX 103 (Fig. 33) in quantitative yield after 

HPLC purification and freeze-drying – Scheme 10. The final “click” reaction for trimeric and 

tetrameric conjugates (104-105, Fig. 33) was performed with a 20% excess of azide 86, with 

respect to the alkyne (3.6 and 4.8 equivalents, respectively). The final (cyclo[DKP-RGD]-PEG-

4)3-VA-PTX 104 and (cyclo[DKP-RGD]-PEG-4)4-VA-PTX conjugates 105 were isolated with 

good yields (62 and 73%, respectively) after HPLC purification and freeze-drying. 

2.3.2. Integrin Receptor Competitive Binding Assays 

As reported for previous conjugates developed in our research group (e.g. 76-77), the newly 

synthesized monomeric cyclo[DKP-RGD]-PEG-4-VA-PTX (97 and 102) and multimeric 

(cyclo[DKP-RGD]-PEG-4)n-VA-PTX (n = 2-4) 103-105 conjugates were evaluated in vitro for 

their ability to compete with vitronectin for the binding to the purified αvβ3 integrin. Screening 

assays were carried out through incubation of the immobilized integrin receptors with serial 

dilutions of the tested compounds (concentration values in the 10−12-10−5 M range) in the 

presence of a constant concentration of biotinylated vitronectin (1 μg/mL), and measuring the 

concentration of bound upon equilibration. The IC50 values obtained are listed in Table 4. 

 

Table 4. Inhibition of biotinylated vitronectin binding to 
purified integrin αvβ3. 

Cpd Structure 
v3 

IC50 [nM][a] 

97 
cyclo[DKP-RGD]-PEG-4-VA-PTX 

(aliphatic scaffold) 
14.8 ± 3.9 

102 
cyclo[DKP-RGD]-PEG-4-VA-PTX 

 (aromatic scaffold) 
27.3 ± 9.8 

103 (cyclo[DKP-RGD]-PEG-4)2-VA-PTX 4.0 ± 0.1 

104 (cyclo[DKP-RGD]-PEG-4)3-VA-PTX 1.2 ± 0.5 

105 (cyclo[DKP-RGD]-PEG-4)4-VA-PTX 1.3 ± 0.3 

69 cyclo[DKP3-RGD] 4.5 ± 0.1 
[a] IC50 values were calculated as the concentration of compound required 
for 50% inhibition of biotinylated vitronectin binding as estimated by 
GraphPad Prism software. All values are the arithmetic mean ± the 
standard deviation (SD) of triplicate determinations. 

 

Figure 34. Inhibition of biotinylated vitronectin binding to 
purified integrin αvβ3. X-axis shows the [tested 
compounds] in log scale; Y-axis shows the % of inhibition 
of the binding of biotinylated vitronectin in the presence 
of conjugates. 

As expected, all conjugates displayed binding affinity in the nanomolar range. As highlighted 

in Table 4, the two monomeric conjugates (97 and 102), bearing a single cyclo[DKP-RGD] 

targeting ligand moiety, showed little reduction of binding avidity when compared to the free 

ligand cyclo[DKP3-RGD] (69). In particular, while the free ligand showed a IC50 value of 4.5 

nM, conjugate 97 (aliphatic scaffold) and conjugate 102 (aromatic scaffold) showed IC50 values 

of 14.8 and 27.3 nM, respectively. As expected, when the number of targeting moieties in the 
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constructs raised from one to three (102-104), a clear tendency of binding affinity increments 

as well as the decrease of IC50 values was detected (IC50 conjugate 97 and 102 > 103 > 104), 

reaching lower IC50 values than the one of free cyclo[DKP3-RGD] ligand (69) – Table 4.[162] 

In particular, a plateau is reached with the trimeric conjugate 104 (IC50 = 1.2 ± 0.5 nM), 

evidencing no further improvement with the tetrameric conjugate 105 (Fig. 34). Although the 

increment of steric bulk seems to affect the binding affinity (plateau reached with 104), the 

binding potency of the trimeric conjugate was slightly higher than the one of free cyclo[DKP3-

RGD] ligand (i.e. 1.2 and 4.5 nM, respectively). 

2.3.3. Cell Proliferation Analysis 

Multimeric conjugates were tested for their ability to selectively target αvβ3 integrin in human 

cancer cells, in comparison with previously tested monomeric conjugate 97. Among the 

synthesized two monomeric conjugates, the latter was included in this test as a consequence 

of its higher binding affinity, compared to conjugate 102, endowed with the aromatic scaffold. 

Following the same approach of previous in vitro assays, (Paragraph 2.2.2.), two different cell 

lines were chosen expressing the integrin receptor at different levels: 1) the human colorectal 

adenocarcinoma cell line HT29 (αvβ3 −) and, 2) the human glioblastoma cell line U87 (αvβ3 +). 

The two cell lines were incubated with increasing doses of free PTX and conjugates 97 and 

103-105. After 96 hours, the cell viability was analyzed by MTT assay. 

The calculated IC50 values are shown in Table 5. 

Table 5. Cytotoxicity assays of conjugates 97, 103-105 and free PTX in U87 and HT29 cell lines. 

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell viability. Both 

cell lines were treated with different concentrations of PTX and compounds 97, 103-105 for 96 hours. The samples 

were measured in triplicate; [b] Relative Potency in U87 cell line (RPU87): IC50 PTX in U87/ IC50 Conjugate in U87; 

[c] Relative Potency in HT29 cell line (RPHT29): IC50 PTX in HT29/ IC50 Conjugate in HT29; [d] Targeting Index (TI): 

RPU87/RPHT29. 

As reported for similar compounds investigated previously, all conjugates showed reduced 

potency (IC50 values) when compared to PTX (i.e. for U87 and HT29 cell lines). Importantly, 

our data showed that the valency increase in the multimeric conjugates was associated to a 

decrease of cytotoxic activity against both cell lines. These data seemed to discredit the 

hypothesis that the increased binding affinity could promote the ligand internalization and the 

Cpd Structure 
IC50 (nM)[a] 

RPU87
[b] RPHT29

[c] TI[d] 
U87 (v3 +) HT29 (v3 −) 

 20 PTX 24.1 ± 13.3 2.5 ± 1.2 1 1 1 

97 
cyclo[DKP-RGD]-PEG-4-VA-PTX 

(aliphatic scaffold) 
682.6 ± 169.6 6591 ± 1236 0.035335 0.000375 94.3 

103 (cyclo[DKP-RGD]-PEG-4)2-VA-PTX 2360 ± 955 7349 ± 1192 0.01022 0.000336 30.4 

104 (cyclo[DKP-RGD]-PEG-4)3-VA-PTX 13580 ± 8297 12910 ± 1700 0.001776 0.000191 9.3 

105 (cyclo[DKP-RGD]-PEG-4)4-VA-PTX 11140 ± 5908 9006 ± 1669 0.002165 0.000274 7.9 



 

 

59 Multimeric cyclo[DKP-RGD]-PTX Conjugates 

resulting SMDC efficiency, even though this concept has been extensively supported by 

literature data.[148,152,163] Although a loss of potency can be noticed, all conjugates resulted 

substantially more potent in U87 cells (αvβ3+) in comparison with HT29 cells (αvβ3−). The added 

value of these data is the 10-fold enhanced selectivity of PTX for the αvβ3-negative cells. The 

observation that the PTX conjugation resulted in the alteration (or in the inversion, in mono 

and dimeric conjugates) of the intrinsic selectivity of the payload, it can be ascribed to an αvβ3-

targeting effect.  

Considering RP values, TI’s were calculated (TI = RPαvβ3+ / RPαvβ3 )̶ and the best targeting 

performances was shown by the monomeric conjugate 94 (TI = 94.3). 

2.4. Results and Discussion 

Overall, the reported experiments indicate that multipresentation of RGD ligands can efficiently 

lead to enhanced functional affinity for αvβ3 integrin receptor through different structural design. 

In our constructs, ligands were connected to easily accessible multimeric scaffolds through 

short PEG spacers, with final conjugation with efficient and chemoselective synthesis. On the 

other hand, complex biological mechanisms requiring more than a simple receptor binding 

(e.g. internalization and linker cleavage), may be highly dependent on the different design of 

the construct. In particular, our multimeric conjugates (103-105) showed relatively low RP and 

TI values, even though these compounds proved more selective than other multimeric RGD-

PTX devices developed in the past (see Table 2 in this Chapter). The observed loss of 

selectivity could be explained by the increased steric bulk around the peptide linker, which is 

likely to affect significantly the intracellular proteolytic action, thus affecting progressively the 

drug release. Cleavage experiments on multimeric conjugates in the presence of lysosomal 

extract are currently in progress, with the aim to provide a rationale for the in vitro assays. 

Moreover, it is important to note that monomeric conjugate 97 has been tested twice under the 

same experimental conditions: the observed TI values were found to be 533 (Table 3) and 94 

(Table 5). These data reflect the limit of the TI value measurement, which takes into account 

the IC50 values relative to four different experiments (i.e. cell antiproliferative activity of both 

free PTX and SMDC against two different cell lines) and it is therefore subjected to high 

variability. On the other hand, both TI values indicate the high targeting potency of conjugate 

97, which can be considered as a new hit compound in the field of αvβ3-integrin-targeting 

SMDCs.  

While showing remarkable selectivity, the best-performing conjugate 97 was found to be much 

less potent than the free toxin, even against the αvβ3-positive cells. In general, this observation 

is common for most therapeutic prodrugs reported in the literature, consisting in a stable, 

chemical functionalization of the parent drug. However, our data may indicate that the 
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conjugate is poorly internalized by the targeted cell. A different approach can be also used in 

presence of different type of “smart linkers” (e.g. extracellularly-cleavable linkers) or more 

effective drugs (e.g. auristatins), improving the potency of such anticancer prodrugs for 

therapeutic use. 
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cyclo[DKP-RGD]-PTX Conjugates bearing 

an Extracellularly-Cleavable Linker 

3.1 Introduction 

As discussed in Paragraph 2.4, a quantification of the targeting ability of RGD-containing 

conjugates to αvβ3-expressing cells has been rarely described in the literature. Despite the 

remarkable selectivity displayed by the monomeric and multimeric conjugates (described in 

the previous Chapter), the drop of potency displayed by such constructs, as compared to the 

activity of the free PTX payload, limits their in vivo application. 

An alternative strategy is here reported, aimed at improving the drug delivery efficacy and to 

achieve a more potent therapeutic activity. This approach consists in the development of 

conjugates that can be cleaved in the vicinity, rather than inside, of targeted cancer cells. 

Generally, it is assumed that ADCs and SMDCs should be internalized through the tumor-

associated antigens and activated by intracellular agents, to exhibit their therapeutic effect and 

to avoid undesired cytotoxic activity against healthy tissues. However, this assumption has 

been recently challenged, as non-internalizing ADC and SMDC products have shown excellent 

therapeutic profiles in vivo.[45] This approach relies on the synthesis of nontoxic SMDCs that 

can recognize non- or poorly internalizing 

tumor antigens (either specific ECM 

proteins or transmembrane receptors, 

Fig. 35, step 1): this selective binding is 

required to improve the accumulation of 

the cytotoxic agent at the site of disease. 

Later on, the linker cleavage is triggered 

in the extracellular environment, by a 

tumor-associated enzyme (Fig. 35, step 

2). While this approach focused originally 

on proteases expressed in the tumor 

stroma (e.g. Carboxylesterase 1C,[164] 

Matrix Metalloproteinases -2 and -9,[165] 

Figure 35. The principle of tumor targeting in presence of 
tumor-associated enzymes and extracellularly-cleavable 
conjugates. Targeting ligand (green ball), extracellularly-
cleavable linker (yellow), cytotoxic drug (blue) and enzyme 
(red). 
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Elastase[166]), it has been demonstrated that other types of proteases that are originally located 

in the intracellular compartments, can be released externally, for instance by dead cells in 

necrotic tumors (e.g. Cathepsin B).[71,167]  In this context, the active anticancer drug can be 

released extracellularly within the tumor microenvironment (Fig. 35, step 3),  and diffuse in the 

tumor tissue (Fig. 35, step 4).[45] Here, the cytotoxic agent would be free to kill a large variety 

of cells (e.g. endothelial cells, cancer cells devoid of the target antigen, etc.) and the resulting 

localized damage may have therapeutic benefits against certain indications. 

In this Chapter, we focused on an extracellularly-cleavable linker by elastase as tumor-

associated enzyme. Elastase is a serine protease secreted from activated neutrophils upon 

inflammation and, for this reason, it is known to be involved in the progress of certain 

inflammatory diseases (e.g. cystic fibrosis and arthritis) and of certain solid tumors  (e.g. breast, 

lung and skin cancers).[168] The pro-inflammatory nature of these tumors is characterized by a 

high number of tumor-invading leucocytes, such as neutrophils, resulting in a high expression 

of elastase in the tumor stroma.[169] Therefore, elastase can be used as extracellular trigger for  

αvβ3 integrin-targeted SMDC products, aimed at releasing the free drug in the vicinity of tumor 

cells, rather than in intracellular compartments. 

Among the few elastase tetrapeptide cleavable linkers that have been used to conjugate 

anticancer drugs (e.g. Ala-Ala-Pro-X, X = Val, NaI or Nva),[170] we focused on the Asn-Pro-Val 

(NPV) tripeptide sequence described by Lerchen and co-workers for the synthesis of αvβ3 

integrin ligands-CPT conjugates (120, Fig. 36).[171] This tripeptide linker is selectively cleaved 

by elastase at the Valine C-terminus.[171] The authors proved the efficiency of this approach by 

evaluating the stability of 120 in cellular medium supplemented with elastase, which resulted 

in the full release of the CPT payload within 24 hours.[171] 

 

Figure 36. Molecular structure of a conjugate 120 bearing extracellularly-cleavable linker NPV designed by Lerchen 
and co-workers[171] 

Thus, we designed an extracellularly-cleavable SMDC (121, Fig. 37) in which the αvβ3 integrin 

ligand cyclo[DKP-RGD] (75) is connected to PTX via a self-immolative spacer, an elastase-

cleavable tripeptide linker (Asn-Pro-Val), a triazole linkage and a PEG-4 spacer. In order to 

allow an easy and general synthetic preparation, an alkyne-bearing alkyl scaffold was 
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connected to the N-terminus of the Asn-Pro-Val linker. Similarly to the preparation of the 

monomeric conjugate 97 (described in Chapter II), the single terminal alkyne moiety of the 

PTX prodrug (compound 122, Fig. 37) was used as anchoring point for the connection of the 

cyclo[DKP-RGD] integrin ligand 86, through CuAAC “click” reaction. Moreover, the PEG-4 

spacer emerged from the screening of previous RGD-PTX conjugates (see Chapter II) was 

maintained in this structure.[161]  

 

Figure 37. Molecular structure of the conjugate 121 bearing extracellularly-cleavable linker designed by our group 
and described in this chapter. Retrosynthetic analysis of 121 is also present: disconnection into alkyne 122 and 
azide 86. 

3.2. Synthesis of cyclo[DKP-RGD]-PEG-4-NPV-PTX conjugate 

bearing an Extracellularly-Cleavable Linker 

Three different cyclo[DKP-RGD]-PTX conjugates have been synthesized, and their molecular 

structures are reported in Fig. 38. 

In addition to the peptide linker-bearing conjugate cyclo[DKP-RGD]-PEG-4-NPV-PTX (121), 

another cyclo[DKP-RGD]-PEG-4-NP-[D]-V-PTX conjugate (123), featuring the non-natural 

amino acid [D]-Valine, was also prepared as negative control for cleavage experiments in the 

presence of elastase. Furthermore, a third conjugate (compound 124) was prepared, in which 
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the tripeptide moiety is replaced by a tertiary amide bond. This proteolytically-stable or 

“uncleavable” linker was designed as negative control for the evaluation of the biological 

performances of conjugate 121. 

 

Figure 38. Molecular structures of the SMDCs synthesized in this: cyclo[DKP-RGD]-PEG-4-NPV-PTX 121, 
cyclo[DKP-RGD]-PEG-4-NP-[D]-V-PTX 123, and cyclo[DKP-RGD]-uncleavable-PTX 124. 

Similarly to the preparation of cyclo[DKP-RGD]-PEG-4-VA-PTX 97, the new conjugate 

cyclo[DKP-RGD]-PEG-4-NPV-PTX 121 was synthesized as described in Scheme 11, starting 

with the preparation of the new tripeptide linker. In particular, Fmoc-Asn(Trt)-OH 125 was 

activated with N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-

hydroxysuccinimide (NHS) in CH2Cl2, affording the corresponding activated ester. The latter 

was reacted with L-proline in the presence of sodium hydrogen carbonate as base in a 

THF/H2O mixture, affording dipeptide 126 in moderate yield (52%). The same procedure was 

used to obtain the tripeptide 127, featuring L-valine. The next coupling was carried out with a 

pre-activation of the carboxylic acid 127 with 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline 

(EEDQ) in CH2Cl2/MeOH: the activated ester formed in situ was directly reacted with 4-

aminobenzyl alcohol affording the resulting benzyl alcohol, which was directly activated as 4-

nitrophenyl carbonate 128 with moderated yield (54% over two steps). The latter, was reacted 

with mono-Boc protected N,N’-dimethylethylenediamine (synthesized according to previously 

reported procedures),[130] affording carbamate 129 with 80% yield. The Fmoc protecting group 
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was efficiently removed in the presence of piperidine and the resulting free amine was treated 

with 4-pentynoic acid, which led to amide 130 in high yield (90% over two steps). Treatment of 

130 with trifluoroacetic acid (TFA) for the removal of Trityl and Boc protecting groups afforded 

the corresponding primary amide and secondary amine, respectively. The latter was reacted 

with 2’-(4-nitrophenoxycarbonyl)paclitaxel 95[130] affording carbamate 122 in good yield (71%, 

over two steps). Finally, alkyne 122 was linked to cyclo[DKP-RGD]-PEG-4-N3 (86), through a 

CuAAC reaction, as previously reported in Chapter II, affording SMDC 121 in high yield (94%). 

 

Scheme 11. Synthesis of cyclo[DKP-RGD]-PEG-4-NPV-PTX conjugate (121). Reagents and conditions: a) 1) NHS, 
EDC·HCl, CH2Cl2, r.t., overnight; 2) L-Proline, NaHCO3, THF/H2O (1:1), r.t., overnight; b) NHS, EDC·HCl, CH2Cl2, 
r.t, overnight; 2) L-Valine, NaHCO3, THF/H2O (1:1), r.t., overnight; c) 4-aminobenzyl alcohol, EEDQ, CH2Cl2/MeOH 
(2:1), r.t., overnight; d) 4-nitrophenyl chloroformate, pyridine, r.t., THF, 2 h; e) N-(Boc)-N,N′-
dimethylethylenediamine, iPr2NEt, r.t., THF, overnight: f) 1) piperidine, DMF, r.t., 2 h; 2) 4-pentynoic acid, HATU, 
HOAt, iPr2NEt, DMF, r.t., overnight; g) 1) TFA/CH2Cl2 (1:2), 15 min; 2) 95, iPr2NEt, DMF, r.t., overnight; h) 
cyclo[DKP-RGD]-PEG-4-N3 86, CuSO4∙5H2O, NaAsc, DMF/H2O (1:1), 30 ºC, overnight. 

The synthesis of cyclo[DKP-RGD]-PEG-4-NP-[D]-V-PTX conjugate 123 is reported in Scheme 

12. In this case, the tripeptide sequence Asn-Pro-[D]-Val was produced starting from the C-

terminus (D-Valine) due to epimerization problems. As a matter of fact, it was observed that 

the coupling of the Asn-Pro-OH fragment with [D]-Val-NH2 resulted in a mixture of epimers, 

even at lower temperatures (0-5 ºC). Hence, Fmoc-[D]-Val-OH 131 was activated with EEDQ 

in situ, and then reacted with 4-aminobenzyl alcohol affording compound 132 in 84% yield 

(Scheme 12). The conversion of 132 into the corresponding amine after treatment with 
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piperidine was followed by the coupling with Fmoc-L-proline through traditional peptide 

coupling protocols (i.e. pre-activation of the acid with HATU, HOAt, DIPEA in DMF, followed 

by addition of the amine). The formation of 133 was observed but the large amount of DIPEA 

and complications during the work-up (i.e. presence of a free benzylic alcohol significantly 

enhances the partition easily allows the partition of the product into the aqueous layer) did not 

allow the isolation of 133. The same happened during the coupling with Fmoc-[L]-Asn(Trt) 134, 

but upon activation of the benzyl alcohol by conversion into the corresponding 4-nitrophenyl 

carbonate, the purification was possible to afford the intermediate 135, in 47% yield over five 

steps (Scheme 12, 132-135).  

 

Scheme 12. Synthesis of cyclo[DKP-RGD]-PEG-4-NP-[D]-V-PTX conjugate (123). Reagents and conditions: a) 4-
aminobenzyl alcohol, EEDQ, CH2Cl2/MeOH (2:1), r.t., overnight; b) 1) piperidine, DMF, r.t., 2 h;  Fmoc-L-Proline, 
HATU, HOAt, iPr2NEt, DMF, r.t., overnight; c) 1) piperidine, DMF, r.t., 2 h; 2) Fmoc-L-Asn(Trt), HATU, HOAt, 
iPr2NEt, DMF, r.t., overnight; d) 4-nitrophenyl chloroformate, pyridine, r.t., THF, 2 h; e) N-(Boc)-N,N′-
dimethylethylenediamine, iPr2NEt, r.t., THF, overnight; f) 1) piperidine, DMF, r.t., 2 h; 2) 4-pentynoic acid, HATU, 
HOAt, iPr2NEt, DMF, r.t., overnight; g) 1) TFA/CH2Cl2 (1:2), 15 min; 2) 95, iPr2NEt, DMF, r.t., overnight; h) 
cyclo[DKP-RGD]-PEG-4-N3 86, CuSO4∙5H2O, NaAsc, DMF/H2O (1:1), 30 ºC, overnight. 

From this step, the final compound was assembled analogously to conjugate 121. The reaction 

of 135 with N-(Boc)-N,N’-dimethylethylenediamine led to carbamate 136 in high yields (87%) 

and a fast deprotection of the N-terminus of the asparagine residue followed by coupling with 

4-pentynoic acid afforded the terminal alkyne-functionalized compound 137. The deprotection 

of Boc and Trityl groups and the amine conjugation with the carbonate-derivative of PTX 95 

led to the carbamate 138 in moderate yield (54% over two steps). Finally, from the click 
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reaction between alkyne 138 and azide 86, the final cyclo[DKP-RGD]-PEG-4-NP-[D]-V-PTX 

conjugate 123 was formed. 

The synthesis of the RGD-paclitaxel conjugate featuring the “uncleavable” linker (124) is 

reported in Scheme 13. Here, 4-pentynoic acid was reacted with the mono-protected diamine 

139 affording tertiary amide 140. The Boc group was removed at this stage, and the resulting 

secondary amine was reacted with paclitaxel derivative 95 to yield compound 141. Again, as 

described for previous conjugates, a final click reaction afforded cyclo[DKP-RGD]-

uncleavable-PTX (124) in quantitative yield. 

 

Scheme 13. Synthesis of cyclo[DKP-RGD]-uncleavable-PTX conjugate (124). Reagents and conditions: a) 4-
pentynoic acid, HATU, HOAt, iPr2NEt, DMF, r.t., overnight; b) 1) TFA/CH2Cl2 (1:2), 45 min; 2) 95, iPr2NEt, DMF, 
r.t., overnight; c) cyclo[DKP-RGD]-PEG-4-N3 86, CuSO4∙5H2O, NaAsc, DMF/H2O (1:1), 30 ºC, overnight. 

The final compounds 121, 123-124 were all purified by semi-preparative HPLC and freeze-

dried before being subjected to biological assays.  
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3.3. In vitro Biological Evaluation 

3.3.1. Integrin Receptor Competitive Binding Assays 

Analogously to all the SMDCs described so far, the newly synthesized cyclo[DKP-RGD]-PTX 

121, 123-124 conjugates were evaluated in competitive assays for the binding to the purified 

αvβ3 integrin, in the presence of biotinylated vitronectin. The IC50 values obtained are shown in 

Table 6. 

Table 6. Inhibition of biotinylated vitronectin binding to isolated αvβ3 receptor. 

Cpd Structure 
v3 

IC50 [nM][a] 

121 cyclo[DKP-RGD]-PEG-4-NPV-PTX 12.9 ± 1.4 

123 cyclo[DKP-RGD]-PEG-4-NP-[D]-V-PTX 24.9 ± 2.1 

124 cyclo [DKP-RGD]-uncleavable-PTX 5.8 ± 1.2 

69 cyclo[DKP3-RGD] 4.5 ± 0.1 

Also in this case, the results showed that despite their remarkable steric bulk, the conjugates’ 

affinity for the purified αvβ3 receptor is comparable to that of the free ligand 69. Remarkably, 

the high affinity observed towards the αvβ3 receptor (IC50 = 5.8-24.9 nM), demonstrates that 

the use of a new tripeptide sequence as cleavable linker in the presence of this type of 

constructs does not impair the binding to the integrin receptor. 

3.3.2 Cleavage Experiments in Presence of Elastase and Stability Assays  

To evaluate the effective cleavage of the tripeptide linker and the subsequent paclitaxel release 

in the presence elastase, conjugate 121 was treated with human elastase, and metabolites 

were detected by HPLC-MS analysis (in collaboration with Nerviano Medical Sciences, Milan). 

The enzymatic cleavage of the tripeptide linker in compound 121 was observed over a 2 h 

period, at 37 ºC. First of all, elastase was inactivated in presence of trifluoroacetic acid (TFA), 

and the intact conjugate 121 was detected as major metabolite, indicating its stability under 

such conditions (Fig. 39A). In a second experiment, conjugate 121 was subjected to the same 

conditions, in the presence of activated elastase. In particular, the metabolite analysis of this 

compound revealed the presence of N,N’-dimethylethylenediamine spacer-bearing paclitaxel 

(i.e. compound 142, “Pro-PTX”, Fig 39B) as the main product. Moreover, this result confirms 

the cleavage of conjugate 121 at valine C-terminus and the release of the drug through the 

mechanism described in Paragraph 1.4.2 (Scheme 3). 
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Figure 39. HPLC-MS chromatograms from cleavage experiments of conjugate 121. A) Analysis of conjugate 121 
in presence of inactivated elastase; B) Analysis of conjugate 121 in presence of activated elastase. Signal detected 
for m/z 968.4 was attributed to compound 142. 

The detection of metabolite 142 is consistent with the drug release mechanism described by 

Scheeren and co-workers for prodrugs featuring both the dimethylethylenediamino chain and 

the p-aminobenzylcarbamate (PABC) structures: among the two mechanism of self-

elimination, the cyclization of the diamine spacer was claimed as the rate-limiting step of the 

drug release.[172,173] 

 

Figure 40. HPLC-MS chromatograms from cleavage experiments of conjugate 121. A) Analysis of conjugate 121 
in presence of inactivated lysosomal extract; B) Lysosomal extract digestion in the presence of cysteine proteases 

inhibitor (E-64) and; C) Lysosomal extract digestion. 
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In order to analyze more in detail the selectivity of the linker cleavage, SMDC 121 was treated 

with lysosomal extract and the cysteine proteases inhibitor E-64 was also included to gain 

insights into the effector enzymes involved in the cleavage. The effect of protease inhibition, 

evaluated by HPLC-MS, is shown in Fig. 40. Firstly, lysosomal enzymes were inactivated in 

presence of TFA (Fig. 40A). Noticeably, SMDC 121 was digested only partially by the 

lysosomal extract upon 2 hours (Fig. 40C), with conjugate 121 detected as the main species 

present. ‘Pro-PTX’ 142 was slightly detectable, which may indicate the presence of lysosomal 

elastase in the extract.[174] This hypothesis was supported by the observation of metabolite 142 

also in the presence of the E-64 inhibitor, (Fig. 40B) indicating that cysteine proteases are not 

responsible for the cleavage of this linker. 

To our delight, these results showed that the tripeptide Asn-Pro-[L]-Val linker is mainly cleaved 

by elastase and partially digested by other components of the lysosomal extract (e.g. 

lysosomal elastase or other lysosomal proteases). Conjugates 97 and 123 (i.e. Val-Ala linker 

and NP-[D]-V at the cleavage site as negative control, respectively) are now being subjected 

to the same cleavage tests in order to confirm the substrate selectivity of this NP-[L]-V 

tripeptide. 

While these stability tests confirmed the efficacy of the linker system, from these assays it was 

not possible to gain information on the actual release of the free PTX, as the Pro-PTX 142 was 

always detected as main metabolite. According to literature data, while in 2015, our research 

group reported the release of Pro-PTX after enzymatic cleavage,[130]  Scheeren and co-workers 

described the release of free PTX from a similar construct within 47 minutes after 

proteolysis.[173] To clarify this issue, we set up a model to investigate the kinetic of free PTX 

release, after cyclization of N,N’-dimethylethylenediamine spacer and formation of the cyclic 

urea imidazolidinone. 

 

Scheme 14. Synthesis of “Pro-PTX” intermediate (142). Reagents and conditions: a) N-(Boc)-N,N′-
dimethylethylenediamine, iPr2NEt, DMF (2:1), r.t., overnight; b) TFA/CH2Cl2 (1:2), 20 min, 0 ºC. 

The synthesis of Pro-PTX 142 is shown in Scheme 14. As mentioned, PTX derivative 95 was 

synthesized according to previously described protocol by our group.[130] Later on, the 
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secondary amine of N-(Boc)-N,N’-dimethylethylenediamine 139 was reacted with 95 to yield 

compound 143 (95% yield). The latter was treated with TFA leading to the TFA salt of 142 in 

68% yield, after purification by semi-preparative HPLC and lyophilization. 

In order to evaluate the half-life (t1/2) of Pro-PTX (142), we followed a similar stability assay 

described by Scheeren and co-workers.[173] In particular, the cyclization of the amine spacer at 

37 ºC was measured in a 250 µM DMSO:PBS (1:1) solution at pH 7.5. Aliquots were taken at 

different time points and analyzed by HPLC, revealing 50% of free PTX release after 

approximately 8 hours (t1/2(Pro-PTX) ~ 8 h, Fig. 41) - all chromatograms are shown in the 

Experimental Section.  

 

 

Figure 41. Graphic concerning the linear regression between cyclization of Pro-PTX 142 (Y-axis) over the time (X-
axis). The linear equation (y=-0.0917x+94.608) was used to calculate the t1/2 when 50% of Pro-PTX is already 
cyclized. 

This result proved that free PTX is released slowly, which may be the cause of the observed 

loss of cytotoxicity displayed by our RGD-PTX conjugates, as compared to the free drug. 

However, this analysis contrasts the data shown by Scheeren and co-workers, who observed 

the release of free PTX after 47 minutes. This discrepancy may be explained by the different 

concentration of starting Pro-PTX 142 in the experimental conditions, or by the differences in 

the buffer used to monitor the cyclization reaction.[173] 

Additionally, SMDC 121 was tested in 5 μM blank mouse plasma for 24 hours at 37 ºC. Notably, 

conjugate 121 showed a t1/2 in mouse plasma of 35.3 hours (for more details, see Experimental 

Section). This result indicates that, in case of good in vitro antiproliferative assays, SMDC 121 

is a promising candidate for in vivo studies. As for the chemical stability under different 

chemical conditions, our group reported that conjugate 77 (i.e. cyclo[DKP-RGD]-VA-PTX with 

y = -0.0917x + 94.608
R² = 0.9593

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000 1100

%
 o

f 
P

ro
-P

TX

Time (s)



 

 

74 cyclo[DKP-RGD]-PTX Conjugates bearing an Extracellularly-Cleavable Linker 

a similar system than 121) was fully stable after 4-hour incubation in neutral (pH 7.4) and acidic 

(pH 5.5) buffers.[130] 

3.3.3. Cell Proliferation Assays 

In a preliminary analysis, cyclo[DKP-RGD]-PEG-4-NPV-PTX conjugate 121 was tested in vitro 

for its ability to inhibit the proliferation of 786-O renal cancer cell line in the presence or absence 

of elastase from human leucocytes. These assays were designed as a model to test the 

extracellular cleavage of the NPV linker by elastase and to evaluate whether the PTX 

metabolite can undergo subsequent passive diffusion into the cancer cell and display its 

anticancer activity. In the absence of elastase, 786-O cell line was incubated with increasing 

doses of free PTX, Pro-PTX 142 and SMDCs 121, 123-124. In one experimental set, elastase 

was added after treatment with PTX, Pro-PTX 142 and SMDCs 121, 123-124. After 96 hours, 

the cell viability was analyzed by Envision microplate reader using the CellTiter-Glo luciferase-

based ATP detection assay (Table 7).  

Table 7. Cytotoxicity assays of conjugates 121, 123, 124, 142 and free PTX in 786-O renal cancer 

cell line (in presence or absence of elastase). 

 

 

 

 

 

[a] IC50 values were calculated as the concentration of compound required for 50% 

inhibition of cell viability in presence or absence of 50 nM of elastase. 786-O renal cancer 

cell line was treated with different concentrations of PTX and compounds 121, 123, 124, 

142 for 96 hours. The samples were measured in triplicate. 

Under these conditions, in the absence of elastase from the cellular media, no activity is shown 

by SMDC 121 (IC50 > 5000 nM) – Table 7. Remarkably, the same SMDC 121 displayed a 256-

fold increased activity (IC50 = 19.6 ± 4.1 nM), upon addition of elastase (Table 7), whereas the 

IC50 of free PTX was unaffected by the presence of the enzyme (IC50 = 29.5 ± 7.6 nM without 

elastase VS IC50 = 35.8 ± 16.7 nM with elastase). Notably, in the presence of elastase, the IC50 

value of SMDC 121 decreases to a final concentration, comparable to the one of free PTX 

(IC50 = 19.6 ± 4.1 nM VS IC50 = 35.8 ± 16.7 nM, respectively), demonstrating the importance of 

the linker cleavage efficiency for the SMDC potency. 

As for the control compounds, conjugates 123 (i.e. featuring a [D]-Val residue at the cleavage 

site) and 124 (the “uncleavable” version of 121), showed no antiproliferative activity (IC50 > 

5000 nM), regardless the presence or the absence of elastase. We were delighted to see that 

Cpd Structure IC50 (nM)[a] 

  
ADDED 

ELASTASE 
̶   

121 cyclo[DKP-RGD]-PEG-4-NPV-PTX 19.6 ± 4.1 > 5000 

123 cyclo[DKP-RGD]-PEG-4-NP-[D]-V-PTX > 5000 > 5000 

124 cyclo [DKP-RGD]-uncleavable-PTX > 5000 > 5000 

142 Pro-PTX 208.9 ± 133.9 186.4 ± 6.5 

20 PTX 35.8 ± 16.7 29.5 ± 7.6 
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the presence of [L]-Val at the cleavage site is crucial for the recognition of the tripeptide 

sequence by elastase and subsequent activity of the conjugate 121. Moreover, the lack of 

activity of conjugate 124 further confirmed that the PTX payload is not active when it is not 

released from the targeting vehicle. 

Finally, this experiment showed that Pro-PTX 142 was less active than the free toxin. This is 

in agreement with the slow cyclization process resulting in the PTX release, which may be 

even slower in the cell culture medium (this data is not available yet). 

Such preliminary in vitro data proved that the release of the payload within the tumor stroma 

can be a valuable tool to raise the potency of our constructs. For this reason, conjugate 121 

will be evaluated in in vivo anticancer therapy experiments, in order evaluate the payload 

accumulation at the tumor site mediated by the cyclo[DKP-RGD] ligand. 

 

3.4. Results and Discussion 

These preliminary results demonstrate that the approach used by SMDC 121, relying in the 

extracellular release of the payload, can be more effective than the design of internalizing 

RGD-drug conjugates. Also in this case, the linker turned out to play a fundamental role for 

drug activity. In particular, the peptide sequence should be a preferential substrate of an 

extracellular enzyme, whose expression in the targeted tissue has to be validated. 

The elastase-specific NPV linker was selected and evaluated in this Chapter. First of all, the 

binding ability to the purified αvβ3 integrin of the new RGD-PTX conjugates 121, 123 and 124 

was found to be comparable to the one of the free ligand 69 and of SMDCs developed in 

Chapter II (97 and 102-105). 

Moreover, we observed that in the presence of elastase, the SMDC 121 is fully converted to 

the intermediate Pro-PTX 142 within 2 hours (Fig. 39B), confirming the two-step mechanism 

of PTX release described by Scheeren and co-workers.[173] In particular, we demonstrated that 

the NPV linker is cleaved by human elastase at the C-terminus, releasing the intermediate 144 

(Fig. 42). The latter undergoes a fast 1,6-elimination of the aromatic p-aminobenzylcarbamate 

(PABC) spacer, leading to the formation of the metabolite Pro-PTX 142 (Fig. 42). Moreover, 

our cleavage experiments confirm that the cyclization of the diamine spacer is actually the rate-

limiting step of the drug release.  

While literature data indicate that the intermediate results in PTX release with a half-life of 47 

min,[173] we observed release of free PTX within ~8 hours in a DMSO:PBS (1:1) mixture at 

physiological pH and temperature (i.e. pH 7.4 and 37 ºC, respectively). 
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Figure 42. Enzymatic cleavage of conjugate 121 leading to the release of free paclitaxel. 

Cell antiproliferative studies were performed in the absence or presence of elastase, aimed at 

the evaluation of SMDC 121 activity triggered by the enzyme in the cell medium. In the absence 

of elastase, no potency is shown by SMDC 121 (IC50 > 5000 nM) – Table 7. Remarkably, the 

same SMDC 121 displayed a 256-fold increased activity of (IC50 = 19.6 ± 4.1 nM) upon addition 

of elastase (Table 7). Remarkably, negative controls 123 and 124 showed to be inactive in 

presence or absence of elastase (IC50 > 5000 nM), proving the importance of the NPV linker in 

this system. This in vitro model experiment was already described for similar SMDCs: 1) Papot 

and co-workers incubated a SMDC with the targeted effector enzyme (i.e. β-Glucuronidase), 

observing a dramatic decrease of the IC50 values;[175] 2) Oliff and co-workers prepared a MMP-

2 cleavable prodrug, which was treated with the protease and then added to the cell medium, 

unveiling the effect of the active metabolite.[176] 

However, Pro-PTX 142 proved generally less potent than the free PTX toxin. While this is 

ascribed to the slow cyclization of the spacer, it is conceivable that the presence of a secondary 

amine moiety influences also on the ability of Pro-PTX to penetrate the cell membrane, 

eventually affecting the biological activity.[177] Overall, these data possibly indicate that PTX 

payload is not the best candidate for extracellular delivery, while this approach may be more 

attractive when the toxin is linked to the SMDC through a fast-eliminating spacer. For instance, 

compounds bearing an amino moiety (e.g. doxorubicin, dolastatin analogs, 

pyrrolobenzodiazepines etc.) could be considered for this application. 

Finally, the selective release of payloads within the tumor microenvironment is gaining much 

interest in this field. Giving strength to this strategy, Neri and co-workers have been 

demonstrating that non-internalizing mAbs bearing an intracellularly-cleavable linker (e.g. Val-

Cit and Val-Ala), can release the payload within the tumor stroma, observing therapeutic 

effects in mice.[178] Furthermore, this strategy has also been exploited for SMDCs bearing 

linkers as substrates of different extracellular tumor-associated enzymes: 1) Matrix 

Metalloproteinases-2 and -9,[117,176,179] 2) β-Galactosidase[21], 3) β-Glucuronidase,[175] and 4) 

Elastase.[171]
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cyclo[DKP-RGD]-MMAE/MMAF conjugates 

bearing Lysosomally and Extracellularly-

Cleavable Linkers 

4.1 Introduction 

The research activity described so far has consisted in the development of cyclo[DKP-RGD]-

PTX conjugates, showing remarkable results in terms of synthetic accessibility, affinity for αvβ3 

integrin, stability and solubility properties. However, the biological evaluation of the cyclo[DKP-

RGD]-VA-PTX (77) and cyclo[DKP-RGD]-PEG-4-VA-PTX (97) highlighted some important 

weaknesses of these compounds. As discussed in Chapter II and III, although conjugates 77 

and 97 displayed promising targeting ability skills (TI = 39 - 533), the low potency showed by 

these conjugates in cell antiproliferative assays against αvβ3+/αvβ3− cells, represents a major 

drawback. These findings prompted the development of the extracellularly-cleavable SMDC 

cyclo[DKP-RGD]-PEG-4-NPV-PTX (121), which showed promising results in terms of PTX 

release in the proximity of tumor cells and subsequent passive drug uptake. In addition, the 

cell-antiproliferative properties of proper control compounds (i.e. uncleavable SMDCs 123 and 

124, see Chapter III) were evaluated, showing no activity in the presence of elastase. 

While therapy studies on conjugate 121 will give important information about the feasibility of 

extracellular-cleavable linkers in our technology, the use of highly potent payloads represents 

a “more traditional” approach to increase the potency of targeted prodrugs. Accordingly, this 

Chapter focuses on the design of new cyclo[DKP-RGD]-auristatin conjugates. In particular, 

whereas PTX (20, Fig. 2, Chapter I) is still sold as first-line treatment of different types of 

cancer, the use of more potent tubulin poisons, such as maytansinoids and auristatins, was 

found to be the key for the clinical success of antibody-drug conjugates.[180] In particular, 

auristatins are synthetic peptide-like cytotoxic agents belonging to the family of dolastatins. 

Dolastatin 10 (25, Fig. 3, Chapter I) was the most cytotoxic component of a mixture extracted 

from cyanobacteria Symploca hydnoides and Lyngbya majuscula.[181] This compound entered 

phase I clinical trials in the 1990s[182] and successfully progressed to phase II trials. However, 
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these clinical trials were later stopped, as the drug exhibited insufficient activity and severe 

side effects when used as single agent.[183] Auristatins are synthetic analogs of dolastatin 10, 

lacking a thiazole ring and containing a terminal benzylamine moiety (Fig. 3, Chapter I).[184] 

These compounds act as potent microtubule-destabilizing agents, leading to apoptosis in 

dividing cells. Monomethyl auristatin-E (MMAE 29, Fig. 3) and monomethyl auristatin-F (MMAF 

26, Fig. 3) are fully synthetic drugs, selected from SAR (structure-activity relationship) studies 

and then derivatized for their use as payloads in ADCs and SMDCs products. Designed to be 

exclusively used as payload for internalizing ADCs, MMAF differs from MMAE by the presence 

of a phenylalanine residue at the C-terminus. This structural modification substantially 

increases the hydrophilicity and thus reducing the membrane permeability, limiting off-target 

toxicities. Indeed, MMAE and MMAF were demonstrated to be similarly potent (IC50 in the 

subnanomolar range) when released intracellularly by ADCs.[185] On the other hand, such 

drugs display very different cytotoxicity properties when added, in the unconjugated form, to 

tumor cells. While MMAE still displays subnanomolar activity, MMAF shows submicromolar 

activity, as a result of its altered membrane permeability.[186,187] 

Attracted by the unique structural and biological features of the payload pair MMAE/MMAF, 

we designed cyclo[DKP-RGD]-MMAE/MMAF conjugates bearing the lysosomally-cleavable 

linker Val-Ala (SMDCs 145 and 146, Fig. 43) and their respective negative controls (147-149, 

Fig. 43). Compound 147 (with MMAE), devoid of the cyclo[DKP-RGD] ligand, was designed 

as negative control of 145 to evaluate the targeting ability of the RGD homing device. 

 

Figure 43. Molecular structures of designed lysosomally-cleavable cyclo[DKP-RGD]-PEG-4-VA-MMAE/MMAF 

conjugates (145-146) and their relative control compounds (147 and 148-149). 
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Given the poor internalization properties of the free payload MMAF, a RGD-lacking control 

compound relative to the cyclo[DKP-RGD]-MMAF conjugate 146, was considered 

unnecessary and it was not prepared. SMDCs 148 and 149 represent the uncleavable versions 

of 145 and 146 (Fig. 43), respectively, and they were designed as reference for the evaluation 

of the antiproliferative performance of the cleavable conjugates. 

Within this frame, another cyclo[DKP-RGD]-MMAE conjugate was prepared, endowed with the 

extracellularly-cleavable linker Asn-Pro-Val (SMDC 150, Fig. 44). This compound represents 

a structural optimization of PTX-containing SMDC 121 described in Chapter III. This new 

conjugate represents an excellent candidate for in vivo applications, since MMAE has shown 

excellent antitumor properties, also when released in the extracellular tumor 

environment.[178,187]  

 

Figure 44. Molecular structure of the designed cyclo[DKP-RGD]-PEG-4-NPV-MMAE 150 conjugate. Structures of 
cyclo[DKP-RGD] and MMAE can be seen in Figure 43. 

4.2. Synthesis of cyclo[DKP-RGD]-PEG-4-VA-MMAE Conjugate 

bearing a Lysosomally-Cleavable Linker 

The cyclo[DKP-RGD] peptidomimetic was linked to MMAE via a self-immolative spacer, a 

cathepsin B-cleavable dipeptide linker (Val-Ala), a triazole linkage and a PEG-4 spacer, 

leading to SMDC 145 (Fig. 43). The secondary amine at the N-terminus of MMAE drug was 

used as anchoring point for the linker: this choice resulted in the formation of a stable 

carbamate bond between the drug and a p-aminobenzyl alcohol self-immolative spacer (Fig. 

43). Unlike the PTX conjugates described in the previous Chapters, this layout allows the 

release of MMAE upon a single and fast 1,6-elimination step, avoiding the slow cyclization of 

the diamine spacer (the detailed mechanism is depicted in Fig. 42 on Chapter III). In analogy 

to the previous RGD-PTX conjugates described in Chapter II and III, the formation of a triazole 

ring between the linker-drug module and the ligand was chosen as the last conjugation step: 

this chemoselective methodology does not require specific protecting groups at the amino acid 

side chains and it is adaptable to several linker-drug combinations. 

The synthesis of the cyclo[DKP-RGD]-PEG-4-VA-MMAE 145 is shown in Scheme 15. Similarly 

to what described by or group for SMDC 77,[130] the Val-Ala dipeptide was coupled to p-

aminobenzyl alcohol (151). The fast deprotection of the valine residue, followed by coupling 
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with 4-pentynoic acid, afforded the terminal alkyne-functionalized compound 152. The latter 

was activated as 4-nitrophenyl carbonate (Scheme 15, compound 153). MMAE was attached 

to the linker by reaction of its secondary amine with electrophile 153, leading to carbamate 

154. The final conjugate 145 was obtained after copper-catalyzed azide-alkyne cycloaddition 

(CuAAC) between alkyne 154 and cyclo[DKP-RGD]-PEG-4-N3 86, whose synthesis is 

described in Chapter II (Scheme 4). The latter reaction was also used to produce control 

compound 147 (devoid of the targeting ligand) by reacting alkyne 154 and HOOC-PEG-4-N3 

91 (Scheme 4, Chapter II) through the same CuAAC “click reaction” (Scheme 15). Both 

products (145 and 147) were then purified by semi-preparative HPLC and lyophilized. 

 

Scheme 15. Synthesis of cyclo[DKP-RGD]-PEG-4-VA-MMAE conjugate (145) and HOOC-PEG-4-VA-MMAE (147). 
Reagents and conditions: a) 1) piperidine, DMF, r.t., 2 h; 2) 4-pentynoic acid, HATU, HOAt, iPr2NEt, DMF, r.t., 
overnight; b) 4-nitrophenyl chloroformate, pyridine, r.t., THF, 2 h, c) MMAE, HOBt, iPr2NEt, r.t., DMF:pyridine (4:1), 
over-weekend; d) cyclo[DKP-RGD]-PEG-4-N3 (86), CuSO4∙5H2O, NaAsc, DMF/H2O (1:1), 35 ºC, overnight; e) 
HOOC-PEG-4-N3 (91), CuSO4∙5H2O, NaAsc, DMF/H2O (1:1), 35 ºC, overnight. 

In addition to compounds 145 and 147, a third conjugate (compound 148, Fig 43) was 

prepared, in which the cleavable linker moiety (Val-Ala) is replaced by a tertiary amide bond. 
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Similarly to conjugate 124 (Chapter III, Fig.38), the synthesis of the RGD-MMAE conjugate 

featuring the “uncleavable” linker (148) is reported in Scheme 16. 

 

Scheme 16. Synthesis of cyclo[DKP-RGD]-Uncleavable-MMAE conjugate (148) and HOOC-Uncleavable-MMAE 
(156). Reagents and conditions: a) MMAE, HATU, HOAt, iPr2NEt, DMF, r.t., overnight; b) cyclo[DKP-RGD]-PEG-4-
N3 (86), CuSO4∙5H2O, NaAsc, DMF/H2O (1:1), 35 ºC, overnight; e) HOOC-PEG-4-N3 (91), CuSO4∙5H2O, NaAsc, 
DMF/H2O (1:1), 35 ºC, overnight. 

Herein, 4-pentynoic 87 acid was reacted with the secondary amine of MMAE affording tertiary 

amide 155. Also in this case, a final CuAAC afforded cyclo[DKP-RGD]-uncleavable-MMAE 

(148). Finally, compound 156 was also prepared, consisting in an analog compound of 

uncleavable conjugate 148, devoid of the targeting unit. This exhaustive panel of SMDC 

compounds and relative controls would facilitate the rationalization of in vitro data, providing 

important information for the determination of the mechanism of action of our RGD-MMAE 

conjugates. 

4.3. Synthesis of cyclo[DKP-RGD]-PEG-4-VA-MMAF Conjugates 

bearing a Lysosomally-Cleavable Linker  

As previously mentioned, another group of compounds was prepared, being structurally similar 

to cyclo[DKP-RGD]-MMAE-containing conjugates (145 and 148, Fig. 43), but possessing the 

MMAF cytotoxic payload (146 and 149, Fig. 43).[185] 

According to the synthetic pathway used for the development of cyclo[DKP-RGD]-MMAE-

containing conjugates, cyclo[DKP-RGD]-MMAF conjugates (146 and 149) were synthesized 

as it is described in Schemes 17 and 18. 
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Scheme 17. Synthesis of cyclo[DKP-RGD]-PEG-4-VA-MMAF conjugate (146). Reagents and conditions: a) 
MMAF·TFA, HOBt, iPr2NEt, r.t., DMF:pyridine (4:1), over-weekend; b) cyclo[DKP-RGD]-PEG-4-N3 86, 
CuSO4∙5H2O, NaAsc, DMF/H2O (1:1), 35 ºC, overnight. 

Likewise, the synthesis of cyclo[DKP-RGD]-PEG-4-VA-MMAE (145) was performed following 

the same pathway for the development of cyclo[DKP-RGD]-PEG-4-VA-MMAF (146). 

Carbamate 157 was prepared reacting carbonate 153 with the commercial TFA salt of MMAF, 

in the presence of 1-Hydroxybenzotriazole (HOBt) and excess of base. The resulting alkyne 

was reacted with azide 86 through the same CuAAC “click reaction” to give the final conjugate 

146, after purification by semi-preparative HPLC and lyophilization. 

 

Scheme 18. Synthesis of cyclo[DKP-RGD]-Uncleavable-MMAF (149) conjugate. Reagents and conditions: a) 
MMAF·TFA, HATU, HOAt, iPr2NEt, DMF, r.t., overnight; b) cyclo[DKP-RGD]-PEG-4-N3 86, CuSO4∙5H2O, NaAsc, 
DMF/H2O (1:1), 35 ºC, overnight. 
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Furthermore, the synthesis of the uncleavable conjugate cyclo[DKP-RGD]-uncleavable-MMAF 

(149, Scheme 18) was performed in analogy to the one used for cyclo[DKP-RGD]-uncleavable-

MMAE (148, Scheme 15). Conjugate 149 was successfully synthesized, purified by semi-

preparative HPLC and freeze-dried. 

 

4.4. Synthesis of cyclo[DKP-RGD]-PEG-4-NPV-MMAE Conjugate 

bearing an Extracellularly-Cleavable Linker 

Conjugate 150 (Scheme 19) carrying the elastase-cleavable linker Asn-Pro-Val (NPV) 

represents an analog of conjugate 121 (Chapter III). Here, the αvβ3 integrin ligand cyclo[DKP-

RGD] is connected to MMAE via a self-immolative spacer, an elastase-cleavable tripeptide 

linker (Asn-Pro-Val), a triazole linkage and a PEG-4 spacer. The synthesis of conjugate 150 is 

reported in Scheme 19. 

 

Scheme 19. Synthesis of cyclo[DKP-RGD]-PEG-4-NPV-MMAE (150). Reagents and conditions: a) 1) piperidine, 
DMF, r.t., 2 h; 2) 4-pentynoic acid, HATU, HOAt, iPr2NEt, DMF, r.t., overnight; b) 4-nitrophenyl chloroformate, 
pyridine, r.t., THF, 2 h; c) MMAE, HOBt, DIPEA, RT, DMF:pyridine (4:1), over-weekend; d) 1) TFA, Et3SiH, CH2Cl2, 

r.t., 45’; 2) cyclo[DKP-RGD]-PEG-4-N3 86, CuSO4∙5H2O, NaAsc, DMF/H2O (1:1), 35 ºC, overnight. 

Intermediate 159, previously synthesized for the development of conjugate 121, was Fmoc-

deprotected in the presence of piperidine and the resulting amine was treated with 4-pentynoic 

acid, leading to amide 160. The latter was converted into the corresponding 4-nitrophenyl 

carbonate (161) and reacted with commercial MMAE, leading to carbamate 162. Finally, 
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conjugate cyclo[DKP-RGD]-PEG-4-NPV-MMAE 150 was isolated after CuAAC reaction with 

cyclo[DKP-RGD]-PEG-4-N3 86. 

4.5. In vitro Biological Evaluation  

4.5.1. Integrin Receptor Competitive Binding Assays 

Also in this case, the newly synthesized cyclo[DKP-RGD]-MMAE/MMAF 145, 148, 146 and 

149 conjugates were evaluated in competitive assays for the binding to the purified αvβ3 

integrin, in the presence of biotinylated vitronectin. The IC50 values obtained are shown in 

Table 8. 

 

Table 8. Inhibition of biotinylated vitronectin binding to isolated αvβ3 receptor. 

Cpd Structure 
v3 

IC50 [nM][a] 

145 cyclo[DKP-RGD]-PEG-4-VA-MMAE 58.5 ± 10.5 

147 HOOC-PEG-4-VA-MMAE 3200 ± 2.4 

148 cyclo[DKP-RGD]-Uncleavable-MMAE 40.0 ± 16.1 

156 HOOC-Uncleavable-MMAE > 10000 

146 cyclo[DKP-RGD]-PEG-4-VA-MMAF 57.9 ± 17.9 

149 cyclo[DKP-RGD]-Uncleavable-MMAF 30.3 ± 7.4 

 

 

In the same frame to the SMDCs described in the previous Chapters, the results showed that 

despite their remarkable steric bulk, the conjugates’ affinity for the purified αvβ3 receptor is 

comparable to that of the free ligand 69. Remarkably, the high affinity observed towards the 

αvβ3 receptor (IC50 = 30.3-58.5 nM), demonstrates that the use of a new tripeptide sequence 

as cleavable linker in the presence of this type of constructs does not impair the binding to the 

integrin receptor. In addition, compounds 147 and 156 (devoid of the targeting ligand) did not 

show binding affinity to the isolated αvβ3 receptor (IC50 values in the micromolar range), proving 

the importance of the cyclo[DKP-RGD] targeting ligand for the binding avidity to αvβ3 integrin. 
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4.5.2. Cell Proliferation Assays 

Preliminary cytotoxicity assays were performed in collaboration with Italfarmaco, Milan (Dr. 

Christian Steinkühler and Msc. Ana Martins). These assays were carried out in parallel with 

other four conjugates (163-166) synthesized by Prof. Umberto Piarulli’s research group 

(University of Insubria, Como - Italy), bearing the cyclo[DKP-isoDGR] integrin ligand (Fig. 45). 

Such ligand was developed as analog of the well-known RGD-bearing peptidomimetics, in 

which the RGD sequence is substituted with an isoaspartate-glycine-arginine tripeptide 

(isoDGR). The latter is also recognized by integrins and the cyclo[DKP-isoDGR] was found to 

bind αVβ3 receptor with low nanomolar affinity.[133] The resulting cyclo[DKP-isoDGR]-

MMAE/MMAF conjugates were structurally similar to the RGD-bearing analogs 145-146 and 

148-149. In particular, the ligand and the MMAE/MMAF cytotoxic payloads were connected 

through either a Val-Ala dipeptide or an uncleavable nonpeptide linker (in compound 163-164 

and 165-166, respectively) – Figure 45. 

 

Figure 45. Structures of cyclo[DKP-isoDGR]-PEG-4-VA-MMAE (163), cyclo[DKP-isoDGR]-PEG-4-VA-MMAF 
(164), cyclo[DKP-isoDGR]-Uncleavable-MMAE (165) and cyclo[DKP-isoDGR]-Uncleavable-MMAF (166). 

All synthesized compounds have been tested against αvβ3-expressing cell line (human 

glioblastoma cell line U87). In this experiment, αvβ3-negative cells were not included, in order 

to gain information on the integrin-targeting ability of (RGD / isoDGR)-MMAE/MMAF 

conjugates by comparing their anticancer activity with the one of their relative control 

compounds (devoid of the targeting ligand) against the same cancer cells.  

In a first set of experiments, cells were incubated with increasing doses of free MMAE (29) and 

MMAE-containing compounds (145, 147-148, 156, 163 and 165). After 72 hours, the cell 

viability was analyzed by MTT assay. 

The measured IC50 values are shown in Table 9. 
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Table 9. Cytotoxicity assays of compounds 145, 147-148, 156, 163 and 
165 and free MMAE in U87 cell line. 

 

 

 

 

 

 

[a] IC50 values were calculated as the concentration of compound 

required for 50% inhibition of cell viability. U87 cell line was treated 

with different concentrations of MMAE and compounds 145, 147-

148, 156, 163 and 165 for 72 hours. The samples were measured in 

triplicate. 

 

From these first set of in vitro assays arose that lysosomally-cleavable cyclo[DKP-RGD]-PEG-

4-VA-MMAE (145) and cyclo[DKP-isoDGR]-PEG-4-VA-MMAE (163) conjugates show IC50 

values 2-3 order of magnitude (100-1000) higher than MMAE 29, Table 9. This could be 

ascribed by a non-efficient αVβ3-mediated endocytosis process. However, this test revealed 

the high absolute potency of conjugates 145 and 163 against U87 cells (IC50 in the low 

nanomolar range), resulting much more effective than its analog cyclo[DKP-RGD]-PEG-4-VA-

PTX conjugate 97, described in Chapter II. This expected result proved that the use of more 

potent cytotoxic payloads also increases the potency of the SMDC constructs, and conjugates 

145 and 163 can be now considered a promising compound for further tests. 

As for the control compounds, conjugates 148 and 165, bearing an uncleavable linker, showed 

IC50 values 4 order of magnitude (~10000) higher than MMAE (IC50 = 571.80 nM and 685.50 

nM, respectively), proving that the payload is not active when it is not released from the 

targeting vehicle. Furthermore, it can be observed that the absence of targeting ligand (147) 

led to a slightly less potent construct than conjugates 145 and 163 (IC50 = 77.32 nM VS IC50 = 

38.99 nM and 11.50 nM, respectively). The high lipophilicity of compound 147 (especially when 

compared to 145 and 163) may account for its significant anticancer activity: indeed, this 

compound may behave as a “non-targeted” prodrug, capable of penetrating the cell by passive 

diffusion and undergo intracellular linker cleavage. A more representative control compound is 

now being developed by our group (e.g. a cyclopeptide bearing the Arg-Ala-Asp “non-

targeting” sequence or a more hydrophilic spacer such as peptidoglycan-based structure, see 

Figure 10 in Chapter I), in order to minimize non-specific internalization of the prodrug. 

Later on, cells were incubated with increasing doses of free MMAF and conjugates (146, 149, 

164 and 166). After 72 hours, the cell viability was analyzed by MTT assay. 

The measured IC50 values are shown in Table 10. 

Cpd Structure 
IC50 (nM)[a] 

U87 (v3 +) 

29 MMAE 0.076 ± 0.08 

145 cyclo[DKP-RGD]-PEG-4-VA-MMAE 38.99 ± 0.11 

147 HOOC-PEG-4-VA-MMAE 77.32 ± 0.07 

148 cyclo[DKP-RGD]-Uncleavable-MMAE 571.80 ± 0.21 

156 HOOC-Uncleavable-MMAE > 10000 

163 cyclo[DKP-isoDGR]-PEG-4-VA-MMAE 11.50 ± 0.13 

165 cyclo[DKP-isoDGR]-Uncleavable-MMAE 685.50 ± 0.08 
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Table 10. Cytotoxicity assays of compounds 146, 149, 164, 166 and free 
MMAF in U87 cell line. 

 

 

 

 

 

 

[a] IC50 values were calculated as the concentration of compound 

required for 50% inhibition of cell viability. U87 cell line was treated 

with different concentrations of MMAF and compounds 146, 149, 

164, 166 for 72 hours. The samples were measured in triplicate. 

 

Since free MMAF shows weak membrane diffusion properties, internalizing ligands would 

increase its anticancer activity. However, from the results presented in Table 10, it can be 

observed that the conjugates displayed reduced cytotoxicity when compared with the free drug 

MMAF, which can be ascribed to a non-efficient αVβ3-mediated endocytosis process. In 

particular, cleavable MMAF-conjugates (146 and 164) show IC50 values 2-4 times higher than 

MMAF, by means that there is no advantage with the conjugation. Finally, the cyclo[DKP-

isoDGR]-PEG-4-VA-MMAF (164) conjugate proved slightly more potent (ca. 2 times) than the 

cyclo[DKP-RGD]-PEG-4-VA-MMAF (146), which may indicate that the internalization of the 

isoDGR could be more pronounced. 

 

Additional in vitro cytotoxicity assays with MMAE-containing conjugates are now being handled 

in presence of an αvβ3-negative cell line, in order to gain insights into the targeting performance 

of these constructs. 

Finally, the biological evaluation of conjugate cyclo[DKP-RGD]-PEG-4-NPV-MMAE (145), 

bearing the elastase-cleavable linker NPV, is still in progress. 

Hopefully, with all data in our hands, it will be possible to rationalize the mechanism of action 

of our (RGD / isoDGR)-MMAE/MMAF conjugates. This will facilitate the choice of the most 

suitable linker (e.g. to mediate an intra- or extracellular drug release) to consider future in vivo 

antitumor applications. 

Cpd Structure 
IC50 (nM)[a] 

U87 (v3 +) 

26 MMAF 94.40 ± 0.06 

146 cyclo[DKP-RGD]-PEG-4-VA-MMAF 385.90 ± 0.09  

149 cyclo[DKP-RGD]-Uncleavable-MMAF > 10000  

164 cyclo[DKP-isoDGR]-PEG-4-VA-MMAF 165.90 ± 0.05 

166 cyclo[DKP-isoDGR]-Uncleavable-MMAF 763.70 ± 0.08 
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Conclusions and Future Perspectives 

The work presented in this thesis mainly focused on potentialities of the peptidomimetic 

cyclo[DKP-RGD] as targeting device, for specific release of payloads against integrin-

expressing cancer cells. The chemical properties of such cyclo[DKP-RGD] ligand allowed its 

covalent connection to a wide range of chemical compounds and, due to the hydrophilic nature 

of the RGD peptide, the final constructs of these conjugation reactions exhibited better 

solubility in aqueous solutions compared to highly lipophilic anticancer drugs and peptide 

linkers. Generally, the attachment of the RGD peptidomimetic to the N-termini of such di- or 

tripeptide linkers was found to affect neither the affinity of the RGD moiety for the isolated αvβ3 

receptor, nor the enzymatic cleavage at the linkers’ C-termini. A previous SMDC developed in 

our group, the cyclo[DKP-RGD]-VA-PTX conjugate (77), showed a 66.9-fold higher cytotoxic 

activity against αvβ3+ cancer cells, compared to antigen-negative isogenic cells (TI = 9.0 shown 

by 77, calculated considering the intrinsic selectivity of free PTX).[130] The present thesis 

describes the multimerization of conjugate 77, representing a logical upgrade of the previous 

research activity and devised in order to increase the binding affinity and the TI of such SMDC 

against αVβ3-overexpressing cells. We synthesized three new multimeric (cyclo[DKP-RGD]-

PEG-4)n-VA-PTX conjugates (n = 2-4) and we compared them against two other monomeric 

analogs. Our new conjugates were tested for their ability to compete with biotinylated 

vitronectin for the binding to the purified αvβ3 integrin: it was observed that when the number 

of cyclo[DKP-RGD] units increases, the binding affinity raises to a plateau achieved by the 

trimeric (cyclo[DKP-RGD]-PEG-4)3-VA-PTX conjugate 104 (IC50 αvβ3 = 1.2 ± 0.5 nM), which 

exhibits higher binding affinity than the free ligand cyclo[DKP3-RGD] (IC50 αvβ3 = 4.5 ± 0.1 nM). 

Later on, all conjugates (77, 97, 102-105) were subjected to cell viability assays against two 

non-isogenic cell lines: human colorectal adenocarcinoma cell line HT29 (αvβ3 −) and, the 

human glioblastoma cell line U87 (αvβ3 +). Unfortunately, while all conjugates showed reduced 

potency when compared to free PTX (for U87 and HT29 cell lines), we observed that the 

increase of the valency of the conjugates leads to a progressive loss of cytotoxic activity. This 

trend may be ascribed to the increased steric bulk around the linker system, which hinders the 

enzymatic cleavage. However, despite the potency issue, remarkable TI values were observed 

for monomeric conjugates 77 (TI = 43) and 94 (TI = 94-533). These results can be considered 
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as a valuable reference in the field of αvβ3-targeted chemotherapeutics. Furthermore, from our 

research activity two main issues emerged: 

1) the central role of the biological system chosen to test and compare the synthesized 

compounds (e.g. isogenic or non-isogenic cell lines, integrin expressing or non-

expressing cells etc.). The in vitro variability shown by 77 on CCRF-CEM cells[130] and 

U87 cells (Table 1 and Table 3, Chapter II) and then by 97 (Table 3 and Table 5, 

Chapter II), together with the different cytotoxic activity detected for the free payload 

itself, prompted our group to prepare different chemical tools as negative controls in 

biological investigations (i.e. nontargeting-RAD ligand or conjugates lacking the ligand 

moiety); 

2)  the significant reduced potency shown by our conjugates. This drawback limits 

substantially the escalation of our products to in vivo therapy experiments. 

Thus, following efforts focused on the development of new SMDCs bearing extracellularly-

cleavable linkers (Chapter III) and highly potent payloads (Chapter IV). The first project was 

devised to evaluate whether the extracellular release of PTX and its subsequent passive 

diffusion into the cancer cell would raise the potency of our SMDC system. Indeed, the 

cyclo[DKP-RGD]-NPV-PTX (121) was synthesized to be cleaved in the extracellular 

environment by the tumor-associated enzyme elastase at the C-terminus of NPV linker. 

Although the biological evaluation of this latter compound is still in progress, some interesting 

preliminary results emerged from the in vitro investigation of 121. Besides showing good 

binding affinity for the αvβ3 isolated receptor, conjugate 121 displayed a 256-fold increment of 

antiproliferative activity (IC50 = 19.6 ± 4.1 nM) against 786-O renal cancer cell line, in the 

presence of elastase. By contrast, when elastase was not added to the cellular medium, the 

antiproliferative activity of 121 is substantially decreased (IC50 > 5000 nM). This result proved 

that the release of the payload within the tumor stroma can be a valuable tool to raise the 

potency of our constructs. Given that the enzyme effector is present at significantly high 

concentrations at the tumor site, conjugate 121 may be indicated as attractive candidate for in 

vivo anticancer applications, in order evaluate the payload accumulation at the tumor site 

mediated by the cyclo[DKP-RGD] ligand. 

The last project consisted in the modification of the payload: we used the same construct 

system (i.e. same ligand and same linkers), replacing PTX with MMAE or MMAF. The 

conjugation of the cyclo[DKP-RGD] integrin ligand to ultrapotent cytotoxic agents represent a 

logical strategy to increase the potency of ADC and SMDC products. Several cyclo[DKP-

RGD]-linker-drug conjugates were synthesized (i.e. combination between VA or NPV linkers 

and MMAE or MMAF drugs, Chapter IV) in order to evaluate their antiproliferative activity. 

Moreover, analog versions of such conjugates, lacking the homing device, were also 

synthesized as a negative control to assess the cyclo[DKP-RGD] targeting ability. While some 
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clear preliminary data were provided, cytotoxicity assays on αvβ3-overexpressing cells (U87) 

and αvβ3-nonexpressing cells (HT29) are currently still under evaluation. 

In conclusion, the significant decrease of drug’s potency displayed by our lysosomally-

cleavable SMDCs revealed to be a major issue during this project, which was addressed both 

by modifications of the payload component and by forcing the extracellular payload release. 

The latter approach overcomes the need for antigen internalization. Moreover, it remains to be 

understood if our cyclo[DKP-RGD] ligand can mediate an effective integrin-mediated 

endocytosis and if literature data are confirmed (mentioning that the internalization process is 

stimulated by ligand multimerization), the development of ‘theranostic’ SMDCs or multimeric 

cyclo[DKP-RGD]-dyes can be a valuable tool to confirm that the loss of potency is related to 

ineffective internalization. This analysis, together with an exhaustive linker screening, might 

hopefully lead to a significant increase of the potency and selectivity of our constructs. 
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Experimental Section 

General Remarks and Procedures 

Materials and Methods 

All manipulations requiring anhydrous conditions were carried out in flame-dried glassware, 

with magnetic stirring and under a nitrogen atmosphere. All commercially available reagents 

were used as received. Anhydrous solvents were purchased from commercial sources and 

withdrawn from the container by syringe, under a slight positive pressure of nitrogen. 

cyclo[DKP-RGD] (75),[127] azido-tetraethylene glycol-acid (91),[188] azido-tetraethylene glycol-

N-hydroxysuccinimidyl ester (92),[188] Fmoc-Val-Ala-N-[4-[[[(N-(Boc)-N,N’-dimethylethylenedi-

amine)carbonyl]oxy]methyl]phenyl] (93),[130] 2’-(4-nitrophenoxycarbonyl) paclitaxel (95),[130] 4-

(Prop-2-yn-1-yloxy)benzoic acid (109)[189] and intermediates, Fmoc-Asn(Trt)-Pro-OH (126)[190] 

and Fmoc-[D]-Val-PABA (132)[191] were prepared according to literature procedures, and their 

analytical data were in agreement with those already published. Reactions were monitored by 

analytical thin-layer chromatography (TLC) using silica gel 60 F254 pre-coated glass plates 

(0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and/or 

staining with a potassium permanganate alkaline solution or ninhydrin. Flash column 

chromatography was performed according to the method of Still and co-workers[192] using 

Chromagel 60 ACC (40-63 µm) silica gel. Proton NMR spectra were recorded on a 

spectrometer operating at 400.16 MHz. Proton chemical shifts are reported in ppm (δ) with the 

solvent reference relative to tetramethylsilane (TMS) employed as the internal standard (CDCl3 

δ = 7.26 ppm; CD2Cl2, δ = 5.32 ppm; D2O, δ = 4.79 ppm; [D]6DMSO, δ = 2.50 ppm; CD3OD, δ 

= 3.33 ppm).[193] The following abbreviations are used to describe spin multiplicity: s = singlet, 

d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad signal, dd = doublet of doublet, 

ddd = doublet of doublet of doublet, ddt = doublet of doublet of triplet. Carbon NMR spectra 

were recorded on a spectrometer operating at 100.63 MHz, with complete proton decoupling. 

Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent 

resonance as the internal standard (CDCl3, δ = 77.16 ppm; CD2Cl2, δ = 54.00 ppm; [D]6DMSO, 

δ = 39.51 ppm; CD3OD, δ = 49.05 ppm). 
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ESI-MS spectra were recorded on the ion trap mass spectrometer Finnigan LCQ Advantage 

or Micro Waters Q-Tof (ESI source). MALDI-TOF-MS spectra were recorded on the instrument 

Bruker Microflex™ LT, supporting the sample on the 2,5-dihydroxybenzoic acid (DHB), α-

cyano-4-hydroxycinnamic acid (HCCA) and sinapinic acid (SIN) matrices. The peptide 

calibration standard (300-6000 Da range), which consisted of Angiotensin II, Angiotensin I, 

Substance P, Bombesin; ACTH clip 1-17, ACTH clip 18-39, Somatostatin 28, was purchased 

from Bruker Daltonics® and used to calibrate the MALDI-TOF-MS instrument. The sample was 

mixed in equal volumes with the matrix solution: a small amount (1 μL) of this mixture was 

spotted on the target surface. The target matrix was dried at room temperature and then 

analyzed. 

High-resolution mass spectra (HRMS) were performed with a Fourier Transform Ion Cyclotron 

Resonance (FT-ICR) Mass Spectrometer APEX II & Xmass software (Bruker Daltonics) – 4.7 

T Magnet (Magnex) equipped with ESI source, available at CIGA (Centro Interdipartimentale 

Grandi Apparecchiature), University of Milan. 

HPLC purifications and HPLC traces of final products were performed on Dionex Ultimate 3000 

equipped with Dionex RS Variable Wavelength Detector (column: Atlantis Prep T3 OBDTM 5 

m 19 × 100 mm; flow 15 mL/min unless stated otherwise). The crude reaction mixture was 

dissolved in H2O or, if the compound was insoluble in water, adding first DMF, then diluting 

slowly with H2O until reaching a 1:1 mixture DMF/H2O (ultrasonic sonicator was used to assist 

the dissolution). The solution so obtained was filtered (polypropylene, 0.45 μm, 13 mm ø, 

PK/100) and injected in the HPLC, affording purified products. Purity analyses were carried on 

a Dionex Ultimate 3000 instrument equipped with a Dionex RS Variable Wavelength detector 

(column: Waters Atlantis® 5 μm 21 mm × 10 cm column). 1 mg of analyte was dissolved in 1 

mL of H2O and was injected using the same gradient used in the purification step. The analysis 

of the integrals and the relative percentage of purity was performed with the software 

Cromeleon 6.80 SR11 Build 3161. 

Freeze-drying: The products were dissolved in water and frozen with dry ice. Later on, the 

freeze-drying was carried out at least for 48 h at -50 °C using the instrument 5Pascal Lio5P 

DGT. 

General Procedures 

GENERAL PROCEDURE FOR Boc DEPROTECTION REACTIONS: 

GP1: To a 0.03 M CH2Cl2 solution of the N-Boc-protected compound half volume of TFA was 

added, and the reaction was stirred at r.t. for 1 h. The solvent was evaporated and then for two 

times CH2Cl2 was added to the residue followed by evaporation under vacuum, to afford the 

amine TFA salt. 



 

 

101 Experimental Section 

GENERAL PROCEDURE FOR Fmoc DEPROTECTION REACTIONS: 

GP2: A 0.01 M solution of the N-Fmoc-protected compound (1 equiv) in DMF was cooled to 0 

°C under nitrogen atmosphere. Piperidine (5 equiv) was added and the reaction was stirred at 

room temperature for 2 h. The mixture was diluted with AcOEt (20  volume of DMF) and 

washed twice with a saturated aqueous solution of NaHCO3. The organic phase was dried 

over Na2SO4 and concentrated at rotavapor. CH2Cl2 was added to the residue and evaporated 

to afford a yellow solid. The crude was left under vacuum for 2 h and then used as starting 

material for the subsequent step. 

GENERAL PROCEDURE FOR CuAAC (“click reaction”) REACTIONS: 

GP3: Alkyne (1 - 1.5 equiv) and azide (1 - 4.8 equiv) were dissolved in a degassed 1:1 mixture 

of H2O/DMF (0.01 M) under a nitrogen atmosphere. Degassed aqueous solutions of 

CuSO4∙5H2O (0.5 equiv per unit of alkyne) and sodium ascorbate (0.6 equiv per unit of alkyne) 

were added at room temperature and the mixture was stirred overnight at 35 ºC. The solvent 

was removed under vacuum, and the crude residue was purified by semipreparative HPLC 

[Waters Atlantis 21 mm x 10 cm column; gradient: 90% (H2O+0.1% CF3COOH)/10% 

(CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% CF3COOH)]. After purification, the final 

product was then freeze-dried. 

Biological Assays 

SOLID-PHASE RECEPTOR BINDING ASSAY: 

Recombinant human integrin αvβ3 receptor (R&D Systems, Minneapolis, MN, USA) was diluted 

to 0.5 µg/mL in coating buffer containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM MnCl2, 

2 mM CaCl2, and 1 mM MgCl2. An aliquot of diluted receptor (100 µL/well) was added to 96-

well microtiter plates (Nunc MaxiSorp) and incubated overnight at 4 °C. The plates were then 

incubated with blocking solution (coating buffer plus 1% bovine serum albumin) for 2 h at r.t. 

to block nonspecific binding. After washing 2 times with blocking solution, plates were 

incubated shaking for 3 h at r.t., with various concentrations (10-5-10-12 M) of test compounds 

in the presence of 1 µg/mL biotinylated vitronectin (Molecular Innovations, Novi, MI, USA). 

Biotinylation was performed using an EZ-Link Sulfo-NHS-Biotinylation kit (Pierce, Rockford, 

IL, USA). After washing 3 times, the plates were incubated shaking for 1 h at r.t., with 

streptavidin-biotinylated peroxidase complex (Amersham Biosciences, Uppsala, Sweden). 

After washing 3 times with blocking solution, plates were incubated with 100 µL/well of 

Substrate Reagent Solution (R&D Systems, Minneapolis, MN, USA) for 30 min, in the dark, 

with shaking. After stopping the reaction with the addition of 50 µL/well 2 N H2SO4, absorbance 

at λ = 415 nm was read in a SynergyTM HT Multi-Detection Microplate Reader (BioTek 
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Instruments, Inc.). Each data point represents the average of triplicate wells; data analysis was 

carried out by nonlinear regression analysis with GraphPad Prism software (GraphPad Prism, 

San Diego, CA, USA). Each experiment was repeated in duplicate. 

DETERMINATION OF INTEGRIN αvβ3 RECEPTOR EXPRESSION BY FLUORESCENCE 

ACTIVATED CELL SORTER (FACS) 

U87 and HT29 cells were seeded in T25 flasks with ventilation cap and incubated at 37 °C in 

a humidified atmosphere with 5% CO2 for 48 h. Cells were harvested and fixed with 4% PFA 

(Paraformaldehyde). With 3% BSA (Bovine Serum Albumin) were blocked all possible non-

specific binding sites on the cell, and cells were exposure with LM609 anti integrin αVβ3 

antibody conjugated with FITC (Merck Millipore, Darmstadt, Germany). In control samples cells 

were not stained with antibody, and auto-fluorescence intensity of cells was measured. 

Fluorescent intensity of stained samples was measured by flow cytometer Beckman Coulter, 

and compared with auto-fluorescence intensity of control samples. 

 

Figure 46. Flow cytometry analysis of integrin αvβ3 in U87 and HT29 cell lines. Black: auto-fluorescence of the 
cell; Red: fluorescence of αVβ3 integrin antibody. 
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Figure 47. Mean fluorescence intensity of αvβ3 receptors expression in U87 and HT29 cell lines. 
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U87 AND HT29 CELL LINES AND CULTURE CONDITIONS: 

U87 (human glioblastoma) and HT29 (human colorectal adenocarcinoma) cell lines obtained 

from ATCC and were cultured in sterile T25 flasks with ventilation cap (Sarstedt, Nümbrecht, 

Germany) at 37 °C in a humidified atmosphere with 5% CO2. For U87 cells, DMEM medium 

(Dulbecco's Modified Eagle's Medium) (Lonza, Basel, Switzerland) containing 4500 mg·L−1 

glucose and supplemented with 10% heat-inactivated and filtered FBS (Fetal Bovine Serum) 

(Lonza, Basel, Switzerland) and 1% Penicillin-Streptomycin (Lonza, Basel, Switzerland) was 

used. HT29 cells were grown in RPMI 1640 medium supplemented with 10% FBS and 1% 

Penicillin-Streptomycin. 

ANTIPROLIFERATIVE ACTIVITY OF CONJUGATES 97, 103-105 

Cell viability was determined by MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide) obtained from Sigma Aldrich (St. Louis, MO, USA). After standard 

trypsinization, cells were seeded at 3 × 103 cells (U87) and 4 × 103 cells (HT29) per well in a 

96-well plate and incubated. After 24 h, cells were treated with various concentrations of 

conjugates 97, 103-105 and free drug PTX (paclitaxel) and incubated in appropriate serum-

containing growth medium for 96 h under standard growth conditions. Control wells were 

untreated. Subsequently, MTT assay was performed by adding 20 μL of MTT solution (5 mg·L−1 

in PBS) to each well and after 4 h of incubation at 37 °C, the supernatant was removed. The 

formazan crystals were dissolved in 100 μL of a 1:1 solution of DMSO (Sigma Aldrich, St. 

Louis, MO, USA) and EtOH (Molar Chemicals Kft. Hungary) and the absorbance was 

measured after 15 min at λ = 570 nm by using a microplate reader (BIO-RAD, model 550). 

Average background absorbance of DMSO-EtOH only, was subtracted from absorbance 

values of control and treated wells, and cell viability was determined relative to untreated 

(control) wells where cell viability was arbitrarily set to 100%. Absorbance values of treated 

samples were normalized versus untreated control samples and interpolated by nonlinear 

regression analysis with GraphPad Prism software to generate dose-response curves. The 

50% inhibitory concentration (IC50) was determined from the dose-response curves by using 

sigmoidal interpolation curve fitting. The experiments were done in triplicate. 
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Figure 48. Dose-response curves of conjugates 97, 103-105 and PTX. 
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DIGESTION OF 121 WITH ELASTASE AND LYSOSOMAL ENRICHED EXTRACT 

100 µM solution of conjugate 121 was digested in PBS/ 10% CH3CN at 37 °C for 2 h with 25 

mUnits of Elastase from human leucocytes (ELANE, E-8140, Sigma-Aldrich). 

0.2 mM solutions of conjugate 121 were digested in 200 mM sodium acetate (pH 5.5)/1 mM 

EDTA containing 1 mM cysteine at 37 °C for 2 h with 0.5 mg mL−1 of lysosomal enriched extract 

(prepared from a rat liver as previously described in the literature) in the presence or absence 

of 20 µM E-64 protease inhibitors (Enzo Life Sciences). 

Control samples were prepared by diluting the compounds in the same reaction mixture 

acidified with TFA to inactivate elastase and the lysosomal enzymes. 

All samples were analyzed by ESI-LC/MS on a PLRP-S column (Agilent Technologies; 2.1  

150 mm, 8 µm, 1000 Å) with an Agilent 1100 HPLC system equipped with a diode array 

detector with an electrospray ion source. Mobile phase A was composed of 0.05% TFA in 

water, and mobile phase B was 0.05% TFA in CH3CN. Samples (45 µM) were eluted at 0.25 

mL min−1 by using a gradient from 20 to 50% B in 30 min, raised to 80% B and held at 80% B 

for 5 min; the UV signal was recorded at 220 and 280 nm, and MS detection was set in full-

scan mode from 300–2000 amu. 

PLASMA STABILITY OF CONJUGATE 121 

A 1 mM solution of conjugate 121 in DMSO was diluted to 5 μM with blank mouse plasma and 

incubated at 37 °C under mixing for 24 h. Aliquots of 20 μL were double collected at the time 

points 0, 0.25, 0.50, 1, 2, 4, 6 and 24 h and frozen up to analysis. Sample plasma proteins 

were precipitated by adding 180 mL of CH3CN/MeOH (9:1) to the unfrozen aliquots. After 

mixing for 15 minutes, the aliquots were centrifuged for 5 minutes at 12000 rpm; the 

supernatants were collected and transferred into 96-well plate; the plate was further 

centrifuged for 5 minutes at 4000 rpm. The samples were analyzed against standard 

appropriately diluted for calibration line in CH3CN /MeOH (9:1). 

 

Figure 49. Plasma stability of conjugate 121: the calculated half-life (t1/2) is 35.27 hours. 
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All samples were analyzed by UPLC-LC-MS/MS on a BEH C18 column (Waters Acquity BSM; 

2.1  50 mm, 1.7 µm) with an Waters UPLC system equipped with a diode array detector with 

an electrospray ion source. Mobile phase A was composed of 5% CH3CN in 5 mM Ammonium 

Formate pH 3.5, and mobile phase B was 5% 5 mM Ammonium Formate pH 3.5 in CH3CN; 

the UV signal was recorded at 220 and 280 nm, and MS detection was set in full-scan mode 

from 300–2000 amu. The software used to analyze all the data was Mass Lynx 4.1 SCN919.  

After linear regression analysis, the calculated half-life (t1/2) is 35.27 hours. 

STABILITY TEST OF PRO-PTX 142 

Paclitaxel drug release was investigated by incubation of Pro-PTX TFA salt 142 (250 µM) in 

DMSO:PBS (1:1), pH 7.5  at 37 ºC. Aliquots (100 μL) were taken at several time points and 

analyzed by HPLC after dilution with eluent (300 μL). HPLC conditions: analysis was carried 

out on a reverse-phase column (Waters Atlantis 21 mm x 10 cm column, gradient from 90% 

(H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 100% (CH3CN + 0.1% 

CF3COOH) in 20 min). The data were extracted from the software Cromeleon 6.80 SR11 Build 

3161 and analyzed by Excel™ 2016. 

 

Figure 50. Pro-PTX 142 cyclization and PTX release during the time. A representative curve was treated for each 
HPLC run. X-axis shows the retention time of each specie; Y-axis shows the area of each peak. 

 

ANTIPROLIFERATIVE ACTIVITY OF 121-124 AND 142 

786-O renal cancer cell line (NCI) was cultured in RPMI 1640 medium supplemented with 10% 

fetal calf serum (FCS) at 37°C and 5% CO2. Cells were seeded at a density of 2000 cells/well 

(200 l/well) in 96-well plates and, 24 hours after seeding. Cells were treated in duplicate with 
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serial dilutions of 121-124 in the range 5.0 μM - 9.8 nM and with serial dilutions of PTX and Pro-

PTX 142 in the range 0.1 M – 0.2 nM, in the presence or absence of Elastase from human 

leucocytes (ELANE, 324681, Millipore). In the case of presence of elastase, the latter was 

added immediately after compound treatment at a final concentration of 50 nM in half of 

replicates, then the plates were incubated for 96 hours at 37°C. 

Cell viability was assessed with the CellTiter-Glo luciferase-based ATP detection assay 

(Promega) and Envision (PerkinElmer) microplate reader. Growth inhibitory activity was 

evaluated at the end of incubation by using GraphPad Prism software. Experimental data were 

normalized versus untreated control samples and interpolated by nonlinear regression analysis 

with GraphPad Prism software to generate dose-response curves. IC50 values were calculated 

by using sigmoidal interpolation curve fitting. 

 

ANTIPROLIFERATIVE ACTIVITY OF RGD-MMAE/MMAF CONJUGATES (145-149, 156 and 

163-166) 

To evaluate the cytotoxicity of (RGD/isoDGR)-MMAE/MMAF conjugates against U-87 MG 

glioblastoma cells obtained from American Type Culture Collection (ATCC, Bethesda, MD, 

USA). Cell viability was quantified by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) assay. Briefly, cells in EMEM supplemented with 10% FBS, 1% L-glutamine and 1% 

penicillin/streptomycin, were seeded in 96-well culture plates (5 × 104 cells/well) and incubated 

in a humidified, 37 °C, 5% CO2 atmosphere overnight to allow adherence. The following day 

cells were treated with serial dilutions of each compound starting at 500 nM for MMAE or MMAF 

and 5000 nM for each conjugate, or 0.1% DMSO as a control, and incubated as described for 

72h. At the end of treatment, 5 µL of MTT (5 mg/mL in deionized H2O, Sigma #M5655) was 

added to each well. The cells were incubated for another 2 hours, and 100 µL of lysis buffer 

(10% SDS, 10 mM HCl) were added, and placed in the incubator overnight for the formazan 

crystal solubilization. Absorbance at 540 nm was measured and the growth inhibition ratio was 

calculated. Blank controls detecting cell-free media absorbance were performed in parallel. 

Three experimental replicates were used. The half-maximal inhibitory concentration values 

(IC50) were obtained from viability curves using GraphPad Prism 6 (Figure 51). The cell viability 

was expressed as percentage relative to the respective control conditions (0.1% of DMSO). 
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Figure 51. Dose-response curves of MMAE-containing compounds (left), MMAF-containing compounds (right), 
MMAE and MMAF. 
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Synthesis of cyclo[DKP-RGD]-Drug Conjugates 

cyclo[DKP-RGD]-PEG-4-Azide (86) 

14-Azido-3,6,9,12-tetraoxatetradecanoic acid (91) 

 

Commercially available tetraethylene glycol (4.58 g, 23.6 mmol, 3 equiv) was dissolved in dry 

CH2Cl2 (80 mL) under inert atmosphere. Then DMAP (0.19 g, 1.58 mmol, 0.2 equiv) and Et3N 

(3.3 mL, 23.6 mmol, 3 equiv) were added. The mixture was cooled at 0 °C and a solution of 

TsCl (1.5 g, 7.9 mmol, 1 equiv) in dry CH2Cl2 (40 mL) was added dropwise. The reaction was 

stirred at r.t. for 2 h. Hence, 100 mL of CH2Cl2 were added and the mixture was washed with 

a solution of HCl 1 M (2 × 40 mL) and brine (1 × 50 mL). The organic phase was dried over 

Na2SO4 and concentrated. Then the crude was dissolved in dry DMF (15 mL) and NaN3 (1.03 

g, 15.8 mmol, 2 equiv) was added under inert atmosphere. The suspension was stirred at 80 

°C overnight. The solvent was removed and the crude was purified by flash chromatography 

on silica gel (gradient from 1% MeOH to 5% MeOH in AcOEt) affording the corresponding 

azide. Later on, to a suspension of NaH (0.6 g, 25 mmol, 5 equiv) in dry THF (25 mL), azido-

tetraehtylene glycol (1.09 g, 5 mmol, 1 equiv) dissolved in dry THF (25 mL) was added 

dropwise over a period of 30 min under inert atmosphere. The reaction was stirred for 1 h more 

at room temperature. Later, a solution of bromoacetic acid (1.387 g, 10 mmol, 2 equiv) in dry 

THF (21 mL) was added dropwise over a period of 1 h and then the reaction was stirred 

overnight at r.t. After addition of cold water, THF was removed under vacuum and a solution 

of HCl 1 M was added until pH = 1. The mixture was extracted with AcOEt (5 × 80 mL) and the 

collected organic phases were washed with brine (1 × 150 mL). The organic phase was dried 

over Na2SO4 and concentrated, then the crude was purified by flash chromatography on silica 

gel (eluent: CH2Cl2/MeOH, 9:1 + 0.1% CH3COOH) affording the corresponding carboxylic acid 

91 as a pale-yellow oil (1.09 g, 79% yield). 

Rf = 0.25 (9:1, CH2Cl2/MeOH + 0.1% CH3COOH); 1H NMR (400 MHz, CD2Cl2-d2) δ 3.96 (s, 

2H), 3.70-3.61 (m, 14H), 3.39 (t, J = 5.0 Hz, 2H). 
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Azido-tetraethylene glycol-N-hydroxysuccinimidyl ester (92) 

 

Carboxylic acid 91 (77 mg, 0.28 mmol, 1 equiv) was dissolved in dry THF and cooled down to 

0 °C under a nitrogen atmosphere. EDC∙HCl (69 mg, 0.36 mmol, 1.3 equiv) and N-

hydroxysuccinimide (41 mg, 0.36 mmol, 1.3 equiv) were added and the mixture was allowed 

to reach r.t. and stirred overnight. The solvent was removed and the crude was purified over a 

pad of silica [eluent: AcOEt/hexane, 8:2] affording ester 92 as a colorless oil (67 mg, 64% 

yield).  

Rf = 0.43 (9:1, CH2Cl2/MeOH); 1H NMR (400 MHz, CD2Cl2-d2) δ 4.50 (s, 2H), 3.78-3.73 (m, 

2H), 3.68-3.59 (m, 12H), 3.37 (t, J = 5.1 Hz, 2H), 2.83 (s, 4H); MS (ESI+): m/z calcd for 

[C14H22N4NaO8]+: 397.13 [M + Na]+; found: 397.19. 

cyclo[DKP-RGD]-PEG-4-N3 (86) 

 

To a solution of 92 (17 mg, 0.045 mmol, 1.3 equiv) in CH3CN (2 mL) under a nitrogen 

atmosphere, cyclo[DKP-RGD] 75 (30 mg, 0.035 mmol, 1 equiv) dissolved in pH 7.5 PBS 

solution (1.5 mL) was added at 0 °C under a nitrogen atmosphere. The reaction mixture was 

allowed to reach r.t. and stirred overnight. During the first 3 h the pH value was kept close to 

7.3-7.5 adding 0.2 M aqueous NaOH aq. when necessary. The crude was then purified by 

semipreparative-HPLC [Waters Atlantis 21 mm  10 cm column, flow: 9 mL/min, gradient: 90% 

(H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 55% (H2O + 0.1% CF3COOH) 

/ 45% (CH3CN + 0.1% CF3COOH) in 10 min; tR (product): 8.3 min]. The purified product was 

then freeze-dried giving the desired 86 as a white solid (27 mg, 77% yield). 

1H NMR (400 MHz, D2O) δ 7.36 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 5.12 (d, J = 15.4 

Hz, 1H), 4.90 (t, J = 7.1 Hz, 1H), 4.59 (dd, J = 7.9, 5.4 Hz, 1H), 4.48 (s, 2H), 4.34 (d, J = 17.1 

Hz, 1H), 4.22 (dd, J = 9.6, 5.2 Hz, 1H), 4.19-4.11 (m, 4H), 4.01 (d, J = 14.6 Hz, 1H), 3.80-3.75 

(m, 3H), 3.75-3.69 (m, 3H), 3.69-3.59 (m, 10H), 3.47-3.43 (m, 2H), 3.25 (t, J = 6.8 Hz, 2H), 

3.01-2.88 (m, 2H), 2.81 (dd, J = 16.9, 7.1 Hz, 1H), 2.67 (dd, J = 14.0, 5.4 Hz, 1H), 2.08-1.97 

(m, 1H), 1.90-1.78 (m, 1H), 1.77-1.60 (m, 2H); 13C NMR (101 MHz, D2O) δ 174.1, 173.9, 173.1, 

172.8, 172.7, 170.9, 170.1, 168.6, 156.8, 137.8, 134.1, 128.1, 127.8, 70.5, 69.5, 69.2, 59.3, 

54.0, 52.1, 50.1, 49.4, 47.6, 42.5, 42.2, 40.6, 39.2, 38.0, 34.6, 25.8, 24.7; MS (ESI+) m/z calcd 
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for [C37H56N13O13]+: 890.41 [M + H]+; found: 890.47; m/z calcd [C37H55N13NaO13]+: 912.39 [M + 

Na]+; found: 912.45. 

cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX aliphatic scaffold (97) 

Aliphatic alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (94) 

 

N-Fmoc-protected compound 93 (150 mg, 0.206 mmol, 1 equiv) was deprotected following 

General Procedure GP2. A solution of commercial 4-pentynoic acid (31 mg, 0.31 mmol, 1.5 

equiv) in dry DMF (7 mL) was cooled to 0 °C under a nitrogen atmosphere. HATU (134 mg, 

0.35 mmol, 1.7 equiv), HOAt (48 mg, 0.35 mmol, 1.7 equiv) and iPr2NEt (145 µL, 0.83 mmol, 

4 equiv) were added and the mixture was stirred for 20 min at 0 °C. A solution of 93-NH (105 

mg, 0.206 mmol, 1 equiv) in dry DMF (3 mL) was added to the stirred mixture. The reaction 

was allowed to slowly reach room temperature and stirred overnight. The mixture was diluted 

with an AcOEt/CH2Cl2, 4:1 mixture (100 mL) and washed with 1 M aqueous solution of KHSO4 

(2 × 15 mL), a saturated aqueous solution of NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The 

organic phase was dried over Na2SO4 and concentrated. The solid was suspended in Et2O. 

The product was collected by centrifugation and purified by flash chromatography [gradient: 

from 99:1 CH2Cl2/MeOH to 97:3 CH2Cl2/MeOH] to afford amide 94 as a white solid (106 mg, 

88% yield over two steps). 

Rf = 0.39 (9:1, CH2Cl2/MeOH); 1H NMR (500 MHz, [D]6DMSO) δ 9.71 (s, 1H), 7.93 (d, J = 7.2 

Hz, 1H), 7.75 (d, J = 8.5 Hz, 1H), 7.58 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 5.00 (s, 

2H), 4.44 (p, J = 7.0 Hz, 1H), 4.21 (dd, J = 8.4, 6.5 Hz, 1H), 3.38-3.29 (m, 4H), 2.87 (s, 3H), 

2.75 (s, 3H), 2.62 (t, J = 2.4 Hz, 1H), 2.46-2.32 (m, 4H), 2.09-1.99 (m, 1H), 1.39 (s, 9H), 1.34 

(d, J = 7.1 Hz, 3H), 0.90 (dd, J = 11.3, 6.8 Hz, 6H); 13C NMR (126 MHz, [D]6DMSO) δ 171.41, 

171.23, 171.14, 155.93, 155.28, 139.02, 132.35, 128.64, 121.72, 120.36, 119.73, 84.25, 78.98, 

71.33, 66.47, 58.45, 49.56, 34.73, 34.48, 30.77, 19.58, 18.53, 18.36, 14.79. MS (ESI+) m/z 

calcd for [C30H46N5O7]+: 588.75 [M + H]+; found: 588.77; m/z calcd [C30H45NaN5O7]+: 610.72 [M 

+ Na]+; found: 610.70. 
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Aliphatic alkyne-Val-Ala-PTX (96) 

 

A solution of Boc-protected compound 94 (20 mg, 0.034 mmol, 1 equiv) was deprotected 

following General Procedure GP1. The obtained TFA salt was dissolved in dry DMF (500 μL) 

and iPr2NEt (25 µL, 0.136 mmol, 4 equiv). The resulting solution was added at 0 °C to a stirred 

solution of 95 (52 mg, 0.051 mmol, 1.5 equiv) in dry DMF (500 μL), under a nitrogen 

atmosphere. The reaction was then allowed to reach room temperature and stirred overnight. 

AcOEt (100 mL) was added and the solution was washed with a 1 M aqueous solution of 

KHSO4 (2 × 10 mL) and brine (1 × 15 mL). The organic phase was dried over Na2SO4 and 

concentrated, then the crude was purified by flash chromatography [gradient: from 9:1 

CH2Cl2/AcOEt to 7:3 CH2Cl2/AcOEt] to afford carbamate 96 as a white solid (30 mg, 66% yield). 

Rf = 0.33 (CH2Cl2/AcOEt, 9:1); MS (MALDI-TOF): m/z calcd for [C73H86NaN6O20]+: 1389.98 [M 

+ Na]+; found: 1389.70 (HCCA matrix), 1390.08 (SA matrix); HRMS (ESI+): m/z calcd for 

[C73H86NaN6O20]+: 1389.98 [M + Na]+; found: 1389.57; m/z calcd for [C73H86Na2N6O20]2+: 

706.14, [M + 2Na]2+; found: 706.28. 

cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX aliphatic scaffold (97) 

 

Alkyne 96 (10 mg, 0.0075 mmol, 1.5 equiv) and azide 86 (5 mg, 0.005 mmol, 1 equiv) were 

reacted following the General Procedure GP3. Crude was purified by semipreparative HPLC 

[Waters Atlantis 21 mm x 10 cm column; gradient: 90% (H2O+0.1% CF3COOH)/10% 

(CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% CF3COOH) in 20 min; tR (product)=11.9 
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min]. The purified product was then freeze-dried to give the desired compound 97 as a white 

solid (9 mg, 81% yield).  

MS (MALDI-TOF): m/z calcd for [C110H142N19O33]+: 2258.40 [M + H]+; found: 2258.30 (HCCA 

matrix), 2258.34 (SA matrix); HRMS (ESI+): m/z calcd for [C110H140Na3N19O33]2+: 1161.90, [M 

+ 3Na - H]2+; found: 1161.97; m/z calcd for [C110H141Na2N19O33]2+: 1150.90, [M + 2Na]2+ found: 

1150.98. 

cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX aromatic scaffold (102) 

Methyl 4-hydroxybenzoate (107) 

 

Commercial 4-hydroxybenzoic acid 106 (100 mg, 0.724 mmol, 1 equiv) was dissolved in MeOH 

(1.3 mL), and H2SO4 (19 μL, 0.362 mmol, 0.5 equiv) was added thereto, and stirred for 4 hours 

under reflux. The reaction mixture was concentrated, diluted in water, and extracted with 

EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated under 

reduced pressure. Then, the residue was purified by flash chromatography on silica gel (1:1 

Et2O/n-Hexane) affording the desired product 107 as a white solid (110 mg, yield: quantitative). 

Rf = 0.48 (1:1, Et2O/n-Hexane); 1H NMR (400 MHz, CD2Cl2-d2) δ 7.98 (d, J = 8.8 Hz, 2H), 6.92 

(d, J = 8.7 Hz, 2H), 5.90 (s, 1H), 3.90 (s, 3H); MS (ESI+) m/z calcd for [C8H9O3]+: 153.03 [M + 

H]+; found: 153.08. 

Methyl 4-(prop-2-yn-1-yloxy)benzoate (108) 

 

Compound 107 (110 mg, 0.723 mmol, 1 equiv) was dissolved in dry acetone (7 mL) under 

nitrogen atmosphere. The solution was cooled in an ice bath. Propargyl bromide (250 μL, 2.9 

mmol, 4 equiv) and K2CO3 (400 mg, 2.9 mmol, 4 equiv) were added, and the mixture was 

stirred at room temperature for 24 h at 30 ºC. The mixture was concentrated, the crude was 

dissolved in AcOEt (70 mL) and washed with water (3 × 10 mL). The organic phase was dried 

over Na2SO4 and concentrated, affording the desired product 108 as an orange solid (135 mg, 

yield: 99%). 

Rf = 0.77 (1:1, n-Hexane/EtOAc); 1H NMR (400 MHz, CD2Cl2-d2) δ 7.99 (d, J = 9.0 Hz, 2H), 

7.01 (d, J = 8.9 Hz, 2H), 4.76 (d, J = 2.4 Hz, 2H), 3.86 (s, 3H), 2.61 (t, J = 2.4 Hz, 1H); MS 

(ESI+) m/z calcd for [C11H11O3]+: 191.06 [M + H]+; found: 191.08. 
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4-(Prop-2-yn-1-yloxy)benzoic acid (109) 

 

Compound 108 (135 mg, 0.710 mmol, 1 equiv) was dissolved in MeOH (6 mL) under a nitrogen 

atmosphere. The solution was cooled to 0 °C, then NaOH (142 mg, 3.6 mmol, 5 equiv) in H2O 

(2 mL) was added. The mixture was stirred 5 h at room temperature. The mixture evaporated 

until the dryness under reduced pressure and later acidified to ca. pH = 1 with a 1 M KHSO4 

aqueous solution and extracted with EtOAc (4 × 20 mL). The organic phase was dried over 

Na2SO4 and concentrated, affording 109 as an orange solid (120 mg, yield: 98%). 

Rf = 0.15 (3:2, n-Hexane/EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.98 (d, J = 8.9 Hz, 2H), 7.05 

(d, J = 8.9 Hz, 2H), 4.81 (d, J = 2.4 Hz, 2H), 2.99 (t, J = 2.4 Hz, 1H). MS (ESI+) m/z calcd for 

[C10H9O3]+: 177.05 [M + H]+; found: 177.06; m/z calcd [C10H8NaO3]+: 199.39 [M + Na]+; found: 

199.45. 

Aromatic alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (118a) 

 

N-Fmoc-protected compound 93 (70 mg, 0.096 mmol, 1 equiv) was deprotected following 

General Procedure GP2. A solution acid 109 (26 mg, 0.15 mmol, 1.5 equiv) in dry DMF (4 mL) 

was cooled to 0 °C under a nitrogen atmosphere. HATU (93 mg, 0.25 mmol, 1.7 equiv), HOAt 

(34 mg, 0.25 mmol, 1.7 equiv) and iPr2NEt (67 µL, 0.39 mmol, 4 equiv) were added and the 

mixture was stirred for 20 min at 0 °C. A solution of 93-NH (49 mg, 0.096 mmol, 1 equiv) in dry 

DMF (2 mL) was added to the stirred mixture. The reaction was allowed to slowly reach room 

temperature and stirred overnight. The mixture was diluted with an AcOEt/CH2Cl2, 4:1 mixture 

(100 mL) and washed with 1 M aqueous solution of KHSO4 (2 × 15 mL), a saturated aqueous 

solution of NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The organic phase was dried over 

Na2SO4 and concentrated. The solid was solubilized in DCM/MeOH (95:5) and purified by flash 

chromatography [gradient: from 100% CH2Cl2 to 95:5 CH2Cl2/MeOH] to afford amide 118a as 

a white solid (55 mg, 86% yield over two steps). 

Rf = 0.35 (95:5, CH2Cl2/MeOH); 1H NMR (400 MHz, CD2Cl2-d2) δ 8.73 (s, 1H), 7.82 (d, J = 8.8 

Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.13 (t, J = 6.4 Hz, 1H), 6.99 (d, J = 

8.8 Hz, 2H), 6.90 (d, J = 7.7 Hz, 1H), 5.04 (s, 2H), 4.74 (d, J = 2.4 Hz, 2H), 4.66 (p, J = 7.1 Hz, 

1H), 4.50 (t, J = 7.2 Hz, 1H), 3.38-3.27 (m, 4H), 2.91 (s, 3H), 2.76 (s, 3H), 2.61 (t, J = 2.4 Hz, 

1H), 2.24 (q, J = 6.8 Hz, 1H), 1.43 (d, J = 11.8 Hz, 12H), 1.01 (dd, J = 6.8, 4.0 Hz, 6H). 13C 
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NMR (101 MHz, CD2Cl2-d2) δ 171.86, 170.91, 167.23, 160.23, 138.02, 132.73, 129.23, 128.66, 

128.44, 127.08, 119.82, 114.50, 79.11, 77.96, 75.83, 66.59, 66.47, 59.13, 55.83, 49.66, 46.55, 

38.37, 29.67, 28.08, 19.10, 18.50, 18.02. MS (ESI+) m/z calcd for [C35H48N5O8]+: 666.34 [M + 

H]+; found: 666.71; m/z calcd [C35H47NaN5O8]+: 711.35 [M + Na]+; found: 711.23. 

Aromatic alkyne-Val-Ala-PTX (119a) 

 

A solution of Boc-protected compound 118a (20 mg, 0.03 mmol, 1 equiv) was deprotected 

following General Procedure GP1. The obtained TFA salt was dissolved in dry DMF (500 μL) 

and iPr2NEt (21 µL, 0.12 mmol, 4 equiv). The resulting solution was added at 0 °C to a stirred 

solution of 95 (46 mg, 0.045 mmol, 1.5 equiv) in dry DMF (500 μL), under a nitrogen 

atmosphere. The reaction was then allowed to reach room temperature and stirred overnight. 

AcOEt (100 mL) was added and the solution was washed with a 1 M aqueous solution of 

KHSO4 (2 × 10 mL) and brine (1 × 15 mL). The organic phase was dried over Na2SO4 and 

concentrated, then the crude was purified by flash chromatography [eluent: 9:1 CH2Cl2/AcOEt] 

to afford carbamate 119a as a white solid (39 mg, 93% yield). 

Rf = 0.30 (9:1, CH2Cl2/AcOEt); MS (MALDI-TOF): m/z calcd for [C78H88NaN6O21]+: 1467.99 [M 

+ Na]+; found: 1469.02 (HCCA matrix), 1469.09 (SA matrix); HRMS (ESI+): m/z calcd for 

[C78H88NaN6O21]+: 1467.99, [M + Na]+; found 1467.58; m/z calcd for [C78H88Na2N6O21]2+: 

745.25, [M + 2Na]2+; found: 745.28. 
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cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX aromatic scaffold (102) 

 

Alkyne 119a (6.5 mg, 0.005 mmol, 1.5 equiv) and azide 86 (3 mg, 0.003 mmol, 1 equiv) were 

reacted following the General Procedure GP3. Crude residue was purified by semipreparative 

HPLC [Waters Atlantis 21 mm x 10 cm column; gradient: 90% (H2O+0.1% CF3COOH)/10% 

(CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% CF3COOH) in 20 min; tR (product)=12.9 

min]. The purified product was then freeze-dried to give the desired compound 102 as a white 

solid (5 mg, 70% yield).  

MS (MALDI-TOF): m/z calcd for [C115H144N19O34]+: 2336.47 [M + H]+; found: 2236.54 (HCCA 

matrix), 2236.09 (SA matrix); HRMS (ESI+): m/z calcd for [C115H144NaN19O34]2+: 1178.98 [M + 

H + Na]2+; found: 1179.00; m/z calcd for [C115H143Na2N19O34]2+: 1189.96 [M + 2Na]2+; found: 

1189.99; m/z calcd for [C115H142Na3N19O34]2+ 1200.86 [M + 3Na - H]2+; found: 1200.98. 

(cyclo[DKP-RGD]-PEG-4)2-Val-Ala-PTX (103) 

Methyl 3,5-bis(propynyloxy)phenyl acetate (111) 

 

Commercial methyl 3,5-hydroxyphenyl acetate 110 (200 mg, 1.09 mmol, 1 equiv) was 

dissolved in dry acetone (11 mL) under nitrogen atmosphere. The solution was cooled in an 

ice bath. Propargyl bromide (760 μL, 8.8 mmol, 8 equiv) and K2CO3 (1.2 g, 8.8 mmol, 8 equiv) 

were added, and the mixture was stirred at room temperature 72 h. The mixture was 

concentrated, then the crude was dissolved in AcOEt (70 mL) and washed with water (3 × 10 

mL). The organic phase was dried over Na2SO4 and concentrated. The crude residue was 

purified by a Grace Reveleris system (column: Reveleris Silica 12 g; dry load; flow rate: 30 mL 

min−1; ramp: from 100% hexane to 100% AcOEt in 18 min) to afford 111 as a white solid (167 

mg, yield: quantitative). 

Rf = 0.58 (1:1, n-Hexane/AcOEt,); 1H NMR (400 MHz, CDCl3) δ 6.53 (bs, 3H), 4.65 (d, J = 2.4 

Hz, 4H), 3.68 (s, 3H), 3.56 (s, 2H), 2.53 (t, J = 2.4 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 171.6, 

158.7, 136.2, 109.1, 101.0, 78.4, 75.8, 55.9, 52.2, 41.4. 
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3,5-bis(Propynyloxy)phenyl acetic acid (88) 

 

Compound 111 (165 mg, 0.64 mmol, 1 equiv) was dissolved in THF (20 mL) under a nitrogen 

atmosphere. The solution was cooled to 0 °C, then a solution of LiOH∙H2O (67 mg, 1.6 mmol, 

2.5 equiv) in H2O (10 mL) was added. The mixture was stirred 1.5 h at 0 °C. The mixture was 

acidified to ca. pH = 2 with a 1 M KHSO4 aqueous solution and extracted with CH2Cl2 (4 × 20 

mL). The organic phase was dried over Na2SO4 and concentrated, affording 88 as a white solid 

(158 mg, quantitative yield). 

Rf = 0.36 (1:1, n-Hexane/AcOEt,); 1H NMR (400 MHz, CD3OD) δ 6.59-6.51 (m, 3H), 4.70 (d, J 

= 2.4 Hz, 4H), 3.54 (s, 2H), 2.92 (t, J = 2.4 Hz, 2H). 

[3,5-bis(Propynyloxy)phenylacetyl]-Val–Ala-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (118b) 

 

N-Fmoc-protected compound 93 (160 mg, 0.219 mmol, 1 equiv) was deprotected following 

General Procedure GP2. A solution of acid 88 (68 mg, 0.28 mmol, 1.5 equiv) in dry DMF (2.3 

mL) was cooled to 0 °C under a nitrogen atmosphere. HATU (114 mg, 0.3 mmol, 1.6 equiv), 

HOAt (41 mg, 0.3 mmol, 1.6 equiv) and iPr2NEt (100 µL, 0.57 mmol, 3 equiv) were added and 

the mixture was stirred for 20 min at 0 °C. A solution of 93-NH (96 mg, 0.19 mmol, 1 equiv) in 

dry DMF (2.3 mL) was added to the stirred mixture. The reaction was allowed to slowly reach 

room temperature and stirred overnight. The mixture was diluted with a AcOEt/CH2Cl2, 4:1 

mixture (100 mL) and washed with 1 M aqueous solution of KHSO4 (2 × 15 mL), a saturated 

aqueous solution of NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The organic phase was dried 

over Na2SO4 and concentrated. The solid was suspended in Et2O. The product was collected 

by centrifugation and purified by flash chromatography [gradient: from 99:1 CH2Cl2/MeOH to 

97:3 CH2Cl2/MeOH] to afford amide 118b as a white solid (101 mg, 71% yield). 

Rf = 0.3 (100 %, AcOEt); 1H NMR (400 MHz, CD3OD + [D]6DMSO) δ 7.57 (m, 2H), 7.32 (m, 

2H), 6.60 (d, J = 2.2 Hz, 2H), 6.53 (t, J = 2.2 Hz, 1H), 5.06 (s, 2H), 4.70 (d, J = 2.4 Hz, 4H), 

4.46 (q, J = 7.1 Hz, 1H), 4.20 (d, J = 7.2 Hz, 1H), 3.56 (s, 1H), 3.41 (m, 4H), 3.03 (t, J = 2.4 

Hz, 2H), 2.95 (m, rotamer A+B, 3H), 2.85 (bs, rotamer A, 3H), 2.75 (bs, rotamer B, 3H), 2.11 

(m, 1H), 1.42 (m, 12H), 0.99 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, 
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CD3OD + [D]6DMSO) δ 173.6, 173.3, 172.9, 160.2, 139.3, 130.0, 129.7, 121.0, 110.0, 101.8, 

79.9, 77.2, 68.1, 67.9, 60.4, 56.7, 51.0, 43.6, 35.6, 35.3, 34.7, 31.9, 28.8, 19.8, 18.7, 18.1. 

[3,5-bis(Propynyloxy)phenylacetyl]-Val–Ala-PTX (119b) 

 

A solution of Boc-protected compound 118b (75 mg, 0.1 mmol, 1 equiv) was deprotected 

following General Procedure GP1. The obtained TFA solid was dissolved in dry DMF (2 mL) 

and iPr2NEt (52 µL, 0.3 mmol, 3 equiv). The resulting solution was added at 0 °C to a stirred 

solution of 95 (204 mg, 0.2 mmol, 2 equiv) in dry DMF (1 mL), under a nitrogen atmosphere. 

The reaction was then allowed to reach room temperature and stirred overnight. AcOEt (100 

mL) was added and the solution was washed with a 1 M aqueous solution of KHSO4 (2 × 10 

mL) and brine (1 × 15 mL). The organic phase was dried over Na2SO4 and concentrated, then 

the crude was purified by a Grace Reveleris system (column: Reveleris Silica HP 12 g, dry 

load, flow rate: 25 mL/min., ramp from 0% to 15% of MeOH in CH2Cl2 in 15 min) to afford 

carbamate 119b as a white solid (116 mg, 77% yield). 

Rf = 0.22 (100%, AcOEt); MS (ESI+) m/z calcd for [C82H92N6NaO22]+: 1535.62 [M + Na]+; found: 

1535.89. MS (MALDI-TOF): m/z calcd for [C82H92N6NaO22]+: 1535.62 [M + Na]+; found: 1536.00 

(HCCA matrix), 1536.08 (SA matrix); HRMS (ESI+): m/z calcd for [C82H92N6NaO22]+: 1535.62, 

[M + Na]+; found: 1535.68; m/z calcd for [C82H92N6Na2O22]2+: 779.01, [M + 2Na]2+; found: 

779.02.  
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(cyclo[DKP-RGD]-PEG-4)2-Val-Ala-PTX (103) 

 

The bis-alkyne 119b (5 mg, 33.2×10−2 mmol, 1 equiv) and azide 86 (10 mg, 99.6×10−2 mmol, 

3 equiv) were reacted following the General Procedure GP3. The solvent was removed under 

vacuum, and the crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm 

x 10 cm column; gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 

100% (CH3CN+0.1% CF3COOH) in 26 min; tR (product) = 14.9 min]. The purified product was 

then freeze-dried to give the desired compound 103 as a white solid (11 mg, quantitative yield). 

MS (ESI+): m/z calcd for [C156H204N32O48]2+: 1646.73 [M + 2H]2+; found: 1647.02; m/z calcd for 

[C156H203N32NaO48]2+: 1657.72 [M + H + Na]2+; found: 1658.01; MS (MALDI): m/z calcd for 

[C156H203N32O48]+: 3294.47 [M + H]+; found: 3291.00 (HCCA matrix), 3294.00 (SA matrix); 

HRMS (ESI+): m/z calcd for [C156H204N32O48]2+: 1646.725 [M + 2H]2+; found: 1646.726; m/z 

calcd for [C156H205N32O48]3+; 1098.152 [M + 3H]3+; found: 1098.148. 

(cyclo[DKP-RGD]-PEG-4)3-Val-Ala-PTX (104) 

Methyl 2-(3,5-bis(2-((tert-butoxycarbonyl)amino)ethoxy)phenyl)acetate (112) 

  

Methyl 3,5-hydroxyphenyl acetate 110 (500 mg, 2.75 mmol, 1 equiv) was dissolved in dry 

acetone (20 mL) under nitrogen atmosphere. 2-(Boc-amino)ethyl bromide (3.7 g, 16.5 mmol, 

6 equiv) in dry acetone (7 mL) was added to the starting material at 0 ºC together with K2CO3 

(2.3 g, 16.5 mmol, 6 equiv), and the mixture was stirred under reflux, overnight. The mixture 

was concentrated, and later diluted in AcOEt (70 mL). The organic layer was washed with H2O 

(2 × 30 mL) and brine (1 × 20 mL). The organic phase was dried over Na2SO4 and 

concentrated, then the crude was purified by flash chromatography [eluent: 9:1 CH2Cl2/AcOEt] 

to afford protected diamine 112 as a transparent oil (1.12 g, 87% yield). 
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Rf = 0.38 (9:1, CH2Cl2/AcOEt); 1H NMR (400 MHz, CDCl3) δ 6.42 (d, J = 2.2 Hz, 2H), 6.34 (t, J 

= 2.2 Hz, 1H), 4.99 (s, 2H), 3.97 (t, J = 5.1 Hz, 4H), 3.68 (s, 3H), 3.53 (s, 2H), 3.51-3.46 (m, 

4H), 1.44 (s, 18H). 13C NMR (101 MHz, CDCl3) δ 171.62, 159.82, 155.86, 136.23, 108.31, 

100.14, 67.26, 52.06, 41.30, 40.09, 28.39, 27.34. 

Methyl 2-(3-(2-(2-(3,5-bis(prop-2-yn-1-yloxy)phenyl)acetamido)ethoxy)-5-(2-(4-(prop-2-

yn-1-yloxy)benzamido)ethoxy)phenyl)acetate (116) 

 

A solution of Boc-protected compound 112 (550 mg, 2.05 mmol, 1 equiv) was deprotected 

following General Procedure GP1. The obtained solid (550 mg, 2.05 mmol, 5 equiv) was 

dissolved in a pre-flame dry flask with DMF (14 mL) and Et3N (57 μL, 0.41 mmol, 1 equiv) and 

stirred about 20 min at r.t. Then, the acyl chloride 114 (110 mg, 0.410 mmol, 1 equiv) dissolved 

in DMF (5 mL) was slowly added (dropwise) to the TFA salt 113 at 0 ºC and the reaction 

mixture was stirred overnight at r.t. AcOEt (100 mL) was added and the solution was washed 

with NaHCO3 (2 × 30 mL) and brine (1 × 15 mL). The organic phase was dried over Na2SO4 

and concentrated, giving a yellow crude as amine 115 (MS (ESI+): m/z calcd for [C27H31N2O7]+: 

495.21 [M + H]+; found: 495.25). Without isolation, the amine 115 was directly used in the next 

coupling. A solution of acid 109 (109 mg, 0.62 mmol, 1.5 equiv) in dry DMF (15 mL) was cooled 

to 0 °C under a nitrogen atmosphere. HATU (265 mg, 0.70 mmol, 1.7 equiv), HOAt (95 mg, 

0.70 mmol, 1.7 equiv) and iPr2NEt (286 µL, 1.64 mmol, 4 equiv) were added and the mixture 

was stirred for 20 min at 0 °C. A solution of 115 (203 mg, 0.410 mmol, 1 equiv) in dry DMF (5 

mL) was added to the stirred mixture. The reaction was allowed to slowly reach room 

temperature and stirred overnight. The mixture was diluted with AcOEt (200 mL) and washed 

with aqueous solution of NaHCO3 sat. (2 × 30 mL), a saturated aqueous solution of K2CO3 (1 

× 30 mL) and brine (2 × 20 mL). The organic phase was dried over Na2SO4 and concentrated. 

The crude was purified by flash chromatography [gradient: from 3:2 AcOEt/Petroleum Ether to 

4:1 AcOEt/Petroleum Ether] to afford carbamate 116 as a light orange solid (80 mg, 30% yield 

over three steps). 

Rf = 0.29 (25:75, Petroleum Ether/AcOEt); 1H NMR (600 MHz, CD2Cl2-d2) δ 7.77 (d, J = 8.8 

Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 6.87 (t, J = 5.5 Hz, 1H), 6.51 (d, J = 3.5 Hz, 3H), 6.43 (t, J = 

1.8 Hz, 1H), 6.35 (dt, J = 13.6, 2.1 Hz, 2H), 6.28 (t, J = 5.3 Hz, 1H), 4.73 (d, J = 2.4 Hz, 2H), 

4.62 (d, J = 2.5 Hz, 4H), 4.08 (t, J = 5.3 Hz, 2H), 3.95 (t, J = 5.3 Hz, 2H), 3.78 (q, J = 5.4 Hz, 

2H), 3.66 (s, 3H), 3.55 (q, J = 5.6 Hz, 2H), 3.52 (s, 2H), 3.48 (s, 2H), 2.62 (t, J = 2.4 Hz, 1H), 
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2.58 (t, J = 2.5 Hz, 2H). 13C NMR (151 MHz, CD2Cl2-d2) δ 172.19, 171.03, 167.36, 160.54, 

160.36, 160.27, 159.40, 138.15, 137.02, 129.34, 128.12, 115.07, 109.51, 109.01, 108.82, 

101.42, 100.45, 78.91, 78.59, 76.34, 76.14, 67.36, 67.21, 56.40, 52.49, 44.15, 41.58, 39.92, 

39.51, 38.92; MS (MALDI): m/z calcd for [C37H37N2O9]+: 653.24 [M + H]+; found: 653.27 (DHB 

matrix); m/z calcd for [C37H36NaN2O9]+: 675.24 [M + Na]+; found: 675.56 (DHB matrix). 

2-(3-(2-(2-(3,5-bis(Prop-2-yn-1-yloxy)phenyl)acetamido)ethoxy)-5-(2-(4-(prop-2-yn-1-

yloxy)benzamido)ethoxy)phenyl)acetic acid (89) 

 

Compound 116 (71 mg, 0.11 mmol, 1 equiv) was dissolved in THF (4 mL) under a nitrogen 

atmosphere. The solution was cooled to 0 °C, then a solution of LiOH∙H2O (12 mg, 0.27 mmol, 

2.5 equiv) in H2O (2 mL) was added. The mixture was stirred 1.5 h at 0 °C. The mixture was 

acidified to ca. pH = 2 with a 1 M KHSO4 aqueous solution and extracted with CH2Cl2 (4 × 20 

mL). The organic phase was dried over Na2SO4 and concentrated, affording 89 as a white solid 

(158 mg, 99% yield). 

Rf = 0.39 (9:1, CH2Cl2/MeOH); 1H NMR (500 MHz, CD3OD) δ 7.80 (d, J = 8.8 Hz, 2H), 7.01 (d, 

J = 8.9 Hz, 2H), 6.53 (d, J = 2.3 Hz, 2H), 6.50-6.46 (m, 2H), 6.44 (s, 1H), 6.41 (t, J = 2.3 Hz, 

1H), 4.76 (d, J = 2.4 Hz, 2H), 4.61 (d, J = 2.5 Hz, 4H), 4.10 (t, J = 5.7 Hz, 2H), 3.97 (t, J = 5.2 

Hz, 2H), 3.72 (t, J = 5.6 Hz, 2H), 3.52 (t, J = 6.1 Hz, 2H), 3.50 (s, 2H), 3.45 (s, 2H), 2.97 (t, J 

= 2.4 Hz, 1H), 2.90 (t, J = 2.4 Hz, 2H); 13C-DEPT135 NMR (126 MHz, CD3OD) δ 128.77, 

114.29, 108.37, 108.23, 108.06, 100.52, 99.74, 78.34, 77.95, 75.87, 75.54, 66.13, 66.10, 

55.32, 42.56, 40.93, 39.27, 38.88. MS (MALDI): m/z calcd for [C36H35N2O9]+: 639.24 [M + H]+; 

found: 639.27 (DHB matrix); m/z calcd for [C36H34NaN2O9]+: 661.24 [M + Na]+; found: 661.27 

(DHB matrix); m/z calcd for [C36H34KN2O9]+: 677.24 [M + K]+; found: 677.27 (DHB matrix). 

Tris-alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (118c) 

 

N-Fmoc-protected compound 93 (65 mg, 0.091 mmol, 1 equiv) was deprotected following 

General Procedure GP2. A solution of acid 89 (70 mg, 0.11 mmol, 1.2 equiv) in dry DMF (2 

mL) was cooled to 0 °C under a nitrogen atmosphere. HATU (59 mg, 0.16 mmol, 1.7 equiv), 
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HOAt (22 mg, 0.16 mmol, 1.7 equiv) and iPr2NEt (64 µL, 0.364 mmol, 4 equiv) were added 

and the mixture was stirred for 20 min at 0 °C. A solution of 93-NH (45 mg, 0.091 mmol, 1 

equiv) in dry DMF (3 mL) was added to the stirred mixture. The reaction was allowed to slowly 

reach room temperature and stirred overnight. The mixture was diluted with AcOEt (100 mL) 

and washed with 1 M aqueous solution of KHSO4 (2 × 15 mL), a saturated aqueous solution of 

NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The organic phase was dried over Na2SO4 and 

concentrated. The crude was purified by flash chromatography [eluent: CH2Cl2/MeOH, 9:1] to 

afford amide 118c as a light-yellow solid (73 mg, 80% yield over two steps). 

Rf = 0.41 (9:1, CH2Cl2/MeOH); 1H NMR (400 MHz, [D]6DMSO) δ 9.77 (s, 1H), 8.39 (t, J = 5.5 

Hz, 1H), 8.10-8.00 (m, 2H), 7.89-7.81 (m, 3H), 7.55 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.3 Hz, 

2H), 7.03 (d, J = 8.9 Hz, 2H), 6.53 (d, J = 2.2 Hz, 2H), 6.50 (d, J = 2.2 Hz, 2H), 6.48 (s, 1H), 

6.40 (t, J = 2.3 Hz, 1H), 4.98 (s, 2H), 4.85 (d, J = 2.4 Hz, 2H), 4.72 (d, J = 2.4 Hz, 4H), 4.41 (p, 

J = 7.0 Hz, 1H), 4.20 (dd, J = 8.7, 6.6 Hz, 1H), 4.08 (t, J = 6.0 Hz, 2H), 3.97 (t, J = 5.8 Hz, 2H), 

3.60 (q, J = 5.8 Hz, 2H), 3.51-3.45 (m, 2H), 3.44-3.37 (m, 7H), 3.32 (dd, J = 12.3, 4.7 Hz, 4H), 

2.85 (s, 3H), 2.74 (s, 3H), 2.00 (h, J = 6.8 Hz, 1H), 1.37 (s, 9H), 1.30 (d, J = 7.1 Hz, 3H), 0.85 

(dd, J = 9.5, 6.8 Hz, 6H); 13C NMR (101 MHz, [D]6DMSO) δ 170.73, 170.53, 169.74, 165.80, 

159.27, 159.20, 159.12, 157.98, 155.18, 154.54, 138.44, 138.33, 138.26, 131.52, 128.68, 

127.93, 127.23, 118.93, 114.18, 108.69, 107.95, 100.04, 99.41, 78.91, 78.64, 78.24, 77.95, 

77.68, 66.19, 66.03, 65.75, 57.52, 55.44, 48.89, 45.92, 42.19, 38.66, 38.24, 33.73, 30.28, 

28.67, 27.78, 18.86, 17.81, 17.60. 

MS (MALDI): m/z calcd for [C61H74N7O14]+: 1128.52 [M + H]+; found: 1128.52 (DHB matrix); m/z 

calcd for [C61H73NaN7O14]+: 1150.54 [M + Na]+; found: 1150.55 (DHB matrix); m/z calcd for 

[C61H73KN7O14]+: 1166.24 [M + K]+; found: 1166.27 (DHB matrix). 

Tris-alkyne–Val–Ala–PTX (119c) 

 

A solution of Boc-protected compound 118c (40 mg, 0.035 mmol, 1 equiv) was deprotected 

following General Procedure GP1. The obtained TFA solid was dissolved in dry DMF (500 μL) 

and iPr2NEt (25 µL, 0.14 mmol, 4 equiv). The resulting solution was added at 0 °C to a stirred 
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solution of 95 (54 mg, 0.052 mmol, 1.5 equiv) in dry DMF (700 μL), under a nitrogen 

atmosphere. The reaction was then allowed to reach room temperature and stirred overnight. 

AcOEt (60 mL) was added and the solution was washed with a 1 M aqueous solution of KHSO4 

(2 × 10 mL) and brine (1 × 15 mL). The organic phase was dried over Na2SO4 and 

concentrated, then the crude was purified by a flash chromatography (eluent: CH2Cl2/MeOH 

from 100% to 95% of CH2Cl2) to afford carbamate 119c as a white solid (44 mg, 69% yield 

over two steps). 

Rf = 0.43 (9:1, CH2Cl2/MeOH); MS (ESI+): m/z calcd for [C104H114NaN8O27]+: 1930.03 [M + Na]+; 

found: 1930.04; MS (MALDI-TOF): m/z calcd for [C104H114NaN8O27]+: 1930.03 [M + Na]+; found: 

1930.03 (DHB matrix); m/z calcd for [C104H114KN8O27]+: 1946.07 [M + K]+; found: 1946.09 (DHB 

matrix);  HRMS (ESI+): m/z calcd for [C104H114NaN8O27]+: 1930.03 [M + Na]+; found: 1930.75; 

m/z calcd for [C104H114Na2N8O27]2+: 976.39 [M + 2Na]2+; found: 976.38. 

(cyclo[DKP-RGD]-PEG-4)3-Val-Ala-PTX (104) 

 

Tri-alkyne 119c (5 mg, 0.0026 mmol, 1 equiv) and azide 86 (9.5 mg, 0.0094 mmol, 3.6 equiv) 

were reacted following the General Procedure GP3. The solvent was removed under vacuum, 

and the crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm 

column; gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% 

(CH3CN+0.1% CF3COOH) in 20 min; tR (product)=11.5 min]. The purified product was then 

freeze-dried to give the desired compound 104 as a white solid (6.9 mg, 62% yield). 

MS (ESI+): m/z calcd for [C215H281N47O66]2+: 2289.85, [M + 2H]2+; found: 2289.89; m/z calcd for 

[C215H282N47O66]3+: 1526.86 [M + 3H]3+; found: 1527.00; m/z calcd for [C215H283N47O66]4+: 

1145.86 [M + 4H]4+; found: 1145.51; m/z calcd for [C215H284N47O66]5+: 916.23 [M + 5H]5+; found: 

916.61; MS (MALDI-TOF): m/z calcd for [C215H280N47O66]+: 4577.01 [M + H]+; found: 4582.01 

(DHB matrix); HRMS (ESI+): m/z calcd for [C215H279Na3N47O66]3+: 1548.99 [M + 3Na]3+; found: 

1548.92; m/z calcd for [C215H279Na4N47O66]4+: 1167.43 [M + 4Na]4+; found: 1167.24. 
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(cyclo[DKP-RGD]-PEG-4)4-Val-Ala-PTX (105) 

Methyl 2-(3,5-bis(2-(2-(3,5-bis(prop-2-yn-1-yloxy)phenyl)acetamido)ethoxy)phenyl) 

acetate (117) 

 

A solution of Boc-protected compound 112 (200 mg, 0.43 mmol, 1 equiv) was deprotected 

following General Procedure GP1. Then, acid 88 (315 mg, 1.29 mmol, 3 equiv) was solubilized 

in dry DMF (15 mL) and cooled to 0 °C under a nitrogen atmosphere. HATU (556 mg, 1.46 

mmol, 3.6 equiv), HOAt (199 mg, 1.46 mmol, 3.6 equiv) and iPr2NEt (449 µL, 2.58 mmol, 6 

equiv) were added and the mixture was stirred for 20 min at 0 °C. Later, the salt 113 (200 mg, 

0.43 mmol, 1 equiv) was dissolved in dry DMF (9 mL) and slowly added (dropwise) the reaction 

mixture that was stirred overnight at r.t. The mixture was diluted with AcOEt (100 mL) and 

washed with 1 M aqueous solution of KHSO4 (2 × 15 mL), a saturated aqueous solution of 

NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The organic phase was dried over Na2SO4 and 

concentrated. The crude was purified by flash chromatography [eluent: CH2Cl2/MeOH, 9:1] to 

afford diamide 117 as a light orange solid (238 mg, 77% yield over two steps). 

Rf = 0.28 (99:1, CH2Cl2/MeOH); 1H NMR (400 MHz, CD2Cl2-d2) δ 6.50 (s, 6H), 6.37-6.34 (m, 

2H), 6.27 (s, 1H), 6.02 (t, J = 5.7 Hz, 2H), 4.63 (d, J = 2.3 Hz, 8H), 3.96 (t, J = 5.2 Hz, 4H), 

3.66 (s, 3H), 3.56 (q, J = 5.5 Hz, 4H), 3.52 (s, 2H), 3.48 (s, 4H), 2.56 (t, J = 2.5 Hz, 4H). 13C 

NMR (101 MHz, CD2Cl2-d2) δ 172.12, 170.86, 160.29, 159.47, 138.10, 137.11, 109.56, 108.93, 

101.54, 100.53, 78.91, 76.11, 67.30, 56.46, 52.50, 44.28, 41.62, 39.54. MS (ESI+): m/z calcd 

for [C41H40NaN2O10]+: 743.11 [M + Na]+; found: 743.10. 

2-(3,5-bis(2-(2-(3,5-bis(Prop-2-yn-1-yloxy)phenyl)acetamido)ethoxy)phenyl)acetic acid (90) 

 

Compound 117 (137 mg, 0.2 mmol, 1 equiv) was dissolved in THF (6.6 mL) under a nitrogen 

atmosphere. The solution was cooled to 0 °C, then a solution of LiOH∙H2O (21 mg, 0.5 mmol, 

2.5 equiv) in H2O (3.3 mL) was added. The mixture was stirred 1.5 h at 0 °C. The mixture was 

acidified to ca. pH = 2 with a 1 M KHSO4 aqueous solution and extracted with CH2Cl2 (4 × 20 

mL). The organic phase was dried over Na2SO4 and concentrated. The crude was purified by 
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flash chromatography [eluent: 9:1:0.1 CH2Cl2/MeOH/AcOH] affording 90 as a white solid (120 

mg, 85% yield). 

Rf = 0.2 (95:5, CH2Cl2/MeOH); 1H NMR (400 MHz, CD3OD) δ 6.56 (d, J = 2.3 Hz, 4H), 6.51 (t, 

J = 2.3 Hz, 2H), 6.47 (d, J = 2.2 Hz, 2H), 6.37 (d, J = 2.2 Hz, 1H), 4.64 (d, J = 2.4 Hz, 8H), 4.01 

(t, J = 5.4 Hz, 4H), 3.56 (t, J = 5.3 Hz, 4H), 3.52 (s, 2H), 3.48 (s, 4H), 2.91 (t, J = 2.4 Hz, 4H). 

13C NMR (101 MHz, CD3OD) δ 173.97, 161.21, 160.27, 139.04, 138.69, 109.77, 109.55, 

108.51, 101.94, 101.07, 79.71, 76.87, 67.50, 56.72, 43.95, 42.75, 40.26. MS (ESI+): m/z calcd 

for [C40H38NaN2O10]+: 729.42 [M +Na]+; found: 729.45. 

Tetra-alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (118d) 

 

N-Fmoc-protected compound 93 (35 mg, 0.047 mmol, 1 equiv) was deprotected following 

General Procedure GP2. A solution of acid 90 (50 mg, 0.071 mmol, 1.5 equiv) in dry DMF (1 

mL) was cooled to 0 °C under a nitrogen atmosphere. HATU (31 mg, 0.08 mmol, 1.7 equiv), 

HOAt (11 mg, 0.08 mmol, 1.7 equiv) and iPr2NEt (33 µL, 0.189 mmol, 4 equiv) were added 

and the mixture was stirred for 20 min at 0 °C. A solution of 93-NH (24 mg, 0.047 mmol, 1 

equiv) in dry DMF (1.6 mL) was added to the stirred mixture. The reaction was allowed to 

slowly reach room temperature and stirred overnight. The mixture was diluted with AcOEt (100 

mL) and washed with 1 M aqueous solution of KHSO4 (2 × 15 mL), a saturated aqueous 

solution of NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The organic phase was dried over 

Na2SO4 and concentrated. The crude was purified by flash chromatography [eluent: 

CH2Cl2/MeO, 95:5 H] to afford amide 118d as a light-yellow solid (54 mg, 92% yield over two 

steps). 

Rf = 0.27 (95:5, CH2Cl2/MeOH); 1H NMR (400 MHz, [D]6DMSO) δ 9.82 (s, 1H), 8.18-8.07 (m, 

3H), 7.91 (d, J = 8.6 Hz, 1H), 7.56 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 6.54 (d, J = 2.3 

Hz, 2H), 6.51 (t, J = 2.2 Hz, 5H), 6.49 (d, J = 2.3 Hz, 2H), 4.99 (s, 2H), 4.73 (d, J = 2.4 Hz, 8H), 

4.41 (p, J = 6.9 Hz, 1H), 4.21 (dd, J = 8.7, 6.6 Hz, 1H), 3.97 (t, J = 5.9 Hz, 4H), 3.50-3.38 (m, 

14H), 3.33 (dd, J = 12.1, 4.6 Hz, 4H), 2.86 (s, 3H), 2.74 (s, 3H), 2.01 (h, J = 6.7 Hz, 1H), 1.38 

(s, 9H), 1.31 (d, J = 7.1 Hz, 3H), 0.86 (dd, J = 10.3, 6.8 Hz, 6H). 13C NMR (101 MHz, [D]6DMSO) 

δ 170.82, 170.61, 169.78, 159.29, 159.13, 158.00, 141.44, 138.52, 138.38, 138.31, 131.54, 

128.03, 108.67, 108.25, 107.94, 107.69, 107.44, 100.00, 99.65, 99.36, 78.96, 78.28, 77.81, 

66.21, 65.80, 57.45, 55.44, 48.91, 42.24, 40.42, 38.28, 30.41, 27.83, 18.93, 17.88, 17.68; MS 



 

 

125 Experimental Section 

(MALDI-TOF): m/z calcd for [C65H77NaN7O15]+: 1218.03 [M + Na]+; found: 1218.2 (HCCA 

matrix). 

Tetra–alkyne–Val–Ala-PTX (119d) 

 

A solution of Boc-protected compound 118d (40 mg, 0.033 mmol, 1 equiv) was deprotected 

following General Procedure GP1. The obtained TFA solid was dissolved in dry DMF (500 μL) 

and iPr2NEt (24 µL, 0.13 mmol, 4 equiv). The resulting solution was added at 0 °C to a stirred 

solution of 95 (51 mg, 0.05 mmol, 1.5 equiv) in dry DMF (500 μL), under a nitrogen atmosphere. 

The reaction was then allowed to reach room temperature and stirred overnight. AcOEt (60 

mL) was added and the solution was washed with a 1 M aqueous solution of KHSO4 (2 × 10 

mL) and brine (1 × 15 mL). The organic phase was dried over Na2SO4 and concentrated, then 

the crude was purified by a flash chromatography (eluent: AcOEt/MeOH from 100% to 95% of 

AcOEt) to afford carbamate 119d as a white solid (49 mg, 75% yield over two steps). 

Rf = 0.25 (95:5, CH2Cl2/MeOH); MS (MALDI-TOF): m/z calcd for [C108H119N8O28]+: 1976.01 [M 

+ H]+; found: 1976.2 (HCCA matrix); m/z calcd for [C108H118NaN8O28]+: 1997.9 [M + Na]+; found: 

1998.02 (HCCA matrix); HRMS (ESI+): m/z calcd for [C108H118NaN8O28]+: 1997.99, [M + Na]+; 

found 1997.79; m/z calcd for [C108H118Na2N8O28]2+: 1010.31, [M + 2Na]2+: found 1010.39. 
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(cyclo[DKP-RGD]-PEG-4)4-Val-Ala-PTX (105) 

 

Tetra-alkyne 119d (4 mg, 0.002 mmol, 1 equiv) and azide 86 (9.8 mg, 0.0097 mmol, 4.8 equiv) 

were reacted following the General Procedure GP3. The solvent was removed under vacuum, 

and the crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm 

column; gradient: 90% (H2O + 0.1% CF3COOH)/10% (CH3CN + 0.1% CF3COOH) to 100% 

(CH3CN + 0.1% CF3COOH) in 20 min; tR (product)=10.9 min]. The purified product was then 

freeze-dried to give the desired compound 105 as a white solid (8 mg, 73% yield). 

MS (MALDI-TOF): m/z calcd for [C256H339N60O80]+: 5532.78 [M + H]+; found: 5532.90 (HCCA 

matrix); HRMS (ESI+): m/z calcd for [C256H338Na4N60O80]4+: 1406.93 [M + 4Na]4+; found: 

1406.84; m/z calcd for [C256H338Na5N60O80]5+: 1130.14 [M + 5Na]5+; found: 1130.07. 

cyclo[DKP-RGD]-PEG-4-Asn-Pro-Val-PTX (121) 

Fmoc-Asn(Trt)-Pro-OH (126) 

 

Commercial Fmoc-Asn(Trt)-OH 125 (2 g, 3.35 mmol, 1 equiv) and EDC·HCl (1.9 g, 10.05 

mmol, 3 equiv) were dissolved in dry CH2Cl2 (33 mL) under nitrogen atmosphere. N-

hydroxysuccinimide (771 mg, 6.70 mmol, 2 equiv) was added thereto, and the mixture was 

stirred overnight at room temperature. The reaction mixture was diluted with CH2Cl2 (30 mL) 

and washed with HCl aq. 1 M (1 × 25 mL) and brine. The organic layer was washed with brine, 

dried over Na2SO4 and concentrated under reduced pressure. Then, the residue was purified 

by flash chromatography on a pad of silica gel (eluent: 8:2, CH2Cl2/AcOEt) affording the desired 

activated Fmoc-Asn(Trt)-OSu as a white solid. Later on, commercial H-Pro-OH (464 mg, 4.02 
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mmol, 1.2 equiv) was dissolved in H2O (20 mL) and NaHCO3 (563 mg, 6.70 mmol, 2 equiv) 

was added. The previously obtained Fmoc-Asn(Trt)-OSu was dissolved in THF (20 mL) and 

added to the stirred solution of H-Pro-OH and NaHCO3. The mixture was stirred overnight at 

room temperature. The solvent was concentrated, followed by addition of a 1 M aqueous 

solution of KHSO4 (40 mL). The suspension was extracted with CH2Cl2 (4 × 20 mL), and the 

collected organic phases were dried and concentrated. The crude was purified by flash 

chromatography [eluent: 8:2, CH2Cl2/AcOEt + 0.1% AcOH] affording Fmoc-Asn(Trt)-Pro-OH 

126 (1.2 g, 52% yield). 

Rf = 0.15 (8:2, CH2Cl2/AcOEt + 0.1% AcOH); 1H NMR (500 MHz, CD2Cl2-d2) δ 7.80 (d, J = 7.6 

Hz, 2H), 7.60 (t, J = 8.7 Hz, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.34 – 7.18 (m, 18H), 6.08 (s, 1H), 

4.83 – 4.74 (m, 1H), 4.37 (d, J = 7.0 Hz, 3H), 4.19 (t, J = 6.8 Hz, 1H), 3.64 – 3.53 (m, 1H), 3.43 

(s, 1H), 2.84 (dd, J = 15.4, 7.3 Hz, 1H), 2.72 (dd, J = 15.4, 5.8 Hz, 1H), 2.19 – 2.04 (m, 2H), 

1.95 – 1.82 (m, 2H); MS (MALDI-TOF): m/z calcd for [C43H40N3O6]+: 694.79 [M + H]+; found: 

694.81; m/z calcd [C43H39NaN3O6]+: 716.79 [M + Na]+; found: 716.80 (DHB matrix). 

Fmoc-Asn(Trt)-Pro-Val-OH (127) 

 

Fmoc-Asn(Trt)-Pro-OH 126 (1.18 g, 1.70 mmol, 1 equiv) and EDC·HCl (977 mg, 5.10 mmol, 3 

equiv) were dissolved in dry CH2Cl2 (17 mL) under nitrogen atmosphere. N-

hydroxysuccinimide (400 mg, 3.40 mmol, 2 equiv) was added thereto, and the mixture was 

stirred overnight at room temperature. The reaction mixture was diluted with CH2Cl2 (20 mL) 

and washed with HCl aq. 1 M (1 × 15 mL) and brine. The organic layer was washed with brine, 

dried over Na2SO4 and concentrated under reduced pressure affording the desired activated 

Fmoc-Asn(Trt)-Pro-OSu as a white solid. Later, commercial H-Val-OH (240 mg, 2.04 mmol, 

1.2 equiv) was dissolved in H2O (11 mL) and NaHCO3 (290 mg, 3.40 mmol, 2 equiv) was 

added. The previously obtained Fmoc-Asn(Trt)-Pro-OSu was dissolved in THF (11 mL) and 

added to the stirred solution of H-Val-OH and NaHCO3. The mixture was stirred overnight at 

room temperature. The solvent was concentrated, followed by addition of a 1 M aqueous 

solution of KHSO4 (20 mL). The suspension was extracted with CH2Cl2 (4 × 15 mL), then the 

collected organic phases were dried and concentrated. The crude was purified by flash 

chromatography [eluent: 95:5 CH2Cl2/MeOH + 0.1% AcOH] affording Fmoc-Asn(Trt)-Pro-Val-

OH 127 (1.10 g, 82% yield). 

Rf = 0.21 (95:5, CH2Cl2/MeOH + 0.1% AcOH); 1H NMR (500 MHz, CD2Cl2-d2) δ 7.85 (d, J = 

8.2 Hz, 1H), 7.66 (d, J = 6.9 Hz, 2H), 7.51 – 7.41 (m, 3H), 7.27 (td, J = 7.3, 3.5 Hz, 2H), 7.20 - 
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7.05 (m, 17H), 6.60 (d, J = 8.4 Hz, 1H), 4.44 (td, J = 9.5, 3.6 Hz, 1H), 4.21 – 4.08 (m, 3H), 4.04 

(t, J = 7.3 Hz, 1H), 3.85 (t, J = 8.3 Hz, 1H), 3.27 (q, J = 8.6 Hz, 1H), 2.95 – 2.82 (m, 1H), 2.71 

– 2.64 (m, 1H), 2.61 (dd, J = 14.0, 3.7 Hz, 1H), 1.92 – 1.76 (m, 2H), 1.70 – 1.58 (m, 2H), 1.47 

(p, J = 10.7, 9.8 Hz, 1H), 0.67 (d, J = 6.7 Hz, 3H), 0.44 (d, J = 6.6 Hz, 3H); 13C-DEPT45 NMR 

(126 MHz, CD2Cl2-d2) δ 128.87, 128.81, 127.99, 127.86, 127.80, 127.18, 127.05, 125.34, 

125.33, 120.02, 67.24, 61.55, 59.26, 49.72, 47.60, 47.15, 40.58, 29.81, 29.56, 29.15, 24.70, 

19.36, 18.87. MS (MALDI-TOF): m/z calcd for [C48H49N4O7]+: 793.92 [M + H]+; found: 793.99; 

m/z calcd [C48H48NaN4O7]+: 815.92 [M + Na]+; found: 816.01 (DHB matrix). 

Fmoc-Asn(Trt)-Pro-Val-PABC-PNP (128) 

 

Compound 127 (880 mg, 1.11 mmol, 1 equiv) was dissolved in dry CH2Cl2/MeOH (2:1, 11 mL) 

under a nitrogen atmosphere. EEDQ (686 mg, 2.77 mmol, 2.5 equiv) and 4-aminobenzyl 

alcohol (273 mg, 2.22 mmol, 2 equiv) were added at 0 °C, under a nitrogen atmosphere. Then, 

the mixture was allowed to reach room temperature and stirred overnight under nitrogen 

atmosphere. The solvent was removed under reduced pressure affording a yellow solid. The 

crude was diluted in Et2O (3 × 30 mL) and filtered in a fritz. The solid was purified by flash 

chromatography [gradient: from 0% MeOH / 100% CH2Cl2 to 5% MeOH / 95% CH2Cl2] to afford 

the Fmoc-Asn(Trt)-Pro-Val-PABA as a white solid (MS (MALDI-TOF): m/z calcd for 

[C55H55NaN5O7]+: 921.05 [M + Na]+; found: 921.23). Later on, a solution of Fmoc-Asn(Trt)-Pro-

Val-PABA in a mixture of dry THF (65 mL) under nitrogen atmosphere was cooled to 0 °C. 

Pyridine (224 μL, 2.77 mmol, 2.5 equiv) and 4-nitrophenylchloroformate (448 mg, 2.22 mmol, 

2 equiv) were added, then the mixture could reach room temperature and stirred for 2 h. The 

reaction mixture was concentrated under reduced pressure and AcOEt (150 mL) was added 

and the solution was washed with a 1 M aqueous solution of KHSO4 (3 × 20 mL) and brine (20 

mL). The organic phase was dried and concentrated, then the crude was purified by flash 

chromatography [eluent: 4:6, n-Hexane/EtOAc] affording compound 128 (640 mg, 54% yield) 

as a white solid. 

Rf = 0.28 (4:6, n-Hexane/EtOAc); 1H NMR (500 MHz, CD2Cl2-d2) δ 8.57 (s, 1H), 8.28 (d, J = 

8.9 Hz, 2H), 7.89 – 7.80 (m, 4H), 7.77 (d, J = 8.6 Hz, 1H), 7.62 (dd, J = 13.4, 7.5 Hz, 2H), 7.47 

– 7.40 (m, 6H), 7.37 – 7.17 (m, 18H), 5.86 (d, J = 8.4 Hz, 1H), 5.31 (s, 2H), 4.48 (t, J = 10.1 

Hz, 1H), 4.43 – 4.35 (m, 3H), 4.22 (t, J = 6.9 Hz, 1H), 4.10 (t, J = 8.2 Hz, 1H), 3.41 (q, J = 8.5 

Hz, 1H), 3.00 (t, J = 12.6 Hz, 1H), 2.73 – 2.66 (m, 1H), 2.62 (dd, J = 13.8, 3.0 Hz, 1H), 2.22 – 
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2.13 (m, 1H), 2.00 – 1.92 (m, 1H), 1.90 – 1.75 (m, 2H), 1.62 – 1.53 (m, 1H), 0.80 (d, J = 6.7 

Hz, 3H), 0.44 (d, J = 6.6 Hz, 3H). 13C-APT NMR (151 MHz, CD2Cl2-d2) δ 171.61, 171.25, 

169.93, 168.88, 155.64, 155.36, 152.49, 145.38, 143.83, 143.78, 143.69, 141.28, 141.24, 

139.61, 129.48, 128.59, 127.95, 127.73, 127.07, 127.02, 125.18, 124.97, 121.90, 120.04, 

119.98, 70.83, 70.77, 66.99, 61.85, 60.01, 49.41, 49.31, 47.62, 47.11, 40.68, 29.85, 29.67, 

28.45, 28.11, 24.62, 19.56, 19.05. MS (MALDI-TOF): m/z calcd for [C62H58NaN6O11]+: 1086.92 

[M + Na]+; found: 1087.03 (DHB matrix). 

Fmoc-Asn(Trt)-Pro-Val-PABC-N-(Boc)-N,N′-dimethylethylenediamine (129)  

 

A solution of commercial N-(Boc)-N,N′-dimethylethylenediamine (208 μL, 1.03 mmol, 2 equiv) 

in dry THF (7 mL) and iPr2NEt (250 mg, 1.38 mmol, 2.5 equiv) were added under nitrogen to 

a solution of 128 (587 mg, 0.552 mmol, 1 equiv) in dry THF (15 mL) kept at 0 ºC. The mixture 

was stirred overnight at room temperature, then the solvent was removed at the rotavapor. 

AcOEt (100 mL) was added and the solution was washed with 1 M aqueous solution of KHSO4 

(3 × 20 mL), a saturated aqueous solution of NaHCO3 (2 × 20 mL) and brine (20 mL). The 

organic phase was dried and concentrated. The crude was purified by flash chromatography 

(gradient: 3:2, AcOEt/n-Hexane to 4:1, AcOEt/n-Hexane), affording 129 (490 mg, 80% yield) 

as white solid. 

Rf = 0.19 (1:4, n-Hexane/EtOAc); 1H NMR (500 MHz, CD2Cl2-d2) δ 8.47 (d, J = 11.0 Hz, 1H), 

7.86 – 7.76 (m, 4H), 7.72 (d, J = 7.0 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.43 (s, 2H), 7.38 – 7.06 (m, 

21H), 5.11 (s, 2H), 4.48 (t, J = 10.2 Hz, 1H), 4.41 – 4.34 (m, 3H), 4.25 – 4.21 (m, 1H), 4.16 – 

4.06 (m, 1H), 3.51 – 3.25 (m, 5H), 3.06 – 2.93 (m, 4H), 2.86 (s, 2H), 2.75 (s, 1H), 2.70 – 2.62 

(m, 2H), 2.19 – 2.12 (m, 1H), 1.97 – 1.93 (m, 1H), 1.91 – 1.76 (m, 2H), 1.58 – 1.55 (m, 1H), 

1.46 (s, 9H), 0.77 (d, J = 6.8 Hz, 3H), 0.41 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CD2Cl2-d2) 

δ 171.53, 171.33, 171.24, 169.72, 168.94, 156.21, 155.97, 155.41, 143.80, 143.74, 141.27, 

141.24, 138.71, 138.58, 132.31, 132.19, 128.60, 127.93, 127.72, 127.04, 125.01, 119.96, 

119.77, 79.31, 70.74, 67.01, 66.72, 66.53, 61.85, 59.90, 59.68, 49.40, 47.57, 47.10, 46.98, 

46.68, 46.42, 40.70, 35.00, 34.46, 34.22, 29.87, 29.67, 28.59, 28.13, 24.61, 19.59, 18.98, 

18.90. MS (MALDI-TOF): m/z calcd for [C65H74N7O10]+: 1113.32 [M + H]+; found: 1113.87; calcd 

for [C65H73NaN7O10]+: 1135.32 [M + Na]+; found: 1135.75 (DHB matrix). 
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4-pentynamido-Asn(Trt)-Pro-Val-PABC-N-(Boc)-N,N′-dimethylethylenediamine (130)  

 

N-Fmoc-protected compound 129 (90 mg, 0.081 mmol, 1 equiv) was deprotected following 

General Procedure GP2. Commercial 4-pentynoic acid (12 mg, 0.122 mmol, 1.5 equiv) in dry 

DMF (1.5 mL) was cooled to 0 °C under a nitrogen atmosphere. HATU (51 mg, 0.134 mmol, 

1.7 equiv), HOAt (18 mg, 0.134 mmol, 1.7 equiv) and iPr2NEt (56 µL, 0.324 mmol, 4 equiv) 

were added and the mixture was stirred for 20 min at 0 °C. A solution of 129-NH in dry DMF 

(3 mL) was added to the stirred mixture. The reaction was allowed to slowly reach room 

temperature and stirred overnight. The mixture was diluted with an AcOEt/CH2Cl2, 4:1 mixture 

(100 mL) and washed with 1 M aqueous solution of KHSO4 (2 × 15 mL), a saturated aqueous 

solution of NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The organic phase was dried over 

Na2SO4 and concentrated. The solid was purified by flash chromatography [gradient: from 

CH2Cl2 100% to 99:1 CH2Cl2/MeOH] to afford amide 130 as a white solid (70 mg, 90% yield 

over two steps). 

Rf = 0.30 (95:5, CH2Cl2/MeOH); 1H NMR (400 MHz, CD2Cl2-d2) δ 8.46 (s, 1H), 7.84 – 7.69 (m, 

3H), 7.57 (s, 1H), 7.37 – 7.14 (m, 17H), 6.84 (s, 1H), 5.10 (s, 2H), 4.74 (t, J = 9.7 Hz, 1H), 4.33 

(dd, J = 9.0, 3.8 Hz, 1H), 4.09 (t, J = 8.8 Hz, 1H), 3.52 – 3.27 (m, 5H), 3.09 – 2.92 (m, 4H), 

2.81 – 2.66 (m, 5H), 2.56 – 2.35 (m, 4H), 2.23 – 2.09 (m, 1H), 2.03 (t, J = 2.7 Hz, 1H), 1.94 (p, 

J = 6.0, 5.4 Hz, 1H), 1.86 – 1.75 (m, 2H), 1.65 – 1.53 (m, 1H), 1.47 (s, 9H), 0.76 (d, J = 6.7 Hz, 

3H), 0.43 (d, J = 6.5 Hz, 3H); 13C NMR (101 MHz, CD2Cl2-d2) δ 171.57, 171.33, 170.32, 169.76, 

169.21, 143.85, 138.67, 138.53, 132.26, 132.17, 128.63, 128.07, 127.88, 127.77, 126.99, 

119.74, 82.86, 79.33, 79.08, 70.69, 68.98, 66.77, 66.63, 61.87, 60.09, 59.87, 47.75, 47.57, 

47.04, 46.68, 46.44, 40.33, 38.36, 34.98, 34.66, 34.46, 34.29, 29.91, 29.68, 28.68, 28.15, 

24.63, 19.59, 19.08, 14.47. MS (MALDI-TOF): m/z calcd for [C55H67NaN7O9]+: 993.16 [M + 

Na]+; found: 993.47. 

Aliphatic alkyne-Asn-Pro-Val-PTX (122) 
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A solution of Boc-protected compound 130 (58 mg, 0.060 mmol, 1 equiv) was deprotected 

following General Procedure GP1. The obtained TFA salt was dissolved in dry DMF (900 μL) 

and iPr2NEt (42 µL, 0.240 mmol, 4 equiv). The resulting solution was added at 0 °C to a stirred 

solution of 95 (68 mg, 0.066 mmol, 1.1 equiv) in dry DMF (900 μL), under a nitrogen 

atmosphere. The reaction was then allowed to reach room temperature and stirred overnight. 

AcOEt (50 mL) was added and the solution was washed with a 1 M aqueous solution of KHSO4 

(2 × 10 mL) and brine (1 × 15 mL). The organic phase was dried over Na2SO4 and 

concentrated, then the crude was purified by flash chromatography [gradient: from 99:1 

CH2Cl2/MeOH to 95:5 CH2Cl2/MeOH] to afford carbamate 122 as a white solid (63 mg, 71% 

yield over two steps). 

Rf = 0.28 (CH2Cl2/MeOH, 9:1); MS (MALDI-TOF): m/z calcd for [C79H94NaN8O22]+: 1530.63 [M 

+ Na]+; found: 1530.03 (HCCA matrix), 1532.08 (SA matrix); HRMS (ESI+): m/z calcd for 

[C79H94NaN8O22]+: 1529.64 [M + Na]+; found: 1529.63; m/z calcd for [C79H94Na2N8O22]2+: 776.31 

[M + 2Na]2+; found: 776.31. 

cyclo[DKP-RGD]-PEG-4-Asn-Pro-Val-PTX (121) 

 

Alkyne 122 (7.8 mg, 0.0052 mmol, 1.3 equiv) and azide 86 (4 mg, 0.004 mmol, 1 equiv) were 

reacted following General Procedure GP3. The solvent was removed under vacuum, and the 

crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; 

gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% 

CF3COOH) in 20 min; tR (product)=12.5 min]. The purified product was then freeze-dried to 

give the desired compound 122 as a white solid (9 mg, 94% yield).  

MS (MALDI-TOF): m/z calcd for [C116H150N21O35]+: 2398.54 [M + H]+; found: 2398.99 (HCCA 

matrix), 2399.52 (SA matrix); HRMS (ESI+): m/z calcd for [C116H149Na2N21O35]2+: 1221.01 [M + 

2Na]2+; found: 1221.51. 
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cyclo[DKP-RGD]-PEG-4-Asn-Pro-[D]-Val-PTX (123) 

Fmoc-[D]-Val-PABA (132) 

 

Commercial Fmoc-[D]-Valine-OH 131 (150 mg, 0.442 mmol, 1 equiv) was dissolved in dry 

CH2Cl2/MeOH (2:1, 6 mL) under a nitrogen atmosphere. EEDQ and 4-aminobenzyl alcohol 

were added at 0 °C, under a nitrogen atmosphere. Then, the mixture was allowed to reach 

room temperature and stirred overnight under nitrogen atmosphere. The solvent was removed 

under reduced pressure affording a yellow solid. The crude was diluted in Et2O (3 × 25 mL) 

and filtered in a fritz affording compound 132 as white solid (165 mg, 84% yield). 

Rf = 0.18 (98:2, CH2Cl2/MeOH + 0.1% AcOH); 1H NMR (400 MHz, MeOD-d4) δ 7.79 (d, J = 7.6 

Hz, 2H), 7.67 (t, J = 7.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.34 – 7.26 

(m, 4H), 4.56 (s, 2H), 4.45 – 4.33 (m, 2H), 4.23 (t, J = 6.8 Hz, 1H), 4.03 (d, J = 7.6 Hz, 1H), 

2.10 (dq, J = 13.9, 6.9 Hz, 1H), 1.00 (d, J = 6.8 Hz, 3H); MS (ESI+) m/z calcd for [C27H29N2O4]+: 

445.20 [M + H]+; found: 445.34; m/z calcd for [C27H28NaN2O4]+: 467.52 [M + Na]+; found: 

467.71. 

Fmoc-Asn(Trt)-Pro-[D]-Val-PABC-PNP (135)  

 

N-Fmoc-protected compound 132 (163 mg, 0.367 mmol, 1 equiv) was deprotected following 

General Procedure GP2. The remaining crude was directly used at the next step. A solution 

commercial Fmoc-L-Proline-OH (186 mg, 0.550 mmol, 1.5 equiv) in dry DMF (5 mL) was 

cooled to 0 °C under a nitrogen atmosphere. HATU (238 mg, 0.624 mmol, 1.7 equiv), HOAt 

(85 mg, 0.624 mmol, 1.7 equiv) and iPr2NEt (256 µL, 1.47 mmol, 4 equiv) were added and the 

mixture was stirred for 20 min at 0 °C. A solution of 132-NH (82 mg, 0.367 mmol, 1 equiv) in 

dry DMF (2 mL) was added to the stirred mixture. The reaction was allowed to slowly reach 

room temperature and stirred overnight. The solvent was evaporated at rotavapor and the 

crude was purified by flash chromatography [gradient: from CH2Cl2 99:1 to 99:3 CH2Cl2/MeOH] 

to afford intermediate 133, of which isolation was not possible. Similar procedure was used to 

afford intermediate 134. A solution of Fmoc-Asn(Trt)-Pro-[D]-Val-PABA 134 in a mixture of dry 
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THF (21 mL) under nitrogen atmosphere was cooled to 0 °C. Pyridine (74 μL, 0.918 mmol, 2.5 

equiv) and 4-nitrophenylchloroformate (148 mg, 0.734 mmol, 2 equiv) were added, then the 

mixture could reach room temperature and stirred for 2 h. AcOEt (200 mL) was added and the 

solution was washed with a 1 M aqueous solution of KHSO4 (3 × 20 mL) and brine (20 mL). 

The organic phase was dried and concentrated, then the crude was purified by flash 

chromatography [gradient: from AcOEt/Hexane 1:1 to 7:3] affording compound 135 (185 mg, 

47% yield, after five steps). 

Rf = 0.36 (2:8, n-Hexane/EtOAc); 1H NMR (400 MHz, CD2Cl2-d2) δ 8.40 (s, 1H), 8.24 (d, J = 

9.2 Hz, 2H), 7.77 (d, J = 7.6 Hz, 2H), 7.56 (d, J = 7.4 Hz, 2H), 7.47 – 7.12 (m, 27H), 5.93 (s, 

1H), 5.22 (s, 2H), 4.65 (s, 1H), 4.50 – 4.28 (m, 3H), 4.19 (t, J = 6.7 Hz, 1H), 3.89 (d, J = 8.3 

Hz, 1H), 3.49 (d, J = 8.9 Hz, 1H), 3.13 (s, 1H), 2.97 (t, J = 11.3 Hz, 1H), 2.63 (d, J = 14.0 Hz, 

1H), 2.14 – 2.01 (m, 2H), 1.91 – 1.70 (m, 3H), 0.80 (dd, J = 15.9, 6.6 Hz, 6H). 13C NMR (101 

MHz, CD2Cl2-d2) δ 171.67, 170.38, 169.87, 168.97, 155.61, 152.45, 145.41, 143.93, 143.72, 

141.27, 138.92, 129.80, 129.39, 128.59, 127.94, 127.73, 127.09, 125.20, 125.06, 121.86, 

120.11, 119.96, 70.82, 70.68, 67.14, 61.00, 60.24, 50.08, 47.39, 47.10, 40.21, 29.67, 28.91, 

24.75, 19.35, 18.65. MS (MALDI-TOF): m/z calcd for [C62H59N6O11]+: 1064.16 [M + H]+; found: 

1064.22 (HCCA matrix), 1065.25 (SA matrix). 

Fmoc-Asn(Trt)-Pro-[D]-Val-PABC-N-(Boc)-N,N′-dimethylethylenediamine (136) 

 

A solution of N-(Boc)-N,N′-dimethylethylenediamine (64 µL, 0.339 mmol, 2 equiv) in dry THF 

(2 mL) and iPr2NEt (74 µL, 0.423 mmol, 2.5 equiv) were added under nitrogen to a solution of 

135 (180 mg, 0.169 mmol, 1 equiv) in dry THF (5 mL) kept at 0 ºC. The mixture was stirred 

overnight at room temperature, then the solvent was removed at the rotavapor. AcOEt (50 mL) 

was added and the solution was washed with 1 M aqueous solution of KHSO4 (3 × 20 mL), a 

saturated aqueous solution of NaHCO3 (2 × 20 mL) and brine (20 mL). The organic phase was 

dried and concentrated. The crude was purified by flash chromatography (8:2, AcOEt/n-

Hexane), affording 136 (140 mg, 87% yield) as a white solid. 

Rf = 0.19 (8:2 AcOEt/n-Hexane); 1H NMR (400 MHz, MeOD-d4) δ 7.80 (d, J = 7.6 Hz, 2H), 7.65 

(t, J = 7.2 Hz, 4H), 7.39 (t, J = 7.6 Hz, 2H), 7.33 – 7.16 (m, 19H), 5.05 (s, 2H), 4.61 (t, J = 7.0 

Hz, 1H), 4.51 – 4.32 (m, 3H), 4.24 – 4.15 (m, 2H), 3.63 (q, J = 6.9, 6.1 Hz, 1H), 3.42 – 3.35 

(m, 4H), 3.29 – 3.18 (m, 1H), 2.91 (s, 3H), 2.85 (s, 2H), 2.77 – 2.71 (m, 3H), 2.18 – 2.04 (m, 

2H), 2.01 – 1.85 (m, 3H), 1.42 (s, 9H), 0.91 (d, J = 5.9 Hz, 6H). 13C NMR (101 MHz, MeOD-

d4) δ 173.23, 171.26, 170.46, 169.59, 156.66, 156.03, 144.33, 143.75, 141.19, 138.15, 138.03, 
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132.42, 132.20, 128.64, 128.27, 127.42, 127.34, 126.82, 126.38, 124.77, 124.74, 120.08, 

119.56, 79.79, 79.50, 70.32, 66.88, 66.67, 60.68, 59.66, 50.09, 46.56, 46.15, 38.08, 34.18, 

33.87, 33.23, 29.43, 29.34, 29.14, 27.32, 24.54, 18.44, 17.34. MS (MALDI-TOF): m/z calcd for 

[C65H74N7O10]+: 1113.32 [M + H]+; found: 1113.54 (HCCA matrix), 1113.55 (SA matrix). 

4-pentynamido-Asn(Trt)-Pro-[D]-Val-PABC-N-(Boc)-N,N′-dimethylethylenediamine (137)  

 

N-Fmoc-protected compound 136 (153 mg, 0.138 mmol, 1 equiv) was deprotected following 

General Procedure GP2. Commercial 4-pentynoic acid (25 mg, 0.235 mmol, 1.5 equiv) in dry 

DMF (2 mL) was cooled to 0 °C under a nitrogen atmosphere. HATU (80 mg, 0.207 mmol, 1.7 

equiv), HOAt (30 mg, 0.207 mmol, 1.7 equiv) and iPr2NEt (97 µL, 0.552 mmol, 4 equiv) were 

added and the mixture was stirred for 20 min at 0 °C. A solution of 136-NH (123 mg, 0.138 

mmol, 1 equiv) in dry DMF (5 mL) was added to the stirred mixture. The reaction was allowed 

to slowly reach room temperature and stirred overnight. The mixture was diluted with an 

AcOEt/CH2Cl2, 4:1 mixture (100 mL) and washed with 1 M aqueous solution of KHSO4 (2 × 15 

mL), a saturated aqueous solution of NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The organic 

phase was dried over Na2SO4 and concentrated. The solid was purified by flash 

chromatography [gradient: from CH2Cl2 100% to 97:3 CH2Cl2/MeOH] to afford amide 137 as 

fade white solid (125 mg, 94% yield over two steps). 

Rf = 0.37 (95:5, CH2Cl2/MeOH); 1H NMR (400 MHz, CD2Cl2-d2) δ 8.26 – 8.16 (m, 1H), 7.62 – 

7.46 (m, 1H), 7.35 (s, 2H), 7.28 – 7.15 (m, 18H), 6.72 (s, 1H), 5.03 (s, 2H), 4.83 (td, J = 7.8, 

3.7 Hz, 1H), 4.46 (dd, J = 8.4, 3.4 Hz, 1H), 3.83 (s, 1H), 3.45 (s, 1H), 3.39 – 3.26 (m, 4H), 3.06 

(s, 1H), 2.91 (s, 4H), 2.83 (s, 2H), 2.75 (s, 1H), 2.70 (dd, J = 14.1, 3.7 Hz, 1H), 2.46 (td, J = 

7.6, 6.6, 2.4 Hz, 2H), 2.40 – 2.30 (m, 2H), 2.17 – 2.06 (m, 1H), 2.05 – 1.98 (m, 1H), 1.97 (t, J 

= 2.6 Hz, 1H), 1.88 – 1.76 (m, 2H), 1.71 (s, 1H), 1.42 (s, 9H), 0.79 (dd, J = 16.8, 6.6 Hz, 6H); 

13C NMR (101 MHz, CD2Cl2-d2) δ 171.59, 170.42, 170.30, 169.58, 169.01, 144.01, 138.08, 

132.47, 128.62, 128.37, 127.88, 127.01, 120.01, 70.70, 69.00, 66.68, 66.55, 60.98, 48.42, 

47.32, 40.10, 34.84, 28.95, 28.57, 28.11, 24.66, 19.49, 18.72, 14.44. MS (MALDI-TOF): m/z 

calcd for [C55H67NaN7O9]+: 993.16 [M + Na]+; found: 993.20 (HCCA matrix), 993.22 (SA matrix). 
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Aliphatic alkyne-Asn-Pro-[D]-Val-PTX (138) 

 

A solution of Boc-protected compound 137 (50 mg, 0.052 mmol, 1 equiv) in dry CH2Cl2 (1.8 

mL) was cooled to 0 °C under a nitrogen atmosphere and TFA (900 μL) was added. The 

mixture was then allowed to reach room temperature and stirred for 15 min. The solvent was 

removed affording the corresponding trifluoroacetate salt, without further purifications. The 

solid was dissolved in dry DMF (800 μL) and iPr2NEt (37 µL, 0.208 mmol, 4 equiv). The 

resulting solution was added at 0 °C to a stirred solution of 95 (55 mg, 0.057 mmol, 1.1 equiv) 

in dry DMF (800 μL), under a nitrogen atmosphere. The reaction was then allowed to reach 

room temperature and stirred overnight. AcOEt (100 mL) was added and the solution was 

washed with a 1 M aqueous solution of KHSO4 (2 × 10 mL) and brine (1 × 15 mL). The organic 

phase was dried over Na2SO4 and concentrated, then the crude was purified by flash 

chromatography [gradient: from CH2Cl2 100% to 95:5 CH2Cl2/MeOH] to afford carbamate 138 

as a light-yellow solid (41 mg, 54% yield over two steps). 

Rf = 0.19 (95:5, CH2Cl2/MeOH); MS (MALDI-TOF): m/z calcd for [C79H94NaN8O22]+: 1530.65 

[M + Na]+; found: 1530.08 (HCCA matrix), 1530.52 (SA matrix); HRMS (ESI+): m/z calcd for 

[C79H94NaN8O22]+: 1529.64 [M + Na]+: found 1529.63. 

cyclo[DKP-RGD]-PEG-4-Asn-Pro-[D]-Val-PTX conjugate (123) 

 

Alkyne 138 (5.6 mg, 0.0036 mmol, 1.2 equiv) and azide 86 (3 mg, 0.003 mmol, 1 equiv) were 

reacted following General Procedure GP3. The solvent was removed under vacuum, and the 

crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; 

gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% 
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CF3COOH) in 20 min; tR (product)=12.2 min]. The purified product was then freeze-dried to 

give the desired compound 123 as a white solid (5 mg, 70% yield). 

MS (MALDI-TOF): m/z calcd for [C116H150N21O35]+: 2398.52 [M + H]+; found: 2398.29 (HCCA 

matrix), 2399.52 (SA matrix); m/z calcd for [C116H149NaN21O35]+: 2420.22 [M + Na]+; found: 

2420.32 (HCCA matrix), 2420.52 (SA matrix); HRMS (ESI+): m/z calcd for 

[C116H150NaN21O35]2+: 1210.02 [M + H + Na]2+; found: 1210.03; m/z calcd for 

[C116H150Na2N21O35]3+: 814.34 [M + H + 2Na]3+; found: 814.35. 

cyclo[DKP-RGD]-Uncleavable-PTX (124) 

tert-butyl methyl(2-(N-methylpent-4-ynamido)ethyl)carbamate (140) 

 

Commercial 4-pentynoic acid (78 mg, 0.796 mmol, 1.5 equiv) in dry DMF (4 mL) was cooled 

to 0 °C under a nitrogen atmosphere. HATU (343 mg, 0.902 mmol, 1.7 equiv), HOAt (123 mg, 

0.902 mmol, 1.7 equiv) and iPr2NEt (370 µL, 2.124 mmol, 4 equiv) were added and the mixture 

was stirred for 20 min at 0 °C. A solution of N-(Boc)-N,N′-dimethylethylenediamine 139 (100 

mg, 0.531 mmol, 1 equiv) in dry DMF (5 mL) was added to the stirred mixture. The reaction 

was allowed to slowly reach room temperature and stirred overnight. The mixture was diluted 

with an AcOEt/CH2Cl2, 4:1 mixture (100 mL) and washed with 1 M aqueous solution of KHSO4 

(2 × 15 mL), a saturated aqueous solution of NaHCO3 (1 × 15 mL) and brine (1 × 20 mL). The 

organic phase was dried over Na2SO4 and concentrated. The solid was purified by flash 

chromatography [eluent: CH2Cl2 100%] to afford amide 140 as dark yellow oil (140 mg, 98%). 

Rf = 0.46 (95:5, CH2Cl2/MeOH); 1H NMR (400 MHz, CD2Cl2-d2) δ 3.43 – 3.31 (m, 2H), 3.24 (t, 

J = 6.2 Hz, 2H), 2.91 (s, rotamer A, 3H), 2.83 (s, rotamer B, 3H), 2.75 (s, rotamer A + B, 3H), 

2.49 – 2.36 (m, 4H), 1.90 (q, J = 2.2 Hz, 1H), 1.35 (s, rotamer A + B, 9H); 13C NMR (101 MHz, 

CD2Cl2-d2) δ 171.14, 156.27, 84.35, 79.57, 68.74, 48.30 (rotamer A), 48.09 (rotamer B), 47.72, 

46.95 (rotamer A), 46.60 (rotamer B), 46.22 (rotamer A), 45.72 (rotamer B), 36.35 (rotamer A), 

35.05, 34.24 (rotamer B), 33.08 (rotamer A), 32.20 (rotamer B), 28.71, 15.04 (rotamer A), 14.76 

(rotamer B). MS (ESI +): m/z calcd for [C14H25N2O3]+: 269.10 [M + H]+; found: 269.09. 
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Aliphatic alkyne-PTX (141) 

 

A solution of Boc-protected compound 140 (67 mg, 0.249 mmol, 1 equiv) was deprotected 

following General Procedure GP1. The resulting dark yellow oil was dissolved in dry DMF (0.5 

mL) and iPr2NEt (87 µL, 0.5 mmol, 10 equiv). The resulting solution was added at 0 °C to a 

stirred solution of 95 (50 mg, 0.05 mmol, 1 equiv) in dry DMF (1 mL), under a nitrogen 

atmosphere. The reaction was then allowed to reach room temperature and stirred overnight. 

AcOEt (50 mL) was added and the solution was washed with a 1 M aqueous solution of KHSO4 

(2 × 5 mL) and brine (1 × 5 mL). The organic phase was dried over Na2SO4 and concentrated, 

then the crude was purified by flash chromatography [gradient: from AcOEt/n-Hexane 1:1 to 

4:1] to afford carbamate 141 as a white solid (41 mg, 84% yield over two steps). 

Rf = 0.31 (4:1, AcOEt/n-Hexane 1:1); 1H NMR (400 MHz, CDCl3-d) δ 8.71 (d, J = 9.8 Hz, 1H), 

8.21 – 8.15 (m, 2H), 7.87 – 7.79 (m, 2H), 7.61 – 7.55 (m, 1H), 7.54 – 7.46 (m, 5H), 7.44 – 7.34 

(m, 5H), 7.33 – 7.27 (m, 2H), 6.35 – 6.28 (m, 2H), 6.19 (dd, J = 9.8, 3.0 Hz, 1H), 5.69 (d, J = 

7.3 Hz, 1H), 5.45 (d, J = 3.0 Hz, 1H), 5.00 (dd, J = 10.0, 2.3 Hz, 1H), 4.47 (td, J = 6.8, 3.3 Hz, 

1H), 4.35 – 4.29 (m, 1H), 4.24 (dd, J = 8.4, 1.0 Hz, 1H), 4.00 – 3.89 (m, 1H), 3.84 (d, J = 7.1 

Hz, 1H), 3.64 – 3.54 (m, 1H), 3.12 – 3.06 (m, 1H), 3.05 – 2.98 (m, 4H), 2.98 – 2.94 (m, 2H), 

2.90 (s, 3H), 2.63 – 2.52 (m, 5H), 2.51 – 2.46 (m, 3H), 2.24 – 2.21 (m, 3H), 1.99 (d, J = 1.4 Hz, 

3H), 1.93 (t, J = 2.6 Hz, 2H), 1.69 (s, 3H), 1.23 (s, 3H), 1.13 (s, 3H); 13C NMR (101 MHz, CDCl3-

d) δ 133.56, 131.28, 130.31, 128.75, 128.67, 127.97, 127.95, 127.75, 126.81, 84.51, 83.14, 

77.22, 76.48, 75.82, 75.71, 75.24, 72.14, 71.35, 52.73, 46.76, 45.80, 45.57, 36.78, 35.81, 

35.55, 35.52, 32.34, 30.32, 29.69, 26.78, 22.79, 22.69, 22.35, 20.82, 14.88, 14.25, 14.11, 9.66. 

MS (MALDI-TOF): m/z calcd for [C57H66N3O16]+: 1049.14 [M + H]+; found: 1049.22 (HCCA 

matrix); m/z calcd for [C57H65NaN3O16]+: 1071.14 [M + Na]+; found: 1071.26. 
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cyclo[DKP-RGD]-Uncleavable-PTX (124) 

 

Alkyne 141 (7 mg, 0.0065 mmol, 1.3 equiv) and azide 86 (5 mg, 0.005 mmol, 1 equiv) were 

reacted following General Procedure GP3. The solvent was removed under vacuum, and the 

crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; 

gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% 

CF3COOH) in 20 min; tR (product)=12.1 min]. The purified product was then freeze-dried to 

give the desired compound 124 as a white solid (9.7 mg, 100% yield). 

MS (MALDI-TOF): m/z calcd for [C94H121N16O29]+: 1939.05 [M + H]+; found: 1939.70 (HCCA 

matrix); HRMS (ESI+): m/z calcd for [C94H121N16O29]+: 1937.85, [M + H]+; found 1937.85; m/z 

calcd for [C94H120NaN16O29]+: 1959.83 [M + Na]+; found 1959.83; m/z calcd for 

[C94H120Na2N16O29]2+: 991.41 [M + 2Na]2+ found: 991.41; m/z calcd for [C94H121NaN16O29]2+: 

980.41 [M + H + Na]2+; found: 980.42; m/z calcd for [C94H120Na3N16O29]2+: 1002.40 [M + 3Na]2+; 

found: 1002.41. 

Pro-PTX (142) 

PTX-N-(Boc)-N,N′-dimethylethylenediamine (143) 

 

Compound 95 (10 mg, 0.01 mmol, 1 equiv) was solubilized in dry DMF (150 µL) under nitrogen. 

A mixture of N-(Boc)-N,N′-dimethylethylenediamine 139 (3 mg, 0.015 mmol, 1.5 equiv) in dry 

DMF (150 µL mL) and iPr2NEt (6 µL, 0.03 mmol, 3 equiv) were added to 95 at 0 ºC under 

nitrogen. The mixture was stirred overnight at room temperature. AcOEt (20 mL) was added 

and the solution was washed with 1 M aqueous solution of KHSO4 (2 × 10 mL) and brine (20 
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mL). The organic phase was dried and concentrated. The crude was purified by preparative 

TLC (gradient: 65:35 AcOEt/n-Hexane), affording 143 (10 mg, 95% yield) as a fade white solid. 

Rf = 0.29 (3:2 AcOEt/n-Hexane); 1H NMR (400 MHz, CD2Cl2-d2) δ 8.65 (d, J = 9.7 Hz, 1H), 

8.21 – 8.09 (m, 2H), 7.82 – 7.73 (m, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.55 (q, J = 8.1, 7.6 Hz, 4H), 

7.47 – 7.25 (m, 6H), 6.31 – 6.20 (m, 2H), 6.13 (dd, J = 9.9, 2.8 Hz, 1H), 5.64 (d, J = 7.1 Hz, 

1H), 5.31 (dd, J = 10.2, 2.3 Hz, 1H), 5.00 (dd, J = 9.8, 2.3 Hz, 1H), 4.46 (dd, J = 11.1, 6.6 Hz, 

1H), 4.33 – 4.26 (m, 1H), 4.22 – 4.13 (m, 1H), 4.11 – 4.00 (m, 1H), 3.80 (dd, J = 15.0, 7.0 Hz, 

1H), 3.64 – 3.46 (m, 2H), 2.88 (d, J = 8.3 Hz, 6H), 2.59 (s, 3H), 2.55 – 2.49 (m, 1H), 2.41 (t, J 

= 7.5 Hz, 1H), 2.20 (s, 3H), 2.12 (dd, J = 15.5, 9.2 Hz, 1H), 1.96 (s, 3H), 1.89 (s, 2H), 1.81 

(ddd, J = 14.0, 10.8, 2.3 Hz, 2H), 1.63 (s, 3H), 1.27 (s, 9H), 1.19 (s, 3H), 1.10 (s, 3H); 13C NMR 

(101 MHz, CD2Cl2-d2) δ 204.57, 171.92, 170.62, 169.58, 168.77, 167.34, 156.24, 155.40, 

143.96, 138.24, 135.14, 134.22, 134.10, 133.05, 131.71, 130.78, 130.07, 129.26, 129.08, 

128.68, 128.33, 127.63, 84.90, 81.49, 80.49, 79.64, 76.87, 76.53, 76.27, 75.74, 72.75, 72.18, 

71.85, 59.00, 53.36, 46.92, 46.77, 46.25, 43.71, 36.32, 36.25, 36.14, 35.81, 30.26, 28.54, 

27.10, 23.34, 22.62, 21.21, 15.15, 10.02. MS (MALDI-TOF): m/z calcd for [C57H70N3O17]+: 

1069.17 [M + H]+; found: 1069.00 (HCCA matrix); m/z calcd for [C57H69NaN3O17]+: 1091.17 [M 

+ Na]+; found: 1091.36 (HCCA matrix). 

Pro-PTX·TFA (142) 

 

To a solution of CH2Cl2/TFA (1:1, 300 µL), compound 143 (10 mg, 0.0095 mmol, 1 equiv) in 

dry CH2Cl2 (200 µL) was added, under nitrogen, at 0 ºC. The mixture was stirred for 20 minutes 

at room temperature. The solvent was removed under reduced pressure and the crude was 

purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; gradient: 90% 

(H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% CF3COOH) 

in 20 min; tR (product)=13 min]. The purified product was then freeze-dried to give the desired 

compound 142 as a white solid (7 mg, 68% yield).  

MS (MALDI-TOF): m/z calcd for [C52H62N3O15]+: 969.05 [M + H]+; found: 969.20 (HCCA matrix); 

m/z calcd for [C52H61NaN3O15]+: 991.05 [M + Na]+; found: 991.23; HRMS (ESI+): m/z calcd for 

[C52H62N3O15]+: 968.41 [M + H]+; found: 968.42. 
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cyclo[DKP-RGD]-PEG-4-Val-Ala-MMAE (145) 

Aliphatic alkyne-Val-Ala-PABA (152) 

 

The previously synthesized Fmoc-Val-Ala-PABA 151[130] (800 mg, 1.55 mmol, 1 equiv) was 

deprotected following General Procedure GP2. Commercial 4-pentynoic acid (228 mg, 2.325 

mmol, 1.5 equiv) in dry DMF (5 mL) was cooled to 0 °C under a nitrogen atmosphere. HATU 

(999 mg, 2.635 mmol, 1.7 equiv), HOAt (359 mg, 2.635 mmol, 1.7 equiv) and iPr2NEt (1.1 mL, 

6.20 mmol, 4 equiv) were added and the mixture was stirred for 20 min at 0 °C. A solution of 

151-NH in dry DMF (15 mL) was added to the stirred mixture. The reaction was allowed to 

slowly reach room temperature and stirred overnight. The mixture was dried at rotavapor under 

reduced pressure. The remained oil was purified by flash chromatography [gradient: from 

CH2Cl2/MeOH (98:2) to CH2Cl2/MeOH (90:10)] to afford amide 152 as a white solid (550 mg, 

90% yield over two steps).  

Rf = 0.21 (9:1, CH2Cl2/AcOEt); 1H NMR (400 MHz, MeOD-d4) δ 7.55 (d, J = 8.5 Hz, 2H), 7.30 

(d, J = 8.5 Hz, 2H), 4.55 (s, 2H), 4.48 (q, J = 7.1 Hz, 1H), 4.21 (d, J = 7.0 Hz, 1H), 2.58 – 2.42 

(m, 4H), 2.26 (t, J = 2.5 Hz, 1H), 2.09 (hept, J = 6.8 Hz, 1H), 1.43 (d, J = 7.1 Hz, 3H), 0.99 (d, 

J = 7.0 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, MeOD-d4) δ 174.37, 173.57, 

172.93, 138.73, 138.65, 128.58, 121.17, 83.65, 70.39, 64.83, 60.39, 51.06, 35.76, 31.81, 

19.72, 18.71, 18.00, 15.64. MS (ESI+): m/z calcd for [C20H28N3O4]+: 373.20 [M + H]+: found: 

373.41. 

Aliphatic alkyne-Val-Ala-PABC-PNP (153)  

 

A solution of compound 152 in a mixture of dry THF (78 mL) under nitrogen atmosphere was 

cooled to 0 °C. Pyridine (270 μL, 3.33 mmol, 2.5 equiv) and 4-nitrophenylchloroformate (537 

mg, 2.66 mmol, 2 equiv) were added, then the mixture could reach room temperature and 

stirred for 2 h. The reaction mixture was concentrated under reduced pressure and AcOEt (50 

mL) was added and the solution was washed with a 1 M aqueous solution of KHSO4 (3 × 20 

mL) and brine (20 mL). The organic phase was dried and concentrated, then the crude was 

purified by flash chromatography [eluent: 2:8, n-Hexane/EtOAc] affording compound 153 (460 

mg, 65% yield) as a white solid. 
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Rf = 0.19 (2:8, n-Hexane/EtOAc); 1H NMR (400 MHz, DMSO-d6) δ 9.99 (s, 1H), 8.31 (d, J = 

9.1 Hz, 2H), 8.21 (d, J = 6.9 Hz, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.64 (d, J = 8.5 Hz, 2H), 7.57 

(d, J = 9.1 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 5.24 (s, 2H), 4.39 (p, J = 7.0 Hz, 1H), 4.21 (dd, J 

= 8.6, 6.7 Hz, 1H), 2.74 (t, J = 2.2 Hz, 1H), 2.48 – 2.30 (m, 4H), 1.97 (h, J = 6.8 Hz, 1H), 1.31 

(d, J = 7.1 Hz, 3H), 0.87 (dd, J = 15.7, 6.7 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ 171.23, 

170.86, 170.52, 155.26, 151.91, 145.15, 139.42, 129.44, 125.37, 122.58, 119.00, 83.78, 71.21, 

70.23, 57.53, 49.06, 33.96, 30.49, 19.14, 18.13, 17.82, 14.25. MS (ESI+): m/z calcd for 

[C27H31N4O8]+: 538.21 [M + H]+; found: 538.22. 

Aliphatic alkyne-Val-Ala-PABC-MMAE (154)  

 

Compound 153 (20 mg, 0.037 mmol, 1 equiv) and HOBt (3 mg, 0.019 mmol, 0.5 equiv) were 

dissolved in dry DMF under argon atmosphere. Commercial MMAE (32 mg, 0.044 mmol, 1.2 

equiv) was solubilized in dry DMF:Pyridine (4:1, 600 µL, reaction total volume) and DIPEA (6 

µL, 0.033 mmol, 0.9 equiv) and added to the starting material solution at 0 ºC, under argon 

atmosphere. Then, the mixture was allowed to reach room temperature and stirred over 

weekend under argon atmosphere. The reaction mixture was diluted with AcOEt (150 mL) the 

solution was washed with a 1 M aqueous solution of KHSO4 (3 × 20 mL) and brine (20 mL). 

The organic phase was dried with Na2SO4 and concentrated, then the crude was purified by 

flash chromatography [gradient: from 99:1, CH2Cl2/MeOH to 95:5, CH2Cl2/MeOH] affording 

compound 154 (40 mg, 95% yield) as a white solid. 

Rf = 0.35 (95:5, CH2Cl2/MeOH); MS (ESI+): m/z calcd for [C60H93N8O12]+: 1117.68 [M + H]+; 

found: 1118.01. HRMS (ESI+): m/z calcd for [C60H92NaN8O12]+: 1139.67 [M + Na]+; found 

1139.67. 

cyclo[DKP-RGD]-PEG-4-Val-Ala-MMAE (145) 

 

Alkyne 154 (7 mg, 0.006 mmol, 1.2 equiv) and azide 86 (5 mg, 0.005 mmol, 1 equiv) were 

reacted following General Procedure GP3. The solvent was removed under vacuum, and the 
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crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; 

gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% 

CF3COOH) in 20 min; tR (product)=12 min]. The purified product was then freeze-dried to give 

the desired compound 145as a white solid (6.7 mg, 65% yield). 

MS (MALDI-TOF): m/z calcd for [C97H148N21O25]+: 2007.33 [M + H]+; found: 2007.77; (HCCA 

matrix), 2009.6 (SA matrix); HRMS (ESI+): m/z calcd for [C97H148N21O25]+: 2007.096 [M + H ]+; 

found: 2007.093; m/z calcd for [C97H148NaN21O25]2+: 1015.045 [M + H + Na]2+; found 1015.042; 

m/z calcd for [C97H148Na2N21O25]3+: 684.363 [M + H + 2Na]3+; found: 684.360. 

HOOC-PEG-4-Val-Ala-MMAE (147) 

 

Alkyne 154 (5 mg, 0.006 mmol, 1 equiv) and azide-COOH 91 (1.7 mg, 0.006 mmol, 1 equiv) 

were reacted following General Procedure GP3. The solvent was removed under vacuum, and 

the crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm 

column; gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% 

(CH3CN+0.1% CF3COOH) in 20 min; tR (product)=13 min]. The purified product was then 

freeze-dried to give the desired compound 147 as a white solid (2.6 mg, 30% yield). 

MS (MALDI-TOF): m/z calcd for [C70H112N11O18]+: 1395.69 [M + H]+; found: 1395.70; (HCCA 

matrix), 1395.85 (SA matrix); HRMS (ESI+): m/z calcd for [C70H112N11O18]+: 1394.82 [M + H]+; 

found 1394.82; m/z calcd for [C70H111Na2N11O18]2+: 719.91 [M + 2Na]2+; found: 719.89; m/z 

calcd for [C70H110Na3N11O18]2+: 730.90 [M + 3Na - H]2+; found: 730.88. 

cyclo[DKP-RGD]-Uncleavable-MMAE (148) 

Aliphatic alkyne-MMAE (155)  

 

Commercial 4-pentynoic acid (4.2 mg, 0.042 mmol, 1.5 equiv) in dry DMF (0.5 mL) was cooled 

to 0 °C under a nitrogen atmosphere. HATU (19 mg, 0.048 mmol, 1.7 equiv), HOAt (7 mg, 

0.048 mmol, 1.7 equiv) and iPr2NEt (20 µL, 0.112 mmol, 4 equiv) were added and the mixture 
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was stirred for 20 min at 0 °C. A solution of commercial MMAE in dry DMF (1 mL) was added 

to the stirred mixture. The reaction was allowed to slowly reach room temperature and stirred 

overnight. The mixture was diluted with AcOEt (30 mL), washed with 1 M aqueous solution of 

KHSO4 (2 × 10 mL) and brine (1 × 20 mL). The organic phase was dried over Na2SO4 and 

concentrated. The solid was purified by flash chromatography [gradient: from 

CH2Cl2/MeOH 97:2 to 97:] to afford amide 155 as white solid (20 mg, 90% yield). 

Rf = 0.30 (97:3, CH2Cl2/MeOH); MS (ESI+) m/z calcd for [C44H72N5O8]+: 798.06 [M + H]+; found: 

798.09; HRMS (ESI+): m/z calcd for [C44H71NaN5O8]+: 820.52 [M + Na]+; found: 820.51. 

cyclo[DKP-RGD]-Uncleavable-MMAE (148) 

 

Alkyne 155 (4 mg, 0.004 mmol, 1.2 equiv) and azide 86 (5 mg, 0.004 mmol, 1 equiv) were 

reacted following the General Procedure GP3. The solvent was removed under vacuum, and 

the crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm 

column; gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% 

(CH3CN+0.1% CF3COOH) in 20 min; tR (product)=10.8 min]. The purified product was then 

freeze-dried to give the desired compound 148 as a white solid (5.5 mg, 83% yield). 

MS (MALDI-TOF): m/z calcd for [C81H127N18O21]+: 1688.98 [M + H]+; found: 1688.90; (SA 

matrix), 1688.00 (HCCA matrix); HRMS (ESI+): m/z calcd for [C81H127N18O21]+: 1687.94 [M + 

H]+; found: 1687.94; m/z calcd for [C81H127NaN18O21]2+: 855.47 [M + Na + H]2+; found: 855.46. 

HOOC-Uncleavable-MMAE (156) 

 

Alkyne 155 (4 mg, 0.005 mmol, 1 equiv) and azide-COOH 91 (1.4 mg, 0.004 mmol, 1 equiv) 

were reacted following the General Procedure GP3. The solvent was removed under vacuum, 

and the crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm 

column; gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% 
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(CH3CN+0.1% CF3COOH) in 20 min; tR (product)=12 min]. The purified product was then 

freeze-dried to give the desired compound 156 as a white solid (2.4 mg, 45% yield). 

MS (MALDI-TOF): m/z calcd for [C54H91N8O14]+: 1075.34 [M + H]+; found: 1075.35; (SA matrix), 

1075.55 (HCCA matrix); HRMS (ESI+): m/z calcd for [C54H91N8O14]+: 1075.670 [M + H]+; found: 

1075.665; m/z calcd for [C54H90NaN8O14]+: 1097.65 [M + Na]+; found: 1097.64; m/z calcd for 

[C54H90Na2N8O14]2+: 560.33 [M + 2Na]2+; found: 560.32. 

cyclo[DKP-RGD]-PEG-4-Val-Ala-MMAF (146) 

Aliphatic alkyne-Val-Ala-PABC-MMAF (157)  

 

Compound 153 (20 mg, 0.037 mmol, 1 equiv) and HOBt (3 mg, 0.019 mmol, 0.5 equiv) were 

dissolved in dry DMF under argon atmosphere. Commercial MMAF·TFA (37 mg, 0.044 mmol, 

1.2 equiv) is solubilized in dry DMF:Pyridine (4:1, 600 µL, reaction total volume) and DIPEA 

(12 µL, 0.066 mmol, 1.8 equiv) and added to the starting material solution at 0 ºC, under argon 

atmosphere. Then, the mixture was allowed to reach room temperature and stirred over 

weekend under argon atmosphere. The reaction mixture was concentrated at the rotavapor 

and the crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm 

column; gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% 

(CH3CN+0.1% CF3COOH) in 20 min; tR (product)=10.0 min]. The purified product was then 

freeze-dried to give the desired compound 157 as a white solid (23 mg, 55% yield). 

MS (MALDI-TOF): m/z calcd for [C60H91N8O13]+: 1131.40 [M + H]+; found: 1132.00; (SA matrix), 

1132.01 (HCCA matrix); m/z calcd for [C60H90N8O13]+: 1153.02 [M + Na]+; found: 1153.00; (SA 

matrix), 1153.01 (HCCA matrix). 

cyclo[DKP-RGD]-PEG-4-Val-Ala-MMAF (146) 

 

Alkyne 157 (5.5 mg, 0.0048 mmol, 1.2 equiv) and azide 86 (4 mg, 0.004 mmol, 1 equiv) were 

reacted according General Procedure GP3. The solvent was removed under vacuum, and the 
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crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; 

gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% 

CF3COOH) in 20 min; tR (product)=12 min]. The purified product was then freeze-dried to give 

the desired compound 146 as a white solid (7.6 mg, 95% yield). 

MS (MALDI-TOF): m/z calcd for [C97H146N21O26]+: 2022.31 [M + H]+; found: 2022.35; (SA 

matrix), 2022.85 (HCCA matrix); HRMS (ESI+): m/z calcd for [C97H146N21O26]+: 2021.07 [M + 

H]+; found: 2021.07; m/z calcd for [C97H146NaN21O26]2+: 1022.04 [M + Na + H]2+; found: 1022.03. 

 cyclo[DKP-RGD]-Uncleavable-MMAF (149) 

Aliphatic alkyne-MMAF (158)  

 

Commercial 4-pentynoic acid (3.5 mg, 0.036 mmol, 1.5 equiv) in dry DMF (0.4 mL) was cooled 

to 0 °C under a nitrogen atmosphere. HATU (16 mg, 0.041 mmol, 1.7 equiv), HOAt (6 mg, 

0.041 mmol, 1.7 equiv) and iPr2NEt (21 µL, 0.120 mmol, 5 equiv) were added and the mixture 

was stirred for 20 min at 0 °C. A solution of commercial MMAF·TFA in dry DMF (1 mL) was 

added to the stirred mixture. The reaction was allowed to slowly reach room temperature and 

stirred overnight. The reaction mixture was concentrated at the rotavapor and the crude 

residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; 

gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% 

CF3COOH) in 20 min; tR (product)=10.2 min]. The purified product was then freeze-dried to 

give the desired compound 158 as a white solid (16 mg, 82% yield). 

MS (MALDI-TOF): m/z calcd for [C44H70N5O9]+: 812.05 [M + H]+; found: 812.05; (SA matrix), 

812.05 (HCCA matrix); m/z calcd for [C44H69NaN5O9]+: 835.05 [M + Na]+; found: 835.20; (SA 

matrix), 835.18 (HCCA matrix). 

cyclo[DKP-RGD]-Uncleavable-MMAF (149) 
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Alkyne 158 (4 mg, 0.0048 mmol, 1.2 equiv) and azide 86 (4 mg, 0.004 mmol, 1 equiv) were 

reacted following General Procedure GP3. The solvent was removed under vacuum, and the 

crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; 

gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% 

CF3COOH) in 20 min; tR (product)=11.0 min]. The purified product was then freeze-dried to 

give the desired compound 149 as a white solid (6.3 mg, 95% yield). 

MS (MALDI-TOF): m/z calcd for [C81H125N18O22]+: 1701.96 [M + H]+; found: 1702.01; (SA 

matrix), 1701.91; HRMS (ESI+): m/z calcd for [C81H125N18O22]+: 1701.92 [M + H]+; found: 

1701.92; m/z calcd for [C81H125NaN18O22]2+: 862.95 [M + Na + H]2+; found: 862.96. 

cyclo[DKP-RGD]-PEG-4-Asn-Pro-Val-MMAE (150) 

Aliphatic alkyne-Asn(Trt)-Pro-Val-PABA (160) 

 

Fmoc-Asn(Trt)-Pro-Val-PABA 159 (425 mg, 0.473 mmol, 1 equiv) was deprotected following 

General Procedure GP2. Commercial 4-pentynoic acid (70 mg, 0.709 mmol, 1.5 equiv) in dry 

DMF (4 mL) was cooled to 0 °C under a nitrogen atmosphere. HATU (310 mg, 0.804 mmol, 

1.7 equiv), HOAt (110 mg, 0.804 mmol, 1.7 equiv) and iPr2NEt (330 µL, 1.892 mmol, 4 equiv) 

were added and the mixture was stirred for 20 min at 0 °C. A solution of 159-NH in dry DMF 

(8 mL) was added to the stirred mixture. The reaction was allowed to slowly reach room 

temperature and stirred overnight. The mixture was dried at rotavapor under reduced pressure. 

The remained oil was purified by flash chromatography (gradient: from CH2Cl2 100% to 

CH2Cl2/MeOH, 95:5) to afford amide 160 as fade white solid (227 mg, 65% yield over two 

steps). Rf = 0.26 (97:3, CH2Cl2/MeOH); 1H NMR (400 MHz, CD2Cl2-d2) δ 8.62 (s, 1H), 7.90 (d, 

J = 8.5 Hz, 2H), 7.74 (s, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.33 – 7.16 (m, 18H), 4.61 – 4.49 (m, 

2H), 4.43 (td, J = 11.4, 7.9 Hz, 1H), 4.27 (dd, J = 9.1, 3.5 Hz, 1H), 3.97 (t, J = 8.7 Hz, 1H), 3.25 

(q, J = 8.7 Hz, 1H), 2.76 (t, J = 13.0 Hz, 1H), 2.50 (td, J = 10.1, 8.9, 3.4 Hz, 1H), 2.46 – 2.39 

(m, 2H), 2.33 – 2.20 (m, 3H), 2.14 – 2.04 (m, 1H), 1.99 (t, J = 2.6 Hz, 1H), 1.92 – 1.80 (m, 2H), 

1.78 – 1.69 (m, 1H), 1.51 – 1.40 (m, 1H), 0.78 (d, J = 6.6 Hz, 3H), 0.38 (d, J = 6.6 Hz, 3H); 13C 

NMR (101 MHz, CD2Cl2-d2) δ 172.85, 171.93, 170.88, 170.38, 169.71, 144.56, 138.31, 137.76, 

129.33, 128.51, 128.45, 127.52, 121.16, 71.33, 69.52, 65.41, 62.30, 60.58, 48.00, 47.88, 

40.27, 35.25, 30.40, 30.26, 28.09, 25.13, 20.18, 19.44, 14.86. MS (MALDI-TOF): m/z calcd for 

[C45H49NaN5O6]+: 778.90 [M + Na]+: found 778.30. 
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Aliphatic alkyne-Asn(Trt)-Pro-Val-PABC-PNP (161) 

 

A solution of compound 160 (210 mg, 0.278 mmol, 1 equiv) in dry THF (16 mL) under nitrogen 

atmosphere was cooled to 0 °C. Pyridine (60 μL, 0.695 mmol, 2.5 equiv) and 4-

nitrophenylchloroformate (115 mg, 0.556 mmol, 2 equiv) were added, then the mixture could 

reach room temperature and stirred for 2 h. The reaction mixture was concentrated under 

reduced pressure and AcOEt (100 mL) was added and the solution was washed with a 1 M 

aqueous solution of KHSO4 (3 × 30 mL) and brine (20 mL). The organic phase was dried and 

concentrated, then the crude was purified by flash chromatography (eluent: 1:9, n-

Hexane/EtOAc) affording compound 161 (160 mg, 64% yield) as a white solid. 

Rf = 0.29 (1:9, n-Hexane/EtOAc); 1H NMR (400 MHz, CD2Cl2-d2) δ 8.45 (s, 1H), 8.25 (d, J = 

9.2 Hz, 2H), 7.78 – 7.71 (m, 3H), 7.43 – 7.36 (m, 4H), 7.29 (s, 1H), 7.27 – 7.20 (m, 9H), 7.18 

– 7.13 (m, 6H), 6.58 (d, J = 8.0 Hz, 1H), 5.24 (d, J = 2.0 Hz, 2H), 4.72 (ddd, J = 11.3, 8.1, 3.0 

Hz, 1H), 4.13 (dd, J = 8.7, 3.8 Hz, 1H), 3.93 (t, J = 8.1 Hz, 1H), 3.29 (q, J = 8.6 Hz, 1H), 2.97 

(d, J = 13.7 Hz, 1H), 2.65 (dd, J = 13.7, 2.8 Hz, 1H), 2.61 – 2.53 (m, 1H), 2.49 – 2.44 (m, 2H), 

2.43 – 2.38 (m, 2H), 1.98 (t, J = 2.5 Hz, 1H), 1.78 – 1.63 (m, 4H), 1.51 – 1.39 (m, 1H), 0.71 (d, 

J = 6.8 Hz, 3H), 0.40 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, CD2Cl2-d2) δ 172.40, 171.69, 

170.98, 170.92, 169.63, 156.16, 153.09, 146.03, 144.28, 139.84, 130.21, 130.14, 129.13, 

128.51, 127.66, 125.80, 122.54, 120.40, 83.43, 71.35, 71.29, 69.57, 62.26, 61.20, 48.32, 

48.14, 41.17, 35.25, 30.26, 29.42, 25.12, 19.96, 19.91, 15.00; MS (MALDI-TOF): m/z calcd for 

[C52H52NaN6O10]+: 944.00 [M + Na]+: found 944.21. 

Aliphatic alkyne-Asn(Trt)-Pro-Val-PABC-MMAE (162)  

 

Compound 161 (20 mg, 0.022 mmol, 1 equiv) and HOBt (2 mg, 0.011 mmol, 0.5 equiv) were 

dissolved in dry DMF under argon atmosphere. Commercial MMAE (19 mg, 0.026 mmol, 1.2 

equiv) was solubilized in dry DMF:Pyridine (4:1, 400 µL, reaction total volume) and DIPEA (4 

µL, 0.020 mmol, 0.9 equiv) and added to the starting material solution at 0 ºC, under argon 

atmosphere. Then, the mixture was allowed to reach room temperature and stirred over 
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weekend under argon atmosphere. The reaction mixture was diluted with AcOEt (100 mL) the 

solution was washed with a 1 M aqueous solution of KHSO4 (3 × 20 mL) and brine (20 mL). 

The organic phase was dried with Na2SO4 and concentrated, then the crude was purified by 

flash chromatography [gradient: from 98:2, CH2Cl2/MeOH to 95:5, CH2Cl2/MeOH] affording 

compound 162 (26 mg, 80% yield) as a white solid. 

Rf = 0.30 (95:5, CH2Cl2/MeOH); MS (ESI+): m/z calcd for [C85H115N10O14]+: 1499.85 [M + H]+; 

found: 1499.75; HRMS (ESI+): m/z calcd for [C85H114NaN10O14]+: 1521.84 [M + Na]+; found: 

1521.84; m/z calcd for [C85H114Na2N10O14]2+: 772.41 [M + 2Na]2+; found: 772.41. 

 

cyclo[DKP-RGD]-PEG-4-Asn-Pro-Val-MMAE (150) 

 

Alkyne 162 (15 mg, 0.01 mmol, 1 equiv) was solubilized in dry CH2Cl2 (0.75 mL) under nitrogen 

atmosphere. Et3SiH (75 µL) and TFA (375 µL) were added at 0 ºC. The reaction mixture stirred 

for 45 min at room temperature and then CH2Cl2 (10 mL) was added. The organic layer was 

washed with H2O (5 mL) and dried with Na2SO4. The CH2Cl2 was evaporated at rotavapor 

affording a white solid, which was used directly without purification. Resulting alkyne (13 mg, 

0.00952 mmol, 1.4 equiv) and azide 86 (6.9 mg, 0.0068 mmol, 1 equiv) were reacted following 

General Procedure GP3. The solvent was removed under vacuum, and the crude residue was 

purified by semipreparative HPLC [Waters Atlantis 21 mm x 10 cm column; gradient: 90% 

(H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% (CH3CN+0.1% CF3COOH) 

in 20 min; tR (product)=11.5 min]. The purified product was then freeze-dried to give the desired 

compound 150 as a white solid (9.5 mg, 45% yield). 

MS (MALDI-TOF): m/z calcd for [C103H156N23O27]+: 2148.45 [M + H]+; found: 2148.44; (SA 

matrix), 2148.51; HRMS (ESI+): m/z calcd for [C103H156N23O27]+: 2147.15 [M + H]+; found: 

2147.15; m/z calcd for [C103H156NaN23O27]2+: 1085.08 [M + Na + H]2+; found: 1085.07; m/z calcd 

for [C103H156Na2N23O27]3+: 731.05 [M + 2Na + H]3+; found: 731.04. 
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HPLC Traces of the Final Products 

cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX aliphatic scaffold (97) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: 98% 

 

cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX aromatic scaffold (102) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: 98% 

 

(cyclo[DKP-RGD]-PEG-4)2-Val-Ala-PTX (103) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 26 min. Purity: >99% 

 

(cyclo[DKP-RGD]-PEG-4)3-Val-Ala-PTX (104) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 
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(cyclo[DKP-RGD]-PEG-4)4-Val-Ala-PTX (105) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 

 

cyclo[DKP-RGD]-PEG-4-Asn-Pro-Val-PTX (121) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: 98% 

 

cyclo[DKP-RGD]-PEG-4-Asn-Pro-[D]-Val-PTX (123) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 

 

cyclo[DKP-RGD]-Uncleavable-PTX (124) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: 96% 
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Pro-PTX (142) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 

 

cyclo[DKP-RGD]-PEG-4-Val-Ala-MMAE (145) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 

 

HOOC-PEG-4-Val-Ala-MMAE (147) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 

 

cyclo[DKP-RGD]-Uncleavable-MMAE (148) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 
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HOOC-Uncleavable-MMAE (156) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 

 

cyclo[DKP-RGD]-PEG-4-Val-Ala-MMAF (146) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 

 

cyclo[DKP-RGD]-Uncleavable-MMAF (149) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: 97% 

 

cyclo[DKP-RGD]-PEG-4-Asn-Pro-Val-MMAE (150) 

Waters Atlantis 21 mm  10 cm column, gradient from 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 20 min. Purity: >99% 
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14-Azido-3,6,9,12-tetraoxatetradecanoic acid (91) 

1H NMR (400 MHz, CD2Cl2-d2) 

 

Azido-tetraethylene glycol-N-hydroxysuccinimidyl ester (92) 
1H NMR (400 MHz, CD2Cl2-d2) 
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cyclo[DKP-RGD]-PEG-4-N3 (86) 

1H NMR (400 MHz, D2O) 

  
13C NMR (101 MHz, D2O) 
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Aliphatic alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (94) 

1H NMR (500 MHz, [D]6DMSO), T= 70º C 

 
13C NMR (126 MHz, [D]6DMSO), T = 70 ºC 

  



 

 

158 Appendix of NMR Data 

Methyl 4-hydroxybenzoate (107) 

1H NMR (400 MHz, CD2Cl2-d2) 

 

Methyl 4-(prop-2-yn-1-yloxy)benzoate (108) 

1H NMR (400 MHz, CD2Cl2-d2) 
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4-(Prop-2-yn-1-yloxy)benzoic acid (109) 

1H NMR (400 MHz, CD3OD) 

 

Aromatic alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (118a) 

1H NMR (400 MHz, CD2Cl2-d2) 
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13C NMR (101 MHz, CD2Cl2-d2) 

 

Methyl 3,5-bis(propynyloxy)phenyl acetate (111) 
1H NMR (400 MHz, CDCl3) 
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13C NMR (101 MHz, CDCl3) 

 

3,5-bis(Propynyloxy)phenyl acetic acid (88) 

1H NMR (400 MHz, CD3OD) 
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Bis-alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (118b) 

1H NMR (400 MHz, CD3OD + [D]6DMSO) 

  
13C NMR (101 MHz, CD3OD + [D]6DMSO) 
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Methyl 2-(3,5-bis(2-((tert-butoxycarbonyl)amino)ethoxy)phenyl)acetate (112) 

1H NMR (400 MHz, CDCl3) 

 
13C NMR (101 MHz, CDCl3) 
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Methyl 2-(3-(2-(2-(3,5-bis(prop-2-yn-1-yloxy)phenyl)acetamido)ethoxy)-5-(2-(4-(prop-2-

yn-1-yloxy)benzamido)ethoxy)phenyl)acetate (116) 
1H NMR (600 MHz, CD2Cl2-d2) 

 
13C NMR (151 MHz, CD2Cl2-d2) 
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2-(3-(2-(2-(3,5-bis(Prop-2-yn-1-yloxy)phenyl)acetamido)ethoxy)-5-(2-(4-(prop-2-yn-1-

yloxy)benzamido)ethoxy)phenyl)acetic acid (89) 
1H NMR (500 MHz, CD3OD)

 

NMR (126 MHz, CD3OD), 13C-DEPT135 
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Tris-alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (118c) 

1H NMR (400 MHz, [D]6DMSO) 

 
13C NMR (101 MHz, [D]6DMSO) 
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Methyl 2-(3,5-bis(2-(2-(3,5-bis(prop-2-yn-1-yloxy)phenyl)acetamido)ethoxy)phenyl) 

acetate (117) 
1H NMR (400 MHz, CD2Cl2-d2) 

 
13C NMR (101 MHz, CD2Cl2-d2) 
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2-(3,5-bis(2-(2-(3,5-bis(Prop-2-yn-1-yloxy)phenyl)acetamido)ethoxy)phenyl)acetic acid (90) 

1H NMR (400 MHz, CD3OD)  

 
13C NMR (101 MHz, CD3OD) 
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Tetra-alkyne-Val-Ala-PABC-N-(Boc)-N,N′-dimethylethylenediamine (118d) 

1H NMR (400 MHz, [D]6DMSO)  

 
13C NMR (101 MHz, [D]6DMSO)  
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Fmoc-Asn(Trt)-Pro-OH (126) 
1H NMR (500 MHz, CD2Cl2-d2) 

 

Fmoc-Asn(Trt)-Pro-Val-OH (127) 

1H NMR (500 MHz, CD2Cl2-d2) 
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13C-DEPT45 NMR (126 MHz, CD2Cl2-d2) 

 

Fmoc-Asn(Trt)-Pro-Val-PABC-PNP (128) 

1H NMR (500 MHz, CD2Cl2-d2) 
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13C-APT NMR (126 MHz, CD2Cl2-d2) 

 

Fmoc-Asn(Trt)-Pro-Val-PABC-N-(Boc)-N,N′-dimethylethylenediamine (129)  

1H NMR (500 MHz, CD2Cl2-d2) 
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13C-APT NMR (126 MHz, CD2Cl2-d2) 

 

4-pentynamido-Asn(Trt)-Pro-Val-PABC-N-(Boc)-N,N′-dimethylethylenediamine (130)  

1H NMR (500 MHz, CD2Cl2-d2) 

 



 

 

174 Appendix of NMR Data 

13C-APT NMR (126 MHz, CD2Cl2-d2) 

 

Fmoc-[D]-Val-PABA (132) 

1H NMR (400 MHz, MeOD-d4) 
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Fmoc-Asn(Trt)-Pro-[D]-Val-PABC-PNP (135)  

1H NMR (400 MHz, CD2Cl2-d2) 

 

13C-APT NMR (101 MHz, CD2Cl2-d2) 
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Fmoc-Asn(Trt)-Pro-[D]-Val-PABC-N-(Boc)-N,N′-dimethylethylenediamine (136) 

1H NMR (400 MHz, MeOD-d4) 

 
13C-APT NMR (101 MHz, MeOD-d4) 
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4-pentynamido-Asn(Trt)-Pro-[D]-Val-PABC-N-(Boc)-N,N′-dimethylethylenediamine (137)  

1H NMR (400 MHz, CD2Cl2-d2) 

 
13C-APT NMR (101 MHz, CD2Cl2-d2) 
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tert-Butyl methyl(2-(N-methylpent-4-ynamido)ethyl)carbamate (140) 

1H NMR (400 MHz, CD2Cl2-d2) 

 
13C-APT NMR (101 MHz, CD2Cl2-d2) 
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Aliphatic alkyne-PTX (141) 

1H NMR (400 MHz, CDCl3-d) 

 
13C-APT NMR (101 MHz, CD2Cl2-d2) 
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PTX-N-(Boc)-N,N′-dimethylethylenediamine (143) 

1H NMR (400 MHz, CD2Cl2-d2) 

 
13C-APT NMR (101 MHz, CD2Cl2-d2) 
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Aliphatic alkyne-Val-Ala-PABA (152) 

1H NMR (400 MHz, MeOD-d4) 

 
13C-TOTAL NMR (101 MHz, MeOD-d4) 
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Aliphatic alkyne-Val-Ala-PABC-PNP (153)  

1H NMR (400 MHz, DMSO-d6) 

 
13C-TOTAL NMR (101 MHz, DMSO-d6) 
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Aliphatic alkyne-Asn(Trt)-Pro-Val-PABA (160) 

1H NMR (400 MHz, CD2Cl2-d2) 

 
13C-APT NMR (101 MHz, CD2Cl2-d2) 
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Aliphatic alkyne-Asn(Trt)-Pro-Val-PABC-PNP (161) 

1H NMR (400 MHz, CD2Cl2-d2) 

 
13C-APT NMR (101 MHz, CD2Cl2-d2) 
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