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Abstract

We consider the large order behavior of the perturbative expansion of the scalar ϕ4 field theory in terms 
of a perturbative expansion around an instanton solution. We have computed the series of the free energy up 
to two-loop order in two and three dimension. Topologically there is only an additional Feynman diagram 
with respect to the previously known one dimensional case, but a careful treatment of renormalization is 
needed. The propagator and Feynman diagrams were expressed in a form suitable for numerical evaluation. 
We then obtained explicit expressions summing over O(103) distinct eigenvalues determined numerically 
with the corresponding eigenfunctions.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Perturbation theory is one of the few powerful analytical tools through which one can calculate 
physical quantities in an interacting field theory [1]. However, as pointed out for the first time by 
Dyson in the framework of QED [2], the most common perturbation expansions we use in field 
theory are not convergent, but only asymptotic. In addition the expansion parameter may not be 
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always small: this is the case, unlike QED, of critical phenomena [3]. It is therefore essential to 
understand how to extract numerical and physical information from the perturbative coefficients 
of the series. One of the first attempts to sum the perturbative series were given by [4], using Padè 
approximants. However, the convergence couldn’t be tested since they used only a few perturba-
tive coefficients. Then it was proposed to sum the perturbative series using the Borel summation 
method, combined to Padè approximants [5]. It was subsequently realized that, when one knows 
the behavior of the coefficients of the series at large orders, one can sum the series using a much 
more powerful method that combines a Borel transformation and a conformal mapping. This has 
allowed to estimate critical exponents with a very good precision and for a large variety of mod-
els [6–12]. The behavior of the perturbative series at large order has been of extreme importance 
not only in understanding the domain of validity of the theory, but also because we can use this 
information to accurately determine physical quantities, even if the coupling constant is not so 
small. Bender and Wu [13,14], using WKB method, succeeded in evaluating the large order be-
havior of the one-dimensional quartic anharmonic oscillator, showing how it is related to barrier 
penetration effects when the sign of the coupling constant is negative. Then Lipatov and others 
[15–18], using a dispersion relation approach, proved that the large order behavior of perturba-
tion theory is related to the instability of the theory for negative values of the coupling constant 
and that it can then be obtained using the so-called “pseudoparticle” or instanton solutions of 
the classical equation of motion. This method [21] not only gives the same results of semiclassi-
cal calculations concerning the one-dimensional quantum anharmonic oscillator [19,20], but can 
also be extended to the field theory case and can in principle be used for more complex types 
of interactions. In this paper we will focus on the ϕ4 field theory in d < 4, where the Borel 
summability of the perturbative series has been rigorously proven [22–24]. Expanding around 
the instanton saddle point adds some technical difficulties since it breaks explicitly the time-
translational invariance of the theory. This induces zero modes over which one must integrate via 
the collective coordinates method [25]. In 2 and 3 dimension, one has another, additional prob-
lem: renormalization. Order by order the mass counterterm that makes the original perturbative 
series finite, should also renormalize the instanton perturbative series. At one loop order, the only 
divergence occurs in the calculation of the determinant of the fluctuation operator orthogonal to 
zero modes and indeed this is canceled by the first order expansion of the mass counterterm [26]. 
The two-loop order series of the partition function has been computed in the d = 1 case (quantum 
mechanics) both with WKB and Lipatov method [19–21]. In that case, since one can write down 
the explicit formula for the propagator, it is also possible to analytically evaluate the correction. 
In this work we compute the two-loop order series of the partition function in d = 2 and d = 3.

The paper is organized as follows. In Section 2 we will review the one loop result, for com-
pleteness. In Section 3 we will perform the expansion to the two loop order of the action. In 
Section 4 the two loop correction to the large order behavior of the partition function is written 
in terms of diagrams, and their renormalization is discussed. We will see also how one last di-
vergence in Zk , which is not completely canceled by the counterterms, is eliminated once we 
evaluate the large order behavior of the free energy. In Section 5 we will express the diagrams 
in a form suitable to numerical integration and give our results. In Section 6 we present our 
conclusions.

2. One loop computation

The ϕ4 partition function has the following expression
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Fig. 1. Contours used to derive the dispersion relation. The dashed line represents the branch cut at (−∞,0).

Z(g) =
∫

Dϕ e−S(ϕ) =
∞∑

k=0

Zk gk , (1a)

S(ϕ) =
∫

ddx

[
1

2
(∇ϕ)2 + 1

2
ϕ2 + g

4
ϕ4 + δm2

2
ϕ2
]

(1b)

where δm2 is the mass counterterm. We normalize the path integral with respect to the free 
partition function Z(0). Z(g) is an analytic function in the whole complex plane, with a cut on 
the real negative axis. Using Cauchy integral formula we have

Zk = 1

2πi

∫
C

dg
Z(g)

gk+1
, (2)

where C is the path in the complex plane represented in Fig. 1. Since gZ(g) → 0 for g → 0 and 
Z(g) decays polynomially to zero for g → ∞, the contribution from paths Cε and CR vanishes 
in the limit ε → 0 and R → ∞ respectively. As C+ and C− are complex conjugate paths we can 
write down a relation that connects the perturbative coefficient Zk to the imaginary part of Z(g)

Zk = 1

π

0∫
−∞

dg
ImZ(g)

gk+1
. (3)

In order to evaluate Zk for k � 1, we have first to estimate ImZ(g) for g small and negative. The 
standard way to do so, is to analytically continue Z(g + iε) and Z(g − iε) rotating clockwise 
and anticlockwise the integration contour in the ϕ functional space as argg → ±π . However, in 
order to set-up the perturbation expansion of ImZ, we will formally use the representation [1]

ImZ(g) = 1

2i

∫
Dϕ e−S(ϕ) (4)

where the integral is performed over the real axis. One should remember that this expression is 
formal because the integral is not convergent: since ImZ(g) is real, we expect that the determi-
nant of fluctuation around the saddle point will be negative. ImZ(g) is dominated by solutions 
of the equation of motion

(−� + 1)ϕc(x) + gϕ3(x) = 0 , (5)
c
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that depend explicitly on the x space–time variable and that are non-vanishing in the large volume 
limit [1]. These solutions are called instantons. The mass counterterm is sub-leading because the 
saddle point solution is of order (−g)−1/2. Rescaling

ϕc(x) = �c(x)√−g
, (6)

we obtain an equation for �c(x) independent of g

(−� + 1)�c(x) − �3
c(x) = 0 . (7)

The minimum of the action is reached by a spherically symmetric solution [1,27], i.e. �c(x) =
�c(|x|) = �c(r). This solution is infinitely degenerate because if �c(|x|) satisfies (7), also 
�c(|x − x0|) with x0 ∈ Rd is a solution. Therefore choosing an arbitrary value of the origin 
x0 and setting r = |x − x0|, we can write[

− d2

dr2
− d − 1

r

d

dr
+ 1

]
�c(r) − �3

c(r) = 0 (8)

with the boundary condition �c(r) → 0 for r → ∞. The minimal solution is even in r ; the initial 
condition can be imposed with the value of �c(r) at the origin. Because of the sign ambiguity of 
this initial condition, we will have two families of solutions; when we sum over those families we 
will have a factor 2 to take into account. Moreover �c(r) has no nodes, and decays exponentially 
to 0 for r → ∞. Only in d = 1 we can solve analytically this equation and the solution is

�c(x) =
√

2

coshx
, d = 1 . (9)

Defining the quantities

Ik =
∫

ddx �k
c(x) , (10)

we can write the action evaluated on the saddle point as

Sc ≡ S(ϕc) = −A

g
, (11)

where

A = I4

4
= 1

d

∫
ddx (∇�c)

2 = I4 − I2

d
= I2

4 − d
> 0 . (12)

These equalities are referred to as the Virial Theorem [1]. In Table 1 we report some numerical 
estimates of the quantities Ik . Next we have to perform the second order functional derivative of 
the action in order to evaluate Gaussian fluctuation around the instanton saddle point

M(x1, x2) = δ2S

δϕ(x1)δϕ(x2)

∣∣∣∣
ϕ=ϕc

=
[
−�x1 + 1 − 3�2

c(x1)
]
δ(x1 − x2) .

(13)

Shifting the field ϕ(x) → ϕc(x) +ϕ(x), we can write the imaginary part of the partition function 
in the one-loop approximation as
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Table 1
Numerical values of the integrals Ik defined in (10) for some k
and in d = 2, 3. One dimensional values are analytical.

d I2 I3 I4 I6

1 4
√

2π 16
3

128
15

2 11.700896 15.109670 23.40179 71.080173
3 18.897251 31.691522 75.589005 659.868351

ImZ 
 eA/g

i

∫
Dϕ e− 1

2

∫
ddx1d

dx2 ϕ(x1)M(x1,x2)ϕ(x2)

= eA/g

i

(
detMM−1

0

)−1/2
,

(14)

where M0 is the operator with kernel

M0(x1, x2) ≡ [−�x1 + 1
]
δ(x1 − x2) , (15)

that is, the second functional derivative of the free action. However one has to notice that the 
operator M has d zero modes given by ∂μ�c(x) as can be seen by simple differentiation of 
the equation of motion (7). This is of no surprise: the instanton solution, which depends the d
parameters x0μ, breaks explicitly the translational invariance of the action. We will see in the next 
section how to treat these zero modes using the collective coordinates method, which properly 
integrates over the parameters x0μ. As anticipated, note that the operator MM−1

0 has one, and 
only one, negative eigenvalue; for this reason the square root of the determinant is imaginary and 
the final result is real, as it should be.

2.1. Collective coordinates method

In full generality we will call

χμ(x) = ∂μ�c(x) , μ = 1, . . . , d (16)

the d zero modes of M . In order to integrate explicitly over the parameters x0μ, with μ =
1, . . . , d , we introduce the simple identity

1 =
d∏

μ=1

∫
dx0μ√

2π

[∫
ddx χμ(x)∂μϕ(x + x0μμ̂)

]

exp

{
−1

2

[∫
ddx χμ(x)

(
ϕ(x + x0μμ̂) − ϕc(x)

)]2
} (17)

in our functional integral

ImZ = 1

2i

∫
ddx0

(2π)d/2

∫
Dϕ e−Sχ (ϕ; x0). (18)

We have defined
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Sχ(ϕ;x0) ≡ S(ϕ) − Fχ(ϕ, x0) + 1

2

d∑
μ=1

[∫
ddx

χμ(x − x0μμ̂)
(
ϕ(x) − ϕc(x − x0μμ̂)

)]2

,

(19)

and the Jacobian

Fχ(ϕ;x0) ≡
d∑

μ=1

ln
∫

ddx χμ(x − x0μ μ̂) ∂μϕ(x) . (20)

Note that the new action is composed of a term translationally invariant, S(ϕ), and of a term 
which breaks explicitly the symmetry. However, performing the change of variables ϕ → ϕ(x −
x0μμ̂), x → x − x0μμ̂, it is easy to see that the dependence of x0 disappears. This means that we 
get a factor proportional to the volume V

ImZ = V

2i (2π)d/2

∫
Dϕ e−Sχ (ϕ) , (21)

where we will call

Sχ(ϕ) ≡ Sχ(ϕ,0) ,

Fχ(ϕ) ≡ Fχ(ϕ,0) .
(22)

Now we proceed expanding around the instanton saddle point. The additional terms in Sχ(ϕ), 
does not change the saddle point of the old action S(ϕ). In fact, the equation of motion

0 = δSχ

δϕ(x1)
= δS

δϕ(x1)
+

+
d∑

μ=1

[∫
ddx χμ(x) (ϕ(x) − ϕc(x))

]
χμ(x1) ,

(23)

is satisfied for the usual saddle point ϕ(x) = ϕc(x). We have not included the derivative of Fχ(ϕ)

because it is of order 
√−g, so it will be relevant only at the two-loop order. When we compute 

the second functional derivative

δ2Sχ

δϕ(x1)δϕ(x2)

∣∣∣∣∣
ϕ=ϕc

= M(x1, x2) +
d∑

μ=1

χμ(x1)χμ(x2) (24)

we get an additional term that is proportional to a sum over the projectors onto zero modes of 
S(ϕ); therefore this will shift only the zero eigenvalues.

The leading order expansion of the Jacobian Fχ(ϕ) will produce a factor of the type

eFχ (ϕc) = 1

(−g)d/2

d∏
μ=1

αμ , (25)

where we have denoted with αμ the quantity

αμ = ‖∂μ�c‖2 =
∫

ddx
(
∂μ�c

)2
. (26)
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Using the spherical symmetry of the solution we can see that αμ does not really depend on μ

αμ = 1

d

∫
ddx (∇�c(x))2 = A, (27)

so that

eFχ (ϕc) = Ad

(−g)d/2
=
[
− 1

g

(
I4

4

)2
]d/2

. (28)

Since our mass operator is that of equation (24), we have to evaluate

detB = det

[
M +

∑
μ

|χμ〉 〈χμ|
]

/detM0 (29)

where

B ≡ 1√
M0

[
M +

∑
μ

|χμ〉 〈χμ|
]

1√
M0

= I − Q +
∑
μ

1√
M0

|χμ〉 〈χμ| 1√
M0

.

(30)

Q is the Hermitian operator

Q ≡ 3
1√
M0

�2
c(x)

1√
M0

, (31)

so it has orthogonal eigenfunctions ψi with eigenvalues 1
λi

Q |ψi〉 = 1

λi

|ψi〉 . (32)

Numerically one can compute λi integrating

(−� + 1)ψi = 3λi�
2
c(x)ψi (33)

where we define |ψi〉
|ψi〉 ≡ M

−1/2
0 |ψi〉 =⇒ 〈ψi |M0 |ψi〉 = 1 . (34)

The last equality follows from the fact that |ψi〉 are normalized. As a consequence the last term 
in the definition of B is diagonal in the base of Q because Q has eigenvectors with eigenvalue 
equal to 1 corresponding to χ ; they are given by

|χμ〉 ≡ M
1/2
0 |χμ〉√〈χμ|M0 |χμ〉 . (35)

To write the last term in the definition of B in terms of the eigenvectors of Q, we evaluate the 
matrix element

〈χμ′ | 1√ |χμ〉 〈χμ| 1√ |χν〉 = δμμ′ δμν

〈χμ|χμ〉2

. (36)

M0 M0 〈χμ|M0 |χμ〉
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Using again the spherical symmetry of the instanton solution, we can write respectively the 
numerator and denominator of (36) as

〈χμ|χμ〉2 =
[

1

d

∫
ddx (∇�c)

2
]2

= A2 =
(

I4

4

)2

, (37a)

〈χμ|M0 |χμ〉 = 3

d

∫
ddx (∇�c)

2 �2
c = I6 − I4

d
. (37b)

Note that the |ψi〉 corresponding to λi = 1 are not equal to |χμ〉. Using these results and expand-
ing on the eigenvalues of Q, given in equation (32) we obtain the essential relationship

B =
∑

i,λi �=1

(
1 − 1

λi

)
|ψi〉 〈ψi | +

d(I4/4)2

(I6 − I4)

∑
i,λi=1

|ψi〉 〈ψi | (38)

From the above expression we can express the determinant of B as

detB =
[

d(I4/4)2

(I6 − I4)

]d

�⊥ , (39)

where we have defined the determinant of the fluctuation operator B projected onto the space 
orthogonal to the zero modes

�⊥ =
∏

i,λi �=1

(
1 − 1

λi

)
. (40)

In this last expression it is understood that a degenerate eigenvalue will appear in the product a 
number of times equal to its degeneracy. In (39) we have taken into account the fact that there 
are d eigenvalues with λi = 1 that were obtained from the zero modes of M . In the final result 
for ImZ we have to multiply by (detB)−1/2 and the term (I4/4)−d cancels with a similar term 
coming from the Jacobian of the collective coordinates transformation as in equation (28). At 
the leading order, the final effect of the collective coordinates method is to produce a factor 
(−g)−d/2.

In Appendix A we derive result (39) using time independent perturbation theory.

2.2. Determinant in one dimension

Only in one dimension the product (40) is convergent. Indeed, since the instanton solution 
is (9), the eigenvalue equation (33) can be easily solved because the potential is of the Bargmann 
type [18]. The eigenvalues are

λi = i(i + 1)

6
, i = 1,2, . . . (41)

so that the determinant of the operator B restricted to the subspace orthogonal to zero modes is

�⊥ ≡
∞∏

i=1, i �=2

(
1 − 1

λi

)
= −2

∞∏
i=3

(
1 − 6

i(i + 1)

)
. (42)

Performing the product we get
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∞∏
i=3

(
1 − 6

i(i + 1)

)
=

∞∏
i=3

(
i − 2

i

i + 3

i + 1

)

= lim
n→∞

2

n(n − 1)

(n + 3)(n + 2)

20
= 1

10

(43)

so that

�⊥ = −1

5
. (44)

2.3. One-loop renormalization

Collecting all factors, the imaginary part of the partition function is

ImZ = V
eI4/4g

(−g)d/2

[
I6 − I4

2πd

]d/2 [
−�⊥]−1/2

e
1

2g
δm2

(1)
I2 (45)

where the last term comes from the first order expansion of the mass counterterm which is

δm2 
 δm2
(1) = −3gG0(0) , (46)

where

G0(x) =
∫

ddp

(2π)d

eipx

p2 + 1
. (47)

G0(0) is divergent in d = 2 and 3. Now we have to verify that the mass counterterm renormalizes 
the divergence coming from the �⊥. Indeed one can write �⊥ in terms of traces of the operator 
Qn as

�⊥ = exp

{
−

∞∑
n=1

1

n

(
TrQn − d

)}
. (48)

Representing the �2
c(y) insertion with a wiggly line one can clearly see that TrQn is associated 

with the one-loop diagrams with 2n external �2
c legs. Therefore only the n = 1 term in (48) is 

divergent in 2 and 3 dimensions and it is given by

TrQ =
∞∑

k=0

1

λk

= = 3G2(0) I2 . (49)

This divergence is canceled exactly by the mass counterterm. We can therefore define a renor-
malized determinant as

�⊥
R ≡ �⊥e3G0(0)I2 = ed

∏
i,λi �=1

(
1 − 1

λi

)
e

1
λi (50)

The final result is

ImZ = V
eI4/4g

(−g)d/2

[
I6 − I4

2πd

] d
2 [−�⊥

R

]− 1
2 [

1 + O(g)
]

(51)

The determinant �⊥
R has been evaluated in dimension 2 and 3 by [26], using the Thomas–

Fermi approximation, which gives an additional information coming from the asymptotic behav-
ior of the large λk’s. We review this procedure, in Appendix B. In Table 2 we report our numerical 
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Table 2
Numerical estimate of �⊥

R
in dimension 2 and 3 using the 

Thomas–Fermi approximation. We also report the analytical 
value of �⊥ in one dimension.

d 1 2 3

�⊥
R

– −88.7823 −10.5459
�⊥ − 1

5 – –

value of �⊥
R in d = 2, 3 and the analytical value of �⊥ in one dimension (there is no need of 

renormalization in d = 1). Note that the numerical value of �⊥
R in d = 2 we present is different 

from that of [26] probably due to a typo.

2.4. The free energy

Using the dispersion relation (3), we obtain the one-loop large order behavior of the partition 
function

Zk 
 V C (−A)−k �

(
k + d

2

)[
1 + O

(
1

k

)]
, (52)

where

C = 1

π

[
2 (I6 − I4)

πd I4

]d/2 [
−�⊥

R

]−1/2
. (53)

In order to evaluate the large order behavior of the free energy

F(g) = − lim
V →∞

1

V
lnZ(g) =

∞∑
k=0

Fk gk , (54)

one can use

Fk = −Zk

V

[
1 − Z1

Zk−1

Zk

+ O

(
1

k2

)]
. (55)

Since Zk grows like k!, the term Zk−1/Zk is of order 1/k, and it can be neglected at this order. 
We obtain

Fk = −C (−A)−k �

(
k + d

2

)[
1 + O

(
1

k

)]
. (56)

3. Two-loop order expansions

We will call the coefficient that contributes to the order g in the expansion of the imaginary 
part of Z as ξ

ImZ = V
eI4/4g

(−g)d/2

[
I6 − I4

2πd

] d
2 [−�⊥

R

]− 1
2 [

1 + ξg
]

. (57)

Using again the dispersion relation (3) the 1/k correction to the large order behavior of Zk will 
be written in terms of ξ as
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Zk 
 V C (−A)−k �

(
k + d

2

)[
1 − ξI4

4

1

k
+ O

(
1

k2

)]
. (58)

Starting from the expression in equation (21), ξ will have contribution from

• Fχ(ϕ), i.e. the Jacobian of the collective coordinate change of variable;
• the third and fourth functional derivative of S(ϕ) evaluated on the instanton;
• the mass counterterm δm2.

Note that the projector onto the zero modes χμ which is present in Sχ(ϕ) and its second 
functional derivative (24) does not give any contribution to the third and fourth derivative of the 
action. The only non-trivial term coming from the collective coordinates that gives a contribution 
is the Jacobian Fχ(ϕ). This is also what happens in the one-dimensional case [19–21], where the 
Jacobian contributes only with a one-leg vertex of order 

√−g. We will see that, in d = 2 and 
d = 3, there will be another additional vertex of order g. In the following subsections, we will 
analyze with care all these contributions mentioned above. We will recover the one-dimensional 
result and extend it to field theory.

3.1. Collective coordinates Jacobian

The expansion of Fχ(ϕ) is

Fχ(ϕ) =
d∑

μ=1

ln

[
αμ√−g

+
∫

ddx ∂μ�c(x) ∂μϕ(x)

]

=
d∑

μ=1

[
ln

αμ√−g
+ ln

(
1 −

√−g

αμd

∫
ddx ��c(x)ϕ(x)

)]
(59)

The first term in the right hand side is the one-loop contribution. Expanding the logarithm and 
using (27), we have

Fχ(ϕ) =
d∑

μ=1

lnαμ −
√−g

A

∫
ddx ��c(x)ϕ(x)

+ 1

2

g

A2d

[∫
ddx ��c(x)ϕ(x)

]2
(60)

We obtain two types of vertices, one of order 
√−g and the other of order g

σ = −
√−g

A
−→

τ = g

2A2d
−→

(61)

respectively with one and two external legs.

3.2. Action

The third and fourth derivative of the action are
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− δ3S

δϕ(x1)δϕ(x2)δϕ(x3)

∣∣∣∣
ϕ=ϕc

= 6
√−g �c(x) δ(x1 − x2) δ(x1 − x3)

− δ4S

δϕ(x1)δϕ(x2)δϕ(x3)δϕ(x4)

∣∣∣∣
ϕ=ϕc

= −6g δ(x1 − x2) δ(x1 − x3) δ(x1 − x4)

We keep the factors 1/3! and 1/4! in order to maintain the usual symmetry factors in the dia-
grams. One can define three and four-legs vertices as

λ = 6
√−g −→

α = −6g −→
(62)

3.3. Counterterms

At the two loop order we can write the mass counterterm as

δm2 = δm2
(1) + δm2

(2) = −3gG0(0) + 6g2K(0) , (63)

where

K(p) =
∫

ddk1

(2π)d

ddk2

(2π)d

1

k2
1 + 1

1

k2
2 + 1

1

(p − k1 − k2)2 + 1
. (64)

When p = 0 this is logarithmically divergent in d = 3 and convergent in d = 2. Expanding the 
action counterterm around the instanton solution, we have

−δm2

2

∫
ddx ϕ2(x) = −3

2
G0(0)I2 + 3gK(0)I2

+ γ

∫
ddx �c(x)ϕ(x) + δ

2

∫
ddx ϕ2(x) ,

(65)

where γ and δ represents two additional vertices, with one and two external legs respectively. 
We denote them by a little cross

γ = −3
√−g G0(0) −→

δ = 3g G0(0) −→ (66)

Obviously these vertices are not present in dimension 1, since renormalization is not needed.

4. Diagrams

In the previous section we have obtained, expanding the action around the instanton, a the-
ory with cubic and quartic vertices respectively of order 

√−g and g. This is of no surprise 
because the same happens in the perturbative expansion of the ϕ4 theory below the critical tem-
perature [3], where one has a potential with two degenerate, non-vanishing minima. In our case, 
since we have g < 0, the potential is the same apart of a minus sign factor. The really big dif-
ference is that the saddle point is not only non-vanishing, but is also space–time dependent. The 
propagator of our theory is
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L(x, y) = 〈x|
⎡
⎣M +

d∑
μ=1

χμχμ

⎤
⎦

−1

|y〉 . (67)

Combining all vertices to the order g we obtain the diagrams

=
∫

ddx ddy �c(x)L(x, x)L(x, y)L(y, y)�c(y)

=
∫

ddx ddy �c(x)L3(x, y)�c(y)

=
∫

ddx L2(x, x)

=
∫

ddx ddy �c(x)L(x, y)L(y, y)�c(y)

=
∫

ddx L(x, x)

=
∫

ddx ddy �c(x)L(x, y)�c(y)

=
∫

ddx ddy ��c(x)L(x, y)L(y, y)�c(y)

=
∫

ddx ddy ��c(x)L(x, y)�c(y)

=
∫

ddx ddy ��c(x)L(x, y)��c(y)

which have multiplicity respectively

−→ λ2

8
= −9

2
g ; (68a)

−→ λ2

3!2
= −3g ; (68b)

−→ α

8
= −3

4
g ; (68c)

−→ γ λ

2
= 9g G0(0) ; (68d)

−→ δ

2
= 3

2
g G0(0) ; (68e)

−→ γ 2

2
= −9

2
g G2

0(0) ; (68f)

−→ σλ

2
= 3g

A
; (68g)

−→ σγ = −3g

A
G0(0) ; (68h)

−→ σ 2

2
+ τ = −g(d − 1)

2A2d
. (68i)

Note that to this order we do not obtain disconnected diagrams. The two-loop correction to the 
imaginary part of the partition function ξ , is expressed in terms of diagrams as
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ξ = −9

2

[
− 2G0(0) +

+G2
0(0)

]
− 3

[
− I2K(0)

]

− 3

4

[
− 2G0(0)

]

+ 3

A

[
− G0(0)

]

− (d − 1)

2Ad

(69)

4.1. The one-dimensional case

When d = 1, only diagrams (68a), (68b), (68c) and (68g) contribute, consistently with the 
result of [19–21]. Note that diagram (68i), cancels because of the multiplicity factor proportional 
to d − 1. Following [19] in this case L(x, y) can be calculated exactly and it is given by

L(x, y) = ±1

2

[
u(x) v(y) − v(x)u(y)

]+
sinhx sinhy

4

[
1

cosh2 x
+ 1

cosh2 y
− 1

cosh2 x cosh2 y

]
(70)

where

u(x) = sinhx

cosh2 x
(71a)

v(x) = −1

2
coshx + 3

2 coshx
− 3x

2

sinhx

cosh2 x
. (71b)

In Eq. (70) we take the plus sign if x < y and the minus sign otherwise. Using the explicit 
expression of the propagator one can evaluate analytically the diagrams. Their value is

= 13

168
; (72a)

= − 71

2016
; (72b)

= V

4
− 319

420
; (72c)

= 53

180
. (72d)

Using that A = I4/4 = 4/3 in one dimension, the two loop correction ξ will be

ξ = 95

96
− 3

16
V . (73)

4.2. Renormalization

The propagator L can be written in terms of B as

L = 1√ 1 1√ (74)

M0 B M0
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The inverse of B can be easily written using its diagonal base (see equation (38)), so that we can 
write

L =
∑

i,λi �=1

(
1 − 1

λi

)−1 1√
M0

|ψi〉 〈ψi |
1√
M0

+ (I6 − I4)

d(I4/4)2

∑
i,λi=1

1√
M0

|ψi〉 〈ψi |
1√
M0

. (75)

Using equation (34) and (37b), we have

L =
∑

i,λi �=1

(
1 − 1

λi

)−1

|ψi〉 〈ψi |

+ 1

(I4/4)2

∑
μ

|χμ〉 〈χμ| (76)

The above result can be plugged into the diagrams directly in d = 1. In dimension 2 and 3, 
instead, one has to take care of renormalization and a different expression must be used. The 
trick is to extract the free propagator 1

M0
from the expression of L; this surely will permit us 

to isolate the infinite contribution of each diagram and to check that these divergences will be 
canceled by counterterms. We write

L = 1

M0
+ H , (77)

where

H =
∑

i,λi �=1

1

λi − 1
|ψi〉 〈ψi |

+
(

(I6 − I4)

d(I4/4)2
− 1

) ∑
i,λi=1

|ψi〉 〈ψi | . (78)

Note that every time we have a propagator L with equal arguments, we will get a divergence of 
the type G0(0) coming from the first term in equation (77). Using the decomposition (77), we 
can write the diagrams in this way

− 2G0(0) = −V G2
0(0)

+
∫

ddx H 2(x, x) , (79a)

− 2G0(0) + G2
0(0)

=
∫

ddx ddy �c(x)H(x, x)L(x, y)H(y, y)�c(y) , (79b)

− G0(0)

=
∫

ddx ddy ��c(x)L(x, y)H(y, y)�c(y) (79c)
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We expect that the preceding integral expressions are finite. The only diagram which is not com-
pletely renormalized is that of equation (79a). We will see later that the additional divergence 
V G2

0(0) is a feature of the partition function; once we compute the free energy of the system this 
infinity will be canceled.

Substituting L(x, y) → G0(x − y) in (68c), and passing to Fourier space, we get

=
∫

ddp

(2π)d
�2

c(p)K(p) (80)

When k1 and k2 in (64) are large, this expression reduces to


 I2K(0) , (81)

which cancels exactly with the corresponding counterterm. With these considerations in mind 
we obtain

− I2K(0) = S + R (82)

where

S =
∫

ddx ddy �c(x)
[
3G2

0(x − y)H(x, y)

+3G0(x − y)H 2(x, y) + H 3(x, y)
]
�c(y) , (83a)

R =
∫

ddp

(2π)d
�2

c(p)
[
K(p) − K(0)

]
. (83b)

We expect that also these two quantities are finite. The difference K(p) − K(0) can be written 
as [3]

K(p) − K(0) = �(3 − d)

(4π)d

1∫
0

dx dy dz

(xy + zx + yz)d/2

[(
xyz

xy + zx + yz
p2 + 1

)d−3

− 1

]
δ(x + y + z − 1) .

(84)

This expression can be directly used in d = 2, since the K(0) counterterm do not have diver-
gences. In d = 3, the K(0) subtraction cancels the pole of �(3 − d). Explicitly

K(p) − K(0) = − 1

(4π)3

1∫
0

dx dy dz

(xy + zx + yz)3/2

ln

(
xyz

xy + zx + yz
p2 + 1

)
δ(x + y + z − 1) .

(85)

4.3. Free energy

As anticipated, we expect that, when we compute the free energy, the last divergence isolated 
in equation (79a) will be canceled in d = 2, 3. Starting from (58) we compute the ratio
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Zk−1

Zk

= − I4

4k
, (86)

and

Z1 = 3

4
V G2

0(0) . (87)

Plugging these two results into identity (55), we have

Fk = −C (−A)−k �

(
k + d

2

)

×
[

1 −
(

ξ − 3

4
V G2

0(0)

)
I4

4k

]
.

(88)

Therefore the infinite contribution coming from Z1 completely renormalizes the last divergence.
When d = 1, instead, we have to use

Z1 = − 3

16
V , (89)

since the free propagator is G0(x) = e−x/2. The two loop correction to the free energy is

−
(

ξ − 3

16
V

)
I4

4
= −95

72
. (90)

This final result can be matched with that of [19–21].

5. Numerical results

In order to lighten the notation we rewrite H as a sum over all eigenvalues

H =
∑

i

1

λi − 1
|ψi〉 〈ψi | ; (91)

in which it is assumed that the eigenvalue equal to one must be replaced by

1 +
(

(I6 − I4)

d(I4/4)2
− 1

)−1

, (92)

to be consistent with equation (78).

5.1. Case d = 2

In d = 2 the eigenfunctions are decomposed as

ψi(x) = Rnm(rx)
eimφx

√
2π

, (93)

H(x, y) can be written as a function of rx , ry and θ = φy − φx , i.e. the angle between x and y

H(rx, ry, θ) = 1

2π

∞∑
n=1

+∞∑
m=−∞

eimθ

λnm − 1
Rnm(rx)Rnm(ry) . (94)

The multiplicity can be highlighted using only the sum over m ≥ 0
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H(rx, ry, θ) = 1

2π

∞∑
n=1

+∞∑
m=0

1

λnm − 1
Rnm(rx)

× [2 cos (mθ) − δm,0
]
Rnm(ry) .

(95)

For x = y this expression no longer depends on the angle θ

H(rx) ≡ H(rx, rx,0) = 1

2π

∞∑
n=1

+∞∑
m=0

2 − δm,0

λnm − 1
R2

nm(rx) (96)

5.2. Case d = 3

In d = 3 the eigenfunctions are decomposed in this way

ψi(x) = Rnl(rx)Ylm(θx,φx) . (97)

Using the identity

l∑
m=−l

Y ∗
lm(θx,φx)Ylm(θy,φy) = 2l + 1

4π
Pl(cos θ) , (98)

where Pl is the Legendre polynomial of degree l and θ is the angle between x and y, H(x, y)

can be written as

H(rx, ry, θ) = 1

4π

∞∑
n=1

n−1∑
l=0

2l + 1

λnl − 1
Pl(cos θ)Rnl(rx)Rnl(ry) (99)

that is a function of rx , ry and θ . For x = y the dependence on θ drops

H(rx) ≡ H(rx, rx,0) = 1

4π

∞∑
n=1

n−1∑
l=0

2l + 1

λnl − 1
R2

nl(rx) . (100)

5.3. Final expressions of diagrams

Since the dependence on rx , ry and θ is present both in 2 and 3-dimensional expression of H
and in the free propagator

G0(rx, ry, θ) ≡ G0

(√
r2
x + r2

y − 2rxry cos θ
)

(101)

one can write the 2d-dimensional integrals in diagrams (79b), (79c) and (82) as∫
ddx ddy f (rx, ry, θ) = �d−1 �d−2

∫
drx dry

π∫
0

dθ rd−1
x rd−1

y (sin θ)d−2 f (rx, ry, θ) , (102)

where f (rx, ry, θ) is the specific function to integrate and �d−1 is the surface area of the unit 
radius d-sphere
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�d−1 = 2πd/2

� (d/2)
. (103)

Diagram (79a) reads∫
ddx H 2(x, x) = �d−1

∫
drx rd−1

x H 2(rx) . (104)

In diagrams (79b), (79c) and (68i), one further simplification can be made. Since there is only 
one H(rx, ry, θ) term, one can perform exactly the integration over θ . In d = 3 one can use the 
properties of Legendre Polynomials

1∫
−1

dθ Pl(θ) = 2

1∫
0

dθ P2l (θ) = 2δl,0 , (105)

instead in d = 2 the integral is simply

π∫
0

dθ cos (mθ) = πδl,0 . (106)

The previously mentioned diagrams can be written as

(79b) = �d−1�d−2

∫
drx dry rd−1

x rd−1
y

×�c(rx)H(rx)L(rx, ry)H(ry)�c(ry) (107a)

(79c) = �d−1�d−2

∫
drx dry rd−1

x rd−1
y

×��c(rx)L(rx, ry)H(ry)�c(ry) (107b)

(68i) = �d−1�d−2

∫
drx dry rd−1

x rd−1
y

×��c(rx)L(rx, ry)��c(ry) (107c)

where L(rx, ry) is

L(rx, ry) =
π∫

0

dθ (sin θ)d−2 G0(rx, ry, θ) + H(rx, ry) (108)

and H(rx, ry) is given by

H(rx, ry) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

∑
nm

δm,0

λnm − 1
Rnm(rx)Rnm(ry) ,

1

2π

∑
nl

δl,0

λnl − 1
Rnl(rx)Rnl(ry) ,

(109)

respectively in d = 2 and d = 3.
In Table 3 we report the numerical estimate of diagrams and of quantity R defined in (83b). 

In Table 4 the numerical value of the correction ξ − 3
4V G2

0(0) is given. All the errors come from 
a linear extrapolation to an infinite number of eigenfunction.
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Table 3
Numerical estimate of Diagrams. The errors come from the 
extrapolation to an infinite number of eigenfunctions.

d = 2 d = 3

(104) 0.0555027(6) 0.058015(6)

(107a) −0.11569(2) 0.38075(8)

(107b) −0.20829(2) 10.0620(5)

(107c) −0.0130032(1) −14.170027(1)

S −0.0875141(4) −1.1295(3)

R −7.19815 · 10−3 −5.45801 · 10−3

Table 4
Numerical estimate of ξ − 3

4 V G2
0(0). The errors come from 

the extrapolation to an infinite number of eigenfunctions.

d = 2 d = 3

ξ − 3
4 V G2

0(0) 0.6553(2) 3.4988(9)

6. Conclusions

In this work we have discussed, using the Lipatov approach, how to evaluate the large order 
behavior of a perturbative series. We have taken into consideration the simple case of the partition 
function of the ϕ4 theory. We have computed the 1/k correction to the perturbative coefficient 
of the partition function Zk and of the free energy Fk . In dimension 1, our results coincide with 
that of Bender and Wu [13] using a WKB approach and of [19–21] using Lipatov method. When 
d = 2 or 3, we have shown that there are the same diagrams present in dimension 1, plus one that 
comes from the Jacobian of the collective coordinates method. All these quantities have been 
evaluated numerically.

Knowing the large order behavior has proven to be important in field theory since one can 
transform the original divergent perturbation series in a convergent one. The best way to do that 
has been achieved using the Borel summation method combined with a conformal transforma-
tion. In particular, the one-loop evaluation of large orders gives the value of the singularity of the 
Borel transform closest to the origin; this information is essential in order to use the conformal 
mapping itself. We stress that these techniques proved to be very versatile since they can also 
be applied to random systems. We mention here the percolation problem (obtained from a cubic 
O(n) theory in the limit n → 0) [28–31], the random diluted Ising model [32–34] and the ε ex-
pansion in spin glasses in the paramagnetic phase [35]. Note also that the imaginary part of the 
partition function is connected with the decay rate of metastable states [36].

In the case of pure ϕ4 theory, an estimate of the two-loop term of the large perturbative series 
is important to improve the precision of physical quantities like critical exponents [12]. Since the 
perturbative series is known to the seventh order in d = 3 [37], the evaluation of the eighth order 
is surely much harder than the computation of the two-loop term in the high order expansion. 
However this computation is not completely trivial both at the analytical and at the numerical 
level. This work can be considered as a preliminary investigation that clarifies these conceptual 
problems by analyzing the simplest case of the partition function. We leave for future work the 
investigation of the more physically interesting case of the 2M-point Green function which are 
directly connected to experimentally measurable quantities such as critical exponents.



E.M. Malatesta et al. / Nuclear Physics B 922 (2017) 293–318 313
Acknowledgements

This work was supported by grant No. 454949 from the Simons Foundation.

Appendix A. Obtaining (39) by perturbation theory

Using the definition of αμ in (26), the determinant will be

det

⎡
⎣
⎛
⎝M +

d∑
μ=1

|χμ〉 〈χμ|
⎞
⎠M−1

0

⎤
⎦= �

d∏
μ=1

αμ = �

(
I4

4

)d

, (A.1)

where

� ≡ lim
ε→0

1

εd
det
[
(M + ε) (M0 + ε)−1

]
= lim

ε→0

det (1 − �(ε))

εd

(A.2)

and

�(ε) = 3 (M0 + ε)−1 �2
c(x) = 3

−� + 1 + ε
�2

c(x) . (A.3)

�(ε) is not an Hermitian operator, but it has real and positive spectrum since it is equivalent to 
an operator

Q(ε) = 3 (M0 + ε)−1/2 �2
c(x) (M0 + ε)−1/2 , (A.4)

via

�(ε) = (M0 + ε)−1/2 Q(ε) (M0 + ε)1/2 (A.5)

which is Hermitian and positive [1,26]. We will call the eigenvalues of �(ε) by 1/λi(ε), i =
0, 1, . . . ; for simplicity we will denote them by 1/λi when ε = 0. They can be obtained by a 
numerical solution of the equation

(−� + 1 + ε)ψi = 3λi(ε)�2
c(x)ψi . (A.6)

In the limit ε → 0 we know that the ground state and the first (d-times degenerate) excited state 
solution of this equation are

λ0 = 1

3
, ψ0(x) = �c(x) ;

λ1 = 1 , ψ1(x) = ∂μ�c(x) .

(A.7)

λ0 will give the only negative contribution to the determinant. Since (1 − 1/λ1(ε)) is of order ε
when ε �= 0 but small, we can write � defined in equation (A.2), in terms of �⊥ as

� = �⊥ lim
ε→0

(
1 − 1

λ1(ε)

ε

)d

(A.8a)

�⊥ =
∏ (

1 − 1

λi

)
. (A.8b)
i,λi �=1
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(A.6) is an equation of the Schrödinger type with potential −3λi(ε)�
2
c(x) and energy −1 −

ε. Since we want to evaluate the first order expansion of λ1(ε) in ε, we can use first order 
perturbation theory. The perturbing Hamiltonian will be

Hp = −3�2
c(x)(λ1(ε) − 1)

= −3�2
c(x)

(
1 − 1

λ1(ε)

)
+ O(ε)

(A.9)

and the corresponding energy shift is −ε. The unperturbed eigenstates ∂μ�c(x) are d times 
degenerate. However, the perturbing Hamiltonian is diagonal in the space of unperturbed eigen-
states ∂μ�c(x), with all equal elements on the diagonal. In fact, using the invariance under space 
rotations of �c(x) we have

〈∂μ�c|Hp |∂ν�c〉 = δμν

d

∫
ddx �2

c(x) (∇�c(x))2 . (A.10)

We conclude that λ1(ε) remains d times degenerate at first order in ε. Therefore we can then use 
simple time independent, non-degenerate perturbation theory; using again the spherical symme-
try of the instanton solution �c(x), the energy shift is

−ε = 〈∂μ�c|Hp |∂μ�c〉
〈∂μ�c|∂μ�c〉 (A.11)

= −3

(
1 − 1

λ1(ε)

) ∫
ddx �2

c(x) (∇�c(x))2∫
ddx (∇�c(x))2

. (A.12)

Using an integration by parts∫
ddx �2

c(x) (∇�c(x))2 = −2
∫

ddx �2
c(x) (∇�c(x))2

−
∫

ddx �3
c(x) (��c(x)) (A.13)

and the equation of motion (7), we have that the numerator of (A.12) is∫
ddx �2

c(x) (∇�c(x))2 = 1

3
(I6 − I4) . (A.14)

The denominator is simply∫
ddx (∇�c(x))2 = I4 − I2 = 1

4
dI4 . (A.15)

Inserting into (A.12) we get

lim
ε→0

1 − 1
λ1(ε)

ε
=

1
4dI4

I6 − I4
. (A.16)

Collecting all factors we get the same result obtained in (39).

Appendix B. The Thomas–Fermi approximation

Let us consider the generic Hamiltonian
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Fig. B.2. N(λ) as a function of λ in d = 2: the red line is the numerical result; the blue line is Nas(λ), the asymptotic 
Thomas–Fermi estimate (see equation (B.4)). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

H (p, x) =
d∑

μ=1

p2
μ − λV (x) , V (x) > 0 , (B.1)

where the potential V (x) goes to zero at infinity. Let us call N(λ) the number of eigenvalues 
smaller then λ. N(λ) will have a jump all the time there is an eigenvalue and the height of 
the jump corresponds to the degeneracy of eigenvalue itself. The Thomas–Fermi approximation
gives us the behavior of N(λ) for large λ [3]

lim
λ→∞N(λ) = Nas(λ) = �d−1

d

∫
ddx

(2π)d
(λV (x))d/2 . (B.2)

Note that Nas(λ) is a continuous function of its argument. Differentiating with respect to λ one 
gets the asymptotic spectral density

ρas(λ) = dNas

dλ
= �d−1

2
λd/2−1

∫
ddx

(2π)d
(V (x))d/2 . (B.3)

In our case V (x) = 3�2
c(x), so that

Nas(λ) = 3d/2

d

�d−1
Idλd/2 , (B.4)
(2π) d
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Fig. B.3. N(λ) as a function of λ in d = 3: the red line is the numerical result; the blue line is Nas(λ), the asymptotic 
Thomas–Fermi estimate (see equation (B.4)). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

ρas(λ) = 3d/2�d−1

2 (2π)d
Idλd/2−1 . (B.5)

In Fig. B.2 and B.3 one can see a comparison between the numerical N(λ) and the asymptotic 
Thomas–Fermi estimate (B.4), in dimension 2 and 3 respectively. This information can be of 
great utility in order to numerically evaluate the determinant of fluctuation operator orthogonal 
to zero eigenmodes [26]. Suppose we perform the product in (50) until the eigenvalue λ. We can 
then use

∏
i �=1

(
1 − 1

λi

)
e

1
λi 


∏
λk<λ

(
1 − 1

λi

)
e

1
λi

exp

⎧⎪⎨
⎪⎩

∞∫
λ

ddλρas(λ)

[
ln

(
1 − 1

λ

)
+ 1

λ

]⎫⎪⎬
⎪⎭


 e−Cdλ
d/2−2 ∏

λk<λ

(
1 − 1

λi

)
e

1
λi

(B.6)

where
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Cd = 3d/2�d−1

2 (2π)d

Id

4 − d
. (B.7)

The convergence of �⊥
R with the Thomas–Fermi factor is relatively faster.
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