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ABSTRACT: The synthesis and second-order nonlinear optical (NLO) properties of seven novel fullerene-C60 derivatives 
are reported. In these Donor-bridge-Acceptor systems, the fullerene unit (Acceptor)  is connected through a cyclopropane 
group to an  ethynyl thienyl fragment (bridge) which binds a trimethylsilyl or platinum alkynyl fragment (Donor). All de-
rivatives are NLO-active, as determined by the Electric Field Induced Second Harmonic generation technique, but  the 
fullerene platinum alkynyl complexes are characterized by a particularly large second-order NLO response. Substitution 
of the thienyl fragment by a terthiophene leads to an increase of the NLO performance by using trimethylsilyl as Donor 
group whereas no effect is observed in the case of platinum derivatives. Remarkably, fullerene platinum alkynyl complex-
es  can be dispersed in polymethylmethacrylate or polystyrene affording NLO-active polymer films. 

INTRODUCTION 

Compounds with second-order nonlinear optical (NLO) proper-

ties are of great interest as molecular building block materials for 

optical communications, optical data processing and storage, or 

electro-optical devices.1 Very early in the search for second-order 

NLO-phores it was recognized that molecules consisting of donor 

and acceptor groups linked with an unsaturated bridge possessing 

polarizable π-electrons are particularly NLO-efficient. Among 

them, metal complexes are fascinating because they can offer ad-

ditional flexibility, when compared to organic compounds, due to 

the presence of NLO-active charge-transfer transitions between 

the metal and the ligands, usually at relatively low energy and of 

high intensity, tunable by virtue of the nature, oxidation state and 

coordination sphere of the metal center and even by the number of 

f electrons.2 In the last decade, metal σ-acetylides has been a 

widely investigated class of second-order NLO-phores, mainly 

developed by Humphrey et al.,3 where the metal acts as the donor 

group of a donor-acceptor system connected by a π-linker. A few 

years ago an Electric Field Second Harmonic generation (EFISH)4 

study showed that dipolar alkynyl ruthenium complexes with a 

phenyleneethynylene or phenylenevinylene bridge between a do-

nor “ClRu” moiety and a nitro acceptor group are characterized 

by high second-order NLO properties.5 Also, recently, some of us 

reported that a “phenylalkynyl-Ru” moiety behaves as a good do-

nor in various NLO-efficient push-pull architectures bearing an 

acceptor group such as methyl-cyanoacrylate or 2,1,3-

benzothiadiazole.6 Besides the photophysical properties of various 

Pt(II) acetylide complexes have been investigated,7 some of them 

being characterized by interesting third-order NLO properties 

such as two.photon absorption cross-sections8 or strong reverse 

saturable absorption.9 In addition some terpyridyl and cyclometal-

lated (dipyridyl)benzene platinum(II) complexes with a phenyl-

alkynyl ancillary ligand are characterized by a high, second-order 

NLO response, as determined by the Hyper-Rayleigh Scattering 

and EFISH techniques, where the “phenylalkynyl-Pt” moiety and 

the tridentate ligand act as a donor and an acceptor, respectively.10 

Based on the fact that platinum alkynyls are good donors in NLO-

active systems, the idea of a related hybrid with a C60-fullerene is 

highly intriguing because fullerene is an electron deficient com-

pound with exceptionally strong π-aromaticity.11 As a matter of 

fact it was shown that C60-fullerene is an excellent building block 

for NLO materials due to its strong acceptor properties and large 

polarizability.12 However, although elegant studies of the pho-

toinduced electron transfer reactions in both platinum(II) bis(N-

(4-ethynylphenyl)carbazole)bipyridine fullerene13 and plati-

num(II) bis(N-(4-ethynylphenyl)phenothiazine)bipyridine fuller-

ene14 complexes, of particular interest for the preparation of or-

ganometallic photovoltaic cells,15 have been reported, to the best 

of our knowledge, the second-order NLO properties of a push-pull 

system containing both a donor metal σ-acetylide moiety and a 

fullerene have never been investigated. These observations 

prompted us to prepare novel fullerene derivatives (1-2 Chart 1) 

where the C60 unit is connected through a cyclopropane group, 

which allows a facile electronic communication (periconjuga-

tion),16 to an ethynyl thienyl fragment chosen as π -delocalized 

bridge for binding the fullerene to the platinum center. Its second-

order NLO properties are presented here along with those of relat-

ed  platinum phenylalkynyl complexes. Besides, it is known that 

an increase of the π-delocalized bridge between the acceptor and 

donor groups can lead to an enhanced second-order NLO re-

sponse2 and that terthiophene is an interesting π-conjugated elec-

tron-releasing unit.17 Therefore the effect of the substitution of the 

thienyl fragment by a terthiophene was investigated, and the re-

sults are reported.  



 

 

Chart 1. Compounds investigated in this study for 
their second-order nonlinear optical properties. 
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RESULTS AND DISCUSSIONS 

The novel thiophene-substituted methanofullerenes 1 and  2 were 

prepared following the procedure reported for other methanofull-

erenes,18-20 by reaction of the suitable p-tosylhydrazone derivative 

with sodium methoxide and C60-fullerene. (Scheme 1) .  

The platinum derivatives 3-5 were synthesized by deprotection of 

1 and reaction with the opportune platinumacetylide complex in 

the presence of CuI and triethylamine (TEA) in dry toluene. 

 

Scheme 1. Synthesis of the methanofullerene deriva-
tives 1,2 and of the platinum complexes 3,4,5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex 7 was prepared in a similar manner from the 
new methanofullerene (6, Scheme 2, see Experimental 
Section). 

Scheme 2. Synthesis of the methanofullerene deriva-
tive 6 and of the platinum complex 7.Ale:Scrivere 6 
invece di 9 nella fig 

 

 

 

 

 

 

 

 

 
Table 1  Photophysical data and second-order NLO 
properties of compounds 1-7 

(a) In CH2Cl2  (b) in DMF at 1.907 µm; estimated uncer-
tainty in EFISH measurements is ±10%. (c) computed dipole 
moments in DMF. (d) the zero-frequency static quadratic 

hyperpolarizability β0 is -71, 114, -459, -205, -391, -331 and -547 
x10-30 esu for 1, 2, 3, 4, 5, 6, and 7, respectively, as calculated 

using the expression β0 = βEFISH(1- (2λmax/1907)
2
)(1-

(λmax/1907)
2
).

2c
        

Absorption  data of compounds 1-7 in solution are presented in 

Table 1. All compounds show bands in the range 255-332 nm as 

expected for thienyl fullerene derivatives,17 the platinum com-

plexes having an additional band at lower energy (355-482 nm) 

due to the alkynyl platinum moiety.6 6 is  also characterized by a 

band at 375 nm, typical of the terthiophene moiety.21      

Sample 

Absorptiona 
λmax / nm   

(ε / M–1 cm–1) 

µβEFISH

 

(×10-48 esu)
b
 

µ
 

(×10-18 esu)
c
 

βEFISH 
 

(×10-30 esu)d 

1 259 (95515),  

329 (33683) 
-350 4.22 -83 

2 
260 (94597) 

327 (35867) 
570 4.27 133 

3 

259 (74672),  

332 (34045),  

356 (33794) 

-3100 5.75 -539 

4 

259 (72220),  

331 (33320),  

355 (30600) 

-3200 13.33  -240 

5 

259 (73100),  

327 (30114),  

482 (1530) 

-2700 5.92 -456 

6 

260 (89900),  

330 (35462),  

375 (23215) 

-1400 3.61 -388 

7 

255 (87500),  

276 (74432), 

 296 (65910), 

 301 (64839),  

402 (1557) 

-3200 5.14 -623 
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We applied the EFISH method to study the NLO response in solu-

tion of compounds 1-7.  This technique4 can provide direct infor-

mation on the intrinsic molecular NLO properties, through 

γEFISH = (µβEFISH/5kT) +  γ(-2ω; ω, ω, 0) (1) 

where µβEFISH /5kT is the dipolar orientational contribution 
to the molecular nonlinearity, and γ(−2ω; ω, ω, 0), the third 
order polarizability, is a purely electronic cubic contribu-
tion to γEFISH which can usually be neglected when studying the 

second-order NLO properties of dipolar compounds. To obtain 

βEFISH, the projection along the dipole moment axis of the vectori-

al component of the tensor of the quadratic hyperpolarizability, it 

is necessary to know the dipole moment, µ. In the present study 

we used the theoretical dipole moments calculated in DMF as de-

scribed in the Experimental section (see also Supporting Infor-

mation). 

We  found  that  1, which has the trimethylsilyl fragment as weak 

inductive donor group,22 is characterized by a fair value of µβEFISH 

(-350 x 10–48 esu, see Table 1) working in DMF with a non-

resonant incident wavelength of 1.907 µm. The negative value of 

µβEFISH suggests a decrease of the excited state dipole moment 

with respect to the ground state.23 The NLO response increases by 

a factor of ca 9 upon formation of complexes 3 (µβEFISH = -3100 x 

10–48 esu) and 4 (µβEFISH = -3200 x 10–48 esu), due to an increase 

of both the dipole moment and the quadratic hyperpolarizability 

(see Table 1). However since the dipole moment of 3 is about half 

that of 4 a higher value of βEFISH (-539x10-30 esu) is reached when 

the two alkynyl moieties are in trans position, in agreement with a 

more efficient “push-pull” system. A slightly lower response is 

obtained by functionalization of the phenyl ring with a diphenyl-

amino substituent (complex 5), suggesting that the observed over-

all NLO response is the result of negative and positive contribu-

tions due to different NLO-active charge transfer transitions as 

previously observed for other platinum(II) complexes.10b This is 

confirmed by the effect of the trimethylsilyl removal from 1 to 

give 2 which changes the value and the sign of the βEFISH from -83 

to 133 x10-30 esu. The negative sign observed for 1 can reasonably 

be explained by the electron acceptor properties of the Si atom, 

through the low lying d orbitals,24 which can behave both as a do-

nor or acceptor like the platinum center. 

 Interestingly, in the presence of the trimethylsilyl fragment, sub-

stitution of the thiophene by a terthiophene leads to a fourfold in-

crease of the second order NLO response (compare 1 and 6, Table 

1) whereas a less significant increase is observed with the trans-

(triethylphosphine)2phenylacetilyde platinum moiety (compare 3 

and 7).  

The huge values of µβEFISH observed in the present work for the 

fullerene platinum alkynyl derivatives are remarkable for neutral 

metal complexes. Indeed, to our knowledge, complex 3 is charac-

terized by the highest absolute value of µβEFISH reported for a 

platinum alkynyl complex. Such a high value was reached for a 

fullerene ruthenium derivative, cis-Cl,trans-PPh3-[Ru(9-

fulleriden-4,5-diazafluorene)(PPh3)2Cl2], only.12b Various at-

tempts to prepare second-order NLO-active polymer films with 

this ruthenium complex failed. This observation prompted us to 

produce composite films of complexes 3 and 5 dispersed both in 

polymethylmethacrylate (PMMA) and polystyrene in order to 

study the Second Harmonic Generation (SHG) signal of the re-

sulting poled host-guest systems (see Experimental Section). 

The corona wire poling (65°C and 9.5 kV) of a PMMA film con-

taining complex 3 (4-6 wt % complex/PMMA) leads to a fair 

SHG signal, due to the orientation of the dipolar NLO-phores, 

which decreases rapidly when the electric field is switched off. By 

using 5 instead of 3 as NLO-phore, a twofold SHG signal is ob-

served. Substitution of PMMA by polystyrene as matrix for com-

plex 5 allows to double the SHG signal which however drops by a 

factor of 6 upon removal of the electric field with a final χ2
33 val-

ue of ca 0.5 pm/V.  

These preliminary data confirm the important role of the matrix 

whose specific functionalities can lead to host-guest and host-host 

interactions and affect the stability of the organized NLO mole-

cules.25 Clearly, the novel fullerene platinum alkynyl complexes 

presented here, in particular 5, are good candidates for the prepa-

ration of efficient second-order NLO-active polymer films. The 

next step will be to stabilize the NLO response for example by 

anchoring covalently the NLO-phores to the matrix in order to 

inhibit their movement and therefore the loss of their orientation 

upon removal of the electric field. In fact, the progressive fading 

of the NLO signal with time due to the loss of molecular orienta-

tion within the material is a quite general drawback of NLO-

active molecular materials that needs to be solved.  

CONCLUSIONS 

In summary, this work has confirmed the great potential of fuller-

ene as acceptor group in the design of second-order NLO-phores. 

Remarkably, its combination with a platinum alkynyl fragment as 

donor group leads to a huge second-order nonlinear optical re-

sponse. These novel  fullerene platinum alkynyl complexes are of 

particular interest as molecular building blocks for NLO devices 

because they can be easily dispersed and oriented in a 

polymethylmetacrylate or polystyrene matrix to give NLO-active 

thin films.   

EXPERIMENTAL SECTION 

General comments  
Solvents were dried by standard procedures: toluene was 

freshly distilled from Na/benzophenone under nitrogen atmos-
phere and triethylamine (TEA) was freshly distilled over KOH.  
All reagents were purchased from Sigma-Aldrich and were used 
without further purification.  Reactions requiring anhydrous or 
oxygen-free conditions were performed under nitrogen.  Thin-
layer chromatography (TLC) was carried out using pre-coated 
Merck F254 silica gel plates.  Flash chromatography was carried 
out with Macherey-Nagel silica gel 60 (230-400 mesh).  

1H and 13C spectra were recorded at 400 MHz on a Bruker 
AVANCE-400 instrument.  Chemical shifts (δ) for 1H and 13C 
spectra are expressed in ppm relative to internal Me4Si as stand-
ard.  Signals are abbreviated as s, singlet; d, doublet; t, triplet; q, 
quartet; m, multiplet.  Elemental analyses were performed using 
an Exeter Analytical E-440 analyser.  All the derivatives 1-7 were 
also characterized by UV-visible spectroscopy. 

Synthesis of 1 and 2(Scheme 1) 
The new methanofullerene 1 was prepared following proce-

dures reported for related compounds (see Scheme 1 of “Results 
and discussion”).18-20 A mixture of  the p-tosylhydrazone deriva-
tive (376.6 mg, 0.67 mmol, 1.2 equiv.), sodium methoxide (36.18 
mg, 0.67 mmol, 1.2 equiv.), and dry pyridine (6.7 mL) was stirred 
at room temperature for 30 min. Then a solution of  C60-
fullerene (396 mg, 0.55 mmol, 1 equiv.) in o-dichlorobenzene (39 
mL) was added, and the homogeneous reaction mixture was 
stirred at 80°C under nitrogen overnight. Then the mixture was 
refluxed for 24 h (180°C); after cooling to room temperature the 
solvent was evaporated at reduced pressure, and the residue was 
purified by column chromatography on silica gel with tolu-
ene/hexane 1/1 as eluent to give 1 as a pure product (yield 50%).  

1H-NMR (400 MHz, CDCl3), δ: 7.23 (1H, s), 3.71 (3H, s), 2.94 
(2H, J = 7.4 Hz, t), 2.79 (2H, J = 7.4 Hz, t), 2.59 (2H, J = 7.4 Hz, t), 
2.29-2.25 (2H, m), 1.70 (2H, J = 7.1 Hz, t), 1.34-1.29 (6H, m), 0.90 
(3H, J = 7.1 Hz, d), 0.30 (9H, s). 13C-NMR (100 MHz, CD2Cl2), δ: 



 

173.10, 148.24, 147.97, 147.39, 145.71, 145.22, 145.16, 144.81, 144.74, 
144.65, 144.59, 144.50, 144.20, 143.80, 143.01, 142.94, 142.15, 140.92, 
140.73, 139.19, 138.28, 138.13, 133.40, 118.94, 96.99, 79.65, 51.50, 
46.04, 33.72, 33.56, 31.63, 29.93, 29.56, 28.75, 22.72, 22.53, 13.98, 
0.35. Anal. Calcd. (%) for C81H32O2SSi: C 89.66, H 2.94. Found: C 
89.10, H 3.08. 

To a solution of 1 (282 mg, 0.26 mmol) in metha-
nol/dichlorometane 1/1 (22 mL), anhydrous K2CO3 (142.7 mg, 1.03 
mmol) was added under a nitrogen flow. The reaction mixture 
was left under stirring at room temperature overnight. The sol-
vent was removed under reduced pressure and the residue was 
diluted with CH2Cl2 and washed with water; the organic layer 
was dried over Na2SO4 and concentrated. The crude product was 
purified by flash chromatography, using hexane/toluene 1/1 as 
eluent, to give the free alkyne 2 as a brown solid (180 mg; yield 
64 %). 1H-NMR (400 MHz, CDCl3): 7.25 (1H, s), 3.72 (3H, s), 3.55 
(1H, s), 2.96 (2H, J = 7.7 Hz, t), 2.81 (2H, J = 7.7 Hz, t), 2.60 (2H, J 
= 7.2 Hz, t), 1.71 (2H, J = 7.2 Hz, t), 1.34-1.29 (6H, m), 0.89 (3H, s).   

13C-NMR (100 MHz, CDCl3), δ: 173.78, 148.58, 148.39, 147.62, 
146.01, 145.60, 145.43, 145.25, 145.04, 144.95, 144.64, 144.20, 143.45, 
143.38, 142.58, 142.54, 141.40, 141.19, 139.90, 138.59, 84.53, 79.84, 
34.16, 34.07, 32.05, 30.39, 29.97, 29.18, 23.10, 22.90, 14.55, 1.93. 
Anal. Calcd. (%) for C78H24O2: C 94.38, H 2.44. Found: C 94.01, H 
2.56. 
 
 Synthesis of Pt complexes 3-5  

To a solution of the opportune platinumacetylide complex (A, 
B or C; 0.075 mmol; Scheme 1) in dry toluene (13.5 mL) CuI 
(0.07mmol) and TEA (2.5 mL) were added. The mixture was 
cooled to 0°C and a solution of the alkyne (0.075 mmol) in tolu-
ene dry (1mL) was added. The reaction mixture was left under 
stirring at room temperature for 24 h. After filtration, the solvent 
was removed under reduced pressure. The residue was diluted 
with CH2Cl2 and washed with a 5% solution of NH4Cl and then 
with water. The organic layer was dried over Na2SO4 and the sol-
vent evaporated at reduced pressure. The crude product was pu-
rified by flash chromatography on silica gel with CH2Cl2/hexane 
1/1 as eluent to give the desired pure product.  

Pt complex 3 was obtained in 60 % yield starting from A (43.5 
mg), CuI (1.85 mg) and the alkyne (77 mg). 1H-NMR (400 MHz, 
CDCl3), δ: 7.40 (2H, J = 8.2 Hz, d), 7.30-7.25 (2H, m), 7.22 (1H, s) 
7.00 (1H, m),  3.55 (3H, s), 2.95 (2H, J = 9.5 Hz, t), 2.75 (2H, J = 7.4 
Hz, t), 2.60 (2H, J = 7.4 Hz, t), 2.37-2.35 (2H, m), 2.25-2.20 (12H, 
m), 2.09-2.08 (18H, m) 1.70 (2H, J = 7.1 Hz, t), 1.34-1.29 (6H, m), 
1.1-0.9 (3H, m). 13C-NMR (100 MHz, CD2Cl2), δ: 148.24, 147.97, 
147.39, 145.81, 145.22, 145.16, 144.81, 144.79, 144.62, 144.59, 144.50, 
144.20, 143.80, 143.01, 142.94, 142.15, 141.28, 140.62, 139.19, 138.28, 
138.19, 138.13, 133.40, 124.10, 123.70, 122.68, 51.50, 46.04, 33.72, 
33.56, 31.63, 29.93, 29.56, 28.75, 22.72, 22.53, 14.60, 13.98, 7.84 
Anal. Calcd. (%) for C98H58O2P2PtS: C 75.62, H 3.76. Found: C 
76.23, H 3.98. 

Pt complex 4 was obtained in 30 % yield starting from B 
(43.5mg), CuI (1.85 mg) and the alkyne (77 mg). 1H-NMR (400 
MHz, CDCl3), δ: 7.38 (2H, J = 8.2 Hz, d), 7.27-7.22 (2H, m), 7.18 
(1H, s) 7.00 (1H, m),  3.55 (3H, s), 2.95 (2H, J = 9.5 Hz, t), 2.75 
(2H, J = 7.4 Hz, t), 2.60 (2H, J = 7.4 Hz, t), 2.37-2.35 (2H, m), 2.20-
2.18 (12H, m), 2.05-2.03 (18H, m) 1.70 (2H, J = 7.1 Hz, t), 1.34-1.29 
(6H, m), 1.1-0.9 (3H, m). 13C-NMR (100 MHz, CD2Cl2), δ: 148.24, 
147.97, 147.39, 145.81, 145.22, 145.16, 144.81, 144.79, 144.62, 144.59, 
144.50, 144.20, 143.80, 143.01, 142.94, 142.15, 141.28, 140.62, 139.19, 
138.28, 138.19, 138.10, 138.13, 133.40, 124.10, 123.70, 122.68, 51.50, 
46.04, 33.72, 33.56, 31.63, 29.93, 29.56, 28.75, 22.72, 22.53, 14.58, 
13.71, 13.98, 8.25, 7.84. Anal. Calcd. (%) for C98H58O2P2PtS: C 
75.62, H 3.76. Found: C 74.98, H 4.02. 

Pt complex 5 was obtained in 50 % yield starting from C (56.4 
mg), CuI (1.85 mg) and the alkyne (77 mg). 1H-NMR (400 MHz, 
CDCl3), δ: 7.31-7.24 (8H, m), 7.15 (2H, J = 8.2 Hz, d), 7.12 (1H, s), 

7.10-7.08 (2H, m), 6.93 (2H, J = 8.2 Hz, d)  3.55 (3H, s), 2.95 (2H, J 
= 7.4 Hz, t), 2.75 (2H, J = 7.4 Hz, t), 2.60 (2H, J = 7.1 Hz, t), 2.30-
2.20 (12H, m), 2.05-2.00 (18H, m), 1.73 (2H, J = 7.1 Hz, t), 1.33-1.29 
(6H, m), 1.1-0.9 (3H, m). 13C-NMR (100 MHz, CDCl3), δ: 148.74, 
144.77, 145.81, 145.18, 145.17, 144.79, 144.62, 144.43, 144.13, 143.81, 
143.48, 143.00, 142.61, 142.11, 141.28, 140.86, 140.62, 140.26, 138.19, 
133.46, 129.15, 124.00, 122.62, 80.09, 51.42, 33.59, 31.86, 30.47, 
29.68, 29.08, 22.76, 22.56, 14.56, 13.91, 8.23, 7.82. 

Anal. Calcd. (%) for C110H67NO2P2PtS: C 76.64, H 3.92, N 0.81. 
Found: C 77.02, H 4.00, N 0.74. 

 
Synthesis of 9 (Scheme 2) 

The new methanofullerene 9 was prepared following the syn-
thetic pathway of 1. A mixture of p-tosylhydrazone derivative 
(63.8 mg, 0.11 mmol), sodium methoxide (6.0 mg, 0.11 mmol), 
and dry pyridine (1.1 mL) was stirred at room temperature for 30 
min. Then a solution of C60-fullerene (66 mg, 0.092 mmol) in o-
dichlorobenzene (6.4 mL) was added, and the homogeneous re-
action mixture was stirred at 80°C under nitrogen overnight. 
Then the mixture was refluxed for 24 h (180°C), after cooling to 
room temperature the solvent was evaporated at reduced pres-
sure, and the residue was purified by column chromatography 
on silica gel with toluene/hexane 1/1 as eluent to give 5 as a pure 
product (yield 40%).  

1H-NMR (400 MHz, CDCl3), δ: 7.43 (1H, J = 3.6 Hz d), 7.26 (1H, 
J = 3.6 Hz, d), 7.20-7.16 (3H, m), 7.06 (1H, J = 3.6 Hz, d), 3.71 (3H, 
s) 2.99 (2H, J = 7.7 Hz, t), 2.47 (2H, J = 7.7 Hz, t), 2.11 (2H, m), 
0.26 (9H, s).  13C-NMR (100 MHz, CD2Cl2), δ: 173.10, 148.24, 
147.97, 147.39, 145.71, 145.22, 145.16, 144.81, 144.74, 144.65, 144.59, 
144.52, 144.20, 143.80, 143.01, 142.94, 142.15, 140.92, 140.73, 139.19, 
138.28, 138.13, 134.01, 133.40, 132.80,  118.98, 96.97, 79.65, 51.50, 
46.04, 33.72, 33.56, 29.93, 29.56, 28.75, 0.35. Anal. Calcd. (%) for 
C84H24O2S3Si: C 84.83, H 2.03. Found: C 85.10, H 1.98. 

 
Synthesis of Pt complex 7  

The methanofullerene 9 (40 mg, 0.03 mmol) was dissolved in 
methanol/dichlorometane 1/1 (10 mL) and anhydrous K2CO3 was 
added under a flow of nitrogen (16 mg, 0.12 mmol ). The reaction 
mixture was left under stirring at room temperature overnight. 
The solvent was removed under reduced pressure and the resi-
due was diluted with CH2Cl2 and washed with water; the organic 
layer was dried over Na2SO4 and concentrated. The crude prod-
uct was purified by flash chromatography, using hexane/toluene 
1/1 as eluant, to give the free alkyne as a brown oil (25 mg; yield 
71 %). 

1H-NMR (400 MHz, CDCl3), δ: 7.45 (1H, J = 3.7 Hz d), 7.28 (1H, 
J = 3.7 Hz, d), 7.21-7.17 (3H, m), 7.06 (1H, J = 3.6 Hz, d), 3.71 (3H, 
s), 3.69 (1H, s), 2.99 (2H, J = 7.7 Hz, t), 2.47 (2H, J = 7.7 Hz, t), 2.11 
(2H, m). 

To a solution of complex A (9.6 mg, 0.017 mmol) in dry tolu-
ene (4.5 mL) CuI (2 mg, 0.01mmol) and TEA (0.5 mL) were add-
ed. The mixture was cooled to 0°C and a solution of the alkyne 
(20 mg 0.017 mmol) in dry toluene (1mL) was added. The reac-
tion mixture was left under stirring at room temperature for 24 
h, then the solvent was removed under reduced pressure. The 
residue was diluted with CH2Cl2 and washed with a 5% solution 
of NH4Cl and then with water. The organic layer was dried over 
Na2SO4 and the solvent removed. The crude product was puri-
fied by flash chromatography on silica gel with CH2Cl2/hexane 
2/3 as eluent to give the desired pure product 7 in 52% yield. 

1H-NMR (400 MHz, CDCl3), δ: 7.42 (1H, J = 3.6 Hz d), 7.40 (2H, 
J = 8.2 Hz, d), 7.35 (3H, m), 7.24 (1H, J = 3.6 Hz, d), 7.20-7.16 (3H, 
m), 7.06 (1H, J = 3.6 Hz, d), 3.70 (3H, s), 2.95 (2H, J = 9.5 Hz, t), 
2.75 (2H, J = 7.4 Hz, t), 2.60 (2H, J = 7.4 Hz, t), 2.25-2.20 (12H, m), 
2.09-2.08 (18H, m). 13C-NMR (100 MHz, CD2Cl2), δ: 148.24, 147.97, 
147.39, 145.71, 145.22, 145.16, 144.81, 144.76, 144.65, 144.57, 144.50, 
144.20, 143.80, 143.01, 142.94, 142.15, 140.92, 140.73, 139.19, 138.28, 



 

138.13, 134.05, 133.40, 132.81,  51.50, 46.04, 33.72, 33.56, 29.93, 
29.56, 28.75, 14.56, 7.84. Anal. Calcd. (%) for C101H50O2P2PtS3: C 
73.58, H 3.06. Found: C 74.66, H 2.96. 

  
Preparation of thin films  

Thin films of the complexes (3 or 5) dispersed in polymethyl-
methacrylate (PMMA) or polystyrene were prepared by spin 
coating a few drops of a dichloromethane solution (com-
plex/PMMA or polystyrene = 4-6 wt %, while PMMA or polysty-
rene = 10 wt % with respect to the solvent) on a glass substrate 
(thickness 1 mm) previously cleaned with water/acetone.  Pa-
rameters of spinning (RPM = revolutions per minute): RPM 1 = 
700; Ramp 1 = 1 s, Time 1 = 5 s; RPM 2 = 1000; Ramp 2 = 5 s, Time 
2 = 10 s; RPM 3 = 1000; Ramp 3 = 1 s, Time 3 = 10 s.15 

 
EFISH measurements 

EFISH measurements were carried out in DMF solutions at a 
concentration of 10–4 M for , with a non-resonant incident wave-
length of 1.907 µm, obtained by Raman-shifting the fundamental 
1.064 µm wavelength produced by a Q-switched, mode-locked 
Nd3+:YAG laser manufactured by Atalaser.  The apparatus used 
for EFISH measurements is a prototype made by SOPRA 
(France).  The μβEFISH values reported are the mean values of 16 
measurements performed on the same sample. The sign of μβ is 
determined by comparison with the solvent (DMF). 

 
SHG measurements 

Second Harmonic Generation (SHG) experiments were per-
formed using a Q-switched Nd:YAG (Quanta System Giant 
G790-20) laser at 1.064 μm wavelength with a pulse of 7 ns and 
20 Hz repetition rate.  For poling measurements, the fundamen-
tal beam (0.55 mJ for pulse) was polarized in the plane of inci-
dence (p-polarized) and focused with a lens (f = 600 mm) on the 
sample with an angle of about 55° in order to optimize the SHG 
signal.  The sample was placed over the hot stage whose temper-
ature was controlled by a GEFRAN 800, while the coronawire 
voltage was applied by a TREK610E high-voltage-supply. Rejec-
tion of the fundamental beam was performed by an interference 
filter and a glass cut-off filter, and the p-polarized SHG signal at 
532 nm was detected with a UV-Vis Hamamatsu C3830 photo-
multiplier tube. The corona poling process was carried out at 9.5 
kV while increasing the temperature at a rate of 2.3°C min–1 up 
to 65°C inside a specially built dry box, in N2 atmosphere.  The 
temperature was maintained at 65°C for 2 h and then decreased 
to room temperature. The setup for Maker fringe measurements 
was similar to the previous except that the fundamental beam 
was attenuated to 1 mJ for pulse and the sample was placed over 
a rotation stage.25 
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