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Introduction

In this thesis we provide an overview of a problem related to almost homo-

geneous separable Banach spaces; in particular we focus on the construction

of the Gurarĭı space due to J. Garbulińska and W. Kubís in [2] and some of its

consequences, giving a personal contribution to the state of the art (see [14]).

The initial goal was to build a new almost homogeneous separable Banach

space. In order to do that, we used the Garbulińska-Kubís construction, the

great advantage of that lying in its abstractness. In particular we tried to

produce some new sufficient conditions making such a construction suitable

to obtain the desired space. Even if this procedure appears very natural and

intuitive, we found some difficulties as we will explain later (see 4). For this

reason we did not get the expected result, but just a partial one.

In what follows, X is a real Banach space and all maps are assumed to

be linear.

Definition 0.1. X is 〈almost〉 homogeneous if for every finite-dimensional

subspace A of X, 〈for every ε > 0〉 and for every isometric embedding

f : A→ X , there exists a surjective isometry h : X → X such that h|A = f

〈‖f − h|A‖ ≤ ε〉.

Definition 0.2. X is 〈almost〉 transitive if for every one-dimensional

subspace A of X, 〈for every ε > 0〉 and for every isometric embedding f :

A → X , there exists a surjective isometry h : X → X such that h|A = f

〈‖f − h|A‖ ≤ ε〉.

The only known separable homogeneous (and transitive) Banach space is

the Hilbert space, and the question, known as the Banach-Mazur rotation
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Introduction iii

problem, is still open whether a separable Banach space with a transitive

norm needs to be isometric to a Hilbert space.

The situation related to almost homogeneous and almost transitive separa-

ble Banach spaces is different. In fact some example of such a spaces are

available, even if the situation is not yet completely clear.

It is known that spaces Lp[0, 1], 1 < p < ∞, are almost transitive, and

Lusky in [8] showed that if 1 ≤ p <∞ p 6= 4, 6, 8, . . ., for every A ⊆ Lp[0, 1]

finite-dimensional subspace for every ε > 0 and for every f : A → Lp[0, 1]

isometry, there exists h : X → X surjective ε−isometry such that f = h|A.

We investigate whether this property implies these spaces to be almost ho-

mogeneous.

Furthermore Lusky proved that every separable Banach space is 1-complemented

in some separable almost transitive Banach space ([9]).

A classical example of an almost homogeneous separable Banach space is

provided by the Gurarĭı space.

It is the only separable Banach space G such that given finite-dimensional

Banach spaces X ⊆ Y , given ε > 0, given an isometry f : X → G, there

exists an ε-isometry g : Y → G extending f .

No more almost homogeneous separable Banach spaces are known. More-

over, one of the constructions of the Gurarĭı space that appear in [2] can be

generalized. In fact this construction is based on a categorical approach to

the class of finite-dimensional Banach spaces as a category (here the objects

are the spaces and the arrows are ε-isometries). Hence that approach can

be followed when dealing with subclasses of the class of finite-dimensional

Banach space in order to construct other almost homogeneous spaces, pro-

vided that these subclasses have some analytic and geometrical properties,

as it is shown in [4] or in the section ’Final remarks and open problems’ in

[2] (Problem 7.12).

In this thesis we describe this categorical algorithm as well as the properties

that these subclasses must enjoy in order to construct new almost homoge-

neous spaces with a more analytic approach
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In particular let A be a class of finite-dimensional normed spaces. We

will focus on the amalgamation property, i.e. if X, Y, Z ∈ A, f : Z ↪→ X,

g : Z ↪→ Y are isometries, then there exist W ∈ A, F : Y ↪→ W and

G : X ↪→ W isometries such that G ◦ f = F ◦ g.

This property, in addition to the hereditarity (i.e. if Y ⊆ X and X ∈ A then

Y ∈ A) and the closure under the Banach-Mazur distance of A, is crucial for

A to be a good candidate for the construction of a new almost homogeneous

space.

Obviously the class H of all finite-dimensional Hilbert spaces enjoys all these

properties, and the algorithm applied to this class leads to the infinite-

dimensional separable Hilbert space. Hence finding new classes, different

from H, that enjoy such properties is necessary in order to find some new

almost homogeneous spaces.

On the other hand, just one way is known for amalgamate general finite-

dimensional normed spaces, that is W = X⊕1Y
∆

, where ⊕1 means the direct

sum with the norm defined as the sum of the norms on the two spaces and

∆ = {(f(z),−g(z)), z ∈ Z} (see the Pushout Lemma in [2]).

We prove that the minimal, hereditary and closed class of finite-dimensional

Banach spaces with the amalgamation property, that can be constructed

with this kind of amalgamation starting from a one dimensional space, is the

whole class of finite-dimensional normed spaces (we are preparating a paper

where this result is proved).

This result implies that, in order to apply the algorithm to a class A for the

construction of a new almost homogeneous space, it is necessary to find a

new way of amalgamating the spaces of A.



Chapter 1

Basic definitions and notions

Let us list here the basic notation which will be used in the thesis; for

the reader’s convenience some notation will also be recalled during the expo-

sition.

First of all, we will consider only Banach spaces over the real field and all

the maps considered are assumed to be linear, even if it will be not specified.

Given a Banach space X with norm ‖ · ‖ we denote BX := {x ∈ X :

‖x‖ ≤ 1} the closed unit ball of X and SX := {x ∈ X : ‖x‖ = 1} the unit

sphere.

Given a subset A of X, by 〈A〉 we denote the smallest linear subspace of

X that contains A.

Let 1 ≤ p ≤ ∞ and n ∈ N ∪ {∞}; we denote by Lp[0, 1] the classical

Lebesgue space of p-integrable (equivalence classes of) functions defined on

the interval [0, 1] with the usual norm; `np denotes the space of real sequences

of length n equipped with the usual norm.

If X and Y are two Banach spaces, X ⊕p Y denotes the direct sum of

X and Y endowed with the p-norm; that is the vector space of the pairs

{(x, y) : x ∈ X, y ∈ Y } with the norm ‖(x, y)‖X⊕pY := (‖x‖pX + ‖y‖pY )1/p,

where ‖ · ‖X and ‖ · ‖Y are the norms defined on X and Y respectively.

Given a linear map f : X → Y between two Banach spaces and 0 < ε < 1,

1
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we will say that:

• f is an isometry if ‖f(x)‖ = ‖x‖ for every x ∈ X,

• f is an ε−isometry if (1−ε)‖x‖ ≤ ‖f(x)‖ ≤ (1+ε)‖x‖ for every x ∈ X,

• f is a strict ε−isometry if (1− ε)‖x‖ < ‖f(x)‖ < (1 + ε)‖x‖ for every

x ∈ X, x 6= 0.

Note that an isometry is not necessarily surjective; in fact we will always

specify when we require the map to have this property.

On the other hand we will say that two Banach spaces are isometric if there

exists a surjective isometry between these two spaces and we will say that

they are isomorphic if they are linearly homeomorphic.

For a normed space X, X̂ denotes the completion of X, i.e. the smallest

Banach space that contains X.

If (Y, ||| · |||) is a normed space isomorphic to (X, ‖ · ‖), then the Banach-

Mazur distance between the two spaces is defined as

d((X, ‖ · ‖), (Y, ||| · |||)) =

= inf{‖T‖ · ‖T−1‖ : T isomorphism between (X, ‖ · ‖) and (Y, ||| · |||)}.

If X and Y are isometric then

d((X, ‖ · ‖), (Y, ||| · |||)) = 1,

but it is well known that the converse does not hold true.



Chapter 2

Almost transitive and almost

homogeneous normed spaces

Let X be a real normed space. We recall the definitions of homogeneous

space and of transitive space.

Definition 2.1. X is homogeneous if, for every finite-dimensional subspace

A of X and for every isometric embedding f : A→ X, there exists a surjec-

tive isometry h : X → X such that h|A = f .

Definition 2.2. X is transitive if for every x, y ∈ SX there exists a

surjective isometry h : X → X such that h(x) = y.

Obviously an homogeneous space is also transitive.

If dim(X) = n <∞ it is well known that the only possibility for X to be

transitive is that X is the n−dimensional Hilbert space.

As we said in the introduction, the only known separable transitive Ba-

nach space is the Hilbert space and the existence of other separable transi-

tive Banach spaces is still unknown. In other words, the following question

(Banach-Mazur rotation problem) is still open: ”Is every transitive separable

Banach space a Hilbert space?”

Concerning the nonseparable Banach spaces, in [10] Pelczynski and Rolewicz

showed the first published example of such a non Hilbert space that is tran-
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sitive.

In this thesis we are interested in the separable case, in particular in

separable Banach spaces that enjoy a weaker property, namely the almost

transivity.

In particular, there are some weaker definitions concerning the transitivity

and there are some separable spaces, different from the Hilbert ones, to which

these definitions apply.

We show briefly the situation related to this weaker properties; for a detailed

study we refer to [1].

Let G be the set of all surjective isometries from X to X: then X is

transitive if, for every x, y ∈ SX , we have y ∈ G(x), where G(x) = {f(x), f ∈
G} ⊆ SX . Using this notation we can give the following definition.

Definition 2.3. (Almost transitivity) X is almost transitive if there ex-

ists a dense subset D ⊆ SX such that G(x) = D for every x ∈ D.

There are some equivalent ways for defining almost transitivity.

Proposition 2.4. Let X be a normed space. The following are equivalent:

(i) X is almost transitive,

(ii) for every x, y ∈ SX and for every ε > 0 there exists f ∈ G such that

‖f(x)− y‖ ≤ ε,

(iii) for every x ∈ SX the set G(x) is dense in SX .

Proof. (i)⇒(ii) Fix x, y ∈ SX and ε > 0. Let x̃, ỹ ∈ D ε/2-close to x and y

respectively. The there exists f ∈ G such that f(x̃) = ỹ. Moreover

‖f(x)− y‖ ≤ ‖f(x)− f(x̃)‖+ ‖f(x̃)− y‖ ≤ ε/2 + ε/2 = ε.

(ii)⇒(iii) Obvious.

(iii)⇒(i) Fix x ∈ SX and define D := G(x). Let y ∈ D: we need to show

that G(y) = D.

By definiton of D there exists h ∈ G such that h(x) = y.

For z ∈ D there exists f ∈ G such that f(x) = z. Then f ◦ h−1 ∈ G and
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f(h−1(y)) = z, that means z ∈ G(y).

Now let z ∈ G(y): then there exists f ∈ G such that f(y) = z. Then

h ◦ f−1 ∈ G and h(f−1(z)) = x, so z ∈ D.

Another classical weaker definition is the following.

Definition 2.5. (Convex transitivity) X is convex transitive if, for every

x ∈ SX , the closure of the convex hull of G(x) coincides with BX .

From Proposition 2.4 it followos that almost transitivity implies convex

transitivity.

On the other hand, convex transitivity does not imply almost transitivity.

In fact let C0(L) the space of all continuous real functions vanishing at infin-

ity, for some locally compact Hausdorff topological space L. Then if C0(L)

is almost transitive, then L reduces to a singleton, while there are some ex-

amples of such spaces, with L different from a singleton, that are convex

transitive, for example if L = (0, 1).

Classical examples of transitive separable Banach spaces are the spaces

Lp[0, 1] with 1 < p <∞ as the following argument from [13] shows.

Let f ∈ Lp[0, 1] a norm-one function such that

ess inf|f | > 0

and consider the operator Tf : Lp[0, 1]→ Lp[0, 1] defined as follows:

Tf (h) := (h ◦ F ) · f , where F (x) :=

∫ x

0

|f(t)|pdt.

Note that Tf (1) = f , where 1 denotes the constant one function on [0, 1].

The operator Tf is an isometry into Lp[0, 1], in fact:

‖Tf (h)‖pp =

∫ 1

0

|h(F (t))f(t)|pdt =

=

∫ 1

0

|h(F (t))|pdF (t) = ‖h‖pp

since F is a strictly increasing function such that F (0) = 0 and F (1) = 1.

For the proof of surjectivity note that, since ess inf|f | 6= 0, the inverse map

of Tf turns out to be

T−1
f (h) =

h ◦ F−1

f ◦ F−1
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and it is well defined on the whole Lp[0, 1], hence Tf is a surjective isometry.

Now fix f, g ∈ Lp[0, 1] and ε > 0. Let fε, gε ∈ Lp[0, 1] such that

ess inffε, ess infgε > ε/4

and

‖f − fε‖, ‖g − gε‖ < ε/2.

U := Tgε ◦ T−1
fε

is a surjective isometry and U(fε) = gε. Hence

‖U(f)− g‖ ≤ ‖U(f)− U(fε)‖+ ‖U(fε)− g‖ < ε.

This completes the proof.

There are a lot of other examples of separable Banach spaces that are

almost transitive, even if their description is not available in the literature. In

fact Lusky in [9] proved the following theorem that states that every separable

Banach space is 1-complemented in some separable almost transitive Banach

space.

Theorem 2.6. Let X be a separable Banach space. Then there exist a sep-

arable almost transitive Banach space Z ⊃ X and a contractive projection

P : Z → X.

To prove the theorem we need the following lemma.

Lemma 2.7. Let Y be a separable Banach space. Let En ⊆ Y be a sequence

of subspaces of Y and let Tn : En → Y be isometries. Furthemore, assume

that for every n ∈ N there exist contractive projections Pn : Y → En and

Qn : Y → Tn(En). Then for every n ∈ N there exist a separable Banach space

Ỹ ⊇ Y , isometric extensions T̃n : Y → Ỹ of Tn and contractive projections

P : Ỹ → Y , Q̃n : Ỹ → T̃n(Y ).

Proof. (Lemma 2.7) Consider (⊕∞i=1Y )1 (endowed with the norm ‖(y1, y2, . . .)‖ =∑∞
i=1 ‖yi‖, for yi ∈ Y ) and let V be the closed linear span of the set of vectors

(−Tn(e), 0, . . . , 0, e
n+1

, 0, . . .)

where e ∈ En, n ∈ N.

Set Ỹ := (⊕∞i=1Y )1/V . An element of Ỹ is a class [(y1, y2, . . .)] = (y1, y2, . . .)+
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V . Since

‖y‖ ≤ inf{‖y −
∞∑
n=1

Tn(en)‖+
∞∑
n=1

‖en‖, en ∈ En, n ∈ N} ≤ ‖y‖

for every y ∈ Y , we can identify Y with the subspace spanned by the ele-

ments [(y, 0, 0, . . .)], y ∈ Y .

Let i : Y → Ỹ be the isometry such that i(y) = [(y, 0, 0, . . .)]. Then each

Tn can be seen as a map from En to Ỹ provided it is composed with the

embedding i.

Observe that [(Tn(e), 0, 0, . . .)] = [(0, 0, . . . , 0, e
n+1

, 0, . . .)] for every e ∈ En
and for every n ∈ N. So if we define for every y ∈ Y and n ∈ N

T̃n(y) := [(0, 0, . . . , 0, y
n+1

, 0, . . .)].

Each T̃n is an extension of Tn and for every y ∈ Y we have

‖y‖ ≥ inf{‖y − en‖+
∞∑
i=1
i 6=n

‖ei‖+ ‖
∞∑
i=1

Ti(ei)‖, ei ∈ Ei, i ∈ N}

≥ inf{‖y − en‖+ ‖Tn(en)‖+
∞∑
i=1
i 6=n

(‖ei‖ − ‖Ti(ei)‖), ei ∈ Ei, i ∈ N} ≥ ‖y‖.

Now for every yi ∈ Y and n ∈ N set

• P ′([(y1, y2, . . .)]) := [(y1, P1(y2), P2(y3), . . .)], then
∑∞

i=1 Ti ◦ Pi(yi+1)

converges, since

∞∑
i=1

‖Ti ◦ Pi(yi+1)‖ ≤
∞∑
i=2

‖yi‖ <∞.

So [(y1 +
∑∞

i=1 Ti ◦ Pi(yi+1), 0, 0, . . .)] = [(y1, P1(y2), P2(y3), . . . )], hence

P := i−1 ◦ P ′ satisfies the following

P ([(y1, y2, . . .)]) = y1 +
∞∑
i=1

Ti ◦ Pi(yi+1).

• Q̃n([(y1, y2, . . .)]) := [(Qn(y1 +
∑∞

i=1
i 6=n

Ti ◦Pi(yi+1)), 0, 0, . . . , 0, y
n+1

, 0, . . .)]
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It followos that

‖P‖ ≤ sup
i∈N
‖Pi‖ ≤ 1 and ‖Q̃n‖ ≤ sup

i∈N
‖Qn‖‖Pi‖ ≤ 1.

Proof. (Theorem 2.6) We want to construct a nested sequence of separa-

ble Banach spaces X = Y0 ⊆ Y1 ⊆ Y2 . . . with contractive projections

Rn : Yn → Y0 using the previous lemma, in order to obtain that the comple-

tion of the limit
⋃
n∈N Yn is almost transitive.

We start with X = Y0. Fix a countable dense subset D0 = {xi}i∈N of the

unit sphere of X and define:

Ω0 = {T : 〈x〉 → 〈y〉 , x, y ∈ D0}.

Obviously Ω0 is countable, hence we can consider it as a sequence of isometries

T 0
n , each one defined from a subspace 〈x〉 (x ∈ D0) to X. For every n ∈ N

let E0
n the domain of T 0

n .

For every n ∈ N the Hahn-Banach theorem provides us with contractive

projections P 0
n : Y0 → E0

n and Q0
n : Y0 → T 0

n(E0
n).

Then, from the previous lemma, there exist Y1 ⊇ Y0, T̃ 0
m : Y0 → Y1 isometries

that extend T 0
m, P 1 : Y1 → Y0 and Q̃0

m : Y1 → T̃ 0
m(Y0) contractive projections.

Let R1 = P 1.

Now for every m ∈ N put

• E1
m := T̃ 0

m(Y0),

• T 1
m := (T̃ 0

m)−1 : E1
m → Y1,

• Q1
m := P1 : Y1 → Y0 (Y0 = T 1

m(E1
m)),

• P 1
m := Q̃0

m : Y1 → E1
m.

Moreover, as we did for Y0, let D1 be a countable dense subset of the unit

sphere of Y1, Ω1 be the set of all isometries between one-dimensional sub-

spaces generated by the elements of D1. Consider {T 1
m}m∈N ∪ Ω1 the new

set of isometries with domain in {E1
m}m∈N ∪ {〈x〉 , x ∈ D1} and the relative

projections and apply again Lemma 2.7.
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At this way, we inductively construct the sequence {Yn}, with T̃ nm : Yn →
Yn+1 that are isometric extensions of the isometries defined between the one-

dimensional subspaces {〈x〉 , x ∈ Di for some i ≤ n}, and
⋃n
i=1Di is dense

in the unit sphere of
⋃n
i=1 Yi. Moreover, for every n ∈ N, Rn := P n ◦ P n−1 ◦

. . . ◦ P 1 : Yn → Y0 is a contractive projection.

Hence, passing to the limit, we obtain that the completion of
⋃
i∈N Yi is the

desired space.

No other examples of almost transitive separable space are known right

now.

Concerning the approximations of finite-dimensional isometries with sur-

jective isometries on the whole space one can investigate for wich spaces a

stronger property holds.

Definition 2.8. (Almost homogeneity) X is almost homogeneous if for

every finite-dimensional subspace A of X, for every ε > 0 and for every

isometric embedding f : A→ X , there exists a surjective isometry h : X →
X such that ‖f − h|A‖ ≤ ε.

Obviously almost homogeneity implies almost transitivity.

Lusky in [8] showed that if 1 ≤ p <∞, p 6= 4, 6, 8, . . ., for every A ⊆ Lp[0, 1]

finite-dimensional subspace, for every ε > 0 and for every isometry f : A→
Lp[0, 1] isometry, there exists h : X → X, h a surjective ε−isometry, such

that f = h|A.

In [12] Randrianantoanina showed that this property doesn’t hold for Lp[0, 1]

when p is not an even integer.

We don’t know whether this property implies the almost homogeneity, but

we can prove the converse.

Proposition 2.9. Let X be an almost homogeneous Banach space. Then

for every finite-dimensional subspace A ⊆ X, for every ε > 0 and for every

isometry f : A → X, there exists h : X → X, h a surjective ε−isometry,

such that f = h|A.

Before starting the proof we recall the following well known theorem.
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Theorem 2.10. (From Von Neumann series) The set of the invertible op-

erators between two Banach spaces is open in the topology induced by the

operator norm.

Proof. (Proposition 2.9) Fix A ⊂ X a finite-dimensional subspace. A is com-

plemented, that means that there exist X̃ ⊂ X, X̃ closed, with A∩ X̃ = {0}
such that for every x ∈ X there are x̃ ∈ X̃ and a ∈ A such that x = x̃ + a.

Moreover there exists a bounded propjection P : X → A.

Let f : A→ X be isometry, 0 < ε < 1/‖P‖ and (from the almost homogene-

ity) let F : X → X be an isometry such that ‖F |A − f‖ ≤ ε.

Define h : X → X in such a way: for every x ∈ X let x̃ ∈ X̃ and a ∈ A such

that x = x̃+ a and h(x) := F (x̃) + f(a).

h is linear, moreover it is an ε‖P‖−isometry. In fact for every x̃+a as before

we have

‖h(x̃+ a)‖ = ‖F (x̃) + f(a)‖ ≤ ‖F (x̃) + F (a)‖+ ‖f(a)− F (a)‖

≤ ‖x̃+ a‖+ ε‖a‖ = ‖x̃+ a‖+ ε‖P (x̃+ a)‖ ≤ ‖x̃+ a‖(ε‖P‖+ 1).

On the other hand, at the same way we get

‖F (x̃) + f(a)‖ ≥ ‖F (x̃) + F (a)‖ − ‖f(a)− F (a)‖ ≥ (1− ε‖P‖)‖x̃+ a‖.

Obviously h extends f on X. It remains to prove that h is surjective.

Since h is ε−close to F , if ε is suffecently small from theorem 2.10 we have

that h is invertible.

This complete the proof.

An example of almost homogeneous separable Banach space is the Gurarĭı

space, which will be studied in the next chapter.

There are no other examples of almost homogeneous separable Banach spaces,

but, as we observed in the introduction, there exists a general algorithm

that, when applied to certain subclass of the class B of all finite-dimensional

normed spaces, leads to the construction of spaces with these properties. So

the problem related to the research of such spaces can be restricted to the

study of some properties of B, as we will show in chapter 4.



Chapter 3

The Gurarĭı space

In [3] Gurarĭı introduces the notions of spaces of universal and almost-

universal disposition for a given class K of Banach spaces as follows.

Definition 3.1. Let K a class of Banach spaces.

• A Banach space U is said to be of almost universal disposition

for the class K if, given A,B ∈ K, A ⊆ B, any isometry f : A ↪→ U ,

and any ε > 0, there is an ε-isometry F : B → U such that F = f |A.

• A Banach space U is said to be of universal disposition for the

class K if, given A,B ∈ K, A ⊆ B, any isometry f : A ↪→ U , extends

to an isometry F : B → U .

From now on, let B the class of all finite-dimensional real normed spaces.

A Banach space that turns out to be of almost universal disposition for the

class B is called Gurarĭı space. In other words the following definition is

given.

Definition 3.2. A Gurariı̆ space (constructed by Gurarĭı [3] in 1965) is

a separable Banach space G satisfying the following condition:

(G) Given finite-dimensional Banach real spaces X ⊆ Y , given ε > 0,

given an isometry f : X ↪→ G there exists an ε−isometry g : Y → G
extending f .

It has been unknown for some time whether the Gurarĭı space is unique

up to surjective isometries; the question was answered in the affirmative by

11
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Lusky in [7] in 1976.

Very recently, Solecki and Kubís in [6] have found a simple and elementary

proof of the uniqueness of the Gurarĭı space. We show the arguments of this

proof in Section 3.2 below. We will see also that from the theorem of the

uniqueness of the Gurarĭı space it follows that this space is almost homoge-

neous.

In the next Section we show three different constructions of the Gurarĭı space,

due to Garbulińska and Kubís ([2] and [5]). The first has a more analytic

approach, while the second and the third are more abstract. In particular the

second one could be generalized in order to obtain other almost homogeneous

separable Banach space, as we will discuss in the next chapter.

On the other hand the spaces of universal disposition for B are called

strong Gurarĭı spaces.

No separable strong Gurarĭı space exist. In fact consider a separable Banach

space G, let {e1, e2} be the canonical basis of F = `2
1 and let E = 〈e1〉 its

one-dimensional subspace generated from {e1}.
Let x ∈ SG be a smooth point and f : E → G be the isometry such that

f(e1) = x, then it is obvious that there is no isometric extension h : F → G

since e1 is not smooth in F.

The situation concerning nonseparable Banach spaces of universal dis-

position for B is different: in fact there exist some spaces that satisfy this

property. For a depth study of non-separable case we refer to [2].

Before starting with the constructions and the proof of the uniqueness of

the Gurarĭı space, we need to show two important properties of the class B.

Lemma 3.3. (Pushout Lemma) Let Z,X, Y be Banach spaces, let i : Z ↪→ X

be an isometry and let f : Z → Y be an ε-isometry, with ε > 0. Then

there exist a Banach space W , an isometry j : Y ↪→ W and an ε-isometry

g : X → W under which the diagram

Y
j //W

Z

f

OO

i
// X

g

OO
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commutes.

Furthermore if X, Y are finite-dimensional, so W is finite-dimensional too.

Proof. For simplicity, let us assume that i is the inclusion Z ⊆ X. Define

W = (X ⊕ Y )/∆, where X ⊕ Y is endowed with the weighted `1 norm

‖(x, y)‖X⊕Y := (1 + ε)‖x‖X + ‖y‖Y ,

where ‖ · ‖X and ‖ · ‖Y are the norms of X and Y respectively, and ∆ =

{(z,−f(z)), z ∈ Z}. Let g and j be the quotients under the canonical em-

beddings, i.e. g(x) = (x, 0) + ∆ and j(y) = (0, y) + ∆ for x ∈ X, y ∈ Y .

Obviously g ◦ i = j ◦ f .

Observe that

‖g(x)‖ = inf
z∈Z

(
(1 + ε)‖x+ z‖X + ‖ − f(z)‖Y

)
≤ (1 + ε)‖x‖X .

Similarly,

‖j(y)‖ = inf
z∈Z

(
(1 + ε)‖z‖X + ‖y − f(z)‖Y

)
≤ ‖y‖Y .

It remains to estimate ‖g(x)‖ and ‖j(y)‖ from below.

Fix x ∈ X. Given z ∈ Z, we have

(1 + ε)‖x+ z‖X + ‖− f(z)‖Y ≥ (1− ε)
(
‖x+ z‖X + ‖− z‖X

)
≥ (1− ε)‖x‖X .

It follows that ‖g(x)‖ ≥ (1− ε)‖x‖X .

Now fix y ∈ Y . Given z ∈ Z, we have

(1 + ε)‖z‖X + ‖y − f(z)‖Y ≥ ‖f(z)‖Y + ‖y − f(z)‖Y ≥ ‖y‖Y .

Thus ‖j(y)‖ ≥ ‖y‖Y . This completes the proof.

The ”furthermore” part of the lemma follows from the construction of W , j

and g.

Lemma 3.3 is called Pushout Lemma since it turns out that the amalga-

mation constructed in the proof is the pushout of i and f in the category

of Banach spaces with linear operators of norm less than 1. Specifically,

given arbitrary bounded linear operators T : X → V , S : Y → V such that

T ◦ i = S ◦ f , there exists a unique linear operator h : W → V satisfying

h ◦ g = T and h ◦ f = S.

Note that in the Pushout Lemma, if f is an isometry, then g is too. We

will refer to this isometric version several times.
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Lemma 3.4. (Small distortion property) Let X and Y be Banach spaces, let

ε > 0 and let f : X → Y be an ε-isometry. Then there exist a Banach space

Z and isometries g : Y ↪→ Z, h : X ↪→ Z, such that ‖g ◦ f − h‖ ≤ ε.

In particular if X and Y are finite-dimensional, then Z is finite-dimensional

too.

Proof. Let Z = X ⊕ Y be endowed with the following norm:

‖(x, y)‖ := inf{‖x̃‖X + ‖ỹ‖Y + ε‖w‖X :

x = x̃+ w and y = ỹ − f(w), x̃, w ∈ X, y ∈ Y }

where ‖ · ‖X and ‖ · ‖Y are the norms on X and Y respectively.

It is easy to check that ‖ · ‖ is a norm on Z, since its unit ball is the convex

hull of

(BX × {0}) ∪ (BY × {0}) ∪ {(w, f(w) : w ∈ X, ‖w‖X ≤ 1/ε)}.

Let g and h the canonical embeddings of X and Y in Z. We have to show

that they are isometries.

Obviously ‖x‖X ≥ ‖h(x)‖ = ‖(x, 0)‖ and ‖y‖Y ≥ ‖g(y)‖ = ‖(0, y)‖. On the

other and, let x ∈ X \ {0}, then

‖(x, 0)‖ = inf{‖x̃‖X + ‖f(x− x̃)‖Y + ε‖x− x̃‖X , x̃ ∈ X}

≥ inf{‖x̃‖X + (1− ε)‖x− x̃‖X + ε‖x− x̃‖X} ≥ ‖x‖X .

In a similar way we can prove that ‖g(y)‖ ≥ ‖y‖Y , so h and g are isometries.

Now consider ‖g ◦ f(x)− h(x)‖ = ‖(x,−f(x))‖ and

‖(x,−f(x))‖ = inf{‖x̃‖X + ‖f(x̃)‖Y + ε‖x− x̃‖X} ≤ ε‖x‖X .

This complete the proof.

3.1 Three constructions

In this section we show three different kind of constructions of the Guraĭi

space from [2]. The first one has an essentially analytic approach, while the

second and third ones are more abstract (indeed the second one can be ex-

tended to other classes of spaces and needs a simple result of set theory).



3.1 Three constructions 15

The first two constructions are based on the density of the class of finite-

dimensional rational spaces in B.

Definition 3.5. We say that a finite-dimensional normed space E is rational

if it is isometric to some (Rn, ‖ · ‖) whose unit sphere is a polyhedron all ver-

tices of which have rational coordinates.

Equivalently, E is rational if, up to isometry, E = Rn with a ”maximum

norm” ‖·‖ induced by finitely many functionals ϕ1, . . . , ϕm such that ϕi(Qn) ⊆
Q for every i < m. More precisely, ‖x‖ = maxi{ϕi(x)} for x ∈ Rn.

Note that there are continuum many isometric types of finite-dimensional

Banach spaces. Thus, to check that a given Banach space is Gurarĭı one

should need to show the existence of suitable extensions of continuum many

isometries. Of course, that can be relaxed. One way to do it is to consider

the subclass of all rational spaces.

It is clear that there are (up to isometry) only countably many rational Ba-

nach spaces and for every ε > 0, every finite-dimensional space is ε-isometric

to some rational Banach space.

In what follow it is shown how B can be replaced by the class of rational

spaces.

Definition 3.6. A pair of Banach spaces E ⊆ F is called rational pair

if, up to isometry, F = Rn with a rational norm, and E ∩Qn is dense in E.

Note that, if E ⊆ F is a rational pair, then both E and F are rational

Banach spaces.

It is clear that there are, up to isometry, only countably many rational pairs

of Banach spaces.

Theorem 3.7. Let X be a Banach space. Then X is Gurarĭı if and only if

X satisfies the following condition.

(G)’ Given ε > 0 and a rational pair of spaces E ⊆ F , for every strict ε-

isometry f : E → X there exists an ε-isometry g : F → X such that

‖g|E − f‖ ≤ ε.

Furthermore, in condition (G)’ it suffices to consider ε from a given set

T ⊂ (0,+∞) with inf T = 0.
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Proof. Every Gurarĭı space satisfies (G)’ by definition.

Assume X satisfies (G)’.

Fix two finite-dimensional spaces E ⊆ F and fix an isometry f : E ↪→ X and

ε > 0.

Fix a linear basis B = {e1, . . . , em} in F so that B ∩ E = {e1, . . . , ek} is a

basis of E (so E is k-dimensional and F is m-dimensional).

Choose δ > 0 small enough. In particular, δ should have the property that

for every linear operators h, g : F → X, if maxi≤m ‖h(ei) − g(ei)‖ < δ then

‖h− g‖ < ε/3. In fact, δ depends only on the norm of F ; a good estimation

is δ = ε/(3M), where

M = sup
{∑
i≤m

|λi| : ‖
∑
i≤m

λiei‖ = 1
}
.

Now choose a δ-equivalent norm ‖ · ‖′ on F such that E ⊆ F becomes a

rational pair (in particular, the basis B gives a natural coordinate system

under which all ei’s have rational coordinates).

The operator f becomes a δ-isometry, therefore by (G)’ there exists a δ-

isometry g : F → X such that ‖f − g|E‖′ < δ.

Now let h : F → X be the unique linear operator satisfying h(ei) = f(ei)

for i ≤ k and h(ei) = g(ei) for k < i ≤ m. Then h|B is δ-close to g|B with

respect to the original norm, therefore ‖h− g‖ < ε/3. Clearly, h|E = f .

If δ is small enough, we can be sure that g is an ε/3-isometry with respect

to the original norm of F .

Finally, assuming ε < 1, a standard calculation shows that h is an ε-isometry,

being (ε/3)-close to g.

The “furthermore” part clearly follows from the arguments above.

3.1.1 First construction

Now fix:

• a separable Banach space X,

• a countable dense set D ⊆ X,

• a rational pair of Banach spaces E ⊆ F ,

• a linear basis B in E consisting of vectors with rational coordinates,
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• ε ∈ (0, 1) ∩Q,

such that a strict ε-isometry f : E → X exists such that f(B) ⊂ D.

Using the Pushout Lemma, we can find a separable Banach space X ′ ⊇ X

such that f extends to an ε-isometry g : F → X ′.

Note that there are only countably many pairs of rational Banach spaces

and almost isometries as described above. Thus, there exists a separable

Banach space G(X) ⊇ X such that, given a rational pair E ⊆ F , for every

ε ∈ (0, 1) ∩ Q and for every strict ε-isometry f : E → X there exists an

ε-isometry g : F → X such that g|E is arbitrarily close to f .

Repeat this construction countably many times.

Namely, let G =
⋃̂
n∈NXn, where X0 = X and Xn+1 = G(Xn) for n ∈ N.

Clearly, G is a separable Banach space.

By Theorem 3.7, G is the Gurarĭı space.

Since the space X was chosen arbitrarily and the Gurarĭı space is unique

up to surjective isometries, we get the following result:

Theorem 3.8. (Universality) The Gurarĭı space contains an isometric copy

of every separable Banach space.

3.1.2 Second construction

Next we show the more general construction. For this construction we

need a simple result of set theory, namely the Rasiowa-Sikorski’s lemma.

Given a partially ordered set P, recall that a subset D ⊂ P is cofinal if

for every p ∈ P there exists d ∈ D with p ≤ d.

Lemma 3.9. (Rasiowa-Sikorski) Given a directed partially ordered set P,

given a countable family {Dn}n∈N of cofinal subsets of P, there exists a se-

quence {pn}n∈N ⊂ P such that pn ∈ Dn for every n ∈ N and

p0 ≤ p1 ≤ p2 ≤ . . . .

Proof. Let D = {Dn : n ∈ N} and fix p ∈ P. Using the fact that each Dn is

cofinal, construct inductively {pn}n∈N so that pn ∈ Dn for n ∈ N and

p0 ≤ p1 ≤ p2 ≤ . . .



3.1 Three constructions 18

Recall that c00 denotes the linear subspace of RN consisting of all vectors

with finite support. In other words, x ∈ c00 iff x ∈ RN and x(n) = 0 for all

but finitely many n ∈ N. Given a finite set S ⊂ N, we shall identify each

space RS with a suitable subset of c00.

Let P be the following partially ordered set. An element of P is a pair

p = (RSp , ‖ · ‖Sp), where Sp ⊂ N is a finite set and ‖ · ‖Sp is a norm on

RSp ⊂ c00. We put p ≤ q iff Sp ⊂ Sq and ‖ · ‖Sq extends ‖ · ‖Sp .
Clearly, P is a partially ordered set.

Suppose

p0 ≤ p1 ≤ p2 < . . .

is a sequence in P such that the chain of sets
⋃
n∈N Spn = N. Then c00

naturally becomes a normed space.

Let X be the completion of c00 endowed with this norm. We shall call it

the limit of {pn}n∈N and write X = limn→∞ pn. It is rather clear that every

separable Banach space is of the form limn→∞ pn for some sequence {pn}n∈N
in P. We are going to show that, for a “typical” sequence in P, its limit is

the Gurarĭı space.

We now define a countable family of open cofinal sets which is good

enough for producing the Gurarĭı space.

Namely, fix a rational pair of spaces E ⊆ F and fix a rational embedding

f : E → c00, that is, an injective linear operator that maps points of E with

rational coordinates into c00 ∩QN.

The point is that there are only countably many possibilities for E, f .

Let E,F, f as above, n ∈ N and ε ∈ (0, 1) ∩ Q. Define DE,F,f,n,ε as

the set of all p ∈ P such that n ∈ Sp and p satisfies the following implica-

tion: if f is a ε-isometry into (RSp , ‖ · ‖Sp), then there exists a ε-isometry

g : F → (RSp , ‖ · ‖Sp) such that g|E = f .

Fix DE,F,f,n,ε: we want to show that it is cofinal.

Let p ∈ P; without loss of generality we can suppose that n ∈ Sp (possiblySp



3.1 Three constructions 19

can be enlarged).

Suppose that f is a ε-isometry into (RSp , ‖ · ‖Sp) (otherwise clearly p ∈
DE,F,f,n,ε). Using the Pushout Lemma, find a finite-dimensional Banach

space W extending (RSp , ‖ · ‖Sp) and a ε-isometry g : F → W such that

g|F = f .

We may assume that W = (RT , ‖ · ‖W ) for some T ⊇ Sp, where the norm

‖ · ‖W extends ‖ · ‖Sp . Let q = (RT , ‖ · ‖W ) ∈ P.

Clearly, p ≤ q and q ∈ DE,F,f,n.

Let D consist of all sets of the form DE,F,f,n,ε as above.

Then D is countable; therefore applying Lemma 3.9 we obtain a sequence

{pn}n∈N such that for every E,F, f, n, ε as above there exists n ∈ N for

which pn ∈ DE,F,f,n and pm ≤ pm+1 for every m ∈ N.

Moreover, from the definition of DE,F,f,n,ε we have
⋃
n∈N Spn = N.

We want to show that X = limn→∞ pn has property (G)’, that means that

it is the Gurarĭı space.

Let E ⊆ F a rational pair and f : E → X a strict ε−isometry.

We want to show that there exists a ε-isometry g : F → X such that ‖g|E −
f‖ ≤ ε.

Let ˜̃ε < ε̃ ≤ ε with ε̃ ∈ Q and ˜̃ε such that f is a ˜̃ε−isometry. The key point

is that for every η > 0 there exists a rational embedding f̃ : E → X that is

η−close to f , i.e. ‖f − f̃‖ ≤ η. In particular f(E) ⊂ c00, that means that

there f(E) ⊆ RSpm for m big enough. Moreover, if x is in the unit sphere of

E, then

1− ˜̃ε− η ≤ ‖f(x)‖ − η ≤ ‖f̃(x)‖ ≤ ‖f(x)‖+ η ≤ 1 + ˜̃ε+ η.

With η ≤ ε̃− ˜̃ε, it turns out that f̃ is a ε̃−isometry.

Fix n ∈ N and consider DE,F,f̃ ,n,ε̃: then pm ∈ DE,F,f̃ ,n,ε̃ and f̃ : E → RSpm

is a ε̃−isometry for m big enough.

This means that there exists a ε̃-isometry

g : F → RSpm ⊂ X
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that extends f̃ . Moreover from the construction of f̃ we obtain:

‖g|E − f‖ ≤ ‖g|E − f̃‖+ ‖f̃ − f‖ ≤ ε̃ ≤ ε.

The construction is done.

3.1.3 Third construction

This last construction, made by Kubís in [5], is apparently easy and can

be understood from everybody, and this is the reason why we want to show

it.

On the other hand it has an abstract approach, hence can be used in other

situations for the constructions of other spaces.

We consider the following game. Namely, two players (called Eve and

Odd) alternately choose finite-dimensional Banach spaces E0 ⊆ E1 ⊆ E2 ⊆
· · · , with no additional rules. For obvious reasons, Eve should start the game.

The result is the completion of the chain
⋃
n∈NEn.

This game is a special case of an abstract Banach-Mazur game.

Eve: E0 � p

  

E2 � p

  

· · ·

Odd: E1

. �

>>

E3

. �

>>

· · ·

The main result that we will show is the following:

Theorem 3.10. There exists a unique, up to linear isometries, separable

Banach space G such that Odd has a strategy Σ in the Banach-Mazur game

leading to G, namely, the completion of every chain resulting from a play

this game is linearly isometric to G, assuming Odd uses strategy Σ, and no

matter how Eve plays.

Furthermore, G is the Gurarĭı space.

For the proof of the theorem we need the following result, that is a corol-

lary of Theorem 3.12 of the next section.

Lemma 3.11. A separable Banach space G is Gurarĭı if and only if
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(H) for every ε > 0, for every finite-dimensional normed spaces A ⊆ B, for

every isometry e : A → G there exists an isometry f : B → G such

that ‖e− f |A‖ < ε.

Proof. (of Theorem 3.10) Odd fixes a separable Banach space G satisfying

(H). We do not assume a priori that it is uniquely determined, therefore the

arguments below will also show the uniqueness of G (up to bijective isome-

tries).

Odd’s strategy Σ in the Banach-Mazur game can be described as follows.

Fix a countable set {vn}n ∈ N dense in G. Let E0 be the first move of

Eve.

Odd finds an isometric embedding f0 : E0 → G and finds E1 ⊇ E0 to-

gether with an isometric embedding f1 : E1 → G extending f0 and such that

v0 ∈ f1(E1).

Suppose now that n = 2k > 0 and En was the last move of Eve.

We assume that a linear isometric embedding fn−1 : En−1 → G has been

fixed.

Using (H) we choose a linear isometric embedding fn : En → G such that

fn|En−1 is 2−k-close to fn−1.

Extend fn to a linear isometric embedding fn+1 : En+1 → G so that En+1 ⊇
En and fn+1(En+1) contains all the vectors v0, . . . , vk. The finite-dimensional

space En+1 is Odd’s move.

This finishes the description of Odd’s strategy Σ.

Let {En}n ∈ N be the chain of finite-dimensional normed spaces resulting

from the play, when Odd was using strategy Σ.

In particular, Odd has recorded a sequence {fn : En → G}n∈N of linear iso-

metric embeddings such that f2n+1|E2n−1 is 2−n-close to f2n−1 for each n ∈ N.

Let E∞ =
⋃
n∈NEn.

For each x ∈ E∞ the sequence {fn(x)}n∈N is Cauchy, therefore we can set

f∞(x) = limn→∞ fn(x), thus defining a linear isometric embedding f∞ :

E∞ → G.

The assumption that f2n+1(E2n+1) contains all the vectors v0, . . . , vn ensures

that f∞(E∞) is dense in G.

Finally, f∞ extends to a linear isometry from the completion of E∞ onto G.
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This completes the proof of the Theorem.

3.2 Uniqueness and almost homogeneity

In this section we are going to show a proof of the following theorem.

Theorem 3.12. Let X, Y be separable Gurarĭı spaces and ε > 0. Assume

E ⊆ X is a finite dimensional space and f : E → Y is a strict ε-isometry.

Then there exists a bijective isometry h : X → Y such that ‖h|E − f‖ < ε.

By taking E to be the trivial space, we obtain the following corollary.

Theorem 3.13. The Gurarĭı space is unique up to a bijective isometry.

A second important easy consequence of theorem 3.12 is the following.

Theorem 3.14. (Almost homogeneity) The Gurarĭı space is almost homo-

geneous.

For the proof of theorem 3.12 we need the following intermediate result.

Lemma 3.15. Let X be a Gurarĭı space and let f : E → F be a strict ε-

isometry, where E is a finite-dimensional subspace of X and ε > 0. Then for

every δ > 0 there exists a δ-isometry g : F → X such that ‖g ◦f − IdX‖ < ε.

Proof. Choose 0 < ε′ < ε so that f is an ε′-isometry.

Choose 0 < δ′ < δ such that (1 + δ′)ε′ < ε. By Lemma 3.4, there exist a

finite dimensional space Z and isometries i : E → Z and j : F → Z satisfying

‖j ◦ f − i‖ ≤ ε′. Since X is Gurarĭı there exists a δ′-isometry h : Z → X

such that h ◦ i(x) = x for x ∈ E. Let g = h ◦ j. Clearly, g is a δ-isometry.

Finally, given x ∈ SE, we have

‖g◦f(x)−x‖ = ‖h◦j◦f(x)−h◦i(x)‖ ≤ (1+δ′)‖j◦f(x)−i(x)‖ ≤ (1+δ′)ε′ < ε,

as required.

Proof. (Theorem 3.12) Fix a decreasing sequence {εn}n∈N of positive real

numbers such that ∑
n∈N

εn <∞,
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2ε0ε1 + ε1 +
∞∑
n=1

(εn + 2εnεn+1 + εn+1) < ε− ε0. (3.1)

and 0 < ε0 < ε so that f is a ε0−isometry. We define inductively se-

quences of linear operators {fn}n∈N, {gn}n∈N and finite-dimensional sub-

spaces {Xn}n∈N, {Y }n∈N of X and Y , respectively, so that the following

conditions are satisfied:

(0) X0 = E, Y0 = f(E), and f0 = f ;

(1) fn : Xn → Yn is an εn-isometry;

(2) gn : Yn → Xn+1 is an εn+1-isometry;

(3) ‖gnfn(x)− x‖ ≤ εn‖x‖ for x ∈ Xn;

(4) ‖fn+1 ◦ gn(y)− y‖ ≤ εn+1‖y‖ for y ∈ Yn;

(5) Xn ⊆ Xn+1, Yn ⊆ Yn+1,
⋃
n∈NXn and

⋃
n∈N Yn are dense in X and Y ,

respectively.

Condition (0) allows us how to start the inductive construction.

Suppose fi, Xi, Yi, for i ≤ n, and gi, for i < n, have been constructed.

We easily find gn, Xn+1, fn+1 and Yn+1, in this order, using Lemma 3.15.

Condition (5) can be realized by defining Xn+1 and Yn+1 to be suitably en-

larged gn(Yn) and fn+1(Xn+1), respectively. Thus, the construction can be

carried out.

Fix n ∈ N and x ∈ Xn with ‖x‖ = 1. Using (4) and (1), we get

‖fn+1 ◦ gn ◦ fn(x)− fn(x)‖ ≤ εn+1‖fn(x)‖ ≤ εn+1(1 + εn).

Using (1) and (3), we get

‖fn+1 ◦ gn ◦ fn(x)− fn+1(x)‖ ≤ ‖fn+1‖ · ‖gnfn(x)− x‖ ≤ (1 + εn+1) · εn.

These inequalities give

‖fn(x)− fn+1(x)‖ ≤ εn + 2εnεn+1 + εn+1. (3.2)
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Now, because of the choice of {εn}n∈N, the sequence {fn(x)}n∈N is Cauchy.

Given x ∈
⋃
n∈NXn, define h(x) = limn→∞ fn(x), where fn(x) is defined for

n ≥ m where m is such that x ∈ Xm. Then h is an εn-isometry for every

n ∈ N, hence it is an isometry.

Consequently, it uniquely extends to an isometry on X, that we denote also

by h. Furthermore, (3.2) and (3.1) give

‖f(x)− h(x)‖ ≤
∞∑
n=0

εn + 2εnεn+1 + εn+1 < ε.

It remains to see that h is a bijection.

To this end, we check as before that {gn(y)}n ≥ m is a Cauchy sequence for

every y ∈ Ym. Once this is done, we obtain an isometry g∞ defined on F .

Conditions (3) and (4) tell us that g∞ ◦ h = IdX and h ◦ g∞ = IdF , and the

proof is complete.



Chapter 4

A general construction of

almost homogeneous spaces

Let B be the class of all the finite-dimensional real normed spaces. As we

saw in the last chapter, we can construct the Gurarĭı space as a kind of limit

of a particular sequence of finite-dimensional normed spaces that is in some

sense dense in B.

In this chapter we are going to formulate an algorithm that can be applied

to a subclass of B, provided that it has some analytic property that we will

show, in order to construct different almost homogenous separable Banach

spaces.

In fact it is a generalization of the second construction of the Gurarĭı space

in the previous chapter.

We will follow the construction made by Kubís in [4]: the approach used in

that paper is based on categorical point of view, but we will never use cate-

gorical arguments in this chapter, even if it is easy to find some connection

to this branch of Mathematics.

In what follows all the spaces and maps are intended up to surjective

isometries.

25
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4.1 The required properties

Let K be a subclass of B with ∅ ∈ K.

We say that that

• K is hereditary if for every X ⊆ Y with Y ∈ K we have X ∈ K,

• K is closed if for every n ∈ N the setK∩{n−dimensional normed spaces}
is closed under the Banach-Mazur distance.

Definition 4.1. K has the small distortion property if for every X, Y ∈
K and for every ε−isometry f : X → Y there is W ∈ K and and there are

isometries i : X ↪→ W , j : Y ↪→ W such that ‖j ◦ f − i‖ ≤ ε.

Definition 4.2. K has the amalgamation property if for any Z,X, Y ∈ K
and isometries i : Z ↪→ X, j : Z ↪→ Y there exists W ∈ K and J : X ↪→ W ,

I : Y ↪→ W such that I ◦ j = J ◦ i, i.e. the following diagram commutes

X
J //W

Z

i

OO

j
// Y

I

OO

In the previous chapter it was shown that the class B has these properties

(see the Pushout Lemma 3.3 and 3.4).

It turns out that the amalgamation property can be moved to a bigger

class of linear maps, namely:

Proposition 4.3. Let K enjoy the amalgamation property and the small

distortion property, then for every Z,X, Y ∈ K, for every ε > 0, δ > 0 and

f : Z ↪→ X ε−isometry, g : Z ↪→ Y δ−isometry there exist W ∈ K and

isomteries G : X ↪→ W , F : Y ↪→ W such that ‖F ◦ g −G ◦ f‖ ≤ ε+ δ, i.e.

the following diagram is (ε+ δ)−commutative.

X
G //W

Z

f

OO

g
// Y

F

OO
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Proof. Since K has the small distortion property let A,B ∈ K and i : Z ↪→ A,

j : X ↪→ A, k : Z ↪→ B, l : Y ↪→ B isometries such that ‖j ◦ f − i‖ ≤ ε and

‖l ◦ g − k‖ ≤ δ.

Now consider

A

Z

i

OO

k
// B

Using the amalgamation property, find W ∈ K and j′ : A ↪→ W , l′ : B ↪→
W such that l′ ◦ k = j′ ◦ i.
Define F := l′ ◦ l and G := j′ ◦ j, then ‖F ◦ g−G ◦ f‖ ≤ ‖j′ ◦ j ◦ f − j′ ◦ i‖+

‖j′ ◦ i− l′ ◦ k‖+ ‖l′ ◦ k − l′ ◦ l ◦ g‖ ≤ ε+ δ.

Definition 4.4. (Directness) K is direct if for every X, Y ∈ K there exist

W ∈ K and isometries i : X ↪→ W , j : Y ↪→ W .

Note that if ∅ ∈ K and K has the amalgamation property, then it is direct.

In fact we can apply the amalgamation property to the following diagram:

X

∅

OO

// Y.

This is the reason why we will always assume that ∅ ∈ K.

4.2 Fräıssé sequences and almost homogeneous

spaces

Definition 4.5. A sequence in K is a chain ~U = {~U(n)}n∈N ⊆ K with

a set of isometries {~Um
n : ~U(n) ↪→ ~U(m);n ≤ m;n,m ∈ N}, such that if

n1 ≤ n2 ≤ n3 ∈ N then ~Un3
n1

= ~Un3
n2
◦ ~Un2

n1
.

Since all the elements that we are considering are defined up to surjec-

tive isometries, without loss of generality we can suppose that, if n < m,

n,m ∈ N, then ~U(n) ⊆ ~U(m) and ~Um
n = Id~U(n), where Id~U(n) is the identity

on ~U(n).
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Obviously, for every sequence ~U in K we can define a unique (up to isome-

tries) separable Banach space U as the completion of the limit of ~U , U :=
̂⋃∞
n=1

~U(n).

For every n ∈ N the map ~U∞n := limm→∞ ~Um
n is the inclusion map defined on

~U(n) into U .

Let ~U, ~V be two sequences and let U =
̂⋃∞
n=1

~U(n) and V =
̂⋃∞
n=1

~V (n).

Now consider ~t = {tn}∞n=1 a sequence of linear maps, tn : ~U(n) → ~V (ϕ(n))

with ϕ : N → N an increasing map, such that for every ε > 0 there exists

n0 ∈ N such that, whenever n0 ≤ n < m, all diagrams of the form

~V (ϕ(n))
~V
ϕ(m)
ϕ(n) // ~V (ϕ(m))

~U(n)

tn

OO

~Umn

// ~U(m)

tm

OO
(4.1)

are ε−commutative, i.e. ‖tm ◦ (~U)mn − ~V
ϕ(m)
ϕ(n) ◦ tn‖ ≤ ε.

Then we can define a linear map T : U → V as the extension of limn→∞ tn(x)

defined on
⋃∞
n=1

~U(n). In fact for every x ∈
⋃∞
n=1

~U(n) we can consider the

sequence {tn(x)}∞n=n̄ for some n̄ ∈ N; this sequence is Cauchy since the dia-

grams 4.1 are definitively ε−commutative, hence the limit of {tn(x)} exists

in V .

Moreover if {εn}n∈N is a positive decreasing sequence, εn ↘ 0, and tn are

εn−isometries, then T is an isometry.

Definition 4.6. A sequence ~U of K is Fraı̈ssé in K if

(U) for every X ∈ K and for every ε > 0 there exist n ∈ N and an

ε−isometry f : X → ~U(n);

(A) for every ε > 0 and every isometry f : ~U(n) ↪→ X, with X ∈ K, there

exist m > n and g : X → ~U(m) ε−isometry such that ‖g◦f− ~Um
n ‖ ≤ ε.

Now we are going to show that, if ~U is a Fräıssé sequence in K, then

U =
̂⋃∞
n=1

~U(n) is almost homogeneous. Moreover U is universal for K,

K = {X ⊂ U,Xfinite-dimensional subspace} and the sequence ~U is unique
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in K, that means that if ~V is another Fräıssé sequence in K, then
̂⋃∞
n=1

~V (n)

is isometric to U .

First of all we have to prove some intermediate results.

Proposition 4.7. Let K enjoy the amalgamation property and let ~U be a

sequence in K. The following conditions are equivalent.

(i) ~U is Fräıssé in K,

(ii) ~U has a cofinal subsequence that is Fräıssé in K,

(iii) Every cofinal subsequence of ~U is Fräıssé in K.

Proof. Implications (i) ⇒ (iii) and (iii) ⇒ (ii) are obvious, so only (iii) ⇒
(i) remains.

Now consider M ⊂ N cofinal such that {~U(n)}n∈M is Fräıssé in K. We want

to show that ~U is Fräıssé in K, in particular we have to prove that condition

(A) in definition 4.6 holds. Fix n ∈ N \M , fix an isometry f : ~U(n) → Y

and ε > 0. Let m ∈ M , m > n: using the amalgamation property we can

find isometries F : ~U(m) ↪→ W and j : Y ↪→ W such that j ◦ f = F ◦ ~Um
n .

Since {~U(n)}n∈M is Fräıssé in K, there are l > m, l ∈M and an ε−isometry

g : W → ~U(l) such that ‖g ◦ F − ~U l
m‖ ≤ ε. Finally g ◦ j is an ε−isometry

and ‖g ◦ j ◦ f − ~U l
n‖ ≤ ε.

Proposition 4.8. Let K be a subclass of B enjoying the small distortion

property and let ~U a sequence in K satisfying (U). Then ~U is Fräıssé in K
if and only if it satisfies the following condition:

(B) given η, δ > 0, given n ∈ N and a δ−isometry f : ~U(n) → Y with

Y ∈ K, there exist m > n and an η−isometry g : Y → ~U(m) such that

‖g ◦ f − ~Um
n ‖ ≤ η + δ.

Proof. It is obvious that (B)⇒(A).

Suppose that ~U is Fräıssé. Because of the small distortion property there

are isometries i : ~U(n) ↪→ W and j : Y ↪→ W such that ‖j ◦ f − i‖ ≤ δ. Let

0 < η̃ ≤ η/(1 + δ). Using (A), find m > n and an η̃−isometry k : Y → ~U(m)

such that ‖k◦i− ~Um
n ‖ ≤ η̃. g := k◦j is an η̃−isometry, so it is an η−isometry,

and ‖g◦f− ~Um
n ‖ ≤ ‖k◦j ◦f−k◦ i‖+‖k◦ i− ~Um

n ‖ ≤ (1+ η̃)δ+ η̃ ≤ η+δ.
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Proposition 4.9. Let K be a subclass of B with the small distortion property

and let ~U and ~V be Fräıssé sequences in K. Furthermore, let ε > 0 and let

h : ~U(0) → ~V (0) be a strict ε−isometry. Then there exists a surjective

isometry

F :
∞̂⋃
n=1

~U(n)→
∞̂⋃
n=1

~V (n)

such that ‖F |~U(0) − h‖ ≤ ε.

Proof. Let 0 < δ < ε such that h is a δ−isometry. Fix a decreasing sequence

of positive reals {εn}n∈N such that

δ < ε0 < ε and 2
∞∑
n=1

εn ≤ ε− ε0.

We define inductively sequences of linear maps fn : ~U(ϕ(n))→ ~V (ψ(n)),

gn : ~V (ψ(n))→ ~U(ϕ(n+ 1)) such that

(1) ϕ(n) ≤ ψ(n) < ϕ(n+ 1),

(2) ‖gn ◦ fn − ~U
ϕ(n+1)
ϕ(n) ‖ ≤ εn,

(3) ‖fn ◦ gn−1 − ~V
ψ(n)
ψ(n−1)‖ ≤ εn,

(4) fn is an εn−isometry, gn is an εn+1−isometry and ‖fn‖, ‖gn‖ ≤ 1.

We start by setting ϕ(0) = ψ(0) = 0 and f0 = h. We find g0 and ϕ(1) by

using condition (B) of Proposition 4.8 with an appropriate value of η > 0 (if

necessary, we can normalize g0 in order to obtain ‖g0‖ ≤ 1).

We continue repeatedly using condition (B) for both sequences . More pre-

cisely, having defined fn−1 and gn−1, we first use property (B) of the sequence
~V , constructing fn satisfying (3) and (4); next we use the fact that ~U satisfies

(B) in order to find gn satisfying (2) and (4). Now we check that for every

ε > 0 there exist n0 ∈ N such that, whenever n0 ≤ n < m, all diagrams of

the form

~V (ψ(n))
~V
ψ(m)
ψ(n) // ~V (ψ(m))

~U(ϕ(n))

fn

OO

~U
ϕ(m)
ϕ(n)

// ~U(ϕ(m))

fm

OO
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and

~U(ϕ(n))
~U
ϕ(m)
ϕ(n) // ~U(ϕ(m))

~V (ψ(n))

gn

OO

~V
ψ(m)
ψ(n)

// ~V (ψ(m))

gm

OO

are ε−commutative. Fix n ∈ N and observe that

‖~V ψ(n+1)
ψ(n) ◦ fn − fn+1 ◦ (~U)

ϕ(n+1)
ϕ(n) ‖

≤ ‖~V ψ(n+1)
ψ(n) ◦ fn − fn+1 ◦ gn ◦ fn‖+ ‖fn+1 ◦ gn ◦ fn − fn+1 ◦ (~U)

ϕ(n+1)
ϕ(n) ‖

≤ ‖~V ψ(n+1)
ψ(n) − fn+1 ◦ gn ◦ ‖+ ‖gn ◦ fn − (~U)

ϕ(n+1)
ϕ(n) ‖

≤ εn+1 + εn.

Since
∑

n∈N εn is convergent, for every ε > 0 we can find n0 ∈ N big

enough in order to make the first diagram ε−commutative for every n,m ≥
n0. By symmetry we deduce the same for the second diagram.

Let F and G the limits of {fn}n∈N and {gn}n∈N respectively. Then conditions

(2) and (3) force the compositions F ◦ G and G ◦ F to be equivalent to the

identities, while condition (4) guarantees that F and G are isometries.

Finally, recalling that h = f0, we obtain

‖F |~U(0) − h‖ = ‖F ◦ ~U∞0 − ~V ∞0 ◦ h‖ = lim
n→∞

‖fn ◦ ~Uϕ(n)
0 − ~V

ψ(n)
0 ◦ f0‖

≤
∞∑
n=1

‖fn+1 ◦ ~Uϕ(n+1)
ϕ(n) − ~V

ψ(n+1)
ψ(n) ◦ fn‖ ≤

∞∑
n=1

(εn + εn+1)

= ε0 + 2
∞∑
n=1

εn ≤ ε.

Theorem 4.10. (Uniqueness) Let K be a subclass of B with the small dis-

tortion property and let ~U and ~V be Fräıssé sequences in K. Then
̂⋃∞
n=1

~U(n)

and
̂⋃∞
n=1

~V (n) are isometric.

Proof. Consider ~U(0) and let ε > 0. Using (U) applied to ~V , for some n̄ ∈ N
we can find an ε−isometry h : ~U(0) → ~V (n̄) . Since {~V (n)}n≥n̄ still is

Fräıssé, Proposition 4.9 gives the required isometry.
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Theorem 4.11. (Almost homogeneity) Let K as usual. Suppose that K has

the amalgamation property and the small distortion property and contains a

Fräıssé sequence ~U , and let U =
̂⋃∞
n=1

~U(n). Then for every X ⊂ U , for

every isometry f : X ↪→ U and for every ε > 0 there exists a surjective

isometry F : U → U such that ‖F |X − f‖ ≤ ε.

Proof. Fix ε > 0 and let δ > 0 such that 6δ + δ2 ≤ ε.

Considering X and f(X) in U , we can find n,m ∈ N big enough and i :

X → ~U(n), j : f(X) → ~U(m) δ−isometries such that ‖x − i(x)‖ ≤ δ and

‖f(x)− j ◦ f(x)‖ ≤ δ for every x ∈ X ‖x‖ = 1.

Define f1 := j ◦ f : f1 is a δ−isometry. Using proposition 4.3 we find two

isometries f2 : ~U(n) ↪→ W and g1 : ~U(m) ↪→ W such that ‖f2◦i−g1◦f1‖ ≤ 2δ.

Using the fact that ~U is Fräıssé, we find l > m and g2 : W → ~U(l) δ−isometry

such that ‖g2 ◦ g1 − ~U l
m‖ ≤ δ.

Define g := g2 ◦ f2. Then g is a δ−isometry and the sequences {~U(j)}j≥n
{~U(j)}j≥l are Fräıssé. Therefore by Proposition 4.9 there exists F : U → U

such that ‖F |~U(n) − g‖ ≤ δ.

X
i
//

f1

��

f

��

~U(n)
f2

""

// ... // U

F

��

W
g2

!!

f(X)
j
// ~U(m)

g1

<<

// ~U(l) // ... // U

Applying the properties of the diagram and of the maps that have been

defined we obtain

‖F |X − f‖ ≤ ‖F |X − F ◦ i‖+ ‖F ◦ i− f‖

≤ δ + ‖F ◦ i− ~U l
m ◦ j ◦ f‖+ ‖~U l

m ◦ j ◦ f − f‖

≤ 2δ + ‖F ◦ i− g ◦ i‖+ ‖g ◦ i− ~U l
m ◦ j ◦ f‖

≤ 2δ + (1 + δ)δ + 3δ = 6δ + δ2 ≤ ε.

This completes the proof.

Now we want to show that the almost homogeneous space we have con-

structed is in some sense universal for the class K.



4.2 Fräıssé sequences and almost homogeneous spaces 33

Theorem 4.12. (Universality) Let K as usual. Suppose that K has the amal-

gamation property and the small distortion property and contains a Fräıssé

sequence ~U , and let U =
̂⋃∞
n=1

~U(n). Then for every sequence ~X of K there

exists an isometry F :
̂⋃∞
n=1

~X(n)→ U .

Proof. We construct a strictly increasing sequence {ϕ(n)} of natural numbers

and a sequence of linear maps fn : ~X(n) → ~U(ϕ(n)) such that, for each

n ∈ N, fn is a 2−n-isometry and ‖~Uϕ(n+1)
ϕ(n) ◦ fn− fn+1 ◦ ~Xn+1

n ‖ ≤ 3 · 2−n. Then

F := limn→∞ fn is the desired isometry.

We start by finding f0 and ϕ(0) using condition (U) of Fräıssé sequences.

Fix n ∈ N and suppose fn and ϕ(n) have been already defined. Since fn is a

2−n-isometry, there exist two isometries i : ~X(n)→ V and j : ~U(ϕ(n))→ V

such that ‖j ◦ fn − i‖ ≤ 2−n.

Next using amalgamation property, we find two isometries k : V → W and

l : ~X(n+ 1)→ W such that k ◦ i = l ◦ ~Xn+1
n .

Finally, using the fact that ~U is Fräıssé, find ϕ(n+ 1) > ϕ(n) and a 2−(n+1)-

isometry g : W → ~U(ϕ(n+ 1)) such that‖g ◦ k ◦ j − ~U
ϕ(n+1)
ϕ(n) ‖ ≤ 2−n.

~U(ϕ(n))
j

##

// ~U(ϕ(n+ 1)) // ...

V
k //W

g

OO

~X(n)

fn

OO

i

;;

// ~X(n+ 1) //

l

OO

...

Define fn+1 := g ◦ l: it is a 2−(n+1)−isometry and the sequence {fn}n∈N
satisfies the conditions at the beginning of the proof.

As a corollary we obtain the following result.

Corollary 4.13. Let K a hereditary and closed subclass of B. Suppose that

K has the amalgamation property and the small distortion property and con-

tains a Fräıssé sequence ~U , and let U =
̂⋃∞
n=1

~U(n). Then K = {X ⊂
U,X finite-dimensional subspace}.

Proof. Let X ∈ K and consider the sequence ~X with ~X(n) = X and ~Xm
n =

IdX for every n,m ∈ N. Because of the last theorem there exists an isometry
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F : X → U , that means that X ⊂ U up to a biijective isometry.

Now let X ⊂ U a finite-dimensional subspace. Then for every ε > 0 there

exist n ∈ N and an ε−isometry i : X → ~U(n). From the hereditarity of K we

have that i(X) ∈ K and is ε−close to X. Then X ∈ K, since K is closed.

4.3 The construction of a Fräıssé sequence

In order to find a Fräıssé sequence in K we have to require that K contains

a countable subclass that is dense in some sense. We are going to specify

what we mean.

Definition 4.14. A subclass F of K with a set of linear isometries A = {f :

A→ B,A,B ∈ F} is dominating in K if

(D1) for every X ∈ K and for every ε > 0 there exist Y ∈ F and an

ε−isometry f : X → Y ;

(D2) for every ε > 0 and every isometry f : Y ↪→ X, with Y ∈ F and

X ∈ K, there exist W ∈ F , g : X → W ε−isometry and u : Y ↪→ W

in A such that ‖g ◦ f − u‖ ≤ ε;

(D3) for every X ∈ F , the identity map IdY is in A.

Note that if we consider B as a metric space under the Banach-Mazur

distance, then it is separable. Hence every subset of B is separable, in partic-

ular this means that every K has a countable subclass F that satisfies (D1),

so the nontrivial part of the last definition is condition (D2).

We say that K has a countable dominating subclass if there exists F ⊆ K
such that the subset A of the isometries in F is dominating in K and such

that both F and A are countable.

Observe that a Fräıssé sequence is a countable dominating subclass.

The following result shows that if K has the amalgamation property and

contains a countable dominating subclass, then it contains a Fräıssé sequence.

Theorem 4.15. Let K be a subclass of B with the amalgamation property.

The following are equivalent:
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(i) K contains a countable dominating subclass,

(ii) K contains a Fräıssé sequence.

Proof. (ii)⇒(i) is obvious.

Let K with a countable dominating subclass F ; A will denote the set of its

isometries. We are going to construct a Fräıssé sequence in K.

Let P the set of all finite sequences ~X in F , ~X = { ~X(n)}dom( ~X)
n=1 , dom( ~X) <∞

and ~Xm
n ∈ A for every n,m ≤ dom( ~X). Define on P the following partial

order ~X ≤ ~Y if dom( ~X) ≤ dom(~Y ) and {~Y (n)}dom( ~X)
n=1 = ~X.

Now fix f : A ↪→ B in A and n, k ∈ N. Define

Df,n,k := { ~X ∈ P : dom( ~X) > n,

(i) ∃l < dom( ~X) s.t. ∃ f : A→ ~X(l) is a
1

k
− isometry

(ii) if A = ~X(n), then ∃m > n and g : B → ~X(m) is a
1

k
− isometry

s.t. ‖g ◦ f − ~Xm
n ‖ ≤

1

k
}.

Note that there are countably many Df,n,k.

From the amalgamation property of K (hence its directness) and the prop-

erties of the dominating class F , it follows that each Df,n,k is cofinal.

Then we can apply the Sikorski Lemma 3.9 to obtain an increasing sequence

{~Ur}r∈N ⊂ P such that, for every f ∈ A and n, k ∈ N, there exists r ∈ N
such that ~Ur ∈ Df,n,k.

Since {~Ur} is increasing we can define without misunderstanding the follow-

ing sequence:
~U :=

⋃
r∈N

~Ur.

It is easy to see that it is Fräıssé in K.

Finally if K is a subclass of K with the amalgamation property, the small

distorsion property and admitting a countable dominating subclass, then it

is possible to construct a unique (up to surjective isometry) almost homo-

geneous separable Banach space U ; moreover, if K is closed and hereditary,

then K agrees with the set of all finite-dimensional subspaces of U .
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Remark 4.16

We want to point out that for the algorithm it is enough to assume that the

class K is direct and has the almost amalgamation property instead of the

amalgamation property. Namely,

Definition 4.17. K has the almost amalgamation property if for every

X, Y, Z ∈ K, for every f : Z → X, g : Z → Y with ‖f‖, ‖g‖ ≤ 1 and for

every ε > 0 there exist W ∈ K, F : X → W , G : Y → W with ‖G‖, ‖F‖ ≤ 1

and such that ‖F ◦ f −G ◦ g‖ ≤ ε.

As we saw before, the amalgamation property implies the directness and

(obviously) the almost amalgamation property.

On the other hand we have no examples of a class with the almost amal-

gamation property that would not have the amalgamation property. So we

don’t know if the request of the almost amalgamation property and directness

instead of the amalgamation property is really advantageous.



Chapter 5

Looking for a new way for

amalgamation of subspaces

As we saw in the last chapter, if we want to generate a new separable

almost homogeneous Banach space it is enough to find a subclass of B that

enjoys some properties.

The main property we have focused on during the PhD program, is the

amalgamation property.

Apparently it seems not difficult to find a class of finite-dimensional normed

spaces, not dense in B (otherwise, from Corollary 4.13, we obtain the Gurarĭı

space) and different from the class of all finite-dimensional Hilbert spaces,

for which the amalgamation property holds.

In fact it is possible to investigate this problem in two different ways:

• Using the amalgamation defined in the Pushout Lemma 3.3, namely

finding a subclass K of B such that, if X, Y, Z ∈ K and Z ⊆ X, Z ⊆ Y ,

then the space W constructed with the Pushout Lemma still is in K.

• Finding a new way to amalgamate finite-dimensional normed spaces

such that some properties are preserved and defining K as the class of

all the finite-dimensional normed spaces with those properties.

In this chapter we show that the first way is not possible and this is our

contributions to the development of the theory.

In fact we prove that the minimal, hereditary and closed class K of finite-

dimensional Banach spaces that can be constructed with the amalgamation

37
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shown in 3.3 is the whole class B.

This result implies that, in order to apply the algorithm of the last chapter

to a subclass of B for the construction of a new almost homogeneous space,

it is necessary to find a new way for amalgamating finite-dimensional spaces.

We still don’t know if there exists such a new way of amalgamating spaces,

so the algorithm constructed in Chapter 4 actually can be applied just to the

class B.

For simplicity we call the amalgamation made in the Pushout Lemma

pushout’s amalgamation.

In order to show our construction of B with the pushout’s amalgamation

we need to recall a result concerning equilateral sets.

Definition 5.1. Let C > 0, let X be a normed space. A subset E ⊆ X is

called C−equilateral if for every x, y ∈ E, x 6= y, we have ‖x− y‖ = C.

A set is equilateral, if it is C-equilateral for some C > 0.

Let e(X) the maximal cardinality an equilateral set in a given normed

space X can have. Obviously this value depends on the dimension and the

norm of the space X. There is a lot of literature about this parameter as well

as about its approximation both in finite and infinite-dimensional spaces.

An important result for X finite-dimensional about upper and lower bounds

for e(X), proved by Petty in [11], is the following.

Theorem 5.2. (Petty) Let X be a normed space with dim(X) = n ∈ N.

Then

min(4, n+ 1) ≤ e(X) ≤ 2n

where the equality e(X) = 2n holds iff X is isometric to `n∞. In this case any

equilateral set of size 2n is the set of extreme points of some ball.

We are going to prove the following result.

Proposition 5.3. Let K be the minimal nonempty class of finite-dimensional

normed spaces that enjoys the following properties:

• K is hereditiary;
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• K is closed under the Banach-Mazur distance;

• if X, Y, Z ∈ K and f : Z ↪→ X, g : Z ↪→ Y are isometries, then
X ⊕1 Y

{(f(z),−g(z)), z ∈ Z}
∈ K

Then K = B.

Proof. We want to show that K is the class of all finite-dimensional normed

spaces.

In particular we prove that `n∞ ∈ K for every n ∈ N. If all these spaces are in

K, then K contains all the finite-dimensional normed spaces since it is closed.

Since K is nonempty and hereditary, it contains a 1-dimensional space

B = (R, ‖ · ‖).
Then the space `∞(2) is in K (take Z = ∅ and X = Y = B and use the

pushout’s amalgamation to obtain X ⊕1 X that is isometric to `2
∞).

By induction we want to show that, for every n ∈ N, `n∞ ∈ K.

Suppose that `n−1
∞ ∈ K and define

W :=
`n−1
∞ ⊕1 `

n−1
∞

{((α1, . . . , αn−2, 0), (−α1, . . . ,−αn−2, 0)), αj ∈ R}
.

For x = (a, . . . , an−1), y = (b1, . . . , bn−1) ∈ `∞(n− 1) let [(x, y)] ∈ W be the

class containing (x, y).

Then

[((a1, . . . , an−1), (b1, . . . , bn−1))] = [((a1+b1, . . . , an−2+bn−2, an−1), (0, . . . , 0, bn−1))].

So W is linearly isomorphic to Rn.

We want to find an equilateral set of 2n points in W in order to prove that

W is isometric to `n∞.

Consider the set

{Pi}2n−1

i=1 = {[((±1,±1, . . . ,±1), (0, . . . , 0))]} ∈ W,

that is the image by the inclusion of the set of the extreme points of the unit

ball of the first `n−1
∞ of the direct sum; and consider

{Vi}2n−1

i=1 = {[((±1,±1, . . . ,±1, 0), (0, . . . , 0,±1))]} ∈ W,
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that is the image by the inclusion of the set of the extreme points of the unit

ball of the second `n−1
∞ of the direct sum. Both these sets are 2−equilateral

in their original spaces.

CLAIM: The set {Pi} ∪ {Vj} is 2−equilateral in W .

proof of the CLAIM:

For every [(x, y)] ∈ W let

‖[(x, y)]‖W = inf{‖x̃‖∞ + ‖ỹ‖∞, x̃, ỹ ∈ ln−1
∞ , (x̃, ỹ) ∈ [(x, y)]}

the norm in W . The following are true.

• ‖Vi − Vj‖W = 2 = ‖Pi − Pj‖W for every i, j = 1, . . . , 2n, i 6= j, since

both the embeddings from `n−1
∞ to W are isometries.

• For every i, j = 1, . . . , 2n we have Pi−Vj = [((a1, . . . , an−2,±1), (0, . . . , 0,±1))]

with ai ∈ {±2, 0}.
Moreover ‖Vi − Pj‖W ≤ ‖Vi‖W + ‖Pj‖W = 2, so it is enough to show

that ‖Vi − Pj‖ ≥ 2.

‖Vi − Pj‖W = ‖[((a1, . . . , an−2,±1), (0, . . . , 0,±1))]‖W =

= inf{‖(a1+α1, . . . , an−2+αn−2,±1)‖∞+‖(−α1, . . . ,−αn−2,±1)‖∞, αj ∈
R}. But for every αj ∈ R, j = 1, . . . , n − 2, ‖(a1 + α1, . . . , an−2 +

αn−2,±1)‖∞ ≥ | ± 1| and ‖(−α1, . . . ,−αn−2,±1)‖∞ ≥ | ± 1|.
Hence ‖Vi − Pj‖ ≥ 2.

So the set {Pi} ∪ {Vj} is 2−equilateral and, from Petty’s theorem, W is

isometric to `∞(n).



Chapter 6

Open problems

In this last part of the thesis we want to summarise the main open prob-

lems that we have found in the context of almost homogeneous separable

spaces.

• The most important problem is related to the amalgamation prop-

erty. In particular, as we explained in chapters 5 and 4, the main

question is whether there exists a subclass of B, not dense in B (un-

der the Banach-Mazur distance), different from the class of all finite-

dimensional Hilbert spaces, that enjoys the amalgamation property.

An idea could be to define a subclass K ⊆ B such that all the spaces

in K have a fixed geometrical property.

For example, fix some function f : [0, 2] → [0, 1] and let Kf the sub-

class of B whose spaces have modulus of convexity bigger than f . If f

is good enough, then Kf is not dense in B, since it is not possible to

approximate polyhedral spaces. Intuitively it seems that such a class

has the amalgamation property, but we were not able to find a con-

struction for the amalgamation of these spaces.

Remember that, once we find a class K not dense in B with the amal-

gamation property, then we have also to require that K has the Small

distortion property (Definition 4.1).

• In order to find (almost) homogeneous separable Banach spaces, one
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can try to change the definition of almost homogeneity and try to find

spaces with weaker/stronger properties.

Definition 6.1. X is strongly almost homogeneous (SAO) if for

every A ≤ X finite-dimensional subspace, for every ε > 0 there exists

δ > 0 such that for every δ−isometry f : A→ X, there exists h : X →
X surjective isometry such that ‖f − h|A‖ ≤ ε.

Definition 6.2. X is quasi almost homogeneous (QAO) if for ev-

ery A ≤ X finite-dimensional subspace, for every ε > 0 and for every

isometry f : A → X, there exists a surjective ε−isometry h : X → X

such that f = h|A.

Definition 6.3. X is strongly quasi almost homogeneous (SQAO)

if for every A ≤ X finite-dimensional subspace, for every ε > 0, there

exists δ > 0 such that for every δ−isometry f : A → X, there exists a

surjective ε−isometry h : X → X such that f = h|A.

We know that: (SAO) ⇒ almost homogeneity, (SQAO) ⇒ (QAO) and

almost homogeneity ⇒ (QAO) (see Proposition 2.9).

The first question that arises is whether the converse arrows are true.

We know that for 1 ≤ p < ∞, p 6= 4, 6, 8, . . ., the spaces Lp[0, 1] is

(QAO), so another question is whether (QAO) implies almost homo-

geneity in these particular cases.

Another question could be whether there are other spaces that enjoy

some of these properties.
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tracta Math., 26 (2011), pp. 235–269.
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