Topography of epithelial-mesenchymal plasticity
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The transition between epithelial and mesenchymal states has funda-
mental importance for embryonic development, stem cell reprogram-
ming and cancer progression. Here, we construct a topographic map
underlying epithelial-mesenchymal transitions using a combination
of numerical simulations of a Boolean network model and the analy-
sis of bulk and single cell gene expression data. The map reveals a
multitude of meta-stable hybrid phenotypic states, separating stable
epithelial and mesenchymal states, and is reminiscent of the free
energy measured in glassy materials and disordered solids. Our
work elucidates not only the nature of hybrid mesenchymal/epithelial
states but provides a general strategy to construct a topographic rep-
resentation of phenotypic plasticity from gene expression data using
statistical physics methods.

Epithelial (E) cells can transdifferentiate into mesenchymal
(M) cells and vice-versa under a cohort of transcription factors,
including the Snail and Zeb families (1). The epithelial-to
mesenchymal transition (EMT), associated with the loss of
cell-cell adhesion and the gain of invasive traits, is considered
to be an hallmark of plasticity within a stem cell population
and is particularly relevant for tumors. For this reason, a great
effort has been devoted in the past to identify the critical bi-
ological functions regulating the EMT and its reverse, the
mesenchymal to epithelial transition (MET). Almost 80% of
human malignancies origin from epithelial tissues and a tran-
sition towards a mesenchymal phenotype is usually associated
with a more aggressive potential (2-5). Emerging evidence
shows that the EMT is a multiple process where cells express
a mix of markers, both characteristic of E and M cells (6-8).
These recent results are blurring the rigid distinction between
epithelial and mesenchymal phenotypes, indicating that cancer
cells can acquire hybrid E/M phenotypes, combining invasive
capabilities with intracellular adhesion (9, 10), becoming ex-
tremely aggressive and associated to a poor patient outcome
(11, 12).

According to an old and influential metaphor due to
Waddington (13), the cell phenotype is analogous to a marble
rolling over an epigenetic landscape and phenotypic plasticity
corresponds to the marble crossing a hill separating different
valleys. This landscape should correspond to the attractors
of the kinetics of gene regulatory networks (14-20) and be
encoded in gene expression data (21, 22). Here, we combine
numerical simulations of a large Boolean model for the EMT-
MET network with the analysis of a wide set of bulk and
single cell gene expression data to reconstruct the topography
underlying E/M plasticity. Genetic circuits regulating the
EMT have been widely investigated theoretically with models
ranging from simple switches composed by few genes (23) to
large complex networks requiring extensive numerical simu-
lations, both in discrete (24-26) and continuous time (27).
Some of these models have provided insights in particular
EM transitions, generating hypothesis that have later been
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experimentally tested (26). We show how these models can
be used to rationalize and classify genetic drivers of the EMT
and clarify the nature of hybrid E/M states guided by the
Waddington picture (13).

Our results reveal that EMT/MET occurs across an ex-
tremely complex landscape characterized by a startling number
of valleys and mountains organized according to a scale-free hi-
erarchical statistical pattern. We observe a multitude of stable
E/M states separated by a series of progressively less stable
and more hybrid states that are increasingly prone to pheno-
typic changes in response to external perturbations. Hence,
EMT and MET can take place in widely different locations and
across multiple paths, in close analogy with non-equilibrium
phase transitions in disordered solids (28, 29).

Model

To reconstruct the topographic landscape of E/M plasticity,
we build on the large Boolean network model previously used
to investigate EMT in hepatocellular carcinoma (25, 26). Since
the model as it stands is hardwired towards EMT and MET
is completely suppressed, we add to the model a missing
contribution from the LIF/KLF4 pathway whose role for MET
has been widely reported (30, 31) (see Fig. S1, Dataset S1 and
SI for details). In this way we obtain a network of N = 72
nodes , whose state is defined by a string of binary variables
{si}, determining if each gene/factor i is expressed/present
(si =1) or not (s; = —1). Regulatory relations between two
nodes ¢ and j are encoded into a (non-symmetric) matrix
Ji; taking the value J;; = 1 if j promotes ¢ and J;; = —1
when j inhibits ¢ (see Dataset S2). The network nodes evolves
asynchronously according to a simple majority rule, so that the
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node is set to s; = 1 if the sum of its promoting interactions
is larger than the sum of inhibitory ones (see Fig. 1a) (32). In
case of ties, the node is not updated, keeping its present state.
This evolution rule is the binary version of the half-functional
rule” recently proposed in (27) to derive continuum kinetic
reaction models and can be formally expressed as

Si(t + 1) = sign (Z Jiij (t)) s [1]

which is the same equation used to simulate the zero-
temperature dynamics in random ferromagnets (28) and spin
glasses (29). Guided by this analogy, but keeping in mind that
we are dealing with non-symmetric interactions, we show that
the pseudo-Hamiltonian H = — Z” Jij sis; is lowered under
repeated application of the evolution rule Eq. (1) (see SI for
full derivations and Figure S9), so that H provides a measure
of the stability of a network state, with low-H states being
more stable than high-H states.

Results

Simulated E/M topography displays fractal features. A pheno-
typic landscape associated to our EMT/MET network can be
reconstructed by performing a large number (Mo = 107) of
simulations starting from random initial conditions until the
network reaches a steady-state where s; does not change!. In
this way, we find a large number of distinct steady-states that
can be projected into a two dimensional map using the princi-
pal component analysis (PCA). We classify these steady-states
according to the expression of E-cadherin (CDH1) which we
use as a reporter of the E/M phenotype (see Fig. 1b). The
E/M map reconstructed from model shows a clear separa-
tion between E and M states with a boundary layer where E
and M states coexist in very close proximity. A topographic
representation of the stability of the states can be obtained
by projecting H on the same two dimensional map (Fig. 1lc)
showing that the boundary layer is more elevated with respect
to pure E/M states, suggesting that those states are less stable.
Furthermore, the map displays a very rough topography, with
two main valleys separated by a large barrier populated by
smaller and smaller valleys.

Given the sheer amount of distinct steady states (see the
inset of Fig. 1d), we resort to a statistical analysis and compute
the probability distribution P(a) of the relative abundances of
the states, where a is the fraction of times we find a given state.
Fig. 1d shows that P(a) is a power law distribution indicating
that most of the states are very rarely found (when a is small
P(a) is large) but few states are found multiple times (when a
is large P(a) is small). Alternative functional forms for P(a)
are discussed in SI and shown in Figure S10. The presence of
a power law is a signature of a scale-free fractal organization
of the map, as is also apparent by the correlation matrix of the
states. Fig le shows the presence of large correlated clusters
subdivided into smaller and smaller clusters. In the physics of
disordered systems, a hierarchical organization of the states is
traditionally revealed by a broad distribution P(gag) of states
overlap qag = Ei(s?sf )/N, measuring the similarity between
two states {s¢'} and {s”} (33). Hierarchical ground state

*Modifications of the model that include random local fields and their relation to network reconstruc-

tion errors are discussed in Sl. See also Figure S8
TNo limit cycles are found, see S| for details.
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structures have been observed in short-range Ising spin glasses,
see (34, 35). When we restrict the sampling to low H states,
P(gap) displays a two peak structure indicating the presence
of two classes of distinct and separate states (Fig 1f), but when
we consider all steady-states the overlap distribution becomes
very broad, resembling the one observed in spin glasses, as
noticed long time ago for random Boolean networks(36-38).

Simulated phenotypic transitions reveal scale-free stochastic
fluctuations. Once the topography associated with the E/M
landscape has been established, we investigate how the land-
scape changes when each one of nodes is held fixed to s; = £1,
which simulates overexpression (OE) or knock-down (KD) of
the corresponding gene (see SI for details). As an example,
Fig 2a and 2b report the one-dimensional projection of the
topography under OE or KD of the SNAIL1 gene, a well
known inducer of the EMT. SNAIL1 OE leads to a rightward
tilt of the landscape, favoring the M phenotype, while under
SNAIL1 KD the landscape tilts to the left, favoring the E
state. This behavior is reminiscent of the effect of a magnetic
field in a disordered magnet, where the free-energy landscape
tilts in the direction of the field. If the network is initially
in a E state, SNAIL1 OE can induce EMT but the success
rate and the trajectory crucially depends on the initial state
(see Fig. 2c), with high-H states much more likely to undergo
EMT than low-H states (see Fig. S2). The variability in the
outcome resulting from the OE/KD of a single gene can also
be quantified by measuring the distribution of the number of
nodes z affected by the process (see Fig. 2d). The distribution
decays as power law P(z) ~ z~7 up to a cutoff value that
increases with the H-value of the initial state (see Fig. 2e),
a further indication that high-H states are more susceptible
to fluctuations (see also Fig. S2). The avalanche exponent of
the power law distribution is 7 ~ 3/2, a value expected for
mean-field avalanches in driven disordered systems (28).

Using the model it is possible to perform OE/KD on all the
nodes and estimate the probability of each node to induce EMT
or MET (see Fig. 2f). Ranking the nodes as a function of their
relevance for EMT we recover well known EMT inducers such
as SNAIL1, ZEB1 or TGFf3, and MET suppressors such as
KLF4 and mir-200. The general pattern is that an inducer of
EMT by OE also induces MET by KD, and similarly for MET.
We also simulate a transient version of OE/KD where a node is
switched (s; — —s;) but it is then allowed to eventually relax
back to its previous state. The results summarized in Fig. S2
are similar to those obtained under stable OE/KD, for which
the node variable is held fixed throughout the simulation, but
the probability of EMT/MET is always smaller.

E/M topography inferred from gene expression data agrees
with simulations. To confirm that the topographic represen-
tation of the E/M landscape obtained through the model
provides an accurate representation of cellular phenotype, we
examine the large cohort of gene expression data from human
tissues provided by the GTEx project(39). In order to directly
compare experimental data to the model, we design a simple
binarization strategy to decide weather a gene is expressed
or not in a particular sample or cell. To calibrate the bina-
rization scale, we use skin cells and fibroblasts as reference
E and M states, respectively, and set a threshold based on
the expression distribution of each gene in these two data sets
(See Fig. 3a and SI). Genes whose expression is above the
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threshold are assigned to s; = 1 and otherwise to s; = —1.
The same threshold can then be used to binarize all the 11688
transcriptomes from different tissues present in the GTEx
database.

Using the topographic map of the E/M landscape con-
structed from simulations, we can now localize individual
samples projecting their gene expression data on the map as
shown in Fig. 3b. We then use the model to infer the stability
of each phenotype by computing H associated to each state
(Fig. 3c). When we plot skin cells and fibroblasts on a two
dimensional map, we see that they correctly fall into E or
M regions, respectively (see Fig. 3b), but not all samples
have the same value of H (see Fig. 3c). We use the same
strategy to localize on the same topographic map the entire
set of tissues present in the GTEx database (see Fig. S4 and
S5) and show that they cover all the available phase space.
Assuming that the GTEx database contains an unbiased ran-
dom sampling of all the available states —which is a reasonable
assumption given that the GTEx project provides multi-tissue
gene-expression data from healthy individuals only (39)— we
analyze the statistical properties of these states. As shown in
Fig. 3d, the abundance distribution derived from GTEx data
decays as a power law with an exponent that is very close to
the one found numerically (compare with Fig. 1d and see SI
and Fig. S4 for technical details). Furthermore, clustering
of the states reports a correlation matrix with hierarchical
features that are in reasonable agreement with the prediction
of the model (compare Fig. 3e with Fig. le). Finally, the
overlap distribution displays a two peak structure when the
statistics is restricted to fibroblasts and skin cells (Fig. 3f),
while a single peaked distribution is found when using all the
GTEx samples (Fig. 3g). This is in close agreement with
the simulations results reported in Fig. 1 and confirms that
experimental gene expression data give rise to a topographic
landscape quantitatively similar to the one predicted by the
model.

Tracing bulk and single cell RNAseq trajectories reveal the
nature of hybrid E/M states. The topographic representation
of E/M states derived above can be used to visualize and
interpret RNAseq data obtained while the cells are undergoing
phenotypic transformations. We first consider the classical
example of TGF-f induced EMT in a human lung adeno-
carcinoma cell line (40). Fig. 4a reports the trajectory of
the states obtained from the bulk RNAseq data recorded at
different time points after TGF-8 induction. As expected,
the trajectory starts from the E region and crosses over to
the M region of the map, as revealed by coloring the map
according to the predicted expression of CDH1. Conversely,
the trajectory obtained from RNAseq data for DOX induced
MET during somatic cell reprogramming starts from the M
valley and moves into the E valley of the landscape (30).
Our methodology is even more revealing when applied to
single cell RNAseq (scRNAseq) data as shown in Fig 4c re-
porting the time course of the states obtained from scRNAseq
data undergoing EMT during embryonic to endoderm dif-
ferentiation (41) (see also Fig. S6 illustrating MET during
fibroblast to cardiomyocyte reprogramming in single cell and
bulk samples (42)). As time goes on, cells originally in the the
E region transition to the M region between 24 and 36 hours.
After this time even though EMT is apparently completed, the
kinetic evolution of the cell population does not stop and the
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region occupied by single cell states shrinks. If we color the
map by the predicted expression of other markers, we observe
that the evolution moves cells in a low-KLF4 region (Fig. 4c
see also Fig. S7 for similar maps for other markers). Hence,
when applied to scRNAseq data our method can reveal subtle
features associated with phenotypic transformations.

This last point is best illustrated by an analyzing recent
data (6000 single cells) obtained from 18 head and neck squa-
mous cell carcinoma patients (43). The original analysis re-
vealed the presence of an aggressive cancer cell population,
associated with metastasis and poor prognosis, described as
partial-EMT (pEMT)(43). Classification of cells as pEMT was
based on a pEMT score computed from the expression values
of a set of 100 genes(43), none of which directly maps into
nodes of our model. It is thus particularly remarkable to see
that the projection of the scRNAseq data on our map reveals
that tumor cells are correctly located into the E region of the
map and cells with high pEMT score are typically located on
higher ground with respect to low pEMT cells (see Fig. 4d).
This is corroborated by the strong correlation between H and
the the pEMT score, as reported in Fig. 4e.

Discussion

Our work builds on the premise that cell phenotypic plasticity
should emerge from the activity of a complex gene regulatory
network. The general assumption is that network activity
and the ensuing phenotypes are primarily determined by the
topology on the network, rather than the specific values of the
rate constants of individual reactions (27). This allows us to
rely on relatively simple Boolean networks, where individual
nodes are only characterized by the presence or absence of
activity (14). Application of this program to the EMT/MET
networks unveils the topography of the epigenetic landscape
(13) associated with this kind of phenotypic plasticity. The
map reconstructed from the model and confirmed analyzing
RNAseq data shows a rugged landscape with scale-free fractal-
like features that are reminiscent of disordered solids and
glassy materials (33).

A direct consequence of the landscape we uncover is that
individual cells can be found in an extremely large variety of
E or M states with intermediate or mixed states hierarchically
organized between two sets of more stable and phenotypically
well defined states. Intermediate E/M states are particularly
prone to external perturbations which can lead to scale-free
distributed avalanches with the potential to trigger exten-
sive phenotypic changes. This extreme phenotypic plasticity
is associated with highly aggressive behavior of tumor cells,
as we show by analyzing recent scRNAseq data from head
and neck carcinoma patients. Our topographic representation
provides a quantitative representation of the cell phenotypic
plastic potential, encoded here in the value of the pseudo-
Hamiltonian H, that correlates extremely well with other
independent measures of partial EMT. Furthermore, a topo-
graphic representation of the E/M phenotypes allows for a
graphical representation of EMT and MET transitions in a
variety of different contexts, from cancer to development and
stem cell differentiation. Our general methodological strategy
is not restricted to EMT but could be readily applied to other
gene regulatory networks relevant to understand a variety
of physiological functions and pathological conditions. The
method appears to be a promising tool to build convenient
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and accessible maps to orient ourselves among the exploding
amount of single cell sequencing data.

Materials and Methods

Conversion of gene-level expression values to node-level binary
states. We compute node-level expression values follows: All nodes
except Hypoxia and miR200 are mapped to one or more genes, see
Dataset S1. If expression data for more than one gene of a given
node is available, we take the average of these for non-complexes
and the minimum for complexes. We then binarize the node-level
expression data using thresholds computed via a weighted average
of the log2 expression of two reference samples (see Datasets section
for details). We use a weighted average to avoid subsampling when
the reference samples are of unequal size. The statistical significance
of the binarization procedure is assessed with the Fisher’s exact
test. The EMT-MET model takes into account the localization
of B-catenin by considering two separate nodes: one for S-catenin
located in the nucleus, and one for S-catenin in the membrane. In
gene-expression datasets, it is not possible to infer the localization
of [-catenin looking only at the expression level of CTNNB1. To
circumvent this issue, we consider S-catenin to be in the nucleus if
its targets TCF/LEF are expressed, and in the membrane otherwise.
If CTNNBI is not expressed, the state of both nodes is set to -1
independently on the value of TCF/LEF.

Datasets. Data in Figure 3 comes from the GTEx project (39) and
was downloaded from the GTEx portal (https://gtexportal.org/home/
datasets) on 12/10/2017. We use samples labeled as “Cells - Trans-
formed fibroblasts” and “Skin - Not Sun Exposed (Suprapubic)” as
reference samples for binarization. The PCA basis in Figure 3(b,c)
was computed using all GTEx samples. All nodes were included
in this analysis. TGB-f-induced EMT data in Figure 4(a) was
downloaded from the Gene Expression Omnibus, accession num-
ber GSE17708 (40), on 25/09/2017. We used T' = 0.5, 1h and
T = 24,72h as reference samples for binarization. A total of 29
nodes with binarization p-value below 0.05 are included in the anal-
ysis. We use 107 steady states from the model, restricted to such
nodes, to compute the PCA basis in Figure 4(a). Dox-induced MET
data in Figure 4(b) was downloaded from the Gene Expression
Omnibus, accession number GSE21757 (30), on 02/10/2017. We
use T = 0d and T = 21d as reference samples for binarization.
With one single sample per time-point, binarization p-values cannot
be computed as explained above. As an alternative, we restrict
the analysis to 47 nodes with fold-change greater than or equal
to 0.5. We use 107 steady states from the model, restricted to
such nodes, to compute the PCA basis in Figure 4(b). Single-cell
data of embryonic-to-endoderm differentiation in Figure 4(c) was
downloaded from the Gene Expression Omnibus, accession number
GSET75748 (41), on 25/09/2017. We use T' = Oh and T = 96h as
reference samples. Given the large number of samples, the PCA
basis in Figure 4(c) was computed using the experimental data. All
nodes were included in the analysis. Head and neck cancers single-
cell data in Figure 4(d,e) was obtained from the Gene Expression
Omnibus, accession number GSE103322. We used epithelial and
fibroblast samples as reference samples for binarization. The PCA
basis was fitted to the single-cell data using all nodes. The pEMT
score is computed as the average expression of the 100 genes that
constitute the pEMT program in (43). Fibroblast-to-cardiomyocyte
differentiation data in Figure S6 was downloaded from the Gene
Expression Omnibus, accession numbers GSE98570 (bulk data) and
GSE98567 (single-cell data) (42), on 22/11/2017. We used samples
labeled as “control” and “reprogramming cells” as reference samples
for single-cell data binarization, and samples labeled as “D0” and
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“D14” for bulk data binarization, and Single-cell data was used to
fit the PCA basis in Figure S7.
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Fig. 1. The topography of E/M states displays a hierarchical complex structure. (a) lllustration of the Boolean update rule. The state of a node s;
depends on the state of its promoters (J;; = +1, —) and inhibitors (J;; = —1, —). (b) PCA projection of 10 steady states. Color corresponds to the ratio of steady states
that express E-cadherin. The panel shows intricate patterns of transition between areas of high/low Ecadherin expression probability, colored in green/violet shades. (c) 3D
reconstruction of topography of EMT. The zy-projection reproduces the data in (b). The z-axis corresponds to the value of H, showing that high- H states (colored in darker

blue shades) coincide with the central transition area in (b). (d) Distribution of steady-state abundances, computed from 107 steady states of the EMT model (blue symbols).

The relative abundance a of a steady state is the fraction of times it is found, starting from random initial conditions. The black line of slope -2 is shown only as a guide to the
eye. The inset shows the number of distinct steady states U as a function of the total number of steady-states N, found in simulations. (e) Clustering of steady states,
computed using 500 steady states of the model. The heatmap shows correlation between steady states. Colors adjacent to the dendogram mark the expression of E-cadherin
(green) or lack of expression (violet). States expressing E-cadherin cluster together but display additional hierarchical organization. (f) Overlap distribution over the 20% of
steady states with lowest H. A two-peak distribution marks the presence of two symmetric sets as in disordered magnets. (g) The broad overlap distribution over all steady
states resembles the one observed in spin glasses.
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Fig. 2. EMT/MET occurs with different probabilities through multiple paths. The model shows many forms of EMT/MET, and these occur with
different probabilities. (a,b) One-dimensional PCA projection of the H landscape where (a) Over-expression (OE) or (b) knock-out (KD) of SNAIT tilts the landscape towards the
M or E regions, respectively. (c) Transition map under SNAI1 OE. The model displays different forms of SNAI1-induced EMT. d) The distribution of gene expression avalanches
after individual KD/OE is a power law with exponent 7 =~ 1.5. e) The cutoff of the distribution depends on H, quantified here by quartiles, with high H states producing larger
avalanches. (f) EMT/MET probabilities under KD/OE conditions. The model lays out a non-deterministic picture of EMT/MET where well-known factors such as SNAI1 (EMT) or
KLF4 (MET) induce phenotypic transitions with higher probability (see Materials and methods and Fig. S2 for further details).
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Fig. 3. Multi-tissue gene expression data display statistical features in agreement with simulations. (a) lllustration of the binarization process
(see Materials and methods for details). Gene-level expression data is casted into node-level binary data using binarization thresholds, computed using two reference samples
(orange and black coloring). (b) Skin (orange) and fibroblasts (black) samples from the GTEx project projected in PCA space. The E-cadherin expression probability in the
model is shown with green (100%) to violet (0%) shades. Fibroblast samples tend to be in areas of very low E-cadherin expression probability. (c) Same as (b) but coloring the

model steady states by average H. (d) Distribution of abundances, computed using all GTEx binarized samples and the 14 most relevant nodes, see Sl and Figure S3 for

details. (e) Clustering of 500 GTEx samples (all tissues), displaying a hierarchical structure qualitatively similar to that of the model (compare with Figure 1e). (f) Overlap
distribution over skin and fibroblast samples from the GTEx project (compare with Figure 1f). (g) Overlap distribution over all GTEx samples. (compare with Figure 1g).

8

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

La Porta etal.

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

PCAl

Fig. 4. Single cells and bulk transcriptomic data yield trajectories through the E/M map with putative hybrid states lying on high
H regions. (a) Data from TGF-3-treated lung adenocarcinoma cell lines (GSE17708 (40)) yield a trajectory moving from the E to the M region. (b) Data from Dox-induced
somatic cell reprogramming (GSE21757 (30)) display a reverse trajectory from M to E. Experimental data are shown as colored symbols with time course marked with arrows.
The colored background depends on the ratio of steady states of the model that express E-cadherin at a given location in PCA coordinates, ranging from 100% (green) to 0%
(violet). (c). Experimental data from single-cell embryonic-to-endoderm differentiation (GSE75748 (41)) move across the map as cells undergo EMT. The background color
indicates the ratio of steady states that express E-cadherin or KLF4 (see Fig. S7 for more markers). (d) Localization of single cell gene expression data from tumor cells
obtained from head and neck squamous cell carcinoma patients (43). All tumor cells correctly lie in the E region of the map, with high pEMT-scored cells located towards
high-H areas. (e) The pEMT score correlates with H. Each gray dot represents a single cell. R and p denote the Pearson correlation coefficient and its associated p-value
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