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Detecting Gaussian entanglement via extractable work
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We show how the presence of entanglement in a bipartite Gaussian state can be detected by
the amount of work extracted by a continuos variable Szilard-like device, where the bipartite state
serves as the working medium of the engine. We provide an expression for the work extracted in
such a process and specialize it to the case of Gaussian states. The extractable work provides a
sufficient condition to witness entanglement in generic two-mode states, becoming also necessary for
squeezed thermal states. We extend the protocol to tripartite Gaussian states, and show that the
full structure of inseparability classes cannot be discriminated based on the extractable work. This
suggests that bipartite entanglement is the fundamental resource underpinning work extraction.

One of the most striking — to the point of being consid-
ered paradoxical for a long time — and yet fundamental
ways to extract work with the help of a heat engine, is
to exploit the availability of information about the state
of the engine itself. A machine following this paradigm
is referred to as an information engine. In this way
thermodynamics accommodates information in an oper-
ational way: the information acquired about a system
effectively brings it out of equilibrium and useful work
can be extracted by implementing suitable conditional
operations [I} 2].

Recently there has been a lot of interest in exploring
information-to-work conversion when the information is
encoded in a quantum system [3]. For instance, funda-
mental thought experiments such as Maxwell’s demons
and Szildrd engine, have been formulated for quantum
systems [4H6]. Concerning work extraction, the most
significative departure from a classical picture may be
expected when the information is encoded in the cor-
relations between two or more parties, in virtue of the
unique role played by entanglement [7]. This has trig-
gered the study of work extraction from correlated quan-
tum systems [8HIT]. Yey little is known when such corre-
lations are shared across a multipartite quantum working
medium.

Interestingly, in Refs. [12] [14] an alternative viewpoint
was adopted by somehow reversing the question: what
can the extractable work tell us about the nature of the
correlations present in the working medium? Could it be
used to discriminate a separable state from an entangled
one? In the present work we build on this approach, us-
ing the extractable work as an investigative tool to gather
some knowledge about the properties of a continuous-
variable Szilard engine. We show how the extractable
work is related to the one-way classical correlations es-
tablished between two parties via a local measurement
[15], and that it is a suitable quantity to witness bipar-
tite entanglement in two mode Gaussian states [16, [17].
We further apply our diagnostics to tripartite Gaussian
states, revealing how the work-extraction criterion over-
looks differences in the inseparability classes.

We start by recalling the paradigm of Szildrd engine
and information-to-work conversion in Section [l In Sec-
tion [[I] we formulate the work extracting protocol for
correlated quantum systems. In particular, in Sec. [[T]
and [[V] we address the relevant case of Gaussian states
subjected to Gaussian measurements, and show our main
findings. An extension of the protocol beyond the Gaus-
sian realm is discussed in Sec. [V} while in Sec. [VI] we
attack the richer problem of work extraction from tripar-
tite states. Finally, Sec. [VII|reports our conclusions and
some future perspective.

I. INFORMATION-TO-WORK CONVERSION
IN A SZILARD ENGINE

In 1929 Léo Szilard proposed a thought experiment,
which now goes under the name of Szilard engine, to
highlight the link between information and thermody-
namics and its apparently paradoxical consequences [I§].
Inspired by Maxwell’s demon, he conceived a minimalist
model to show how, through the acquisition of informa-
tion and the implementation of feedback operations, the
second law of thermodynamics may apparently be cir-
cumvented. Consider a single particle in a box with a
frictionless wall that can be inserted and removed at half
the length. If some information about the location of the
particle becomes available, it can be exploited to extract
some work (out of a freely available thermal bath) as fol-
lows: if the particle is known to be in one side of the
container we can attach a weight on that side, in such a
way that when we let the particle expands isothermally,
the “pressure” exerted on the wall can pull up the weight.
Assuming an isothermal expansion from the initial vol-
ume V/2 to the full volume we have W = kT In2. Af-
ter the expansion the system has returned to its initial
configuration, so that the work extraction process can
in principle be implemented cyclically. If the knowledge
about the position of the particle is probabilistic, we have

W = kpTIn2[1 — H(X)], (1)



where H(X) = =% p,Inp,, x = {R, L}, is the Shan-
non entropy of the right/left distribution. When both
sides have the same probability the average extractable
work is zero. This a priori information is usually sym-
bolized by a demon, whose knowledge of the microscopic
state of the system can be converted into useful work.
Thanks to the demon’s action, a thermodynamic cy-
cle which generates work absorbing heat from a single
reservoir may be realized. The paradoxical consequences
of this thought experiment have attracted attention for
quite a while, until Landauer recognized in the role of
the memory the solution to the paradox [19]. The de-
mon needs to store the result of the measurements in
a memory, and given that no physical memory can be
taken to be infinite, the demon eventually needs to re-
set it in order to prevent overflow [20]. The erasure step
is intrinsically irreversible and dissipates an amount of
heat at lest equal to the work extracted in Eq. , thus
restoring the second law. Maxwell’s demon-like devices
and Landauer’s erasure have been respectively realized
and confirmed experimentally in recent years [2IH25].

II. EXTRACTING WORK FROM
CORRELATED SZILARD ENGINES

Imagine now to have two correlated particles, and
suppose to trap them into separate containers, so to
have two Szilard engines with correlated working sub-
stances, A and B. The work extractable by one party,
say A, now depends on the state of the other one,
namely W (A|B) = kpTlog[l — H(A|B)]. If some op-
eration is performed on B the state of knowledge of A
must be updated. Given that the mutual information
I(A: B)=H(A)— H(A|B) > 0 is nonnegative, we have
H(A) > H(A|B), that is conditioning reduces the un-
certainty. It immediately follows that W(A|B) > W(A)
which proves that we can extract more work from corre-
lated Szilard engines.

How can we extend this argument to quantum sys-
tems? In Ref. [I2] the authors considered Alice and Bob
to share a bipartite system and perform projective mea-
surements on both parties. The work is subsequently ex-
tracted by one party, say Alice, from the outcomes of
the measurements, with Bob sharing with Alice his out-
comes. In this context work extraction is to be under-
stood as follows: each bit of information of the mea-
surement outcome can be regarded as a particle in the
left /right side of a container (in principle the information
can be copied in such a “Szilard register” without extra
energy cost) [I]. In this way the work-extracting protocol
is implemented at the level of the classical information
obtained from a correlated quantum state via local mea-
surements and classical communication. This is reminis-
cent of a Bell-like scenario for testing local realism. In
Ref. [12] it was also shown that for separable states the
work so extracted cannot exceed a limiting value, thus
leading to a form of ‘work-assisted entanglement detec-
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FIG. 1. (a) Gaussian demons Alice (orange) and Bob (purple)
share a bipartite Gaussian state of modes a and b and want
to know wether the state is entangled (yellow line) or separa-
ble (grey line). In order to do so, they check how much work
Alice can extract from a heat bath when only local Gaussian
measurements are allowed. In the first strategy (b) Bob per-
forms a Gaussian measurement 7, and Alice extract mechan-
ical work by letting her conditional state oz° expand (from
orange to red), e.g. pushing the demon’s board. As a result
of the protocol Alice extracts an amount of work W. In a
second approach (c), both demons perform a measurement,
and the work is extracted from the classical register of the
results.

tion’. This protocol has been recently implemented in a
photonic platform [I3].

We generalize such an approach and study the insepa-
rability of bipartite continuous-variable states by inspect-
ing the amount of work extracted by two local agents,
or demons, Alice and Bob [see Fig. [1| (a)]. Let us no-
tice that, in order to run an information engine, Alice
does not need to perform a measurement on her system
and extract work from the recorded outcomes. She can
exploit the back-action induced by Bob’s measurement
on their joint state and simply act locally by letting
her state thermalize. The expansion can be converted
into mechanical work. This work-extracting procedure is
sketched in Fig. [1| (b) with explicit reference to the Gaus-
sian scenario, and discussed in the next section. When
both demons perform a local measurement, as in Fig. []
(c), the work is extracted by Alice from the register of
measurements outcomes.

In the argument above, we have not considered the
energetic and entropic cost of implementing the mea-
surement. While this is certainly an important point to
consider when attempting at investigating the thermo-
dynamic balance associated to a given protocol, here the



main scope is to use the extractable work as a diagnostic
tool to investigate the nature of quantum correlations.
Therefore, the quantification of such costs is not crucial
for our purposes. For discussions on these issues see, e.g.
Refs [26H28].

III. WORK EXTRACTION FROM BIPARTITE
GAUSSIAN STATES

In this section we explicitly formulate the work ex-
tracting protocol for Gaussian states sketched in Fig. [I]
(b) and discuss the results. Gaussian demons Alice (or-
ange) and Bob (purple) share a bipartite Gaussian state
of modes @ and b which is completely characterized by
the covariance matrix

Oa Cab
Oab = ( T > ’ (2)
cab Jp

where o,@4) is the reduced covariance matrix of Alice
(Bob) while ¢, contains the correlations between the
modes. The first moments are inconsequential for our
reasoning and can be set to zero. When a Gaussian state
is in standard form we have [17]
op = diag(b,b), cqp = diag(e,d).
(3)
Bob performs a measurement on his mode. We
restrict to Gaussian measurements of the form
(X) = 7 'Dy(X)e™D}(X) where Dy(X) =
exp(Xl;T - X *13) is the displacement operator, 0™ a
pure Gaussian state with covariance matrix ~™ =
R(¢)diag(A/2,\71/2)R(¢)T, where A € [0,00] and
R(¢) = cos ¢1—isin ¢o,, is a rotation matrix (o, refers to
the y-Pauli matrix). The conditional state of mode a on
the measurement 7,(X) turns out to be independent on

a = dia'g(aa a) )

the outcome of the measurement itself, i.e. o ‘ v =04
and its expression is given by
o5 =04 — cap(on +7™) el - (4)

As a result of the measurement, the reduced state of
mode @ is now out of equilibrium and Alice can extract
work from a heat bath by letting her state diffuse quasi-
statically in the phase space [e.g., by pushing the board
in Fig. [I| (b)]. She puts the system prepared in the post-
measurement state in contact with the thermal bath and
wait for it to reach equilibrium og4. As her state is in-
dependent on the outcome, its average entropy is simply
JdXpxS(ogiy) = S(og"). Following Eq. (I we can thus
define the extractable work as

W = kpT [S(05") — S(07")] ()
Let us first address the simplest case in which oy is in
the standard form (3) and the reference thermal state has
the same energy as Alice’s initial state, i.e. 059 = g,. In
this way all the work extracted is due to measurement

back-action. Indeed, we notice that the extractable work
corresponds, up to a multiplicative factor, to the one-way
classical correlations J* (0qp), operationally associated
with the distillable common randomness between the two
parties [29]. By maximizing it over all the possible mea-
surements, it quantifies the total classical correlations be-
tween the two parties [I5], and can be analytically eval-
uated for Gaussian states and Gaussian measurements
130, B1].

In order to quantify the entropy of the reduced state
Eq. ( . we employ the Rényi entropy of order 2 Sa(g) =

—InTr [g . When restricting to Gaussian states S2(o)
becomes a fully legitimate entropy functional, satisfying
strong subadditivity [32], and takes a simple expression
in terms of the covariance matrix

Sa(0ap) = %ln(det Tab) - (6)

The expression of the work Eq. then becomes

det o,

W==-h <detaf{b) ’ 0

From now on we express the extractable work in units
of kgT. We recall that for our scope W must be re-
garded the output of a suitable work-extraction protocol
(that we consider as a black-box process). A non zero
W, clearly corresponds to the presence of (classical) cor-
relations between the two demons Alice and Bob. We
will see that the knowledge of W, together with that of
the local energies, always provides a sufficient criterion
to detect entanglement.

A. Symmetric squeezed thermal state

Let first address the case of quantum states of the form
0ab = Sa(r)vg@Sa(r)T, generated by acting with a two-
mode squeezing operator Sy(r) = exp{r(a’d’ — ab)} on
two thermal states vg = e_ﬂaTa/Z with the same tem-
perature. Their corresponding covariance matrix is in
standard form with o, = o, = diag(a,a) and cqp =

a? — 1. Follow-

1
ing Bob’s measurement (with strength A and angle ¢),

Alice can extract an average amount of work given by

Zl { a(2a\k + A1) }

2.5, — )Nk a1k

diag(c, —c), where a > 1 and |¢| <

W =

(8)

We notice there is no dependence on the measurement
angle. In the limit ¢ — 0 the expression vanishes, i.e. no
work can be extracted from uncorrelated states. One can
check that both the entanglement and W) are mono-
tonically increasing with the parameter ¢, and decreasing
with the local energy parameter a. As a consequence, the
maximum amount of work Wwp) extractable by a separa-
ble state is achieved at the separability threshold, which



3.0 3.0
25 (a) A=0 2.5 (b)
2.0 2.0
=15 = 1.5
1.0 1.0
0.5 0.5
00 1 2 3 4 s %% 1

FIG. 2. Extractable work W (in units of kgT') against a for randomly generated states. Each point corresponds to a state
obtained by a uniform sampling of the parameters a and c. points corresponding to entangled (separable) states are marked
in yellow (gray). Panel (a) refers to homodyne detection and panel (b) to heterodyne detection. The red curve represents the

maximum amount of extractable work Wiax, while the black curve stands for the work at separability threshold Ws(fp) ,k=0,1.
(c) Extractable work against the parameter c for different Gaussian measurements and a = 3. From lightest to darkest red:
A =1, 5, 0. The vertical dashed lines refers to the value csep = a — 1/2, while the horizontal ones to the corresponding values

of Wi, k=0,1.

is given by cgep = a—1/2. The condition WO > Ws(é\p) is
therefore both necessary and sufficient for entanglement

of o4p. The corresponding value of VVS(E);D) reads

1 2a(2a\F + A\17F)
W) = - 1 (!
sep 9 kgo:l . |:(4a — 1)A* + 2aA1—F ©)

Moreover, when the correlations attain the maximum
value ¢pmax = y/a? — 1/4 (corresponding to a two-mode
squeezed vacuum) the expression of the work is

Wmax =In2a ) (10)

independently on the strength of the measurement.

In Fig. 2] (a), (b) we plot the curves Egs. (9), for
the relevant case A = 0 (A = 1) corresponding to ho-
modyne (heterodyne) detection, together with randomly
generated symmetric states. As expected, points cor-
responding to separable (gray) and entangled (yellow)
states occupy disjoint regions, confirming how the ex-
tractable work provides a necessary and sufficient con-
dition for separability. From the plots it also is possi-
ble to see that for heterodyne measurements the maxi-
mum amount of work extractable from a separable state
is larger than for the case of homodyne measurements. It
is important to stress that the threshold is not universal,
i.e. a constant value, but instead depends on the value
of local energy: the couple (a, W) then fully characterize
the separability of the state.

Explicit expressions for A = 0, 1 are listed below

1 a? 1 4a?
0 — 2 ) — 21
W 2n(a2—c2>7 Weep 2n(4a—1>’

and
2a(2a+ 1)
1—6a '

W =1n

sep

(1) -1 G;(QCL =+ 1)
W n{2(a262)+a ’

It is also instructive to look at the behavior of the ex-
tractable work W against the correlations between the

two modes. In Fig. 2| (¢) we show the behavior of W as a
function of the parameter ¢ for a fixed value of the energy
(fixed a). W is monotonically increasing with respect to
the amount correlations shared between the two modes.
For product states (¢ = 0) the extractable work vanishes,
while it achieves its maximum for a two-mode squeezed
vacuum (¢ = Cmpax). Moreover, we can see that differ-
ent measurement strategies allow for the extraction of
different amounts of work. In particular we notice that
the average work W) extractable by implementing a
Gaussian measurement of strength A is both upper and
lower bounded, i.e., W© < W& < WO In particular
heterodyne detection turns out to be optimal for work
extraction. For any a and ¢, W™ is monotonically in-
creasing with respect to A in the interval A € [0,1] and
monotonically decreasing in A € [1, 00).

B. Squeezed thermal state

The very same analysis can be extended to the
class of non-symmetric squeezed thermal states (STSs)
having different thermal occupation in each mode,
obtained by setting cu = diag(c,—c¢) in Eq. (3).

The parameters fullfil a > %7 b > % and |¢] <
max{\/(a+3)(b—1).\/(a= 5+ 1)} The ex
tractable work W) in this case reads
1 a(20\F 4 \1F)
W == 1 11
2 Z " 2(ab — )Mk + gA1=k | 7 (11)

k=0,1

which still does not depend on the measurement angle
and reduces to Eq. when b — a. Also here one can
verify that, for fixed a and b, by increasing ¢, one both
increases the value of W™ and moves from the class of
separable states to entangled states (or increases the en-
tanglement). Thus the extractable work, supplemented
with the local purities, still provides a necessary and suf-
ficient condition for the entanglement of the initial state,



FIG. 3. Extractable work W (in units of kgT) against local
energies a and b for randomly generated STSs. Each point
corresponds to a state obtained by a uniform sampling of the
parameters a, b and c¢. Points corresponding to entangled
(separable) states are marked in yellow (gray). Panel (a)
refers to homodyne detection (A = 0), while panel (b) refers
to heterodyne detection (A = 1). Maximum and separable
work W,(HIZ)X and W;fp), k = 0,1 correspond to red and gray
surfaces, respectively. Finally, on the right column sections of
both plots are shown.

by checking the condition w > WS(QIQ, where Ws(eAp)
is obtained by substituting csep = \/(a — 1/2)(b — 1/2).
In Fig. [3] we show the most relevant cases of homo-
dyne/heterodyne detection, along with the separability
thresholds Ws(é\p) and maximum work W, whence we
can see that for A = 1 the extractable work is no longer
symmetric with respect to a and b, and Wy,,x now ac-
quires a dependence on the measurement. We also stress
that the maximum amount of work extractable out of a
separable state is achieved by a heterodyne measurement,
i.e. not by a projective measurement.

We can then consider the case where exhaustive in-
formation about the local purities is not available. Let
us assume that only one local energy is known exactly,
say a, while on the other only an upper bound is avail-
able, i.e. b < byax. This situation is illustrated in Fig. [4]
for the case of a homodyne measurement. Since (gray)
points corresponding to separable states only occupy the
portion of the graph below a threshold, we can conclude
that the criterion is still sufficient for entanglement de-
tection. The separability threshold is provided by the

corresponding expression of the STS Ws(e)‘p) evaluated at

FIG. 4. Extractable work W (in units of kgT') for a STS
against the parameter a. Random generated states are con-
strained to have b < bpax where we set bmax = 3. Points
corresponding to entangled (separable) states are marked in
yellow (gray) and we performed homodyne detection. The
black curve is given by Ws(gg evaluated at b = bmax, while the

red one by W,&&’X evaluated at b = a.

b = bmax, while Wr(n’;)x is evaluated along the bisection
line b = a.

C. General two-mode Gaussian state

Let us now consider two-mode states in standard form
Eq. . In this case the expression of the extractable
work W (¢) depends on the measurement angle, so that

we will consider the average w = = 027r dp WP(g).
In this case we cannot prove any analytical relation be-
tween the extractable work and the separability of the

initial bipartite state. In Fig. |5| we display W(A) against
the local energies for randomly generated states of the
form , and we observe that the amount of work ex-
tractable from separable states (grey points) looks upper
bounded, and thus seems to provide a necessary condition
for detecting entanglement. Numerical inspection shows
that the correlations, and in turn the extractable work

W(A), is maximized, at fixed a, b and ¢, by either the cor-
responding STS (recovered in the limit d — —c¢) for which
we already know the bound, or by states having a covari-
ance matrix given by Eq. with ¢, = diag(c,0). We
denote members of the latter class by o’. These states
are always separable, but sometimes they can be more
correlated than a separable STS (with same a and b).
For these states the bounds on physicality and separabil-
ity coincide. We will refer to that bound, to be averaged

over ¢, as Ws(ef\p) (¢"), and the corresponding analytical ex-
pression is reported in Appendix B. Therefore we propose
the following upper bound on the extractable work from
separable states

—(A —(A
W () = max [WQ)(osrs), Wp(@)] . (12)

In Fig. W(A) is shown in black, with the dotted

sep



FIG. 5. Extractable work W(A) (in units of kgT) averaged
over the detection angle ¢ against the local energies a and b.
Points are obtained by random sampling. Detection strength
has been fixed to a generic value A = 3. Points corresponding
to entangled (separable) states are marked in yellow (gray).
Maximum and separable work Wr%)x and Wé:g correspond to
red and black curves, respectively.

curve showing the smaller of the two components ap-
pearing in Eq. . We can see that for small a and
b, states ¢’ result in more extractable work than ogrs,
and that we cannot find any random separable state vi-
olating the bound. This result is in agreement with the
findings of Ref [12]. Our result holds for generic mea-
surement strength A and is not restricted to projective
measurements (A — 0, 00).

IV. MEASUREMENT ON BOTH PARTIES

In this section we address the second scenario, sketched
in Fig. [1] (c¢) and addressed for qubits in Ref. [12],
where both the demons Alice and Bob perform measure-
ments on their reduced state. The second Gaussian mea-
surement performed by Alice is described as 7, (Y) =
W_IZA)Q(Y)QWQZA)E(Y) where ﬁa(Y) = exp(Yal — Y*a)
and 0™ is a pure Gaussian state with covariance ma-
trix 4™ = R(0)diag(p/2, p=1/2)R(0)T, 1 € [0,00]. The
probability distribution corresponding to the measure-
ment on mode @, conditioned by the measurement 7, (X)
performed on mode 137 turns out to be a Gaussian dis-
tribution whose covariance matrix is independent on the
outcome of the measurements, i.e. o)™ = gl 4 4™,
where o7* is given by Eq. . Since work is extracted by
a diffusion-like process in the phase space, starting with

FIG. 6. Extractable work W (in units of kgT) for osymm
against the parameter ¢ for fixed a = 3. The red curve is for

WD while the black for W(O’O). We also show a compari-
son with work extracted via single heterodyne detection W™
(red dashed) homodyne detection W (black dashed). The
vertical dashed lines refers to the value ceep = a — 1/2.

a less localized state intuitively results in less work ex-
tracted. In this case the extractable work is quantified via
the Shannon entropies of the corresponding probability
distribution H(Pr(X,Y’)) which is equal to the entropy
of the Gaussian distribution H(o;™). We thus have

W =kpT [H(0a +77™) — H(og,™)]

kT [ det(oa+97)
2 det(og® +y™) |~

(13)

The generic expression W = W) (¢, 0) must then be
averaged over the angles 6, ¢. This is the work extracted
from the statistics of the outcome distributed according
to a Gaussian distribution with covariance matrix o)™
Expression (|13)) also elucidates why we chose the Rényi-2
entropy Eq. in place of the usual Von Neumann en-
tropy as the entropic quantifier for a state. With that
choice the one- and two-measurement work extracting
protocols are “smoothly linked” since the respective work
outputs Eqgs. and @ are related by a Gaussian con-
volution.

For the case of a symmetric STS and two homo-
dyne/heterodyne measurements we get

(2a + 1) 1 (14

i = Ly .
((2a +1)2 — 4¢?)

2

and

WO (4 0) = L1 207
’ 2 [2a2 — 2[cos(2(0 + @) + 1] |
(15)
From the last expression we see that for 0 + ¢ = (2k +
1)7/2, k € Z the extractable work identically vanishes,
which explains why the meaningful quantity is given by
W m Fig. |6| we compare w0 (WD) to WO
(W), We can see the reduction of the extractable
work due to the smearing of the distribution imparted



by the second measurement. Contrary to the single-
measurement scenario, now also for a two-mode squeezed

. —(0,0
vacuum ¢ = cCpax a considerable gap between W( )
and WD opens, which significantly penalizes homo-
dyne measurements.

A. Relation with the mutual information

Interestingly, when Alice and Bob both perform het-
erodyne detection, a clear connection between the ex-
tractable work WD) and a form of mutual information
emerges. The extractable work W (51 can be cast in the
form

kgT (LI
WD = 2By, [ 12 (16)
2 I,

where 1(2) = det G4() and I, = det 5,y are the symplec-
tic invariants of the covariance matrix G4 = ogp + 1/2.
The latter can be seen as the result of a convolution be-
tween the original covariance matrix and the vacuum.
Indeed, it can be checked that Eq. equals kT times
the mutual information computed with the Wehrl en-
tropy S(o) = — [daQ(a)logQ(«a), i.e. the Shannon
entropy of the Husimi Q-function Q(a) = L(alo|a).
The Husimi Q-function is related to the Wigner function
through convolution with the vacuum.

On the other hand, if we consider the case where
Bob performs two sets of homodyne measurements at
¢ = 0 and ¢ = w/2 (namely the g-quadrature and p-
quadrature), the work that Alice can extract can be ex-
pressed as

T Ii I
WO(g.p) = "2 (}42) , (17)

where I 2 and I, are now the local and global sym-
plectic invariants of oq. Eq. coincides with the
mutual information computed with the Rényi-2 entropy
Z(oab) = S2(0apl||oa @ 0p), namely the Kullbac-Leibler
divergence between the joint Wigner function and the
product of the reduced ones [32]. It can also be checked
that a second potential measurement performed by Alice
is inconsequential.

V. WORK EXTRACTION BEYOND THE
GAUSSIAN FRAMEWORK

So far we have assumed the demons shared a Gaus-
sian state (in standard form) and implemented Gaus-
sian measurements. In particular this entails that the
reduced states of Alice and Bob are both thermal, so
that the amount of work extracted (by Alice) is a direct
measure of the one-way classical correlations J (0ap)-
Let us here briefly explain how the expression of the

extractable work can be generalized to a generic bi-
partite state. We will extend the notation adopted
for covariance matrices o, to density operators 04,
and measure the entropy by the Von Neumann entropy
S(0ab) = —Tr [0ap In 04p]. Bob performs a measurement
#p(X) > 0, [dX7(X) = 1 on his side getting the
X-outcome with probability p(X) = Tr[gapls @ 7p(X)],
and Alice’s reduced state must be updated to g, x. The
(non optimized) one-way classical correlations is given by
T (0w) = 5(0a) — [ AXp(X)S(0a/x). Recalling that

¢d = Ztexp(—H,/kpT) is the final equilibrium state
after thermalization with the reservoir, and comparing
with Eq. , in general we have

W =kpT [T (0ar) + S(051) — S(0a)] - (18)

We notice that J< (0ap) > 0 and S(0%%) > S(04), being
021 the equilibrium state with the same average energy,
so that the presence of initial quantum coherence in Alice
state leads to and increased amount of extractable work.
By adding and subtracting the term kT Tr [0, In 089 we
can rewrite the previous equation as

W =kpT [T (0ab) + S(0alloz)] + AQa,  (19)

where S(g|lo) = Tr[olnp — ¢lno] is the quantum rel-
ative entropy between two states [34] and AQ, =
Tr (08 — 0,)H,) is the heat absorbed from the bath in
an isothermal expansion from the pre-measurement state
to the final state. When g, = 054, as for Gaussian states
in standard form, both the extra terms in Eq. vanish
and the previous result is recovered. However, we notice
that Eq. also applies to Gaussian states with non-
diagonal reduced covariance matrix o, # diag(a,a). We
plan to further explore this relation in future works.

VI. WORK EXTRACTION FROM TRIPARTITE
GAUSSIAN STATES

We now move to investigate the extraction of work
from a multipartite system. In analogy with the bipar-
tite case, one can think of the extracting protocol as
a continuous-variable Szilard engine with a multipartite
working substance and a demon acting on each party.
As in the previous sections, we are interested in the ex-
tractable work as a tool to investigate the nature of the
correlations shared within the working medium. The
classification of entanglement in multipartite systems is
an extremely challenging problem [7]. In the following we
will focus on the tripartite case, whose (in)separability
structure is already considerably richer and more com-
plex than the bipartite case. Let us consider a tripartite
Gaussian state with covariance matrix

Oa Cab Cac

Oabec = Cgb Op  Che 5 (20)

T T
Cac Cpe Oc



where o; is the reduced covariance matrix of each mode
and c; contains the correlations between modes j and
k, where j, k € {a,b,c}, j # k. When considering a given
bipartition of the state, say (ab,c), we can equivalently
employ the following notation

Oab Cab,c
Oabec — T ) (21)
Cab,c Oc

where cqpc = (cac ch)T is a 4 X 2 matrix containing
correlations between ¢ and the two-mode state ab.

Let us recall the separability structure of the class
Eq. . For any bipartition of the state, positivity
under partial transposition (PPT) provides a necessary
and sufficient condition for separability. The PPT cri-
terion singles out four distinct (in)separability classes:
(i) states which are not separable under any biparti-
tion of the modes. These states are called fully insep-
arable and share genuine tripartite entanglement. (ii)
States which are separable with respect to one bipartition
only, referred as 1-biseparable states. (iii) States which
are separable for two different bipartitions (2-biseparable
states), and (iv) states separable under all the three bi-
partitions (3-biseparable states) [35]. Notice that fully
separable states of thee three modes, i.e. states of the
form dsep = Y ) PrOa,k @ Obk © Oc,i belong to class (iv).
Thus entangled states are present in all the classes listed,
ranging from genuinely tripartite entangled states in (i)
to bound entangled states in (iv).

In the natural extension of the work extracting pro-
tocol that we consider, Alice extracts work from a local
heat bath by acting on her state, after Bob and Charlie

so that a second measurement 7, on Bob’s side leaves
Alice with the conditional state

Th, T, Cac Te)™
Oab’ C = 0gp — < o ) (O'C —+ v C) 1 (Cac Cbc) . (24)
C

By letting the state Eq. thermalize, Alice can thus
extract an amount of work given by

kgT
W:gln<

det o, ) . (25)

det o5

We are now in position to address how the different sepa-
rability classes of states Eq. affect the work extract-
ing protocol.

A. Tripartite pure states

Let us first address the case of pure tripartite states
ofbc. For these states an explicit parametrization can
be given in terms of the diagonal elements alone. The

standard form of a pure tripartite state is given by

+ +
a 0 cp 0 ¢f. O

performed local measurements on their modes. Again, by 0 a 0 ¢, 0 c.
restricting to Gaussian measurement with pure seed, the P C+b 0 b 0 Cb+ 0
conditional state of Alice and Bob after Charlie’s mea- Oabe = 6 0 b OC o ) (26)
surement 7. is given by ct Sb c;r 0 ¢ SC
ac c
U;rg = Oab — Cab,c(ac + ’yﬂc) ! gb c (22) 0 Coe O Coe 0«
oz <
= ( 7e,T 7Tc> ) (23)
Cab Op where a,b,c > 1/2 and
o VG =) = 2k — D[40 - 5)° — @k + 1] £ VA + )7 — 2k — 1)?]A@ +))* — (2k +1)°] (27)

v 16\F ’

with j,k € {a,b,c}, j # k. For such states, the separabil-
ity structure is considerably simpler: if a =b=c=1/2
the state is the product of three single-mode vacua, oth-
erwise it can either be the product of the vacuum in one
mode and a maximally entangled state of the other two
(1-biseparable state), or be fully inseparable. In particu-
lar, no states in class (iii) can be found, as well any state
in (iv) which is not in the factorized form.

It is well known that for the qubit case two inequiv-

(

alent classes of pure tripartite entangled states emerge:
GHZ states with maximal genuine tripartite entangle-
ment and zero bipartite entanglement in any two-qubit
reduction, and W states with maximal bipartite entan-
glement across any bipartition but vanishing tripartite
entanglement [37]. On the contrary, it can be shown that
the subclass of pure symmetric Gaussian states retains at
the same time the entanglement properties of both GHZ
and W states. By either maximizing the bipartite en-



tanglement in any two mode reduction (W-like) or maxi-
mizing the genuinely tripartite entanglement (GHZ-like),
the same family of state is singled out, namely state of
the form Eq. with a =b=c and

L 4a* — 1+ /(4a% — 1)(36a% — 1)
16a '

C

(28)

Let us recall that in Ref. [14] a suitable strategy based
on the local extractable work was proposed to distinguish
between GHZ and W states.

In the present case the expression for the extractable
work Eq. can be analytically evaluated and reads

WP =1n2a. (29)

By direct comparison with Eq. we see that W7 co-
incides with the maximum work extractable from a two
mode symmetric state. This amount of work turns out to
be independent on the measurements implemented by the
demons Bob and Charlie. Moreover, the same amount of
work as in Eq. (29)) can be extracted from the tripartite
pure state in Eq. (26]) for fixed purities b and ¢, indepen-
dently on the measurement. Therefore, since the same
amount of work is extracted from a pure bipartite entan-
gled state and a fully inseparable three-mode sate (with
same a), we conclude that the demon Alice would not
boost work extraction by entangling her Gaussian Szi-
lard engine with a third mode. On the other hand, based
on the amount of work extracted, Alice cannot distin-
guish between states belonging to class (ii) of the form
[0)p ® S2(£)]|00) 4. and |0). ® S2(£)]|00),p and a genuinely
tripartite symmetric state. This fact seems to point out
that bipartite entanglement is the essential resource be-
hind the work extracting protocol. If the Gaussian de-
mon Alice had to decide based on the extractable work
only, she could not tell whether she is extracting work
from a bipartite Szilard engine with a pure entangled
working substance or from a tripartite one.

B. Symmetric mixed states

Another relevant class is the one of fully symmetric
mixed states, namely tripartite states invariant under the
permutation of any mode. Their covariance matrix in
block form is given by [36]

o, C C
.= Cc" o, C |, (30)
ct T g,

with o, = aly and C = diag(c™, ¢™) with elements

o 4a® — 5+ \/36a%(4a2 — 2) + 25
16a ’
5 — 36a2 + \/36a2(4a2 — 2) + 25
48a ’

(31)

FIG. 7. Extractable work W (in units of kgT') against lo-
cal energy a for a fully symmetric mixed state o2,, when ei-
ther heterodyne detection (red curve) or homodyne detection
(black curve) is performed on both Bob’s and Charlie’s side.
In case of homodyne detection the work has been averaged
over the two angular variable. The black dashed line corre-
sponds to the work extracted from a pure symmetric tripartite

state Ufbc.

These are states which are either factorized for a = 1/2
or fully inseparable whenever a > 1/2. They can be
obtained by maximizing the entanglement between any
bipartition, while at the same time imposing no entan-
glement to be present within the two-mode state. For
such a class of states the extractable work can be com-
puted analytically, although the resulting expressions are
quite involved. In Fig. [7] we plot the extractable work
for states Jfbc when demons Bob and Charlie perform
either heterodyne detection (red curve) or homodyne de-
tection (black curve). The dashed curve represents W ¥,
i.e. the work extracted with pure tripartite states atic
for any measurement. In particular we notice that W
is asymptotically reached for heterodyne detection even
if the state is mixed. We can thus conclude that, besides
the presence of genuinely tripartite entanglement, also
the global mixedness of the state does not play a crucial
role when work extraction is concerned.

C. Tripartite mixed states

In order to better understand the interplay between
purity, bipartite and genuinely tripartite quantum corre-
lations and work extraction, we now turn our attention to
the generic mixed tripartite case. When cast in standard
form [? ], the covariance matrix of a general tripartite
state reads

a 0 ¢ 0 c3 c5
0O a O Co 0 Cq

M _ C1 0 b 0 Cg Cg

Tabe = 0 C2 0 b Cg C7 ’ (32)
c3 0 cg cg ¢ O
cs ¢4 cg cr 0 ¢

Given that the fully-fledge problem cannot be attacked
analytically, we proceed by randomly generating states

U(%c sampling each of the twelve parameters from a uni-
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FIG. 8. Extractable work W (in units of kgT') against lo-
cal energy a for randomly generated tripartite states oi..
Points corresponding to fully inseparable states are marked
in yellow, 1-biseparable in red, 2-biseparable in purple and
3-biseparable in grey. Panels (a) - (c) refer to homodyne de-
tection (A = 0) on Bob’s and Charlie’s side, while panels (d)
- (f) to heterodyne detection (A = 1). The maximum work
Wax corresponds to the black curve.

form distribution. Such states are then classified by ap-
plying the PPT criterion across every bipartitions: states
belonging to classes (i)-(iv) are colored in yellow, red,
purple and grey, respectively. We then compute the ex-
tractable work Eq. when the Gaussian demons Bob
and Charlie perform their measurements, and average the
work over the detection angles. The result is shown in
Fig. [8] for the relevant cases of homodyne [panels (a) -
(c)] and heterodyne detection [panels (d) - (f)].

From Fig. [§] We can see that between state belong-
ing to class (iv), which are either classically correlated
or possess bound entanglement at most, and genuine tri-
partite entangled states (i) there is no a dramatic differ-
ence as far as work extraction is concerned, meaning that
the overlapping region is significant. As reasonably ex-
pected, genuine tripartite entanglement on average leads
to higher values of extracted work. However, the dis-
tributions of the work values does not seem to be lower
bounded. In panels (b), (e) we highlight this feature for
the case of homodyne and heterodyne, respectively.

Moreover, through work extraction the demons can
hardly discriminate between the case where entanglement
is present across all the three bipartitions (yellow points)
or or just across one of them (purple points). This is
another evidence that work extraction is not sensitive to
entanglement being shared between two demons (either
Alice and Bob or Alice and Charlie) rather than among
all the three of them. In Fig.[8]panels (c), (f) we highlight
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the work extracted from 1-biseparble and 2-biseparable
states.

VII. CONCLUSIONS AND OUTLOOK

We have formulated a protocol for extracting work (out
of a thermal bath) by means of a correlated quantum
system subjected to measurements. In particular, we fo-
cused on a fully Gaussian framework (Gaussian states
and Gaussian measurements), phrasing the protocol in
terms of demons acting locally on a Szildrd engine with a
multipartite working substance which may contain quan-
tum correlations. By exploiting the initial correlations
and the measurement back-action, work can be extracted
by one of the demons. We have then addressed the use of
the work output as a detector of entanglement. We pro-
vided evidence that this the case for a two-mode Gaus-
sian state in standard form. Moreover, for the subclass of
squeezed thermal states we proved that the extractable
work (together with the local purities) also provide a nec-
essary condition for inseparability. Despite the focus on
the Gaussian scenario, we showed how the framework can
be easily generalized to account for the presence of ini-
tial quantum coherence and generic measurement, thus
going beyond the Gaussian framework. We then enquired
wether the extractable work can be used to discriminate
among richer inseparability structures, as the one pro-
vided by tripartite Gaussian states. We found that gen-
uine tripartite entanglement can be hardly distinguished
from bipartite one. In conclusion, sharing entanglement
among many parties does not seem to boost the amount
of work extracted by one of them and, conversely, the
effectiveness of work-based separability criterion consid-
erably weakens moving from two to three parties, even
for a special class of states such as the Gaussian one.
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APPENDIX

A. Expressions of the extractable work for squeezed
thermal states

Below we report the expressions of the extractable
work for STSs, in the relevant case of homodyne (A = 0)
and heterodyne (A = 1) detection

1 ab
(O
w 21n (ab02> , (33)
2
w = lln M ) (34)
2 (2ab + a — 2¢2)*

In particular the the maximum extractable work and the
upper bound on the work extractable from a separable

J

W)

16a2b(2b + \)(2bA + 1)
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state read
1 4ab
WO = -In|—— 35
max = 5 W7ol —p|] (35)
In2a if a<b
Wik = (36)
In ﬁi(i:fg;} otherwise ,
1 4ab
WO = -In(—2 37
s — 9 M\ 2t 2m 1) (37)
1 4(2ab + a)?
Wl = Zn | ———— || 38
se0 = 5 | (da + 26— 1)2 (38)

B. Expression of the separable work for two-mode
Gaussian states in standard form

For Gaussian states in standard form Eq. the bound

on the work extractable out of a separable state is given

by Wig\;(aab) = max [W§§3 (osTs), Wié;(a')} , where

2a(2bNF 4 AIK) 12
(20 1+ 20— DAF 1 200 F|
(39)

W (osts) = Z In
k=0,1

and

wp (') =50 ((4(12 " 1) (407 — 1) (A2 — 1) cos(26) + 4a2 (462 (A2 + 1) + 8bA + A2 + 1) + (462 — 1) (4bA + A2 + 1)

).

(40)

(

then to be averaged over ¢ € [0, 27].
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