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1. Introduction

Usually ordinary differential equation models are the result of averaging and/or
neglecting some details of an original system without modeling a complex system
with a huge number of degrees of freedom or tuning parameters. Introducing
noise is therefore a way to approximate closer the reality of observable complex
systems. It is then natural to think of the noise as small, for example when one
is considering the dynamics of macroscopic quantities, i.e. averages of quantities
of interest over a whole population or in the case of signal that travels through
a perturbed medium, etcetera.

Dynamical systems with small perturbations have been indeed widely studied
in [1] and [8]. Applications of small diffusion processes to mathematical finance
and option pricing have been considered in [43], [24], [34], [41] and references
therein. Examples from biology and life sciences include [17], [2], [6].

Model selection is an important aspect in the above applied fields although
sometimes neglected. What occurs for dynamical systems with small noise, is not
so different from what happens in ordinary least squares (OLS) model estima-
tion. Indeed, linear regression models are used extensively by many practitioners
but, once estimated, these models are useful as long as the set of parameter (or
covariates) is correctly specified. Therefore, the model selection step is an im-
portant part of the analysis.

To introduce the idea of Lasso-type estimation we begin with linear models
and OLS. In this framework model selection occurs when some of the regression
parameters are estimated as zero. Different models are compared in terms of
information criteria like AIC/BIC or hypotheses testing. The advantage of the
Lasso-type approach over AIC/BIC is that statistical models do not need to be
nested but one can rather construct a single large parametric model merging
two orthogonal models and let the selection method to choose one of the two
models [3].

Variable selection becomes particularly important when the true underlying
model has a sparse representation. Correctly identifying significant predictors
will improve the prediction performance of the fitted model (for an overview of
feature selection see [7]).

Considered the linear regression model Yi = xT
i β+ εi, with xi a vector of co-

variates, β a vector of q > 0 parameters and εi i.i.d. Gaussian random variables.
[23] proposed the following lp-penalized estimator for β

β̂n = argmin
u

⎛
⎝ n∑

i=1

(Yi − xT
i u)

2 + λn

q∑
j=1

|uj |p
⎞
⎠ (1.1)

for some p > 0 and λn → 0 as n → ∞. The family of estimators β̂n solution
to (1.1) is a generalization of the Ridge estimators which corresponds to the
case p = 2 (see [5]). The original Lasso estimators proposed in [35] are obtained
setting p = 1 while OLS is the case λn = 0, not considered here. The link
between Lasso-type estimation and model selection is also due to the fact that,
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in the limit as p → 0, this procedure approximate the AIC or BIC selection
methods (which correspond to p = 0 with λn > 0), i.e.

lim
p→0

q∑
j=1

|uj |p =

q∑
j=1

1{uj �=0}

which amounts to the number of non-null parameters in the model. Here 1A the
indicator function for set A.

As said, the estimators solutions to (1.1) are attractive because with them it
is possible to perform estimation and model selection in a single step, i.e. the
procedure does not need to estimate different models and compare them later
with information criteria as the dimension of the space of the parameters does
not change; just some of the components of the vector βj are assumed to be zero.
In non-linear models a preliminary simple reparametrization (e.g. β �→ β′ − β)
is needed to interpret this approach in terms of model selection.

In this work, we extend the problem in (1.1) to the class of diffusion-type
processes with small noise solution to the stochastic differential equation dXt =
St(θ,X)dt + εdWt, t ∈ [0, T ], by replacing least squares estimation with min-
imum distance estimation. The asymptotic is considered as ε → 0 for fixed
0 < T < ∞ with θ ∈ Θ ⊂ R

q a q-dimensional parameter.
Since the seminal works of [25, 26, 27] and [42], statistical inference for contin-

uously observed small diffusion processes is well developed today (see, e.g., [28,
18, 19, 44, 40]) but the Lasso problem has not been considered so far. Although
here we consider only continuous time observations, it is worth mentioning that
there is also a growing literature on parametric inference for discretely observed
small diffusion processes (see, e.g., [9, 14, 31, 32, 33, 36, 37, 38, 39, 11, 12])
to which this Lasso problem can be extended. Adaptive Lasso-type estimation
for ergodic diffusion processes sampled at discrete time has been studied in [4],
while for continuous time ergodic diffusion processes shrinkage estimation has
been considered in [29].

This paper is organized as follows. In Section 2, we introduce the model,
the assumptions and the statement of the problem. In Section 3, we study
the consistency of the estimators and derive their asymptotic distribution for
different values of p. For p = 1, we also consider the case of adaptive Lasso
estimation that is meant to control asymptotic bias. We are also able to prove
that the adaptive estimation represents an oracle procedure.

2. The Lasso-type problem for dynamical systems with small noise

Let us assume that on the probability space (Ω,F , P ), with the filtration {Ft, 0 ≤
t ≤ T} (where each Ft, 0 ≤ t ≤ T, is augmented by sets from F having zero P -
measure), is given a Wiener process {Wt,Ft, 0 ≤ t ≤ T}. Let X = {Xt, 0 ≤ t ≤
T} be a real valued diffusion-type process solution to the following stochastic
differential equation

dXt = St(θ,X)dt+ εdWt, ε ∈ (0, 1], (2.1)
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with non random initial condition X0 = x0, where St(·, X) is a known measur-
able non-anticipative functional (see, e.g., [13]). The parameter θ ∈ Θ ⊂ R

q,
where Θ is a bounded, open and convex set, is supposed to be unknown.

Let (C[0, T ],B[0, T ]) be the measurable space of continuous functions xt on

[0, T ] with σ-algebra B[0, T ] = σ{xt, 0 ≤ t ≤ T}. Moreover, P
(ε)
θ denotes the

law induced by the process X in (C[0, T ],B[0, T ]) when the true parameter is
θ. We denote by u = (u1, . . . , uq)

T the (transposed) vector u ∈ R
q and the true

value of θ by θ∗. Let || · || = || · ||L2(μ) be the L2-norm with respect to some finite
measure μ on [0, T ], i.e.

||f ||2 =

∫ T

0

f2(t)μ(dt).

We suppose that the trend coefficient in (2.1) is of integral type, i.e.

St(θ,X) = V (θ, t,X) +

∫ t

0

K(θ, t, s,Xs)ds,

where V (θ, t, x) and K(θ, t, s, x) are known measurable, non-anticipative func-
tionals such that (2.1) has a strong unique solution. For example, the usual
conditions (1.34) and (1.35) in [27] and Theorem 4.6 in [13] about Lipschitz
behavior and linear growth are sufficient.

Assumption 1. For all t ∈ [0, T ], θ ∈ Θ and Xt, Yt ∈ C[0, T ]

|V (θ, t,Xt)− V (θ, t, Yt)|+
∫ t

0

|K(θ, t, s,Xs)−K(θ, t, s, Ys)|ds

≤ L1

∫ t

0

|Xs − Ys|dHs + L2|Xt − Yt|,

|V (θ, t,Xt)|+
∫ t

0

|K(θ, t, s,Xs)|ds ≤ L1

∫ t

0

(1 + |Xs|)dHs + L2(1 + |Xt|),

where L1 and L2 are positive constants and Hs is a nondecreasing right-contin-
uous function, 0 ≤ Ht ≤ H0, H0 > 0.

Assumption 1 implies that all the probability measures P
(ε)
θ , θ ∈ Θ, are equiv-

alent (see Theorem 7.7 in [13]). The asymptotic in this model is considered as
ε → 0 and 0 < T < ∞ fixed.

We will also write x(θ) = {xt(θ), 0 ≤ t ≤ T} to denote all the solution of the
limiting dynamical system

dxt

dt
= V (θ, t, xt) +

∫ t

0

K(θ, t, s, xs)ds, x0,

where xt = xt(θ). We assume that, for all 0 ≤ t ≤ T and for each θ ∈ Θ, the
random element Xt and xt(θ) belong to L2(μ). Furthermore, we suppose that
the functionals V (θ, t, x) and K(θ, t, s, x) have bounded first derivative with
respect to θ.
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Let x(1)(θ∗) = {x(1)
t (θ∗), 0 ≤ t ≤ T} be the Gaussian process solution to

dx
(1)
t =

(
Vx(θ

∗, t, xt(θ
∗))x

(1)
t +

∫ t

0

Kx(θ
∗, t, s, xs(θ

∗))x(1)
s ds

)
dt+ dWt, (2.2)

x
(1)
0 = 0,

where x
(1)
t = x

(1)
t (θ∗), Vx(θ, t, x) = ∂

∂xV (θ, t, x) and Kx(θ, t, s, x) = ∂
∂xK(θ, t,

s, x). The process x(1)(θ∗) plays a central role in the definition of the asymptotic
distribution of the estimators in the theory of dynamical systems with small
noise. We need in addition the following assumptions.

Assumption 2. The stochastic process X is differentiable in ε at the point
ε = 0 in the following sense: for all ν > 0

lim
ε→0

P
(ε)
θ∗

(
||ε−1(X − x(θ∗))− x(1)(θ∗)|| > ν

)
= 0

where x(1)(θ∗) = {x(1)
t (θ∗), 0 ≤ t ≤ T} is from (2.2) with bounded coefficients

Vx(θ
∗, t, ·) and Kx(θ

∗, t, s, ·).
We further denote by ẋt(θ) the q-dimensional vector of partial derivatives of

xt(θ) with respect to θj , j = 1, . . . , q, i.e., ẋt(θ) = ( ∂
∂θ1

xt(θ), . . . ,
∂

∂θq
xt(θ))

T ,

and ẋt(θ
∗) satisfies the systems of equations

dẋt(θ
∗)

dt
= [Vx(θ

∗, t, xt(θ
∗))ẋt(θ

∗) + V̇ (θ∗, t, xt(θ
∗))

+

∫ t

0

(K̇(θ∗, t, s, xs(θ
∗)) +Kx(θ

∗, t, s, xs(θ
∗))ẋs(θ

∗))ds]dt,

ẋ0(θ
∗) = 0,

where the point corresponds to the differentiation on θ; i.e.

V̇ (θ, t, xt(θ)) =

(
∂

∂θ1
V (θ, t, xt(θ)), ...,

∂

∂θq
V (θ, t, xt(θ))

)T

and

K̇(θ, t, s, xs(θ)) =

(
∂

∂θ1
K(θ, t, s, xs(θ)), ...,

∂

∂θq
K(θ, t, s, xs(θ))

)T

.

Assumption 3. The deterministic dynamical system xt(θ) is L2(μ)-differen-
tiable in θ at the point θ∗; i.e.

||x(θ∗ + h)− x(θ∗)− hT ẋ(θ∗))|| = o(|h|)
where h ∈ R

q.

Assumption 4. The matrix

I(θ∗) =
∫ T

0

ẋt(θ
∗)ẋT

t (θ
∗)μ(dt)

is positive definite and nonsingular.
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2.1. The Lasso-type estimator

We introduce a constrained minimum distance estimator for θ for the model
(2.1). The asymptotic properties of the unconstrained minimum distance esti-
mators in the i.i.d. framework have been established in [15, 16]. Later [26, 27]
and [28] studied in details the properties of such estimators for diffusion pro-
cesses with small noise. Information criteria for this model have been studied in
[40], while here we study the Lasso-type approach.

To define the Lasso-type estimator the following penalized contrast function
has to be considered

Zε(u) = ||X − x(u)||+ λε

q∑
j=1

|uj |p, (2.3)

where p > 0, u ∈ Θ and λε > 0 is a real sequence. In analogy to (1.1), we

introduce the Lasso-type estimator θ̂ε : C[0, T ] → Θ̄ for θ, defined as

θ̂ε = argmin
θ∈Θ̄

Zε(θ), (2.4)

where Θ̄ is the closure of Θ.
The following example explains well the spirit of the Lasso procedure. We

consider a linear small diffusion-type process X given by

dXt =

q∑
j=1

θjAj(t,X)dt+ εdWt, 0 ≤ t ≤ T.

By applying the estimator (2.4), some parameters θj will be set equal to 0 and
this implies a simultaneous estimation and selection of the model. Therefore,
the Lasso methodology is particularly useful in the random dynamical systems
framework where a sparse representation of the drift term emerges (i.e. some
components of θ are exactly zero) and we are interested in identifying the true
model.

3. Asymptotic properties of the Lasso-type estimator

The additional lp-penalization term in the contrast function (2.3) modifies the
traditional properties of the minimum distance estimator. The analysis should
be performed for the different values of p.

3.1. Consistency

Let us introduce the following functions

gεθ∗(ν) = inf
|θ−θ∗|≥ν

⎧⎨
⎩||x(θ)− x(θ∗)||+ λε

q∑
j=1

|θj |p
⎫⎬
⎭ ,
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hε
θ∗(ν) = inf

|θ−θ∗|<ν

⎧⎨
⎩||x(θ)− x(θ∗)||+ λε

q∑
j=1

|θj |p
⎫⎬
⎭

where |θ − θ∗| ≥ ν (resp. < ν) is to be intended componentwise, for all ν > 0.
We need the following identifiability-type condition.

Assumption 5. For every ν > 0, we assume that

gεθ∗(ν) > hε
θ∗(ν).

Theorem 1. Suppose Assumption 1 and Assumption 5 are fulfilled and assume
λε = O(ε) as ε → 0. Then θ̂ε in (2.4) is a uniformly consistent estimator of θ∗;
i.e. for any ν > 0

lim
ε→0

sup
θ∗∈Θ

P
(ε)
θ∗

(
|θ̂ε − θ∗| ≥ ν

)
= 0.

Proof. By definition of θ̂ε, for any ν > 0, we have that

{
ω : |θ̂ε − θ∗| ≥ ν

}
=

{
ω : inf

|θ−θ∗|<ν
Zε(θ) > inf

|θ−θ∗|≥ν
Zε(θ)

}

Moreover,

Zε(θ) ≤ ||X − x(θ∗)||+ ||x(θ)− x(θ∗)||+ λε

q∑
j=1

|θj |p,

Zε(θ) ≥ ||x(θ)− x(θ∗)|| − ||X − x(θ∗)||+ λε

q∑
j=1

|θj |p.

Then, from the above inequality, we get

P
(ε)
θ∗

(
|θ̂ε − θ∗| ≥ ν

)
= P

(ε)
θ∗

(
inf

|θ−θ∗|<ν
Zε(θ) > inf

|θ−θ∗|≥ν
Zε(θ)

)

≤ P
(ε)
θ∗

(
||X − x(θ∗)||+ hε

θ∗(ν)

2
>

gεθ∗(ν)

2

)

Since (see Lemma 1.13, in [27])

||X − x(θ∗)|| ≤ Cε sup
0≤t≤T

|Wt|, P
(ε)
θ∗ − a.s.,

where C = C(L1, L2,K0, T ) is a positive constant, under Assumption 5, we get

sup
θ∗∈Θ

P
(ε)
θ∗

(
|θ̂ε − θ∗| ≥ ν

)
≤ P

(ε)
θ∗

(
Cε sup

0≤t≤T
|Wt| >

1

2
inf

θ∗∈Θ
{gεθ∗(ν)− hε

θ∗(ν)}
)

≤ 2 exp

{
− (infθ∗∈Θ{gεθ∗(ν)− hε

θ∗(ν)})2
8TC2ε2

}
→ 0.
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In the above, we made use of the following estimate for N > 0

P

(
sup

0≤t≤T
|Wt| > N

)
≤ 4P (WT > N) ≤ 2e−

N2

2T ,

see, e.g., [27], and observed that

gεθ∗(ν)− hε
θ∗(ν) → inf

|θ−θ∗|≥ν
||x(θ)− x(θ∗)|| > 0, ε → 0.

From the proof of the consistency of (2.4) it is clear that the speed of con-

vergence of θ̂ε depends on the asymptotic rate of λε. The rate of convergence of
λε also affects the asymptotic distribution of the estimator.

Remark 1. It is possible to define other types of Lasso-type estimators modify-
ing the metric in (2.3); i.e. by considering, for instance, the sup-norm and the
L1-norm. Hence, if {Xt, 0 ≤ t ≤ T} and {xt(θ), 0 ≤ t ≤ T}, θ ∈ Θ, are elements
of the space C[0, T ] or L1(μ), we can introduce the Lasso estimator

θ̌ε = argmin
θ∈Θ̄

⎧⎨
⎩ sup

0≤t≤T
|Xt − xt(θ)|+ λε

q∑
j=1

|uj |p
⎫⎬
⎭

or

θ̆ε = argmin
θ∈Θ̄

⎧⎨
⎩
∫ T

0

|Xt − xt(θ)|μ(dt) + λε

q∑
j=1

|uj |p
⎫⎬
⎭ ,

respectively. The estimators θ̌ε and θ̆ε are uniformly consistent and the proof
follows by the same steps adopted to prove Theorem 1. Clearly, it is necessary
to redefine the functions gεθ∗ and hε

θ∗ appearing in Assumption 5 by replacing

L2(μ)-norm with sup-norm (for θ̌ε) or L1(μ)-norm (for θ̆ε).

3.2. Asymptotic distribution

In order to study the asymptotic distribution of the Lasso-type estimator we
need to distinguish the different cases for p. We start with the case of p ≥ 1.
We denote by “→d” the convergence in distribution and we denote by ζ the
following Gaussian random vector

ζ =

∫ T

0

x
(1)
t (θ∗)ẋt(θ

∗)μ(dt); (3.1)

i.e. ζ ∼ Nq(0, σ
2) where

σ2 =

∫ T

0

∫ T

0

ẋt(θ
∗)ẋs(θ

∗)TE[x
(1)
t (θ∗)x(1)

s (θ∗)]μ(dt)μ(ds),

(see also Lemma 2.13 in [27]). The next two theorems have been inspired from
Theorem 2 and Theorem 3 in [23]. Nevertheless, in our case the convexity ar-
gument adopted in [23] does not work.
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Theorem 2. Suppose that Assumption 1–Assumption 5 are fulfilled, ζ is defined
as in (3.1), p ≥ 1 and ε−1λε → λ0 ≥ 0. Then

ε−1(θ̂ε − θ∗) →d argmin
u

V (u)

where

V (u) = −2uT ζ + uTI(θ∗)u+ pλ0

q∑
j=1

ujsgn(θ
∗
j )|θ∗j |p−1

for p > 1 and

V (u) = −2uT ζ + uTI(θ∗)u+ λ0

q∑
j=1

(
|uj |1{θ∗

j=0} + ujsgn(θ
∗
j )1{θ∗

j �=0}

)

if p = 1.

Proof. Let u ∈ R
q and introduce the random function

Vε(u) =
1

ε2

(
||X − x(θ∗ + εu)||2 − ||X − x(θ∗)||2

+ λε

q∑
j=1

{
|θ∗j + εuj |p − |θ∗j |p

})
, (3.2)

which is minimized at the point u = ε−1(θ̂ε − θ∗) by definition of θ̂ε. By ex-
ploiting Assumption 2-Assumption 4, we get

1

ε2
{
||X − x(θ∗ + εu)||2 − ||X − x(θ∗)||2

}
=

1

ε2
{
||X − x(θ∗)− εuT ẋ(θ∗)||2 − ||X − x(θ∗)||2

}
+ oε(1)

= uT ||ẋ(θ∗)||2u− 2uT ||ε−1(X − x(θ∗))ẋ(θ∗)||+ oε(1)

P
(ε)

θ∗−→
ε→0

uTI(θ∗)u− 2uT ζ, (3.3)

where
P

(ε)

θ∗−→ stands for the convergence in probability and ζ is from (3.1). For the
term in (3.2)

λε

ε2

q∑
j=1

{
|θ∗j + εuj |p − |θ∗j |p

}

we have to distinguish the case p = 1 and p > 1. Let p > 1, then

λε

ε2

q∑
j=1

{
|θ∗j + εuj |p − |θ∗j |p

}
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=
λε

ε

q∑
j=1

uj

|θ∗j + εuj |p − |θ∗j |p

εuj
−→
ε→0

pλ0

q∑
j=1

ujsgn(θ
∗
j )|θ∗j |p−1 (3.4)

If p = 1, then by similar arguments, we have

λε

ε2

q∑
j=1

{
|θ∗j + εuj | − |θ∗j |

}
−→
ε→0

λ0

q∑
j=1

(
|uj |1{θ∗

j=0} + ujsgn(θ
∗
j )1{θ∗

j �=0}

)
. (3.5)

Notice that Vε(u) is not convex in u and then we have to consider the con-
vergence in distribution on the topology induced by the uniform metric on
compact sets; i.e. we deal with the convergence in distribution of Vε(u) on
the space of the continuous functions topologized by the distance ρ(y1, y2) =
supu∈K |y1(u) − y2(u)|, where K is a compact subset of Rd. From (3.3), (3.4)
and (3.5) follows the convergence of the finite-dimensional distributions

(Vε(u1), ..., Vε(uk)) →d (V (u1), ..., V (uk))

for any ui ∈ R
d, i = 1, ..., k. The tightness of Vε(u) is implied by

sup
ε∈(0,1]

E

[
sup
u∈K

∣∣∣∣ dduVε(u)

∣∣∣∣
]
< ∞

which follows from the regularity conditions on {Xt, 0 ≤ t ≤ T} and {xt(θ), 0 ≤
t ≤ T}. Indeed it is not hard to prove that

lim
h→0

lim sup
ε→0

E[w(Vε(u), h) ∧ 1] ≤ lim
h→0

h sup
ε∈(0,1]

E

[
sup
u∈K

∣∣∣∣ dduVε(u)

∣∣∣∣
]
= 0,

where w(y, h) = sup{ρ(y(u), y(v)) : |u − v| ≤ h}, with y a continuous function
on compact sets and h > 0. Therefore by Theorem 16.5 in [20], we conclude
that

Vε(u) →d V (u)

uniformly on u. Since argminu V (u) is unique (P
(ε)
θ∗ −a.s.), to prove that

argmin
u

Vε(u) = ε−1(θ̂ε − θ∗) →d argmin
u

V (u),

we can use Theorem 2.7 in [21]. Hence, it is sufficient to show that
argminu Vε(u) = O

P
(ε)

θ∗
(1). We observe that

Vε(u) = V l
ε (u) + oε(1)

where

V l
ε (u) =

1

ε2

{
uT ||ẋ(θ∗)||2u− 2uT ||ε−1(X − x(θ∗))ẋ(θ∗)||
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+ λε

q∑
j=1

{
|θ∗j + εuj |p − |θ∗j |p

}}

is a convex function. Since for each a ∈ R and δ > 0, there exists a compact set
Ka,δ such that (see, [22])

lim sup
ε→0

P
(ε)
θ∗

(
inf

u/∈Ka,δ

Vε(u) ≤ a

)
≤ δ,

then argminu Vε(u) = O
P

(ε)

θ∗
(1).

In the case 0 < p < 1, a different rate of convergence must be imposed on
the sequence λε.

Theorem 3. Suppose that Assumption 1–Assumption 4 hold, ζ defined as in
(3.1), 0 < p < 1 and λε/ε

2−p → λ0 ≥ 0. Then

ε−1(θ̂ε − θ∗) →d argmin
u

V (u)

where

V (u) = −2uT ζ + uTI(θ∗)u+ λ0

q∑
j=1

|uj |p1{θ∗
j=0}.

Proof. We proceed analogously to the proof of Theorem 2. As before we start
with Vε(u) from (3.2). The first part of the expression in Vε(u) converges in
distribution to −2uT ζ + uTI(θ∗)u as in Theorem 2. For the second term, we
need to distinguish the two cases θ∗k = 0 or θ∗k �= 0. By assumptions we have
that λε/ε

2−p → λ0 and hence necessarily λε/ε → 0.
Consider first the case θ∗k �= 0. We have that

λε

ε
uk

(
|θ∗k + εuk|p − |θ∗k|p

εuk

)
→ 0.

Conversely, if θ∗k = 0 we have that

λε

ε2

q∑
j=1

(
|θ∗j + εuj |p − |θ∗j |p

)
→ λ0

q∑
j=1

|uj |p1{θ∗
j=0}

So, by means of the same arguments adopted in the proof of Theorem 2, we can
prove that Vε(u) →d V (u) uniformly on u. Following [21], the final step consists
in showing that argminVε = O

P
(ε)

θ∗
(1) and so argminVε →d argminV . Indeed,

Vε(u) ≥
1

ε2
(
||X − x(θ∗ + εu)||2 − ||X − x(θ∗)||2

)
− λε

ε2

q∑
j=1

|εuj |p

and for all u and ε sufficiently small, δ > 0, we have

Vε(u) ≥
1

ε2
(
||X − x(θ∗ + εu)||2 − ||X − x(θ∗)||2

)
− (λ0 + δ)

q∑
j=1

|uj |p = V δ
ε (u).
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The term |uj |p grows slower than the the first normed terms in V δ
ε (u), so

argminu V
δ
ε (u) = O

P
(ε)

θ∗
(1) and, in turn, argminu Vε(u) is also O

P
(ε)

θ∗
(1). The

uniqueness of argminu V (u) completes the proof.

Remark 2. If λ0 = 0, from the above theorems we immediately obtain that

ε−1(θ̂ε − θ∗) →d argmin
u

V (u) = I−1(θ∗)ζ,

where I−1(θ∗)ζ ∼ Nq(0, I−1(θ∗)σ2I−1(θ∗)).

4. Adaptive version of the penalized estimator

Theorem 3 shows that, if p < 1, one can estimate the nonzero parameters θ∗j �= 0
at the usual rate without introducing asymptotic bias due to the penalization
and, at the same time, shrink the estimates of the null θ∗j = 0 parameters toward
zero with positive probability.

On the contrary, if p ≥ 1 non zero parameters are estimated with some
asymptotic bias if λ0 > 0. This is a well known result in the literature [23], [45]
and has been indeed considered in [4] for ergodic diffusion models with discrete
observations.

In this section we consider only the case for p = 1, i.e. the real Lasso estimator.
Furthermore, we deal with an adaptive version of the Lasso estimator for the
diffusion-type process (2.1).

To state the results we need to rearrange the elements of the vector parame-
ters θ in this way. Suppose that q0 ≤ q values of θ∗ are not null, than we reorder
θ∗ as follows: θ∗ = (θ∗1 , . . . , θ

∗
q0 , θ

∗
q0+1, . . . , θ

∗
q )

T , where we denoted by θ∗k = 0,
k = q0+1, . . . , q, the null parameters. We now need to modify the optimization
function by introducing one adaptive sequence for each of the parameters θj ;
i.e.

Z̃ε(u) = ||X − x(u)||+
q∑

j=1

λε,j |uj |, (4.1)

and, as in the above, the adaptive Lasso-type estimator is the solution to

θ̃ε = (θ̃ε1, ..., θ̃
ε
q) = argmin

θ∈Θ̄
Z̃ε(θ). (4.2)

We now need to slightly modify the rate of convergence of the new sequences
{λε,j , j = 1, . . . , q}.
Assumption 6. Let

κε = min
j>q0

λε,j and γε = max
1≤j≤q0

λε,j .

Then the following convergence must hold

κε

ε
→ ∞ and

γε
ε

→ 0.
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Let

ẋ1
t (θ) =

(
∂

∂θ1
xt(θ), . . . ,

∂

∂θq0
xt(θ)

)T

,

and

I11(θ) =
∫ T

0

ẋ1
t (θ)ẋ

1
t (θ)

Tμ(dt), (q0 × q0 matrix).

Let η be a Gaussian random vector defined as follows

η =

∫ T

0

x
(1)
t (θ∗)ẋ1

t (θ
∗)μ(dt) ∼ Nq0(0, σ

2
1), (4.3)

where

σ2
1 =

∫ T

0

∫ T

0

ẋ1
t (θ

∗)ẋ1
s(θ

∗)TE[x
(1)
t (θ∗)x(1)

s (θ∗)]μ(dt)μ(ds).

The estimator θ̃ε enjoys asymptotically the oracle properties. Indeed, a good
fitting procedure should have the following (asymptotically) properties: (i) con-
sistently estimates null parameters as zero and vice versa; i.e. identifies the right
subset model; (ii) has the optimal estimation (prediction) rate and converges to
a Gaussian random variable with covariance matrix of the true subset model. In
our framework, it is reasonable to require that the estimator θ̃ε defines an oracle
procedure. Indeed, for instance, as observed at the end of the Section 2.1, the
diffusion-type processes can have a sparse representation and then it is useful
to identify consistently the true model.

Theorem 4 (Oracle properties). Suppose Assumption 1–Assumption 6 are ful-
filled. Then, as ε → 0, the following results hold.

(i) Consistency in variable selection; i.e.

P
(ε)
θ∗ (θ̃εk = 0) −→ 1, k = q0 + 1, . . . , q;

(ii) Asymptotic normality; i.e.

ε−1(θ̃ε1 − θ∗1 , ..., θ̃
ε
q0 − θ∗q0)

T −→d I−1
11 (θ∗)η,

where I−1
11 (θ∗)η ∼ Nq0(0, I−1

11 (θ∗)σ2
1 I−1

11 (θ∗)).

Proof. (i) We briefly outline the proof. The proof is by contradiction. Let us
assume that for one j = q0 + 1, . . . , q the adaptive Lasso estimator for θ∗j = 0

is θ̃εj �= 0. By taking into account the Karush-Kuhn-Tucker (KKT) optimality
conditions, we have

1

ε

∂

∂uj
Z̃ε(u)

∣∣∣∣
u=θ̃ε

=
1

ε

(
∂

∂uj
||X − x(u)||

∣∣∣∣
u=θ̃ε

)
+

λε,j

ε
sgn(θ̃εj ) = 0.

The first term is O
P

(ε)

θ∗
(1) by Assumption 2 and the fact that θ̃ε is the solution

of (4.2). For the second term we have that
λε,j

ε ≥ κε

ε → ∞ by Assumption 6.
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(ii) Let

Ṽε(u) =
1

ε2

⎛
⎝||X − x(θ∗ + εu)||2 − ||X − x(θ∗)||2 +

q∑
j=1

λε,j

{
|θ∗j + εuj | − |θ∗j |

}⎞⎠
= uT ||ẋ(θ∗)||2u− 2uT ||ε−1(X − x(θ∗))ẋ(θ∗)||+ oε(1)

+

q∑
j=1

λε,j

ε

{ |θ∗j + εuj | − |θ∗j |
ε

}
(4.4)

From Assumption 6, since

uj

|θ∗j + εuj | − |θ∗j |
ujε

−→
ε→0

ujsgn(θ
∗
j ),

for j = 1, ..., q0, we have that

q0∑
j=1

λε,j

ε

{ |θ∗j + εuj | − |θ∗j |
ε

}
≤ γε

ε

q0∑
j=1

{
uj

|θ∗j + εuj | − |θ∗j |
ujε

}
−→
ε→0

0,

while for θ∗j = 0, j = q0 + 1, ..., q, one has that
∑q

j=q0+1
λε,j

ε |uj | −→
ε→0

∞. There-

fore, it is not possible to use the topology of the uniform converge on compact
sets. Nevertheless, we can define the convergence of Ṽε via epi-convergence in
distribution; i.e. from Lemma 4.1 in [10], follows that Ṽε(u) →d Ṽ (u) for every
u, where

Ṽ (u) =

{
uT
1 I11(θ∗)u1 − 2uT

1 η, if uq0+1 = ... = uq = 0,

∞, otherwise,

and u1 = (u1, ..., uq0)
T and the previous convergence is considered on the space

of extended functions Rq → [−∞,+∞] with a suitable metric. For more details
on the epi-convergence see [10], [22] and [30]. Since the minimum point of Ṽε(u)
is given by ε−1(θ̃ε − θ∗) and argminu Ṽ (u) = (I−1

11 (θ∗)η,0)T is Pθ∗−unique,
from Theorem 4.4 in [10] follows the result (ii).

Now let θ̃ε be any consistent estimator of θ∗, for example, the unconstrained
minimum distance estimator or the maximum likelihood estimator [27]. Then,
as suggested in [45], for any constant λ0 > 0 and δ > 1, it is sufficient to choose
the sequences λε,j as follows

λε,j =
λ0

|θ̃ε|δ
. (4.5)

If λ0/ε → 0 and εδ−1λ0 → ∞ as ε → 0, then Assumption 6 is satisfied. Usually
values of δ = 1.5 or δ = 2 are common in adaptive Lasso estimation. The idea of
choosing weights as in (4.5) is to exploit the ability of consistent estimators to
give an initial guess of how large is a parameter, and then using Lasso approach
to shrink adaptively the penalty function in order to avoid bias for true large
parameters.
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[12] Guy, R., Larédo, C. F. and Vergu, E. (2014). Parametric inference for
discretely observed multidimensional diffusions with small diffusion coeffi-
cient. Stochastic Processes and their Applications 124 51–80. MR3131286

[13] Lipster, R. S. and Shiryaev, A. N. (2001). Statistics for Random Pro-
cesses I: General Theory. Springer-Verlag, New York. MR3244328
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