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Abstract: Focusing on point-scale random variables, i.e., variables whose support space

is given by the first m integers, we discuss how a desired value of Pearson’s correlation can

be induced between two assigned probability distributions, which are linked to a joint dis-

tribution via a copula function. After recalling how the value of the desired ρ is not free to

vary within [−1,+1], but is bounded to a narrower interval depending on the two marginal

distributions, we devise a procedure to recover the same feasible value ρ for different depen-

dence structures, focusing on one-parameter copulas encompassing the entire dependence

spectrum.
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1. Introduction

Datasets arising in the social sciences often contain ordinal variables. In

particular, Likert scale items are those where, given a statement, the subject

indicates strong agreement, agreement, neutrality, disagreement, or strong

disagreement. A relevant example derives from questionnaires about cus-

tomers’ satisfaction. Satisfaction can be regarded as a multidimensional latent

(i.e., unobservable) phenomenon, involving several aspects that can be usu-

ally measured using graded scales, such as “Very dissatisfied”, “Dissatisfied”,

“Neither satisfied nor dissatisfied”, “Satisfied” and “Very satisfied”. Likert

scales are often treated as interval scales, by scoring the ordered categories

using the integers 1, 2, 3, . . . ; this amounts to assuming that the categories

are evenly spaced. Though representing just an arbitrary assumption, it is

quite a common and accepted practice as well as proceeding to further mul-

tivariate statistical analyses handling them as (correlated) univariate discrete

variables.
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Now, one may be interested in building and simulating a multivariate ran-

dom vector whose univariate components are point-scale variables with as-

signed marginal distributions and whose pairwise correlations are chosen a

priori as well. In the following we will limit our analysis to the bivariate

case, which is by far easier to deal with, but whose results, with some cau-

tion, can be extended to the multivariate context. We consider two point

scale random variables (r.v.s), X1 and X2, defined over the support spaces

X1 = {1, 2, . . . ,m1} and X2 = {1, 2, . . . ,m2}, respectively, with probability

mass functions p1(i) = P (X1 = i), i = 1, . . . ,m1, and p2(i) = P (X2 =

j), j = 1, . . . ,m2. We want to determine some bivariate probability mass

function pij = P (X1 = i, X2 = j), i = 1, . . . ,m1; j = 1, . . . ,m2 such that

its margins are p1 and p2 and the correlation ρX1,X2 is equal to an assigned ρ.

In order to give an answer to this question, we have first to recall two prop-

erties of Pearson’s correlation, which applies to both the continuous and, to

even a larger extent, the discrete case; this is the topic of Section 2. In Section

3, we briefly recall how to build copula-based bivariate discrete distributions.

Section 4 is devoted to the description of the proposed procedure for inducing

a desired value of correlation between two point-scale variables. Section 5

illustrates an application to CUB distributions.

2. Attainable correlations between two random variables

A first important but often neglected feature of Pearson’s correlation is

that given two marginal cumulative distribution functions (c.d.f.s) F1 and F2

and a correlation value ρ ∈ [−1, +1], it is not always possible to construct

a joint distribution F with margins F1 and F2, whose correlation is equal

to the assigned ρ. We can state the following result, concerning “attainable

correlations” (see McNeil et al. 2005, pp.204-205). Let (X1, X2) be a random

vector marginal cdfs F1 and F2 and an unspecified joint cdf; assume also that

Var(X1) > 0 and Var(X2) > 0. The following statements hold:

1. The attainable correlations form a closed interval [ρmin, ρmax] with

ρmin < 0 < ρmax.

2. The minimum correlation ρ = ρmin is attained if and only if X1 and X2
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are countermonotonic. The maximum correlation ρ = ρmax is attained

if and only if X1 and X2 are comonotonic.

3. ρmin = −1 if and only if X1 and −X2 are of the same type, and ρmax =

1 if and only if X1 and X2 are of the same type.

For point-scale r.v.s X1 and X2, it is then clear that the maximum correlation

is +1 if and only if they are identically distributed; whereas the minimum

correlation can never be −1. The values ρmin and ρmax can be computed

by building the cograduation and countergraduation tables (see, Ferrari and

Barbiero, 2012, for an example of calculation).

A second fallacy of Pearson’s correlation can be resumed as follows: Given

two margins F1 and F2 and a feasible linear correlation ρ, the joint distribution

F having margins F1 and F2 and correlation ρ is not unique. In other terms,

the marginal distributions and pairwise correlations of a r.v. do not univocally

determine its joint distribution. Even if this second fallacy may represent a

limit from one side, on the other side represents a form of flexibility, since

it means that given two point-scale r.v.s and a consistent value of ρ, there

are different (possibly, infinite) ways to join them into a bivariate distribution

with that value of correlation, as we will see in the next two sections.

3. Generating bivariate discrete distributions via copulas

How can we generate from a bivariate distribution respecting the assigned

margins and correlation? Using copulas represent a straightforward solution.

A d-dimensional copula is a joint c.d.f. in [0, 1]d with standard uniform c.d.f.s

Uj , j = 1 . . . , d:

C(u1, . . . , ud) := P (U1 ≤ u1, . . . , Ud ≤ ud).

The importance of copulas in the study of multivariate c.d.f.s is summarized

by the Sklar’s theorem (see McNeil et al., 20005), whose version for d = 2

states that if F1 and F2 are the c.d.f.s of the point-scale r.v.s X1 and X2, the

function

F (i, j) = C(F1(i), F2(j)), i = 1, . . . ,m1; j = 1, . . . ,m2 (1)
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defines a valid joint c.d.f. over X1 × X2, whose margins are F1 and F2. The

only requirement we have to impose is that the copula C is able to encompass

the entire range of dependence, from perfect negative dependence (ρmin) to

perfect positive dependence (ρmax). Among copulas enjoying this property,

we recall the Gauss copula, the Frank copula, and the Plackett copula.

The Gauss copula

The d-variate Gauss copula is the copula that can be extracted from a d-

variate normal vector YYY with mean vector µµµ and covariance matrix Σ and is

exactly the same as the copula of XXX ∼ Nd(000, P ), where P is the correlation

matrix of YYY . In two dimensions, it can be expressed, for ρ 6= ±1, as:

CGa(u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
Ga

e
−

s21−2ρGas1s2+s22
2(1−ρ2) ds1ds2.

Independence, comonotonicity, and countermonotonicity copulas are special

cases of the bivariate Gauss copula (for ρGa = 0, ρGa = 1, and ρGa = −1,

respectively).

The Frank copula

The one-parameter bivariate Frank copula is defined as

CF (u1, u2; θ) = −
1

κ
ln

[

1 +
(e−κu1 − 1)(e−κu2 − 1)

e−κ − 1

]

,

with κ 6= 0. For κ → 0, we have that the Frank copula reduces to the in-

dependence copula; for κ → ∞, it tends to the comonotonicity copula; for

κ→ −∞, it tends to countermonotonicity copula.

The Plackett copula

The one-parameter bivariate Plackett copula is defined as

CP (u1, u2;κ) =
1 + (θ − 1)(u1 + u2)−

√

[1 + (θ − 1)(u1 + u2)]2 − 4θ(θ − 1)u1u2

2(θ − 1)
,
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with θ > 0. When θ = 1, it reduces to the independence copula, whereas

for θ → 0 it tends to the countermonotonicity copula and for θ → ∞ to the

comonotonicity copula.

4. Inducing a desired value of correlation between two point-scale random

variables

The bivariate p.m.f. corresponding to (1) can be computed as

p(i, j) = F (i, j)− F (i− 1, j)− F (i, j − 1) + F (i− 1, j − 1) (2)

Computing the correlation coefficient for a bivariate point-scale variable (2)

is very easy; since

ρx1x2 = (E(X1X2)− E(X1)E(X2))(Var(X1)Var(X2))
−1/2 (3)

with µ1 = E(X1) =
∑m1

i=1 ip1(i), Var(X1) =
∑m1

i=1(i− µ1)
2p1(i) (analogous

results hold for X2), and E(X1X2) =
∑m1

i=1

∑m2

j=1 ijp(i, j).

Once the marginal distributions of X1 and X2 are assigned, their cor-

relation coefficient ρX1,X2 will depend only on the copula parameter θ ∈

[θmin, θmax]; this relationship may be written in an analytical or numerical

form, say ρX1,X2 = g(θ). Since the function g is not usually analytically

invertible, inducing a desired value of correlation ρ between two point-scale

variables, falling in [ρmin, ρmax], by setting an appropriate value of the θ, is

a task that can be generally done only numerically, by finding the (unique)

root of the equation g(θ) − ρX1,X2 = 0. If ρX1,X2 is a monotone increasing

function of the copula parameter, it can be implemented by resorting to the

following iterative procedure (see Ferrari and Barbiero, 2012; Barbiero and

Ferrari, 2015b):

1. Set θ(0) = θΠ (with θΠ being the value of θ for which the copula C

reduces to the independence copula); ρ(0) = 0.

2. Set t = 1 and θ = θ(t), with θ(t) some value strictly greater (smaller)

than θ(0) if ρ > (<)0

3. Compute F (i, j; θ(t)) using (1)
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4. Compute p(i, j; θ(t)) using (2)

5. Compute ρ(t) using (3)

6. If |ρ(t) − ρ| < ǫ stop; else

set t← t + 1,

θ(t) ← min(θmax, θ
(t−1) + m(ρ− ρ(t−1))) if ρ > 0, or

θ(t) ← max(θmin, θ
(t−1) + m(ρ− ρ(t−1))) if ρ < 0,

with m =
θ(t−1) − θ(t−2)

ρ(t−1) − ρ(t−2)
; go back to 3.

The above heuristic algorithm makes sense if g is a monotone increasing func-

tion, which is often the case: for the Gauss, Frank, and Plackett copulas, the

linear correlation is an increasing function of the dependence parameter θ,

keeping fixed the two marginal distributions. The advantage of the proposed

algorithm stands in the two following (connected) features: i) in the capacity

of finding the appropriate value of θ without making use of any sample from

the two marginal distributions, ii) in the possibility of controlling a priori the

error ǫ (absolute difference between target and actual values of ρX1,X2); set-

ting ǫ equal to 10−7 generally allows to recover θ in a few steps.

Existing procedures for solving the same problem are available in the lit-

erature, but do not enjoy the two features above mentioned. For example, the

proposal by Demirtas (2006), requires the preliminary generation of a “huge”

bivariate sample of binary data.

5. Application to CUB random variables

A CUB r.v. X is defined as the mixture of a shifted Binomial and a discrete

Uniform distribution over the support {1, 2, . . . ,m}, for m > 3 (Piccolo,

2003). Its probability mass function is

P (X = i) = π

(

m− 1

i− 1

)

ξm−j(1− ξ)j−1 + (1− π)
1

m

with (π, ξ) a parameter vector with the parametric space (0, 1]× [0, 1].

Corduas (2011) proposed using the Plackett distribution in order to con-

struct a one parameter bivariate distribution from CUB margins; this proposal
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was later investigated by Andreis ad Ferrari (2012), also in a multivariate

direction. Here, we reprise and extend these attempts of constructing a bivari-

ate CUB r.v. Let suppose we want to build a bivariate model with margins

X1 ∼ CUB(m1 = 5, π1 = 0.4, ξ1 = 0.8) and X2 ∼ CUB(m2 = 5, π2 =

0.7, ξ2 = 0.3); we can find the values of the attainable correlations using

the function corrcheck in GenOrd (Barbiero and Ferrari, 2015a). It returns

as minimum and maximum correlations the values ρmin = −0.952003 and

ρmax = 0.8640543. We can then proceed and select a desired feasible value of

correlation between the two CUB variates, say ρ = 0.6. We can then recover

the values of ρGa (for the Gauss copula), κ (for the Frank copula), and θ (for

the Plackett copula), according to the iterative procedure illustrated in the pre-

vious section. Setting ǫ = 10−7, we obtain ρGa = 0.6898959, κ = 5.453455,

and θ = 11.30106. The three joint p.m.f.s, sharing the same level of linear

correlation, are reported in Table 1. It is easy to notice the differences among

them. For example, the probability P (X1 = 2, X2 = 3) takes the values

0.0922, 0.0948, and 0.1008, in the three joint distributions.
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Table 1. Bivariate distribution with margins X1 ∼ CUB(m1 = 5, π1 =
0.4, ξ1 = 0.8) and X2 ∼ CUB(m2 = 5, π2 = 0.7, ξ2 = 0.3) and ρx1x2 = 0.6,
obtained based on different copulas

(x1, x2) 1 2 3 4 5 total

1 0.0553 0.0711 0.0959 0.0551 0.0065 0.2838

2 0.0088 0.0317 0.0922 0.1178 0.0333 0.2838

3 0.0013 0.0077 0.0377 0.0869 0.0479 0.1814

4 0.0002 0.0020 0.0150 0.0566 0.0565 0.1302

5 0.0000 0.0004 0.0045 0.0319 0.0838 0.1206

total 0.0657 0.1129 0.2452 0.3481 0.2281 1

(a) Gauss copula

(x1, x2) 1 2 3 4 5 total

1 0.0498 0.0744 0.1042 0.0483 0.0071 0.2838

2 0.0126 0.0297 0.0948 0.1167 0.0300 0.2838

3 0.0022 0.0060 0.0301 0.0916 0.0515 0.1814

4 0.0007 0.0019 0.0108 0.0548 0.0621 0.1302

5 0.0003 0.0009 0.0053 0.0366 0.0775 0.1206

total 0.0657 0.1129 0.2452 0.3481 0.2281 1

(b) Frank copula

(x1, x2) 1 2 3 4 5 total

1 0.0518 0.0775 0.1001 0.0439 0.0105 0.2838

2 0.0093 0.0251 0.1008 0.1221 0.0266 0.2838

3 0.0025 0.0060 0.0276 0.1004 0.0450 0.1814

4 0.0012 0.0026 0.0105 0.0532 0.0627 0.1302

5 0.0008 0.0018 0.0062 0.0285 0.0833 0.1206

total 0.0657 0.1129 0.2452 0.3481 0.2281 1

(c) Plackett copula
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