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Weighted Trudinger-Moser inequalities and

associated Liouville type equations

Marta Calanchi, Eugenio Massa and Bernhard Ruf

Abstract

We discuss some Trudinger–Moser inequalities with weighted Sobolev norms. Suitable
logarithmic weights in these norms allow an improvement in the maximal growth for inte-
grability, when one restricts to radial functions.

The main results concern the application of these inequalities to the existence of solutions
for certain mean-field equations of Liouville-type. Sharp critical thresholds are found such
that for parameters below these thresholds the corresponding functionals are coercive and
hence solutions are obtained as global minima of these functionals. In the critical cases the
functionals are no longer coercive and solutions may not exist.

We also discuss a limiting case, in which the allowed growth is of double exponential
type. Surprisingly, we are able to show that in this case a local minimum persists to exist
for critical and also for slightly supercritical parameters. This allows to obtain the existence
of a second (mountain-pass) solution, for almost all slightly supercritical parameters, using
the Struwe monotonicity trick. This result is in contrast to the non-weighted case, where
positive solutions do not exist (in star-shaped domains) in the critical and supercritical case.

Keywords: Trudinger-Moser inequality, Liouville type equations.

MSC-class: 35J25, 35B33, 46E35

1 Introduction

The well known Trudinger-Moser (TM) inequality provides continuous embeddings into expo-
nential Orlicz spaces in the borderline cases of the standard Sobolev embeddings, when the
embeddings into Lebesgue Lp spaces hold for every p < ∞ but not for p = ∞. Let us recall
Moser’s result for the case N = 2:

Theorem A (Moser [Mos71]). Let N = 2; then

sup´
Ω |∇u|2dx≤1

ˆ
Ω
eαu

2

{
≤ C|Ω| if α ≤ 4π ,

= +∞ if α > 4π.
(1.1)

A useful variant of the TM inequality is the following logarithmic TM inequality:

Theorem B (Moser [Mos71]). Let Ω ⊂ R2 be a bounded domain. Then there exists a constant
C > 0 such that

log

ˆ
Ω
eu dx ≤ 1

16π

ˆ
Ω
|∇u|2 dx+ C , u ∈ H1

0 (Ω) . (1.2)

The value
1

16π
is optimal (see e.g. [CLMP92]).

1
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2 Weighted Trudinger-Moser inequalities and associated Liouville type equations

1.1 Weighted Trudinger-Moser inequalities

Recent results concern the influence of weights on such type of inequalities. In [CT05], [AS07],
[dFdOdS16], for instance, the authors consider the effect of power weights in the integral term
on the maximal growth. On the other hand in [Cal14], [CR15c], [CR15a], [CR15b], [CRS17] the
interest is devoted to the impact of weights in the Sobolev norm.

We concentrate our attention on this second type of results. More precisely, let w ∈ L1(Ω)
be a non-negative function, and consider the weighted Sobolev space

H1
0 (Ω, w) = cl

{
u ∈ C∞0 (Ω) ;

ˆ
Ω
|∇u|2w(x)dx <∞

}
. (1.3)

It turns out that for weighted Sobolev spaces of the form (1.3) logarithmic weights have a
particular significance. However, as was observed in [CR15a, Proposition 8], one needs to restrict
the attention to radial functions in order to obtain an actual improvement of the embedding
inequalities. One is therefore lead to consider problems of the following type: let B ⊂ R2 denote
the unit ball in R2, and consider the weighted Sobolev space of radial functions

H̃β = H1
0,rad(B,wβ) := cl

{
u ∈ C∞0,rad(B) ; ‖u‖2β :=

ˆ
B
|∇u|2wβ(x)dx <∞

}
,

where

wβ(x) =
(

log
e

|x|

)β
, β ≥ 0 . (1.4)

The following results were obtained in [CR15a] and will be fundamental in this paper.

Theorem C ([CR15a]). Let β ∈ [0, 1). Then

(a)

ˆ
B
e|u|

γ
dx < +∞, for all u ∈ H̃β ⇐⇒ γ ≤ γβ :=

2

1− β
and

(b) sup
u∈H̃β , ‖u‖β≤1

ˆ
B
eα|u|

γβ
dx < +∞

if and only if

α ≤ αβ := 2 [2π(1− β)]
1

1−β (critical growth). (1.5)

Remark 1.1. This result extends the Trudinger-Moser inequality (1.1); indeed, for β = 0 we
recover the classical TM inequality where γ0 = 2 and α0 = 4π.

Going to the limiting case β = 1 in Theorem C, one sees that the exponent γ of u in the
integral can take any value, that is, we are again in a borderline case. But again, the embedding
does not go into L∞, in fact, we find a critical growth of double exponential type, as described
in the following

Theorem D ([CR15a]). Let β = 1 (i.e. w1(x) = log e
|x| ). Then,

(a)

ˆ
B
ee
u2

dx < +∞ , ∀ u ∈ H̃1 = H1
0,rad(B,w1)

and

(b) sup
u∈H̃1, ‖u‖1≤1

ˆ
B
ea e

2πu2

dx < +∞ ⇐⇒ a ≤ 2.
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M. Calanchi, E. Massa and B. Ruf 3

Finally, in the case β > 1, one has the following result

Theorem E ([CR15a]). Let β > 1. Then we have the following embedding:

H̃β = H1
0,rad(B,wβ) ↪→ L∞(B) .

Logarithmic inequalities similar to (1.2) can be obtained also in this setting. We have the
following results, which were partially obtained in a previous paper [CR15c], but we recall the
proofs for completeness in the Appendix.

Proposition 1.2.
a) For β ∈ [0, 1), there exists a constant C(β) such that

log

(
1

|B|

ˆ
B
e|u|

θβ
dx

)
≤ 1

2λ∗β
‖u‖2β + C(β) ∀u ∈ H̃β , (1.6)

where

λ∗β := π(1− β)β(2− β)2−β21−β and θβ =
2

2− β
. (1.7)

b) For β = 1, there exists a constant CMB such that

log log
( 1

|B|

ˆ
B
ee
|u|
dx
)
≤ 1

2π
‖u‖21 + log

(1

8
+

logCMB

e
1

2π
‖u‖21

)
∀u ∈ H̃1 . (1.8)

The values
1

2λ∗β
and

1

2π
in (1.6) and (1.8), respectively, are optimal.

Remark 1.3. Notice that in the case β = 0 inequality (1.6) gives the classical logarithmic TM
inequality (1.2), actually, λ∗0 = 8π and θ0 = 1.

Remark 1.4. The optimality of
1

2λ∗0
can be found in [CLMP92], while the optimality of

1

2λ∗β
and

1

2π
in (1.6) and (1.8), respectively, is new, and it will be a consequence of Theorem 1.5 in this

paper.

1.2 Mean field equations of Liouville type

The logarithmic version of the TM inequality is crucial in the study of mean field equations of
Liouville type (see [Lio53]) of the form

−∆u = λ
eu´
Ω e

u
in Ω ⊂ R2 ,

u = 0 on ∂Ω .

(1.9)

Equation (1.9) was derived by Caglioti, Lions, Marchioro and Pulvirenti in their pioneering
works [CLMP92, CLMP95] from the mean field limit of point vortices of the Euler flow, see
also Chanillo-Kiessling [CK94] and Kiessling [Kie93]. Equation (1.9) occurs also in the study of
multiple condensate solutions for the Chern-Simons-Higgs theory, see Tarantello [Tar96], [Tar04].
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4 Weighted Trudinger-Moser inequalities and associated Liouville type equations

In particular, it has been shown (see also [Li99], [CL10]) that equation (1.9) has a solution
if

λ < 8π, (1.10)

while a Pohozhaev identity shows that no solution exists for λ ≥ 8π in starshaped domains (see
e.g. [CLMP92]). In view of this, we call the case λ < 8π subcritical, the case λ = 8π critical,
and the case λ > 8π supercritical.

The existence of a solution in the subcritical case can be proved by using variational methods;
in fact, solutions of (1.9) are critical points of the functional

J : H1
0 (Ω)→ R, J(u) =

1

2
‖u‖2 − λ log

ˆ
Ω
eu dx . (1.11)

Indeed, for λ < 8π, as a consequence of the logarithmic TM inequality, the functional J is
coercive, hence bounded from below, and then admits an absolute minimum. For λ = 8π the
functional J is still bounded below, but no longer coercive, and the infimum is not attained.

1.3 Main results

In this article we concentrate our attention on some functionals similar to (1.11) and related
nonlocal equations that generalize (1.9), under the impact of the above mentioned weighted
logarithmic inequalities.

We define the following functionals:

i) for β ∈ [0, 1), let

Jλ : H̃β → R, Jλ(u) :=
1

2
‖u‖2β − λ log

( 
B
eu

θ
dx

)
, (1.12)

where θ = θβ from Proposition 1.2, and writing uθ := |u|θ−1u and
ffl
B := 1

|B|
´
B ;

ii) for β = 1, let

Iλ : H̃1 → R, Iλ(u) :=
1

2
‖u‖21 − λ log log

( 
B
ee
u
dx

)
. (1.13)

Our purpose in this paper is to study the geometry of these functionals in dependence of the
positive parameter λ and, as a consequence, to obtain existence results for some related nonlocal
equations. In particular we will prove the following results.

Theorem 1.5.

i) For β ∈ [0, 1), the functional Jλ is coercive for λ ∈ [0, λ∗β) and it is bounded from below if and
only if λ ≤ λ∗β (see expression (1.7)).

ii) For β = 1, the functional Iλ is coercive for λ ∈ [0, π) and it is bounded from below if and
only if λ ≤ π.

Both results have a natural application to some weighted mean field equations of Liouville
type. As for equation (1.9) we distinguish the subcritical and critical case.
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M. Calanchi, E. Massa and B. Ruf 5

Theorem 1.6 (Subcritical case).
i) Let β ∈ [0, 1), and θ = θβ = 2

2−β . Then the equation −div
(
wβ(x)∇u

)
= λ

θ|u|θ−1 eu
θ

´
B e

uθ
in B ,

u = 0 on ∂B ,

(1.14)

has a positive weak radial solution, which is a global minimizer for Jλ, for every value λ ∈ (0, λ∗β).

ii) The equation  −div
(
w1(x)∇u

)
= λ

eu

log
ffl
B e

eu
ee
u

´
B e

eu
in B ,

u = 0 on ∂B ,

(1.15)

has a positive weak radial solution, which is a global minimizer for Iλ, for every λ ∈ (0, π).

In contrast to the situation for equation (1.9), and somewhat surprisingly, for problem (1.15)
with the double exponential nonlinearity we can also prove an existence result for the critical
and slightly supercritical case:

Theorem 1.7 (Critical and supercritical case). There exists ε0 > 0 such that equation (1.15)
has a positive weak radial solution, which is a local minimizer for Iλ, also for λ ∈ [π, π + ε0).
When λ = π the minimum is global.

Remark 1.8. The nonlinearities in the problems above are always nonnegative, and so only trivial
or positive solutions may exist. In fact, the trivial solution exists for problem (1.14) if β ∈ (0, 1),
while for β = 0 (problem (1.9)) and for β = 1 (problem (1.15)) u = 0 is not a solution.

We observe that in the supercritical situation, that is for λ ∈ (π, π + ε0), the functional Iλ
has a mountainpass-structure, since we have a local minimum, and directions along which the
functional tends to −∞. A direct application of the Mountain-pass Theorem by Ambrosetti-
Rabinowitz [AR73] seems difficult due to loss of compactness. However, we can apply the
so-called “monotonicity trick” by Struwe [Str88] (see also [ST98, Jea99]) to obtain

Theorem 1.9. Let ε0 as in Theorem 1.7. Then for a.e. λ ∈ (π, π + ε0) equation (1.15) has a
second positive radial solution which is of mountain-pass type.

2 Proofs

We first prove the result concerning the geometry of the functionals Jλ and Iλ.

Proof of Theorem 1.5. Coercivity for λ < λ∗β (resp. λ < π) is an immediate consequence of (1.6)
and (1.8), actually (with λ ≥ 0)

Jλ(u) ≥
(1

2
− λ

2λ∗β

)
‖u‖2β − λC(β)
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6 Weighted Trudinger-Moser inequalities and associated Liouville type equations

and

Iλ(u) ≥
(1

2
− λ

2π

)
‖u‖21 − λ log

(
1

8
+

logCMB

e
‖u‖21
2π

)
≥
(1

2
− λ

2π

)
‖u‖21 − λ log

(
1

8
+ logCMB

)
.

The above estimates also show that the functionals Jλ and Iλ are bounded from below when
λ ≤ λ∗β (resp. λ ≤ π).

Sharpness is much more delicate. When λ exceeds those critical values, the functionals are
not bounded from below: we will produce a sequence along which they tend to −∞.

Case β ∈ (0, 1). We evaluate the functional along a generalized Moser sequence (see [CR15a]):

let uk(x) = ψk(t)√
2π(1−β)

with |x| = e−t, where

ψk(t) =


(1 + t)1−β − 1√
(1 + k)1−β − 1

for t ≤ k ,

√
(1 + k)1−β − 1 for t > k .

(2.1)

With this definition one has ‖uk‖β = 1.

We set αk = C
√

2π(1− β)
(√

(1 + k)1−β − 1
)1/(1−β)

, where C will be fixed later, and eval-

uate the functional (1.12) along the sequence
{
αkuk

}
: using the new variable t the functional

reads as

Jλ(αkuk) =
α2
k

2
− λ log

[
2

ˆ ∞
0

exp

(∣∣∣ αk√
2π(1− β)

ψk(t)
∣∣∣θβ − 2t

)
dt

]
.

We estimate

ˆ ∞
0

exp

(∣∣∣ αk√
2π(1− β)

ψk(t)
∣∣∣θβ −2t

)
dt =

ˆ ∞
0

exp

(∣∣∣C (√(1 + k)1−β − 1

) 1
(1−β)

ψk(t)
∣∣∣θβ − 2t

)
dt

≥
ˆ ∞
k

exp

(∣∣∣C (√(1 + k)1−β − 1

) 1
(1−β)

+1 ∣∣∣θβ − 2t

)
dt

=
1

2
exp

[∣∣∣C (√(1 + k)1−β − 1

)(2−β)/(1−β) ∣∣∣2/(2−β)
− 2k

]
=

1

2
exp

[
C2/(2−β)

[
(1 + k)1−β − 1

]1/(1−β)
− 2k

]
.

Therefore

Jλ(αkψk) ≤ C2
[
(1 + k)1−β − 1

] 1
1−β

π(1− β)− λ
[
C2/(2−β)

[
(1 + k)1−β − 1

]1/(1−β)
− 2k

]
.

We now set C2/(2−β) = 2
2− β
1− β

+ 2δ, for some δ > 0.
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M. Calanchi, E. Massa and B. Ruf 7

Since (2 + δ)
[
(1 + k)1−β − 1

]1/(1−β) − 2k →∞ when k →∞, we estimate, for k large,

C2/(2−β)
[
(1 + k)1−β − 1

] 1
1−β − 2k ≥

[
22−β

1−β − 2 + δ
] [

(1 + k)1−β − 1
] 1

1−β

=
[ 2

1− β
+ δ
][

(1 + k)1−β − 1
] 1

1−β .

Then

J(αkψk) ≤
[
(1 + k)1−β − 1

] 1
1−β

[([
2

2− β
1− β

]
+ 2δ

)2−β
π(1− β)− λ

[ 2

1− β
+ δ
]]
. (2.2)

Let λ = (1 + ε)λ∗β = (1 + ε)
([

22−β
1−β

])2−β
π(1− β)2/2, for some ε > 0. Then (2.2) can be

rewritten as

Jλ(αkψk) ≤
[
(1 + k)1−β − 1

] 1
1−β

(
2

2− β
1− β

)2−β
π(1− β)

{
. . .
}
,

where {
. . .
}

=

{(
1 +

δ(1− β)

2− β

)2−β
− (1 + ε)

(
1 + δ

1− β
2

)}
.

Since this term tends to −ε as δ → 0, the expression in braces is negative for δ > 0 small enough,
and then J → −∞ along this sequence.

Case β = 1. Again we prove that the value λ = π is sharp by considering a generalized Moser
sequence: let uk(x) = ψk(t)√

2π
with |x| = e−t, where now we use the sequence

ψk(t) =


log(1 + t)√
log(1 + k)

for t ≤ k ,

√
log(1 + k) for t > k .

(2.3)

Then ‖uk‖1 = 1 and evaluating Iλ along the sequence
{
αkuk

}
, with αk = C

√
2π log(1 + k),

we obtain

Iλ(αkuk) =
α2
k

2
− λ log log 2

ˆ ∞
0

exp
[
e(αkψk/

√
2π) − 2t

]
dt .

We estimateˆ ∞
0

exp
[
e(αkψk/

√
2π) − 2t

]
dt ≥

ˆ ∞
k

exp
[
e(C
√

2π log(1+k)
√

log(1+k)/
√

2π) − 2t
]
dt

=

ˆ ∞
k

exp
[
e(Clog(1+k) − 2t

]
=

1

2
exp
[
(1 + k)C − 2k

]
dt,

and then
Iλ(αkuk) ≤ C2π log(1 + k)− λ

[
log
(
(1 + k)C − 2k

)]
.

For λ = π + ε we choose C = 1 + 2δ(ε) and for k large we can estimate

log((1 + k)1+2δ − 2k) ≥ log((1 + k)1+δ),
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8 Weighted Trudinger-Moser inequalities and associated Liouville type equations

and then
Iλ(αuk) ≤ (1 + 2δ)2π log(1 + k)− (π + ε)(1 + δ) log(1 + k) ;

since for δ > 0 small (1 + 2δ)2π < (π + ε)(1 + δ), we have proved that, if λ > π, there exists a
sequence along which Iλ → −∞.

In order to prove Theorem 1.6 we need a compactness result. The following Lemma due to
de Figueiredo-Miyagaki-Ruf (Lemma 2.1 in [dFMR95]) will be needed:

Lemma F ([dFMR95]). Let (un) be a sequence of functions in L1(Ω) converging to u in L1(Ω).
Assume that F : R→ R is measurable, and that F (un(x)) and F (u(x)) are also L1 functions. If

ˆ
Ω

∣∣F (un(x))un(x)
∣∣dx ≤ C

then F (un(x)) converges to F (u(x)) in L1.

The compactness result is in the following Lemma:

Lemma 2.1. Let β ∈ [0, 1) and θ ∈ (0, γβ) or β ≥ 1 and θ > 0.

Let (un) be a bounded sequence in H̃β. Then there exists u ∈ H̃β such that (up to a subsequence)

log

 
B
eu

θ
ndx→ log

 
B
eu

θ
dx as n→ +∞

and, if β ≥ 1,

log log

 
B
ee
un
dx→ log log

 
B
ee
u
dx as n→ +∞.

Proof. Let ‖un‖β ≤ C. Then there exists u ∈ H̃β, such that (up to a subsequence)

un ⇀ u in H̃β , un → u in L1(B) , un → u a.e. , as n→ +∞ .

Observe that the nonlinearity eu
θ

is subcritical with respect to the maximal growth γβ given by
Theorem C, and that there exists a constant C1 (depending on C, θ and β) such that

|tetθ | ≤ C1e
αβ

(
|t|
C

)γβ
, ∀ t ∈ R . (2.4)

From Theorem C and this estimate we have that

e|un|
θ
, e|u|

θ ∈ L1 and

ˆ
B

∣∣une|un|θ ∣∣dx ≤ C2 .

We now apply Lemma F using F (t) = et
θ
.

For the case β ≥ 1 one proceeds in the same way using the inequalities

|tetθ |, |teet | ≤ C1e
2e

2π

(
|t|
C

)2

, ∀ t ∈ R ,

Theorem D or E, and applying Lemma F using F (t) = et
θ

and F (t) = ee
t
.
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M. Calanchi, E. Massa and B. Ruf 9

We are now able to prove our first existence result.

Proof of Theorem 1.6. Since λ < λ∗β (resp λ < π), the functional Jλ (resp. Iλ) is bounded from
below by Theorem 1.5, and one can take a minimizing sequence (un), i.e.

lim
n→+∞,

Jλ(un) = m = inf
i∈H̃β

Jλ(u),

which is trivially bounded in H̃β by coercivity. Therefore there exists u ∈ H̃β, such that (up to
a subsequence)

un ⇀ u in H̃β , un → u in L1(B) , un → u a.e. , as n→ +∞

By Lemma 2.1 and the weak lower semicontinuity of the norm

m ≤ Jλ(u) ≤ lim inf
n→+∞

Jλ(un) = m.

Then u is a global minimizer and therefore a solution of Problem (1.14). The case β = 1 is
analogous.

When β = 0 or β = 1 the solution obtained is positive by Remark 1.8. For β ∈ (0, 1) we still
have to show that the obtained solution is not trivial. This is the case since the origin is not a
minimizer. Indeed, let v ∈ H̃β, v 6≡ 0, 0 ≤ v ≤ 1, t ∈ (0, 1): then e(tv)θ ≥ 1 + (tv)θ and

 
B
e(tv)θdx ≥ 1 +

 
B

(tv)θdx .

Since
ffl
B(tv)θdx ≤ 1 we can use the estimate log(1 + τ) ≥ 1

2τ for τ ∈ (0, 1) to conclude

log

 
B
e(tv)θdx ≥ 1

2

 
B

(tv)θdx .

With this we get

Jλ(tv) =
t2

2
‖v‖2β − λ log

 
B
e(tv)θdx ≤ t2

2
‖v‖2β −

λ

2
tθ
 
B
vθdx ;

since θ ∈ (1, 2), the above expression is negative for t small and then m < 0 = Jλ(0).

In the next proof we consider problem (1.15) when λ ≥ π.

Proof of Theorem 1.7. Beyond the threshold λ = π.

The functional Iπ is still bounded from below by Theorem 1.5. We need to prove that minimizing
sequences are still bounded, despite that in this case coercivity does not hold. However, the
particular form of the logarithmic TM inequality will help in this direction.

Let (un) be a minimizing sequence, that is

Iπ(un)→ m = inf
u∈H̃1

Iπ(u).
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10 Weighted Trudinger-Moser inequalities and associated Liouville type equations

We observe first that the infimum cannot be positive, since m ≤ Iπ(0) = 0. On the other hand,
from inequality (1.8) we have

Iπ(un) =
1

2
‖un‖21 − π log log

( 
B
ee
un
dx
)
≥ −π log

(1

8
+

logCMB

e
‖un‖21

2π

)
.

If ‖un‖1 →∞ we would have

0 ≥ m = lim
n→+∞

Iπ(un) ≥ lim inf
n→+∞

[
− π log

(1

8
+

logCMB

e
‖un‖21

2π

)]
= π log 8 > 0,

a contradiction. Then (un) is bounded and we are done (as in the proof of Theorem 1.6).

Now we prove that a minimum (now only local) exists also for λ = π + ε > π, ε small. Let
R > 0 be such that

logCMB

e
‖u‖21
2π

<
1

8
for ‖u‖1 ≥ R , (2.5)

then for ‖u‖1 = R and every ε > 0, one has

−(π + ε) log

(
1

8
+

logCMB

e
‖u‖21
2π

)
≥ −(π + ε) log 1/4 = (π + ε) log 4 ≥ π log 4; (2.6)

as a consequence, for ‖u‖1 = R and ε > 0 small enough,

Iπ+ε(u) ≥
(

1

2
− π + ε

2π

)
R2 + π log 4

≥ − ε

2π
R2 + π log 4 > π log 2 > 0 .

Let then BR = {u ∈ H̃1 : ‖u‖1 < R}. Since

inf
u∈BR

Iπ+ε(u) ≤ Iπ+ε(0) = 0 < inf
u∈∂BR

Iπ+ε(u) , (2.7)

we conclude (up to a compactness argument as above) that the infimum is attained at a local
minimum in BR, which then yields a nontrivial positive solution.

We observe that the limiting value for ε0 can be estimated in term of CMB: in the argu-
ment above (but a finer estimate could be obtained) R > 2π log(8 logCMB) and then ε0 <

log 2
2 log2(8 logCMB)

.

In order to prove Theorem 1.9, we will use the following generalization (whose proof is given
in the appendix) of a result by Jeanjean [Jea99] which is based on the so-called monotonicity
trick by Struwe, see [Str88, ST98].

Theorem 2.2. Let X be a Banach space equipped with the norm ‖ · ‖, and let µ : X → X be a
continuous map. We consider a family (Iλ)λ∈J (J ⊂ R+ is an open interval) of C1− functionals
on X of the form

Iλ(u) = A(u)− λB(u), λ ∈ J,

and suppose that
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i) B(u) ≥ 0 for all u ∈ µ(X) ;

ii) Iλ(µ(u)) ≤ Iλ(u), for all u ∈ X and λ ∈ J ;

iii) either A(u)→ +∞ or B(u)→ +∞ as ‖u‖ → +∞.

Assume that there are two fixed points v0 and v1 of µ such that for the family of maps

Γ = {γ ∈ C([0, 1], X), γ(0) = v0, γ(1) = v1}, (2.8)

it holds
cλ := inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v0)} , for all λ ∈ J . (2.9)

Then for almost every λ ∈ J there exists a bounded PS-sequence for Iλ at level cλ, i.e. there is
{un}n ⊂ X with

a) {un}n is bounded,

b) Iλ(un)→ cλ,

c) I ′λ(un)→ 0 in the dual space X
′

of X.

Remark 2.3. When µ is the identity, this is exactly [Jea99, Theorem 1.1].

Proof of Theorem 1.9. We apply Theorem 2.2 to our functional Iπ+ε, ε ∈ (0, ε0), with X = H̃1,
and η(u) = |u|. In view of (2.7) and Theorem 1.5-ii, for all ε1 ∈ (0, ε0) there exists v1 ≥ 0
such that Iπ+ε with ε ∈ (ε1, ε0) satisfies condition (2.9) with v0 = 0. Hence, we find for a.e.
ε ∈ (ε1, ε0) a sequence {vn} satisfying a), b) and c). Due to the arbitrariness of ε1 this is true
for a.e. ε ∈ (0, ε0).

Since {vn} is bounded, we find a subsequence converging weakly and a.e. to v ∈ H̃1. Then
the proof is easily concluded: by Lemma 2.1 we have

ffl
B e

evndx →
ffl
B e

evdx > 1, and similarly

one also obtains
´
B e

vnee
vn
ϕdx→

´
B e

vee
v
ϕdx, for all ϕ ∈ H̃1. Thus, from

0← I ′π+ε(vn)(vn − v) =

ˆ
B
∇vn∇(vn − v)w1dx− (π + ε)

´
B e

vnee
vn

(vn − v)dx

log
ffl
B e

evndx
´
B e

evndx
,

we conclude that
´
B∇vn∇(vn−v)w1dx→ 0. As a consequence vn → v strongly and v is a weak

solution of equation (1.15). It is different from the first solution since Iπ+ε(v) > 0, and positive
by Remark 1.8.

3 Appendix

In this appendix we give, for sake of completeness, the proof of the logarithmic TM inequalities,
that were already proved in [CR15c], and the proof of Theorem 2.2.

Proof of Proposition 1.2 . Let β ∈ (0, 1). By Young inequality, if δ, δ′ are two conjugate expo-
nents, then for every s, t ≥ 0 one has

st ≤ (τs)δ
′

δ′
+

tδ

δτ δ
, ∀τ > 0 . (3.1)
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12 Weighted Trudinger-Moser inequalities and associated Liouville type equations

We need δ, δ′ to be conjugate exponents and satisfy{
θδ = γβ = 2

1−β

θδ′ = 2 .

This implies

θ = 2
2−β , δ = 2−β

1−β , δ′ = 2− β .

Then one has, by taking s = ‖u‖θβ and t =
(
|u|
‖u‖β

)θ
in (3.1), and selecting τ so that δτ δ = 1

αβ

(see equation (1.5))

|u|θ ≤
‖u‖2β
2λ∗β

+ αβ

(
|u|
‖u‖β

)γβ
, (3.2)

where λ∗β is given in (1.7). Let now

C(β) = log

(
sup

u∈H̃β\{0}

 
B
e
αβ

(
|u|
‖u‖β

)γβ
dx

)
,

which is finite by Theorem C. Then we conclude

log

 
B
e|u|

θ
dx ≤ log

e ‖u‖2β2λ∗
β

 
e
αβ

(
|u|
‖u‖β

)γβ
dx

 ≤ ‖u‖2β
2λ∗β

+ C(β) .

Consider now the case β = 1. Taking a = ‖u‖1, b = |u|
‖u‖1 and ε2 = π in

ab ≤ a2

4ε2
+ ε2b2 (3.3)

we get

|u| ≤ 1

4π
‖u‖21 + π

(
u

‖u‖1

)2

, (3.4)

so that( 
B
ee
|u|
dx

)
≤

 
B
exp

(
e

1
4π
‖u‖21+π

(
u
‖u‖1

)2)
dx ≤

 
B
exp

(
e

1
4π
‖u‖21 e

π
(

u
‖u‖1

)2)
dx .

Let

CMB = sup
u∈H̃1\{0}

 
B1(0)

exp

(
2e

2π
(
|u|
‖u‖1

)2)
dx

(which is finite in virtue of Theorem D).
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Now taking a = e
1

4π
‖u‖21 , b = e

π
(

u
‖u‖1

)2

and ε2 = 2 in (3.3), one gets

log log

( 
B
ee
u
dx

)
≤ log log

 
B
exp

(
1

8
e

1
2π
‖u‖21 + 2e

2π
(

u
‖u‖1

)2)
dx

= log

1

8
e

1
2π
‖u‖21 + log

 
B
e2e

2π

(
u
‖u‖1

)2

dx


≤ log

(
1

8
e

1
2π
‖u‖21 + logCMB

)

≤ 1

2π
‖u‖21 + log

(
1

8
+

logCMB

e
‖u‖21
2π

)
.

Proof of Theorem 2.2. It suffices to show that for every λ ∈ J

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) = inf
γ∈Γ

max
t∈[0,1]

Iλ(µ ◦ γ(t)) =: cµλ (3.5)

Indeed, observe first that given a path γ ∈ Γ, also the path µ ◦ γ ∈ Γ, since µ is continuous and
v0, v1 are fixed points of µ. Hence, cµλ ≥ cλ because every path µ ◦ γ on the right also appears
on the left. Condition (ii) gives the reversed inequality. This, together with (i), implies that
the map λ 7→ cλ is non-increasing and then c′λ exists for almost every λ ∈ J .

Then the proof can be completed as in [Jea99], Theorem 1.1, proceeding by the following
steps:

1) Given λ ∈ J at which c′λ exists and a sequence {λn} ⊆ J with λn ↗ λ, there exist a constant
K = K(λ) > 0 and a sequence of paths γn ∈ Γ such that

a) max
t∈[0,1]

Iλ(γn(t)) ≤ cλ + (−c′λ + 2)(λ− λn).

Moreover, if γn(t) satisfies Iλ(γn(t)) ≥ cλ − (λ− λn), then ‖γn(t)‖ ≤ K.
In the proof of this step, it is important to observe that, in view of (3.5), the paths γn can

be chosen so that they have image in µ(X), which allows to use condition (i).

2) For α > 0 let Fα = {u ∈ X : ‖u‖ ≤ K + 1 and |Iλ(u)− cλ| ≤ α}, where K is the constant of
the previous step. Then

inf{‖I ′λ(u)‖ : u ∈ Fα} = 0 , for every α > 0 . (3.6)

Then, choosing α = εn → 0, we obtain by 2) a un ∈ Fεn such that ‖I ′λ(un)‖ ≤ εn, which
satisfies ‖un‖ ≤ K + 1 and |Iλ(un)− cλ| ≤ εn .
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[dFdOdS16] D.G. de Figueiredo, J.M. do Ó, and E. dos Santos, Trudinger-moser inequalities
involving fast growth and weights with strong vanishing at zero, Proc. Amer. Math.
Soc. 144 (2016), 3369–3380.

[dFMR95] D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf, Elliptic equations in R2 with
nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations
3 (1995), no. 2, 139–153.

[Jea99] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application
to a Landesman-Lazer-type problem set on RN , Proc. Roy. Soc. Edinburgh Sect.
A 129 (1999), no. 4, 787–809.

[Kie93] M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic in-
teractions, Comm. Pure Appl. Math. 46 (1993), no. 1, 27–56.

[Li99] Y. Y. Li, Harnack type inequality: the method of moving planes, Comm. Math.
Phys. 200 (1999), no. 2, 421–444.

29 Mar 2018 15:47:45 EDT
Version 2 - Submitted to Proc. Amer. Math. Soc.

DiffEq+DynSystemsThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



M. Calanchi, E. Massa and B. Ruf 15

[Lio53] J. Liouville, Sur l’ equation aux derivées partielles, J. Math. Pure Appl. 18 (1853),
71–72.

[Mos71] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.
20 (1970/71), 1077–1092.

[ST98] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge
theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 109–121.

[Str88] M. Struwe, Critical points of embeddings of H1,n
0 into Orlicz spaces, Ann. Inst. H.
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