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ABSTRACT. We prove that, in a space-time of dimension n > 3 with a veloc-
ity field that is shear-free, vorticity-free and acceleration-free, the covariant
divergence of the Weyl tensor is zero if and only if the contraction of the Weyl
tensor with the velocity is zero. This extends a property found in Generalised
Robertson-Walker spacetimes, where the velocity is also eigenvector of the
Ricci tensor. Despite the simplicity of the statement, the proof is involved.
As a product of the same calculation, we introduce a curvature tensor with an
interesting recurrence property.

1. INTRODUCTION

A shear-free, vorticity-free and acceleration-free velocity field wuy, has covariant
derivative

(1) Viu; = ¢ (gij + uit;)
where ¢ is a scalar field, and upu® = —1. For such a vector field we prove the

following results for the Weyl tensor, in space-time dimension n > 3:
Theorem 1.1.
(2) Vijklm =0 < uijkgm =0

Next, we introduce the following tensor, where Ejy; = ujuijklm is the electric
part of the Weyl tensor:

n—2
(3)  Tikim = Ciktm — — 3 (Wit Bt — upum Byt — witt Egm, + gt B, )
1
“n =3 (9imExt — gem Eit — it Ekm + griLim)
Theorem 1.2. I'ju., is a generalised curvature tensor, it is totally trace-less and:
(4) u"Tjgim =0
(5) UPVylkim = =200 jkim

The tensor is zero in n = 4.
The proofs make use of various properties of “twisted” space-times, that were
introduced by B. Y. Chen [3] as a generalisation of warped space-times:

(6) ds® = —dt* + f*(Z,t) g}, (&)dat dx”
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J > 0 is the scale factor and g, is the metric tensor of a Riemannian sub-manifold
of dimension n — 1. If f only depends on time, the metric is warped and the space-
time is a Generalized Robertson-Walker (GRW) space-time [2, 4, 10]. Chen [5] and
the authors [11] gave covariant characterisations of twisted space-times; the latter
reads: a space-time is twisted if and only if there exists a time-like unit vector field
u® with the property (1).
The space-time is GRW if u is also eigenvector of the Ricci tensor [10]; it is RW
with the further condition that the Weyl tensor is zero, Cjxim = 0.

The next two short sections collect useful results on twisted space-times, and
about the Weyl tensor in n = 4.

2. TWISTED SPACE-TIMES

We summarise some results on twisted space-times, taken from ref. [11]:
i) the vector field u; is unique (up to reflection).
ii) the vector field u; is Weyl compatible (see [8] for a general presentation):
(7) (wiCikim + 1 Critm + ukClijim)u™ = 0.
This classifies the Weyl tensor as purely electric with respect to u; [6].
A contraction gives the useful property:
(8) Cikimu™ = urpEj — uj By
where Ej, = Cijkluiul. It follows that Cjximu™ = 0 if and only if E;; = 0.
iii) the Ricci tensor has the general form
R—n¢ R—-¢
T Wtk ik + (= 2) (g + ukv; — Bji)

where R = RF, € = (n — 1)(uPVpp + ¢?), and vF = (g5 + uku™)V 0 is a
space-like vector.
iv) A twisted space-time is a GRW space-time if and only if v; = 0.

(9) Rjr =

3. THE WEYL TENSOR IN FOUR-DIMENSIONAL SPACE-TIMES
The following algebraic identity by Lovelock holds in n = 4 ([7], ex. 4.9):
(10) 0= garcbcst + gbrCcast + gcrcabst

+ gatcbcrs + gbtccars + gctcabrs
+ gastctr + gbsccatr + gcscabtr

It implies that Cgp.,Cc = i(STSCz, where C? = ClpeqC??.
The contraction of (10) with u®u”, where u/ is any time-like unit vector, gives the
Weyl tensor in terms of its contractions u?Clpeq and Euq = uPu¢Clpeq:

(11) Cabcd =—u" (uac’mbcd + ubCamcd + ucCabmd + udCabcm)
+gadEbc - gdeac - gachd + gbcEad

Proposition 3.1. If u™ is Weyl compatible, (7), in n = 4 the Weyl tensor is
wholly given by its electric component:

(12) Cabcd = 2(uaudEbc — UgUeFpqg + UpUcFaqg — ubudEac)
+9adEve — JacFod + goeFad — gvaFac
and C? = 8 E?, where E? = E,, B,
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Proof. The property (8) is used to simplify (11). Contraction with u‘u’ of the
identity $C?g;; = CiqpcC; and (8) give: —1C? = (u'Cigpe) (u;C7) = (upEeq —
UeFp)(uP B — u¢EY). Since E.uf = 0, the result is —E,,E° — Ey,E"
—2F2,

Ol

Corollary 3.2. In a twisted space-time inn =4, Capeq = 0 if and only if Eq, = 0.

4. THE MAIN RESULTS

In n > 3 the second Bianchi identity for the Riemann tensor translates to an
identity for the Weyl tensor [1]:

ViCikim + ViCritm + ViCijim = =5V p(9jmCrit® + grmCiji”
(13) +9imCiki” + 9k Ciim® + guCrim® + 951Cikm?).
As a consequence of (13), as shown in the Appendix, we obtain the intermediate

result:

Proposition 4.1. In a twisted space-time the divergence of the Weyl tensor is:
(14) VCikm? = (n = 3)(ViEkm — ViEim)

+ (n = 2)[uP V(i B — g Eim) + 20(wi Brn, — g, Eigy)]

+ Qugtm + gim) Vo Ei¥ — (2uitty, + gim ) VpEiP.

Corollary 4.2. In a twisted space-time, if VPCjpi, = 0 then
(15) VoEPE =0 and uPVpEpm = —p(n — 1) Egm

Proof. Note the identity: v™V,Cjgm? = Vp(u"Cjpm?) = Vy(u; Ex? — upE;P) =
u; VpER? —upV, EyP. Then: ukumVpCjkmp =V, E;P.

Another identity is: w?VpCigm? = V(W Cjxm?) — @ Erm = Vp(um EP g —uPEpy) —
OEpm = um VpEP — o(n — 1) Epp — uPVp By,

Together, the two identities imply the statements. (I

Now, we are able to extend to twisted space-times a property of GRW space-times
(Theorem 3.4, [9]):
Theorem 1.1: In a twisted space-time of dimension n > 3:

(16) Vijklm =0 << Uijklm =0

Proof. If u™Cjjim = 0 then Ej; =0 and V,,,Cji™ = 0 follows from (14).
If V;,Cj™ = 0, the identities (15) simplify eq.(14) as follows:

0= (n=3)(ViErm — ViEim) — (n — 2)p(u; Egm — g Eim)]

If n > 3, a contraction with u’ gives: 0 = u*V;Eyy + @Fkm. This and the second
implication in (15) mean that Ej; = 0 i.e. u™Cjpm = 0 by (8). ]

The final result (20) in the Appendix, suggests the introduction of the new tensor
(3), that combines the Weyl tensor with the generalized curvature tensors obtained
as Kulkarni-Nomizu products of E;; with u;u; or g;;.

It has the symmetries of the Weyl tensor for exchange and contraction of indices,
as well as the first Bianchi identity (it is a generalized curvature tensor). Moreover
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it is traceless, '}, = 0, and any contraction with u is zero.
The associated scalar T2 = T'ypeqI'?0¢? is evaluated:

n—2
n—3

(17) M=Cc?*-4 E?

By Prop. 3.1 this tensor is identically zero in n = 4.

In dimension n > 4, Theorem 1.2 is basically the result (20) of the long calculation
in the Appendix.

Remark 4.3. The property Tupeatt® = 0 means that in the frame (6), where uw =1
and space components u* vanish, the components I wpeq where at least one index is
time, are zero. Therefore, T2 > 0 in n > 4 and, for the same reason, E?> > 0. We
conclude that the Weyl scalar is positive:

-2
(18) 02 =4 "2 2412 >0
n—3
APPENDIX

Proposition 4.4. In a twisted space the following identities hold among the Weyl
tensor and the contracted Weyl tensor:
(19) VpCikm® = (n = 3)(ViErm — Vi.Eim)

+ (n — 2) [PV (w; Egm — ukEim) + 29 (Ui Egm — ug Eim)]

+ (2ukum + gkm)vaip — (Qul’um + gim)vakp

(20) (n = 3) (W VCikim + 2¢0Cikim)
= (n — 2)[uPV (wium Er — upum By — witg B, + uipw Biy)
+ 20(Uitm Ep — Ugtm By — wity B + urw By )]
+ [PV p(gimEri — grkm it — 9itCkm + gr1 Eim)
+ 20(gim Ext — gkm it — girExm + griEim)]

Proof. Contraction of (13) with u/ is:

WV Clim + 6V ;Critm + v ViCijim = =25 (um VpCrit” + wVpCigm”)
+ -V, [ (gem Ciji? + 9imCir® + guiClim? + giCrijm®)]
— Lo oupt? (GrmCiji” + gimCim” + griCiim® + 9itCrijm”)
Where possible, the vector u* is taken inside covariant derivatives to take advantage
of property (8)
Vi (4w Cirim) — 9] Ciim + wV jCitm + Vi (0 Cijim) — ol Cijim
= %_lg(umvpckilp + ulvpcikmp) + %_va [gkm (upEli - UlEpi)
+ gim(ulEpk: - upElk) + gkl(umEpi - upEmz) + gil(upcmk - U/mEpk:]
+ 5 0l9kmEit — GimErt — gt Eim + git Exm)
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Vi(wEpp — tmEi) — ¢Cikim — Ui (WEmk — wm Ei) + 0V Critm
+Vi(umEi — wChi) — ©Cikim — Uk (Um Epp — wiChryi)

= L (unVpCrit” + wV,Cikm”)

+ PV gem Eii — gim Bk — GriBmi + 9iComk

n—3

]
+ﬁvp[_gkmulEpi + gimulEpk + gklumEpi - gilumEpk]
+ 5 0l9km Eit — gim Eri — gk Eim + git Egm]

(n = 3)[w(ViBmk — ViEmi) — um(ViEu, — ViEy) — 20Cikim + Vi Clitm]
= (um VpChrit? + wiVypCirm?®) + PV plgkm Eri — gim Lk — gkt Emi + 91 Cmi]
= GkmW VP Epi + gimw VP Epk, + grium VP Epi — gium VP Epy
+20[gkm Eit — gim Erl — gkt Lim + git Eikm]
Contraction with u! yields the first result, (19):
VpCikm? = (n —3)(ViErm — ViEim)
+(n = 2)[uPV (Ui B — g Eim) + 20(Wi Bk — g Ein )]
+2uptm + gkm)VpEi? — (2uitty, + gim)Vp ER?
which is used to replace the covariant divergences V,Cji;” in the previous expres-
sion
(n = 3)[w(ViBmk = Vi Emi) = um(ViBy, — Vi Eri) = 20Cigim + 1V jChitm]
= —up{(n = 3)(ViEy — ViEu) + (n = 2)[u"Vy(wi B — wiEq) + 2¢0(u; B — up By
+(2upw + gr) VpE? — (2uuy + gia) Vp Ei'}
+u{(n —3)(ViErm — ViEim) + (n — 2)[uPVy, (w; Egm — ukEim) + 20w Egm — i Eim,)]
+(2uktm + gem) Ve Ei? — (20t + gim)VpERP}
+uPV [ gkmEri — Gim B — gk Emi + giCrmi]
—GkmW VP Epi + gimW VP Epi + gritm VP Epi — gittn VP Epy,
+20l9km Eit — gim Exl — gkt Eim + git Ekm]
Some derivatives cancel, and we are left with
(n = 3)[-2¢Cikim — vV Cikim]
= —up{(n — 2)[uPV,(w;Ex — upEi) + 20(u; By — wip By}
+u{(n — 2)[uP V(U Exm — ueEim) + 20(wi Egm — utEim) ]}
+uPVp [Gem Lri — Gim Bk — gk Emi + 9itCrmk]
+20[9km Eit — 9im Ext — gkt Eim + git Ekm]
The final equation is obtained. [
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