A SIMPLE PROPERTY OF THE WEYL TENSOR FOR A SHEAR, VORTICITY AND ACCELERATION-FREE VELOCITY FIELD

LUCA GUIDO MOLINARI AND CARLO ALBERTO MANTICA

Abstract

We prove that, in a space-time of dimension $n>3$ with a velocity field that is shear-free, vorticity-free and acceleration-free, the covariant divergence of the Weyl tensor is zero if and only if the contraction of the Weyl tensor with the velocity is zero. This extends a property found in Generalised Robertson-Walker spacetimes, where the velocity is also eigenvector of the Ricci tensor. Despite the simplicity of the statement, the proof is involved. As a product of the same calculation, we introduce a curvature tensor with an interesting recurrence property.

1. Introduction

A shear-free, vorticity-free and acceleration-free velocity field u_{k}, has covariant derivative

$$
\begin{equation*}
\nabla_{i} u_{j}=\varphi\left(g_{i j}+u_{i} u_{j}\right) \tag{1}
\end{equation*}
$$

where φ is a scalar field, and $u_{k} u^{k}=-1$. For such a vector field we prove the following results for the Weyl tensor, in space-time dimension $n>3$:

Theorem 1.1.

$$
\begin{equation*}
\nabla_{m} C_{j k l}{ }^{m}=0 \Longleftrightarrow u_{m} C_{j k l}{ }^{m}=0 \tag{2}
\end{equation*}
$$

Next, we introduce the following tensor, where $E_{k l}=u^{j} u^{m} C_{j k l m}$ is the electric part of the Weyl tensor:

$$
\begin{array}{r}
\Gamma_{i k l m}=C_{i k l m}-\frac{n-2}{n-3}\left(u_{i} u_{m} E_{k l}-u_{k} u_{m} E_{i l}-u_{i} u_{l} E_{k m}+u_{k} u_{l} E_{i m}\right) \tag{3}\\
-\frac{1}{n-3}\left(g_{i m} E_{k l}-g_{k m} E_{i l}-g_{i l} E_{k m}+g_{k l} E_{i m}\right)
\end{array}
$$

Theorem 1.2. $\Gamma_{j k l m}$ is a generalised curvature tensor, it is totally trace-less and:

$$
\begin{gather*}
u^{m} \Gamma_{j k l m}=0 \tag{4}\\
u^{p} \nabla_{p} \Gamma_{j k l m}=-2 \varphi \Gamma_{j k l m} \tag{5}
\end{gather*}
$$

The tensor is zero in $n=4$.
The proofs make use of various properties of "twisted" space-times, that were introduced by B. Y. Chen [3] as a generalisation of warped space-times:

$$
\begin{equation*}
d s^{2}=-d t^{2}+f^{2}(\vec{x}, t) g_{\mu \nu}^{*}(\vec{x}) d x^{\mu} d x^{\nu} \tag{6}
\end{equation*}
$$

[^0]$f>0$ is the scale factor and $g_{\mu \nu}^{*}$ is the metric tensor of a Riemannian sub-manifold of dimension $n-1$. If f only depends on time, the metric is warped and the spacetime is a Generalized Robertson-Walker (GRW) space-time [2, 4, 10]. Chen [5] and the authors [11] gave covariant characterisations of twisted space-times; the latter reads: a space-time is twisted if and only if there exists a time-like unit vector field u^{i} with the property (1).
The space-time is GRW if u^{i} is also eigenvector of the Ricci tensor [10]; it is RW with the further condition that the Weyl tensor is zero, $C_{j k l m}=0$.

The next two short sections collect useful results on twisted space-times, and about the Weyl tensor in $n=4$.

2. TWisted space-times

We summarise some results on twisted space-times, taken from ref. [11]:
i) the vector field u_{j} is unique (up to reflection).
ii) the vector field u_{j} is Weyl compatible (see [8] for a general presentation):

$$
\begin{equation*}
\left(u_{i} C_{j k l m}+u_{j} C_{k i l m}+u_{k} C_{i j l m}\right) u^{m}=0 \tag{7}
\end{equation*}
$$

This classifies the Weyl tensor as purely electric with respect to $u_{j}[6]$.
A contraction gives the useful property:

$$
\begin{equation*}
C_{j k l m} u^{m}=u_{k} E_{j l}-u_{j} E_{k l} \tag{8}
\end{equation*}
$$

where $E_{j k}=C_{i j k l} u^{i} u^{l}$. It follows that $C_{j k l m} u^{m}=0$ if and only if $E_{i j}=0$.
iii) the Ricci tensor has the general form

$$
\begin{equation*}
R_{j k}=\frac{R-n \xi}{n-1} u_{j} u_{k}+\frac{R-\xi}{n-1} g_{j k}+(n-2)\left(u_{j} v_{k}+u_{k} v_{j}-E_{j k}\right) \tag{9}
\end{equation*}
$$

where $R=R_{k}^{k}, \xi=(n-1)\left(u^{p} \nabla_{p} \varphi+\varphi^{2}\right)$, and $v^{k}=\left(g^{k m}+u^{k} u^{m}\right) \nabla_{m} \varphi$ is a space-like vector.
iv) A twisted space-time is a GRW space-time if and only if $v_{j}=0$.

3. The Weyl tensor in four-dimensional space-times

The following algebraic identity by Lovelock holds in $n=4$ ([7], ex. 4.9):

$$
\begin{align*}
0 & =g_{a r} C_{b c s t}+g_{b r} C_{c a s t}+g_{c r} C_{a b s t} \tag{10}\\
& +g_{a t} C_{b c r s}+g_{b t} C_{c a r s}+g_{c t} C_{a b r s} \\
& +g_{a s} C_{b c t r}+g_{b s} C_{c a t r}+g_{c s} C_{a b t r}
\end{align*}
$$

It implies that $C_{a b c r} C^{a b c s}=\frac{1}{4} \delta_{r}{ }^{s} C^{2}$, where $C^{2}=C_{a b c d} C^{a b c d}$.
The contraction of (10) with $u^{c} u^{r}$, where u^{j} is any time-like unit vector, gives the Weyl tensor in terms of its contractions $u^{d} C_{a b c d}$ and $E_{a d}=u^{b} u^{c} C_{a b c d}$:

$$
\begin{array}{r}
C_{a b c d}=-u^{m}\left(u_{a} C_{m b c d}+u_{b} C_{a m c d}+u_{c} C_{a b m d}+u_{d} C_{a b c m}\right) \tag{11}\\
+g_{a d} E_{b c}-g_{b d} E_{a c}-g_{a c} E_{b d}+g_{b c} E_{a d}
\end{array}
$$

Proposition 3.1. If u^{m} is Weyl compatible, (7), in $n=4$ the Weyl tensor is wholly given by its electric component:

$$
\begin{array}{r}
C_{a b c d}=2\left(u_{a} u_{d} E_{b c}-u_{a} u_{c} E_{b d}+u_{b} u_{c} E_{a d}-u_{b} u_{d} E_{a c}\right) \tag{12}\\
+g_{a d} E_{b c}-g_{a c} E_{b d}+g_{b c} E_{a d}-g_{b d} E_{a c}
\end{array}
$$

and $C^{2}=8 E^{2}$, where $E^{2}=E_{a b} E^{a b}$.

Proof. The property (8) is used to simplify (11). Contraction with $u^{i} u^{j}$ of the identity $\frac{1}{4} C^{2} g_{i j}=C_{i a b c} C_{j}^{a b c}$ and (8) give: $-\frac{1}{4} C^{2}=\left(u^{i} C_{i a b c}\right)\left(u_{j} C^{j a b c}\right)=\left(u_{b} E_{c a}-\right.$ $\left.u_{c} E_{b a}\right)\left(u^{b} E^{c a}-u^{c} E^{b a}\right)$. Since $E_{c a} u^{c}=0$, the result is $-E_{c a} E^{c a}-E_{b a} E^{b a}=$ $-2 E^{2}$.

Corollary 3.2. In a twisted space-time in $n=4, C_{a b c d}=0$ if and only if $E_{a b}=0$.

4. The main results

In $n>3$ the second Bianchi identity for the Riemann tensor translates to an identity for the Weyl tensor [1]:

$$
\begin{array}{r}
\nabla_{i} C_{j k l m}+\nabla_{j} C_{k i l m}+\nabla_{k} C_{i j l m}=\frac{1}{n-3} \nabla_{p}\left(g_{j m} C_{k i l}^{p}+g_{k m} C_{i j l}^{p}\right. \\
\left.+g_{i m} C_{j k l}^{p}+g_{k l} C_{j i m}^{p}+g_{i l} C_{k j m}^{p}+g_{j l} C_{i k m}^{p}\right) . \tag{13}
\end{array}
$$

As a consequence of (13), as shown in the Appendix, we obtain the intermediate result:

Proposition 4.1. In a twisted space-time the divergence of the Weyl tensor is:

$$
\begin{align*}
\nabla_{p} C_{i k m}^{p}= & (n-3)\left(\nabla_{i} E_{k m}-\nabla_{k} E_{i m}\right) \tag{14}\\
& +(n-2)\left[u^{p} \nabla_{p}\left(u_{i} E_{k m}-u_{k} E_{i m}\right)+2 \varphi\left(u_{i} E_{k m}-u_{k} E_{i m}\right)\right] \\
& +\left(2 u_{k} u_{m}+g_{k m}\right) \nabla_{p} E_{i}^{p}-\left(2 u_{i} u_{m}+g_{i m}\right) \nabla_{p} E_{k}^{p}
\end{align*}
$$

Corollary 4.2. In a twisted space-time, if $\nabla^{p} C_{j k l p}=0$ then

$$
\begin{equation*}
\nabla_{p} E^{p k}=0 \quad \text { and } \quad u^{p} \nabla_{p} E_{k m}=-\varphi(n-1) E_{k m} \tag{15}
\end{equation*}
$$

Proof. Note the identity: $u^{m} \nabla_{p} C_{j k m}{ }^{p}=\nabla_{p}\left(u^{m} C_{j k m}{ }^{p}\right)=\nabla_{p}\left(u_{j} E_{k}{ }^{p}-u_{k} E_{j}{ }^{p}\right)=$ $u_{j} \nabla_{p} E_{k}{ }^{p}-u_{k} \nabla_{p} E_{j}{ }^{p}$. Then: $u^{k} u^{m} \nabla_{p} C_{j k m}{ }^{p}=\nabla_{p} E_{j}{ }^{p}$.
Another identity is: $u^{j} \nabla_{p} C_{j k m}{ }^{p}=\nabla_{p}\left(u^{j} C_{j k m}{ }^{p}\right)-\varphi E_{k m}=\nabla_{p}\left(u_{m} E^{p}{ }_{k}-u^{p} E_{m k}\right)-$ $\varphi E_{k m}=u_{m} \nabla_{p} E^{p}{ }_{k}-\varphi(n-1) E_{k m}-u^{p} \nabla_{p} E_{k m}$.
Together, the two identities imply the statements.
Now, we are able to extend to twisted space-times a property of GRW space-times (Theorem 3.4, [9]):

Theorem 1.1: In a twisted space-time of dimension $n>3$:

$$
\begin{equation*}
\nabla_{m} C_{j k l}{ }^{m}=0 \Longleftrightarrow u_{m} C_{j k l}{ }^{m}=0 \tag{16}
\end{equation*}
$$

Proof. If $u^{m} C_{j k l m}=0$ then $E_{k l}=0$ and $\nabla_{m} C_{j k l}{ }^{m}=0$ follows from (14). If $\nabla_{m} C_{j k l}{ }^{m}=0$, the identities (15) simplify eq.(14) as follows:

$$
0=(n-3)\left[\left(\nabla_{i} E_{k m}-\nabla_{k} E_{i m}\right)-(n-2) \varphi\left(u_{i} E_{k m}-u_{k} E_{i m}\right)\right]
$$

If $n>3$, a contraction with u^{i} gives: $0=u^{i} \nabla_{i} E_{k m}+\varphi E_{k m}$. This and the second implication in (15) mean that $E_{k l}=0$ i.e. $u^{m} C_{j k l m}=0$ by (8).

The final result (20) in the Appendix, suggests the introduction of the new tensor (3), that combines the Weyl tensor with the generalized curvature tensors obtained as Kulkarni-Nomizu products of $E_{i j}$ with $u_{i} u_{j}$ or $g_{i j}$.
It has the symmetries of the Weyl tensor for exchange and contraction of indices, as well as the first Bianchi identity (it is a generalized curvature tensor). Moreover
it is traceless, $\Gamma_{m b c}{ }^{m}=0$, and any contraction with u is zero.
The associated scalar $\Gamma^{2}=\Gamma_{a b c d} \Gamma^{a b c d}$ is evaluated:

$$
\begin{equation*}
\Gamma^{2}=C^{2}-4 \frac{n-2}{n-3} E^{2} \tag{17}
\end{equation*}
$$

By Prop. 3.1 this tensor is identically zero in $n=4$.
In dimension $n>4$, Theorem 1.2 is basically the result (20) of the long calculation in the Appendix.

Remark 4.3. The property $\Gamma_{a b c d} u^{d}=0$ means that in the frame (6), where $u^{0}=1$ and space components u^{μ} vanish, the components $\Gamma_{a b c d}$ where at least one index is time, are zero. Therefore, $\Gamma^{2}>0$ in $n>4$ and, for the same reason, $E^{2} \geq 0$. We conclude that the Weyl scalar is positive:

$$
\begin{equation*}
C^{2}=4 \frac{n-2}{n-3} E^{2}+\Gamma^{2} \geq 0 \tag{18}
\end{equation*}
$$

Appendix

Proposition 4.4. In a twisted space the following identities hold among the Weyl tensor and the contracted Weyl tensor:

$$
\begin{align*}
& \nabla_{p} C_{i k m}^{p}=(n-3)\left(\nabla_{i} E_{k m}-\nabla_{k} E_{i m}\right) \tag{19}\\
& \quad+(n-2)\left[u^{p} \nabla_{p}\left(u_{i} E_{k m}-u_{k} E_{i m}\right)+2 \varphi\left(u_{i} E_{k m}-u_{k} E_{i m}\right)\right] \\
& \quad+\left(2 u_{k} u_{m}+g_{k m}\right) \nabla_{p} E_{i}^{p}-\left(2 u_{i} u_{m}+g_{i m}\right) \nabla_{p} E_{k}^{p} \\
& \begin{array}{c}
(n-3)\left(u^{p} \nabla_{p} C_{i k l m}+2 \varphi C_{i k l m}\right) \\
=(n-2) \\
\quad \\
\quad+u^{p} \nabla_{p}\left(u_{i} u_{m} E_{k l}-u_{k} u_{m} E_{i l}-u_{i} u_{l} E_{k m}+u_{k} u_{l} E_{i m}\right) \\
\left.\quad+2 \varphi\left(u_{i} u_{m} E_{k l}-u_{k} u_{m} E_{i l}-u_{i} u_{l} E_{k m}+u_{k} u_{l} E_{i m}\right)\right] \\
\quad \nabla_{p}\left(g_{i m} E_{k l}-g_{k m} E_{i l}-g_{i l} C_{k m}+g_{k l} E_{i m}\right) \\
\left.\quad+2 \varphi\left(g_{i m} E_{k l}-g_{k m} E_{i l}-g_{i l} E_{k m}+g_{k l} E_{i m}\right)\right]
\end{array} \tag{20}
\end{align*}
$$

Proof. Contraction of (13) with u^{j} is:

$$
\begin{aligned}
u^{j} \nabla_{i} C_{j k l m}+ & u^{j} \nabla_{j} C_{k i l m}+u^{j} \nabla_{k} C_{i j l m}=\frac{1}{n-3}\left(u_{m} \nabla_{p} C_{k i l}{ }^{p}+u_{l} \nabla_{p} C_{i k m}{ }^{p}\right) \\
& +\frac{1}{n-3} \nabla_{p}\left[u^{j}\left(g_{k m} C_{i j l}{ }^{p}+g_{i m} C_{j k l}^{p}+g_{k l} C_{j i m}^{p}+g_{i l} C_{k j m}{ }^{p}\right)\right] \\
& -\frac{1}{n-3} \varphi u_{p} u^{j}\left(g_{k m} C_{i j l}{ }^{p}+g_{i m} C_{j k l}^{p}+g_{k l} C_{j i m}{ }^{p}+g_{i l} C_{k j m}{ }^{p}\right)
\end{aligned}
$$

Where possible, the vector u^{k} is taken inside covariant derivatives to take advantage of property (8)

$$
\begin{aligned}
& \nabla_{i}\left(u^{j} C_{j k l m}\right)-\varphi h_{i}^{j} C_{j k l m}+u^{j} \nabla_{j} C_{k i l m}+\nabla_{k}\left(u^{j} C_{i j l m}\right)-\varphi h_{k}^{j} C_{i j l m} \\
& =\frac{1}{n-3}\left(u_{m} \nabla_{p} C_{k i l}^{p}+u_{l} \nabla_{p} C_{i k m}^{p}\right)+\frac{1}{n-3} \nabla^{p}\left[g_{k m}\left(u_{p} E_{l i}-u_{l} E_{p i}\right)\right. \\
& +g_{i m}\left(u_{l} E_{p k}-u_{p} E_{l k}\right)+g_{k l}\left(u_{m} E_{p i}-u_{p} E_{m i}\right)+g_{i l}\left(u_{p} C_{m k}-u_{m} E_{p k}\right] \\
& +\frac{1}{n-3} \varphi\left[g_{k m} E_{i l}-g_{i m} E_{k l}-g_{k l} E_{i m}+g_{i l} E_{k m}\right]
\end{aligned}
$$

$$
\begin{array}{r}
\nabla_{i}\left(u_{l} E_{m k}-u_{m} E_{l k}\right)-\varphi C_{i k l m}-\varphi u_{i}\left(u_{l} E_{m k}-u_{m} E_{l k}\right)+u^{j} \nabla_{j} C_{k i l m} \\
+\nabla_{k}\left(u_{m} E_{l i}-u_{l} C_{m i}\right)-\varphi C_{i k l m}-\varphi u_{k}\left(u_{m} E_{l i}-u_{l} C_{m i}\right) \\
=\frac{1}{n-3}\left(u_{m} \nabla_{p} C_{k i l}+u_{l} \nabla_{p} C_{i k m}^{p}\right) \\
+\frac{1}{n-3} u^{p} \nabla_{p}\left[g_{k m} E_{l i}-g_{i m} E_{l k}-g_{k l} E_{m i}+g_{i l} C_{m k}\right] \\
+\frac{1}{n-3} \nabla^{p}\left[-g_{k m} u_{l} E_{p i}+g_{i m} u_{l} E_{p k}+g_{k l} u_{m} E_{p i}-g_{i l} u_{m} E_{p k}\right] \\
+\frac{n}{n-3} \varphi\left[g_{k m} E_{i l}-g_{i m} E_{k l}-g_{k l} E_{i m}+g_{i l} E_{k m}\right] \\
(n-3)\left[u_{l}\left(\nabla_{i} E_{m k}-\nabla_{k} E_{m i}\right)-u_{m}\left(\nabla_{i} E_{l k}-\nabla_{k} E_{l i}\right)-2 \varphi C_{i k l m}+u^{j} \nabla_{j} C_{k i l m}\right] \\
=\left(u_{m} \nabla_{p} C_{k i l}{ }^{p}+u_{l} \nabla_{p} C_{i k m}^{p}\right)+u^{p} \nabla_{p}\left[g_{k m} E_{l i}-g_{i m} E_{l k}-g_{k l} E_{m i}+g_{i l} C_{m k}\right] \\
-g_{k m} u_{l} \nabla^{p} E_{p i}+g_{i m} u_{l} \nabla^{p} E_{p k}+g_{k l} u_{m} \nabla^{p} E_{p i}-g_{i l} u_{m} \nabla^{p} E_{p k} \\
+2 \varphi\left[g_{k m} E_{i l}-g_{i m} E_{k l}-g_{k l} E_{i m}+g_{i l} E_{k m}\right]
\end{array}
$$

Contraction with u^{l} yields the first result, (19):

$$
\begin{array}{r}
\nabla_{p} C_{i k m}^{p}=(n-3)\left(\nabla_{i} E_{k m}-\nabla_{k} E_{i m}\right) \\
+(n-2)\left[u^{p} \nabla_{p}\left(u_{i} E_{k m}-u_{k} E_{i m}\right)+2 \varphi\left(u_{i} E_{k m}-u_{k} E_{i m}\right)\right] \\
+\left(2 u_{k} u_{m}+g_{k m}\right) \nabla_{p} E_{i}{ }^{p}-\left(2 u_{i} u_{m}+g_{i m}\right) \nabla_{p} E_{k}{ }^{p}
\end{array}
$$

which is used to replace the covariant divergences $\nabla_{p} C_{j k l}{ }^{p}$ in the previous expression

$$
\begin{array}{r}
(n-3)\left[u_{l}\left(\nabla_{i} E_{m k}-\nabla_{k} E_{m i}\right)-u_{m}\left(\nabla_{i} E_{l k}-\nabla_{k} E_{l i}\right)-2 \varphi C_{i k l m}+u^{j} \nabla_{j} C_{k i l m}\right] \\
=-u_{m}\left\{(n-3)\left(\nabla_{i} E_{k l}-\nabla_{k} E_{i l}\right)+(n-2)\left[u^{p} \nabla_{p}\left(u_{i} E_{k l}-u_{k} E_{i l}\right)+2 \varphi\left(u_{i} E_{k l}-u_{k} E_{i l}\right)\right]\right. \\
\left.+\left(2 u_{k} u_{l}+g_{k l}\right) \nabla_{p} E_{i}{ }^{p}-\left(2 u_{i} u_{l}+g_{i l}\right) \nabla_{p} E_{k}{ }^{p}\right\} \\
+u_{l}\left\{(n-3)\left(\nabla_{i} E_{k m}-\nabla_{k} E_{i m}\right)+(n-2)\left[u^{p} \nabla_{p}\left(u_{i} E_{k m}-u_{k} E_{i m}\right)+2 \varphi\left(u_{i} E_{k m}-u_{k} E_{i m}\right)\right]\right. \\
\left.+\left(2 u_{k} u_{m}+g_{k m}\right) \nabla_{p} E_{i}{ }^{p}-\left(2 u_{i} u_{m}+g_{i m}\right) \nabla_{p} E_{k}{ }^{p}\right\} \\
+u^{p} \nabla_{p}\left[g_{k m} E_{l i}-g_{i m} E_{l k}-g_{k l} E_{m i}+g_{i l} C_{m k}\right] \\
-g_{k m} u_{l} \nabla^{p} E_{p i}+g_{i m} u_{l} \nabla^{p} E_{p k}+g_{k l} u_{m} \nabla^{p} E_{p i}-g_{i l} u_{m} \nabla^{p} E_{p k} \\
+2 \varphi\left[g_{k m} E_{i l}-g_{i m} E_{k l}-g_{k l} E_{i m}+g_{i l} E_{k m}\right]
\end{array}
$$

Some derivatives cancel, and we are left with

$$
\begin{array}{r}
(n-3)\left[-2 \varphi C_{i k l m}-u^{p} \nabla_{p} C_{i k l m}\right] \\
=-u_{m}\left\{(n-2)\left[u^{p} \nabla_{p}\left(u_{i} E_{k l}-u_{k} E_{i l}\right)+2 \varphi\left(u_{i} E_{k l}-u_{k} E_{i l}\right)\right]\right\} \\
+u_{l}\left\{(n-2)\left[u^{p} \nabla_{p}\left(u_{i} E_{k m}-u_{k} E_{i m}\right)+2 \varphi\left(u_{i} E_{k m}-u_{k} E_{i m}\right)\right]\right\} \\
+u^{p} \nabla_{p}\left[g_{k m} E_{l i}-g_{i m} E_{l k}-g_{k l} E_{m i}+g_{i l} C_{m k}\right] \\
+2 \varphi\left[g_{k m} E_{i l}-g_{i m} E_{k l}-g_{k l} E_{i m}+g_{i l} E_{k m}\right]
\end{array}
$$

The final equation is obtained.

References

[1] T. Adati and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor (N.S.) 18 (1967) 348-354.
[2] L. Alías, A. Romero, and M. Sánchez, Uniqueness of complete space-like hypersurfaces of constant mean curvature in generalized Robertson-Walker space-times, Gen. Relativ. Gravit. 27 n. 1 (1995), 71-84.
[3] B-Y Chen, Totally umbilical submanifolds, Soochow J. Math. 5 (1979), 9-37.
[4] B-Y Chen, A simple characterization of generalized Robertson-Walker space-times, Gen. Relativ. Gravit. 46 (2014), 1833, 5 pp.
[5] B-Y Chen, Rectifying submanifolds of Riemannian manifolds and torqued vector fields, Kragujevac Journal of Mathematics 41 n. 1 (2017), 93-103.
[6] S. Hervik, M. Ortaggio and L. Wylleman, Minimal tensors and purely electric or magnetic space-times of arbitrary dimension, Class. Quantum Grav. 30 n. 16 (2013).
[7] D. Lovelock and H. Rund, Tensors, differential forms, and variational principles (1975, Dover reprint, 1989).
[8] C. A. Mantica and L. G. Molinari, Weyl compatible tensors, Int. J. Geom. Meth. Mod. Phys. 11 n .8 (2014), 1450070, 15 pp.
[9] C. A. Mantica and L. G. Molinari, On the Weyl and Ricci tensors of Generalized RobertsonWalker space-times, J. Math. Phys. 57 n. 10 (2016) 102502, 6pp.
[10] C. A. Mantica and L. G. Molinari, Generalized Robertson-Walker space-times, a survey, Int. J. Geom. Meth. Mod. Phys. 14 n. 3 (2017) 1730001, 27 pp.
[11] C. A. Mantica and L. G. Molinari, Twisted Lorentzian manifolds: a characterization with torse-forming time-like unit vectors, Gen. Relativ. Gravit. 49 (2017) 51.
L. G. Molinari (corresponding author): Physics Department, Università degli Studi di Milano and I.n.F.N. sez. Milano, Via Celoria 16, 20133 Milano, Italy - C. A. Mantica: I.I.S. Lagrange, Via L. Modignani 65, 20161, Milano, Italy, and I.N.F.N. Sez. Milano.

E-mail address: Luca.Molinari@unimi.it, Carlo.Mantica@mi.infn.it

[^0]: 2010 Mathematics Subject Classification. Primary 53B30, Secondary 83C20.
 Key words and phrases. Weyl tensor, twisted space-time, Generalized Robertson-Walker spacetime, torse-forming vector, generalized curvature tensor.

