
 

 

 

            

UNIVERSITÀ DEGLI STUDI DI MILANO 

PhD Course in Molecular and Cellular Biology 

 

XXX Ciclo 

 

 

 

The impact of α-synuclein on microtubules: 

from dynamics to ultrastructure  

 

 

Francesca O. Cantele 

PhD Thesis  

 

 

 

 

Scientific tutor:  Prof. Graziella Cappelletti 

Co-tutor:   Prof. Francesco Demartin 

 

 

Academic year: 2016-2017



 

 

SSD: BIO/06 

 

 

Thesis performed at Department of Biosciences, Università degli Studi di 

Milano 

 

 

 



 

 

 

 



 

 

 

 

 



 

 

 

Index 

Part I 

Abstract ....................................................................................................................................... 3 

State of the Art ............................................................................................................................ 5 

α-Synuclein ....................................................................................................................... 5 

α-Synuclein and Parkinson's disease ................................................................................. 9 

Microtubules ................................................................................................................... 10 

Microtubule dynamics and regulation ............................................................................. 20 

Microtubules in the neuron ............................................................................................. 25 

Microtubules and Parkinson's disease ............................................................................. 28 

α-Synuclein and microtubules ......................................................................................... 30 

Aim of the Project..................................................................................................................... 32 

Main Results ............................................................................................................................. 34 

Conclusions and Future Prospects ............................................................................................ 38 

References ................................................................................................................................ 43 

Acknowledgements .................................................................................................................. 57 

 

Part II 

Published paper: 

Cartelli, D., Aliverti, A., Barbiroli, A., Santambrogio, C., Ragg, E.M., Casagrande, F.V.M., 

Cantele, F., Beltramone, S., Marangon, J., De Gregorio, C., Pandini, V., Emanuele, M., 

Chieregatti, E., Pieraccini, S., Holmqvist, S., Bubacco, L., Roybon, L., Pezzoli, G., Grandori, 

R., Arnal, I., and Cappelletti, G. (2016) 

“α-Synuclein is a Novel Microtubule Dynamase.” Sci. Rep. 6: 33289. 

 

Part III 

Manuscript in preparation: 

Cantele, F., Budroni, V., Marangon, J., Neuman, E., Onelli, E., Moscatelli, A., Arnal, I., and 

Cappelletti, G. 

“The impact of α-synuclein on microtubule structure in vitro.” 



 

 

 



 

1 

Part I 

 

 



 

2 



Abstract 

3 

Abstract 

α-Synuclein is a presynaptic protein supposed to be involved in the control of 

neuronal synapse functions. It is widely expressed in brain tissue and associated to 

Parkinson's disease. When free in the cytoplasm, α-synuclein is unstructured, while it 

adopts a α-helical conformation when bound to vesicles. Its variable structure allows 

α-synuclein to interact with multiple partners and makes difficult to understand its 

physiological role, which remains elusive despite decades of intense study. Here, we 

looked at the interaction between α-synuclein and microtubules, using both wild type 

and mutated α-synuclein. We investigated the influence of α-synuclein on 

microtubule nucleation and dynamics and on microtubule structure. 

We found that α-synuclein is a novel, foldable, microtubule dynamase, which could 

participate in the organization of the microtubule cytoskeleton at the pre-synapse, 

through its binding to tubulin and its regulation of microtubule nucleation and 

dynamics. We also showed that α-synuclein mutants are much less sensitive than 

wild type α-synuclein to fold upon tubulin binding and are more prone to cause 

tubulin aggregation rather than polymerization. Next, we found that α-synuclein 

deeply affects the structure of microtubules assembled in vitro causing changes in 

some of the parameters that define it, namely microtubule diameter and tubulin 

periodicity. Wild type α-synuclein increases the microtubule diameter, but has no 

effects on tubulin periodicity. A30P α-synuclein, instead, increases both these 

parameters and A53T and E46K α-synuclein decrease them. We also analysed 3D 

reconstructions of microtubules and unravelled some very particular structures 

assembled in the presence of mutated α-synuclein. Next, we carried out an extensive 

study of the protofilament number distribution among the microtubule population by 

use of cryo-electron microscopy and we discovered that α-synuclein increases the 

presence of microtubules with uncommon structures, especially highly twisted 

microtubules and microtubules with a small number of protofilaments. We also found 

that the protofilament distribution changes with the time of polymerization. Finally, 



Abstract 

4 

we showed that the amount of E46K α-synuclein bound to microtubules is 

significantly higher than that of the other variants. 

These results support the idea that the interaction of α-synuclein with microtubules 

heavily impacts on microtubules and, consequently, could play an important role in 

modulating synaptic physiology. In addition, its alteration can reasonably cause 

neuronal dysfunction via impairment of the proper microtubule organization and 

structure. The interaction between α-synuclein and microtubules seems to be very 

complex, changes over time and depends on the proper folding of α-synuclein. 

Finally, our results suggest that pathological variants of α-synuclein impair the 

microtubule system promoting tubulin aggregation more than polymerization, but 

also changing the structure and the stability of the microtubules that are formed. 

Thus, this work provides new evidences for looking at the regulation of microtubule 

as a crucial step in the pathogenesis of Parkinson’s disease. 
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State of the Art 

α-Synuclein 

α-Synuclein is a presynaptic protein widely expressed in brain tissue, where it is 

about the 1% of total cytosolic protein (Iwai et al., 1995; Stefanis, 2012). It was 

discovered in 1988 (Maroteaux et al., 1988) and in 1997 it was identified as the major 

component of Lewy bodies and neurites (Spillantini et al., 1997; Goedert et al., 

2017), the defining pathological hallmark of Parkinson’s disease. Besides Parkinson’s 

disease, it is also involved in other neurodegenerative pathologies, like dementia with 

Lewy bodies and multi systemic atrophy (Spillantini et al., 1997; Baba et al., 1998; 

Gai et al., 1999; Spillantini et al., 1998; Recchia et al., 2004). Mutations in the 

synuclein gene (SNCA) directly cause Parkinson’s disease and dementia with Lewy 

bodies (Jellinger, 2009). 

The amino acid sequence of α-synuclein was found in 1993 (Ueda et al., 1993). It is a 

soluble naturally unfolded protein (Weinreb et al., 1996; Burré et al., 2013) of 140 

amino acids. α-Synuclein can acquire different conformations depending on the 

environmental conditions and/or the interaction with several partners. The structure 

of α-synuclein includes three domains (fig. 1). 

The N-terminal domain is an amphipathic lysine-rich domain and it includes seven 

imperfect repeats of 11 amino acids. In solution, this region is disordered, but can 

acquire a conformation with two α-helices by interaction with phospholipids. This 

domain binds to membranes and modulates their interactions with α-synuclein 

(Ulmer et al., 2005). All the missense mutations of the α-synuclein gene that are 

linked to Parkinson’s disease were found in this domain. 

The central domain is called “non-amyloid component” (NAC). It is hydrophobic and 

allows α-synuclein to acquire a β-sheet structure enabling it to produce fibrils. This 

latter ability is greatly diminished by deletion of large segments of the NAC domain 

(El-Agnaf et al., 1998; Giasson et al., 2001). 
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The C-terminal domain is a disordered, acidic and solubilizing domain, which 

contains several acidic amino acids and phosphorylation sites. It is also rich in 

prolines, which interfere with the acquisition of a secondary structure. The C-terminal 

domain is important for the chaperone-like activity of α-synuclein. If this domain is 

extensively phosphorylated, the protein loses the ability to form oligomers. 

Figure 1. Schematic representation of the wild type α-synuclein structure. The N-terminus domain 

is a lipid-binding domain, while the NAC domain and C-terminus domain promote and inhibit 

aggregation, respectively. All the missense point mutations are present in the N-terminus domain, 

while the seven imperfect repeats of 11 amino-acids are found throughout the N-terminus and NAC 

domains. (From Butler et al., 2016) 

The predominant status of α-synuclein is the monomer (Binolfi et al., 2012) and 

under physiological conditions it can adopt a tetrameric state with a high helical 

content (fig. 2). 

 

 

Figure 2. Schematic representation of micelle-bound α-synuclein. The N-terminal region with 

antiparallel α-helices is shown in blue, the NAC region is also an α-helix and is shown in orange, 

and the unstructured C-terminal part is shown in red. Numbers refer to amino acid residues. 

(Adapted from Gallegos et al., 2015) 

In the tetrameric form, α-synuclein is resistant to aggregation and fibrillation (Bartels 

et al., 2011). In these states it is mainly bound to membranes (Lee et al., 2002) and 

when bound to lipid vesicles it has two α-helices (Eliezer et al., 2001). 
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In pathological conditions, α-synuclein fibrillates in an antiparallel beta-sheet 

structure (Conway et al., 2000), as a typical amyloid protein. 

The exact function of α-synuclein is still unknown, but several partners were found, 

suggesting a number of different functions. 

In physiological conditions, its principal partners are membranes (Lee et al., 2002) 

and synaptic vesicles (Larsen et al., 2006). These findings suggest a role in docking 

and recycling of vesicles in mature presynaptic terminals (Hunn et al., 2015).           

α-Synuclein also has a role in modulating synaptic level of neurotransmitter via direct 

interaction with synaptobrevin-2, a major component of SNARE complex assembly 

(Burré et al., 2010). This function is confirmed by the observation that triple 

synuclein knockout mice show a significant decrease in SNARE complex assembly 

(Burré et al., 2010). In addition, α-synuclein directly interacts with dopamine 

transporter (Sidhu et al., 2004). 

In the mitochondria, α-synuclein is involved in the stabilization of electron transport 

chain proteins. Mitochondria can also be the major target of the α-synuclein 

antioxidant activity (Zhu et al., 2006). α-Synuclein is also able to bind microtubules 

(Alim et al., 2004) and actin (Sousa et al., 2009). Interaction between α-synuclein 

and microtubules will be discussed in more detail later on. 

Respect to what is known about α-synuclein in physiological condition, more is 

known about pathological ones, because of its relationship with Parkinson’s disease, 

the second most diffuse neurodegenerative disease after Alzheimer’s disease. 

In pathological conditions, α-synuclein is found mainly in an insoluble aggregated 

form. The aggregation process starts from the formation of less soluble oligomers 

containing β-sheets, called protofibrils, that eventually became insoluble fibrils (Chen 

et al., 2015). The accumulation of the fibrils leads to the formation of Lewy bodies 

and neurites. 

The conversion of α-synuclein into a toxic oligomeric form might be promoted or 

accelerated by several factors: post-translational modifications, interactions with 

lipids or small molecules, oxidative stress, C-terminal truncation (Fauvet et al., 
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2012), overexpression (Lee et al., 2006), and missense point mutations (Conway et 

al., 2000; Greenbaum et al., 2005). 

The formation of Lewy bodies was first supposed to be the pathogenic mechanism, 

but now it seems to be a cellular protective response to aggregated and misfolded 

proteins (Ross and Poirier, 2005), while the most toxic form of α-synuclein are 

“insoluble” oligomers/protofibrils. Then, the fibril formation in Lewy bodies seems 

to be an attempt to isolate the oligomers and convert them into stable and less toxic 

structures (Roberts and Brown, 2015). 

α-Synuclein aggregation induces both intracellular and intercellular effects. The 

intracellular ones are reduction of presynaptic vesicle size (Cheng et al., 2011), 

interference with axonal transport of synaptic proteins (Scott et al., 2010), 

mitochondrial damage (Elkon et al., 2002), increasing of intracellular levels of 

reactive oxygen species (Junn and Mouradian, 2002), intracellular increase of 

calcium concentration by formation of membrane pores (Volles and Lansbury, 2002), 

and inibition of ubiquitin-proteasome system (Emmanouilidou et al., 2010). 

The intercellular effects arise when toxic α-synuclein oligomers were secreted and 

then transferred to neighbouring neurons and glia, where they trigger the formation of 

new aggregates (Desplats et al., 2009; Lee et al., 2010; Prymaczok et al., 2016). 

These effects, together with the finding that autopsy of patients transplanted with 

fetal nigral mesencephalic cells showed that the surviving neurons had the typical 

Lewy pathology (Kordower et al., 2008), led to the hypothesis that extracellular 

α‐ synuclein oligomers might behave like prion proteins. As a consequence, 

Parkinson’s disease etiopathogenesis seems to rely on a retrograde and transneuronal 

system, from the peripheral nerves, to the susceptible cortical areas of the brain 

(Rietdijk et al., 2017). 

Other pathological effects can be found when α-synuclein is misfolded. Misfolded α-

synuclein inhibits the proteasome system and the mitochondrial complex I activity. It 

also mediates the mitochondrial fission and inhibits autophagy (Bobela et al., 2015). 
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α-Synuclein and Parkinson's disease 

As already mentioned, α-synuclein is the major component of the Lewy bodies, the 

pathological hallmark of Parkinson’s disease. In addition, different α-synuclein 

mutations are related to some familial cases of Parkinson’s disease. In particular, the 

α-synuclein mutation A53T (Polymeropoulos et al., 1997; Chen et al., 2015) is also 

the first identified mutation related to Parkinson's disease. The three most common 

point mutations of α-synuclein, namely A53T, A30P (Krüger et al., 1998) and E46K 

(Zarranz et al., 2004; Íñigo-Marco et al., 2017), produce a pathology that is more 

progressive and tends to have an earlier onset than sporadic Parkinson’s disease 

(Cookson, 2005). Moreover, the truncated form (Tofaris, 2006) and the 

overexpression of the wild type α-synuclein (Singleton et al., 2003) are also 

pathological. These findings suggest that α-synuclein can play a central and key role 

in Parkinson’s disease pathogenesis. 

It was found that in Lewy bodies the majority of α-synuclein is present in the 

phosphorylated form, while in the healthy brain only a small fraction is 

phosphorylated (Gallegos et al., 2015; Fujiwara et al., 2002). This suggested that 

phosphorylation can have an important role in the regulation of α-synuclein 

aggregation, Lewy bodies formation and neuronal degeneration, but whether it 

suppresses or enhances α-synuclein aggregation and toxicity in vivo is controversial. 

In Lewy bodies, several kinases were also found and they were found to be able to 

phosphorylate aggregated forms of α-synuclein (Waxman and Giasson, 2011; Walker 

et al., 2013), leading to the hypothesis that kinases may catalyse α-synuclein 

phosphorylation after Lewy bodies formation. In addition, the accumulation of 

insoluble α-synuclein phosphorylated forms is mainly observed at the advanced 

stages of synucleinopathies (Anderson et al., 2006). Taken together, these 

observations suggested that α-synuclein phosphorylation can be the consequence of 

α-synuclein aggregation and Lewy bodies formation instead that the cause. 
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Pathological α-synuclein can also be found in the peripheral nervous system, 

including the enteric nervous system, cardiac and pelvic plexus, nerve terminals in 

adrenal glands, salivary glands, and skin (Wakabayashi and Takahashi, 1997; Beach 

et al., 2010). Thanks to that, several very recent studies have tried to use detection 

and measurements of α-synuclein in different peripheral tissues as biomarkers for the 

Parkinson’s disease and other synucleinopathies (Schneider et al., 2016; Lee et al., 

2017). 

Microtubules 

Microtubules are emerging as cellular partners of α-synuclein. They are highly 

dynamic polymers and one of the major components of the cytoskeleton, together 

with actin filaments and intermediate filaments. Microtubules are particularly 

important in neurons, where they control many aspects of neuronal function: they 

provide a scaffold to sustain axonal and dendritic architecture and supply the railway 

for axonal transport (Conde and Cáceres, 2009). 

Microtubules are polarized and dynamic polymers built up by tubulin, a highly 

conserved protein. Tubulin is a globular protein of about 450 amino acids containing 

many α-helices and β-sheets. It consist of three domains: i) the N-terminal one 

contains the nucleotide binding domain, ii) the intermediate one is involved in contact 

between monomers and binding to taxol, and iii) the C-terminal domain is implicated 

in interactions with proteins (Nogales et al., 1998). There are many classes of tubulin, 

and the most common are α- and β-tubulin, that also exist in many different isoforms. 

Together α- and β-tubulin constitute a heterodimer that is the structural subunit of 

microtubules. The αβ-tubulin heterodimer associates head to tail to form long 

protofilaments, which further associate laterally to form a hollow tube: the 

microtubule (fig. 3). 
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Figure 3. (a) αβ-tubulin dimer (left) and a protofilament formed by head-to-tail interactions 

between dimers (right). (b) A 13 protofilament microtubule with a B-type lattice with seam (left). 

Lateral interactions between protofilaments are α to α and β to β, except at the seam. The seam is 

formed because one turn of a 3-start helix results in a rise of 1.5 αβ-tubulin dimers, or 3 tubulin 

monomers. Plus and minus signs indicate microtubule polarity and the brackets delineate αβ-dimers 

within the microtubule lattice. On the right a single 3-start helix is shown. (Adapted from Desai and 

Mitchison, 1997) 

The most common microtubule structure is made by 13 protofilaments (Tilney et al., 

1973), but other numbers can be found for example in sperm axonems of insects 

(Afzelius et al., 1990; Dallai et al., 1993). 

Tubulin can be purified from brain of various animals and this allows to obtain 

tubulin able to polymerize in vitro. When polymerized in vitro, tubulin forms 

protofilaments that can associate in two different ways leading to parallel and anti-

parallel conformations (Amos and Baker, 1979). The parallel conformation directs to 

microtubules, while the anti-parallel, obtained in the presence of zinc ions, leads to 

sheets. 

The in vitro assembled microtubules are formed by different number of 

protofilaments, generally from 12 to 15 (Chrétien et al., 1992; Arnal and Wade, 1995; 

Hyman et al., 1995; Chrétien and Fuller, 2000; Sui and Downing, 2010) and were 
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extensively studied by cryo-electron microscopy. They are characterized by several 

structural parameters: i) protofilament number, ii) microtubule diameter, iii) tubulin 

periodicity, iv) supertwist helix pitch (fig. 4), and v) number of helix start (fig. 3,4). 

Figure 4. Schematic representation of microtubule’s surface for 13, 14 and 16 protofilaments. The 

protofilaments in a 13-protofilament microtubule are perfectly straight, whereas in all the others 

microtubules they are skewed and become helical. The straight black lines highlight the “skewness” 

of the protofilaments and for 13- and 14-protofilament microtubules corresponds to the seam. The 

protofilament helix is the so-called supertwist helix of the microtubule. On the top, blue arrows 

indicate the handedness of the supertwist helix. (Adapted from Pampaloni and Florin, 2008) 

Microtubule diameter can be easily determined from electron microscope images and 

is directly linked to protofilament number (Chrétien and Wade, 1991; Wade and 

Chrétien, 1993; Chrétien et al., 1998). Tubulin periodicity, that is the spacing of 

tubulin monomers in the protofilament, can be calculated from the power spectrum of 

the microtubule image (Hyman et al., 1995). Supertwist helix pitch can be 

determined from the protofilament number and the moiré period measured on the 

images (fig. 5). The moiré period is often measured as half moiré period, that is the 

distance between two fuzzy regions along the microtubule length (Chrétien and 
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Wade, 1991; Chrétien and Fuller, 2000). Between three fuzzy regions there is the so-

called fringe pattern, a combination of longitudinal strands that is the result of an 

optical effect due to the superimposition of the protofilaments on the projected image 

of the microtubule, that is the electron microscope image, when it is taken at high 

defocus (fig. 5). 

Figure 5. Images of (a) 14- and (b) 13-protofilament microtubules in vitreous ice. The insets show 

the formation of the major features of the microtubule image by projecting the protofilament 

structure along the electron beam direction (from top to bottom). The strong edge contrast is due to 

the superimposition of several protofilaments, while the finer inner fringes by the superimposition 

of one top and one bottom protofilament. When the top and bottom protofilaments are not in 

register, the fringe pattern disappears (fuzzy regions). The twist of the protofilaments produces a 

sequence of fringed and fuzzy regions, which are repeated every time the rotation brings a 

protofilament in the same position of the previous one, with respect to the electron beam. The 

complete twist of the protofilament is then reached when the fringe motif repeats itself the same 

number of time of the number of protofilaments composing the microtubule. The 14-protofilament 

microtubule shows repetitions of the typical motif: 3 fringe/2 fringe intercalated by fuzzy regions 

(arrowheads). The 13-protofilament microtubule shows its characteristic asymmetric, constant and 

long contrast. Scale bars: 50 nm. (From Wade and Chrétien, 1993) 
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Each type of microtubule has a typical repeat of two fringe regions, that together 

constitute the fringe pattern and their total length is the moiré period (fig. 6). From 

the fringe pattern it is then possible to determine the protofilament number (Chrétien 

and Wade, 1991; Chrétien and Fuller, 2000). Number of helix start can be deducted 

from the protofilament number and the moiré period (Chrétien and Fuller, 2000) and 

the inspection of the 4 nm lines of the power spectrum (Chrétien et al., 1996). From 

the fringe pattern it is also possible to determine the microtubule polarity (Chrétien et 

al., 1996; Sosa and Chrétien, 1998). 

 

 

Figure 6. Microtubules assembled in vitro observed by cryo-electron microscopy. (a) Favourable 

microtubule types. (b) Unfavourable microtubule types. Each microtubule is characterized by its 

protofilament and monomer helix-start number (N_S). For each microtubule type, a raw image after 

digital unbending (left) and its filtered version with the fringe pattern enhanced (middle) are 

presented, next to a simulation of this pattern based on the lattice accommodation model (right). 

The arrows indicate fuzzy regions corresponding to sections of the microtubule wall where the 

protofilaments are exactly intercalated in projection (the moiré period is twice the spacing between 

arrows). When looking, better at a shallow angle, along the microtubule images, it can be seen that 

the fringes show a directionality that reflects microtubule polarity. The fringe pattern points towards 

the minus end of microtubules with left-handed protofilaments (LH), and towards the plus end with 

right-handed protofilaments (RH). All the microtubules have been oriented with their plus ends 

toward the top of the page. (From Chrétien and Fuller, 2000) 
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All these microtubule parameters can be determined from the power spectrum or 

diffraction pattern of the imaged microtubule by use of the helical reconstruction 

method (DeRosier and Moore, 1970; Lanzavecchia et al., 1994; Arnal et al., 1996; 

Sosa et al., 1997; Hirose et al., 1997), which allows to obtain the 3D reconstruction 

of a microtubule from one of its projections, that is an image produced with a 

transmission electron microscope (fig. 7). 

Figure 7. Cryo-electron micrographs of an undecorated 15 protofilament microtubule (a) and 

microtubules decorated with recombinant monomeric (c) and dimeric (e) Ncd motors (nonclaret 

disjunctional kinesin-14). The top halves of the corresponding diffraction patterns are shown in (b), 

(d), and (f), respectively. It is interestingly to note that the 8 nm line is difficult to see and disappear 

in the case of the undecorated microtubule. Scale bar: 50 nm. (g) Surface representations (left) and 

end-on projections (right) of the 3D maps of the undecorated microtubule (MT, top) and the 

microtubule decorated with monomeric (MT-M, center) and dimeric Ncd (MT-D, bottom). The 

surface representations are shown in side view and are oriented with the microtubule plus end at the 

top. The end-on projections represent the view from the plus end. In the MT-M and MT-D maps, 

triangles represent the motor domains associated with a single-tubulin heterodimer. H-1 (head 1) is 

the microtubule-attached head. H-2 is the detached head. Scale bars: 10 nm. (From Sosa et al., 

1997) 

The main limitation of the helical reconstruction method is that it can be applied only 

to real helical structures, such as microtubules with 2- or 4-start helix. Despite this, 

the reconstructions of almost all 3-start helix microtubules, that are the majority, can 

be obtained at low resolution. In such a case, α- and β-tubulin are not distinguishable 

and so also 3-start microtubules result to be real helix, as 2- and 4-start helix are, 

g 
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allowing the use of the reconstruction algorithm. The only microtubule at which the 

algorithm still remains not applicable is the 13_3 one, because it does not have a 

supertwist, a characteristic necessary to apply the helical reconstruction method. The 

microtubule supertwist, in fact, causes a small shift around the microtubule wall of 

each tubulin with respect to the one that precedes or follows it along the 

protofilament. This allows to consider the image of two adjacent tubulins as two 

different views of the same protein (for real helical microtubules the term tubulin 

stays for the αβ-dimer, while for not real ones it stays for the monomer), giving the 

possibility to apply the helical reconstruction method to microtubules. 

In any case, the microtubule reconstruction obtained with the helical reconstruction 

method had not atomic resolution and so pseudo-atomic resolutions are achieved by 

fitting the atomic structure of tubulin into the low resolution 3D-EM map. The hybrid 

method was first used in Nogales et al. (1999) (fig. 9A, top), coupling a EM 

reconstruction at 2 nm resolution with a tubulin structure at 3.7Å resolution, obtained 

in 1998 by the same group (Nogales et al., 1998) from zinc sheets by electron 

crystallography (fig. 8, left). In 2000, the first X-ray crystallography structure of 

tubulin was obtained using a microtubule depolymerizer, such as the stathmin-like 

domain of RB3, to block tubulin αβ-dimers in a “curved”, inhibited state, that allows 

the formation of crystals (Gigant et al., 2000). This tubulin structure can be used as 

surrogate for the peels of curved protofilaments observed at depolymerizing 

microtubule ends (fig. 8, right), or for the tubulin dimers in an unassembled state, not 

for fully formed microtubules. 
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Figure 8. A cartoon of a depolymerizing microtubule end (centre) together with the 

crystallographic surrogate of a tubulin protofilament of a full-formed microtubule (left) and that of 

protofilaments peels at the end of depolymerizing microtubules. The surrogate structures are the 

electron crystallographic structure of tubulin in zinc-induced sheets and the X-ray crystallography 

structure of tubulin dimers bound to a microtubule depolymerizing protein, respectively. (From 

Nogales, 2015) 

In 2002, Li and co-workers introduced a novel strategy that allows to improve the 

resolution of 3D reconstruction obtained from cryo-electron microscope images: the 

use of a single-particle strategy. They obtained an 8 Å resolution map (Li et al., 

2002) that allows to identify elements of secondary structure and to see the 

differences between the tubulin in the microtubule and that in the zinc sheet (fig. 9A, 

centre). With this approach, the microtubules were not yet considered helical 

structures, but were divided into small pieces and each piece is considered an image 

of a small microtubule portion. In this way, the averaging of different microtubules 

and the corrections of small imperfections of the helical structure can be more easily 

accounted, together with the possibility of reconstructing also the non-helical 13_3 

microtubule, but more images are needed. In the last years, this approach had brought 
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to a resolution of 3.3Å (Nogales and Zhang, 2016) and rearrangements of the atomic 

structure of tubulin became possible (fig. 9A, bottom). At this resolution, became 

also possible the direct view of lateral contacts between adjacent protofilaments (fig. 

9B) and the differences in tubulin conformation and interactions when it is bound to 

different nucleotides or associated proteins. 

Figure 9. (A) Cryo-EM reconstructions of microtubules at increasing resolutions, from Nogales et 

al. (1999, top), Li et al. (2002, centre), and Zhang et al. (2015, bottom). The electron 

crystallographic atomic model of tubulin is fitted into the density maps as it is (top and centre 

panels) or refined directly into the density map (bottom). (B) Outside view of the 3.5 Å map of 

microtubules from Zhang et al. (From Nogales, 2015) 

These techniques allowed the study of tubulin/microtubule interactions with several 

partners (Kellogg et al., 2017; Morikawa et al., 2015) and were able to show a 

mechanistic origin of microtubule dynamic instability (Zhang et al., 2015), a very 

important feature of microtubules. 
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Microtubule dynamics and regulation 

Microtubules are highly dynamic polymers continuously subjected to polymerization 

and depolymerization and this behaviour is called dynamic instability (Mitchison and 

Kirschner, 1984; Conde and Cáceres, 2009). Dynamic instability is described by 5 

parameters: polymerization rate, shrinkage rate, catastrophe frequency, rescue 

frequency, and pause time. Catastrophe frequency is the frequency of transitions from 

polymerizing to depolymerizing microtubules, while rescue frequency is the 

frequency of transitions from depolymerizing to polymerizing microtubules. Pause 

time is the time spent by microtubules neither polymerizing nor depolymerizing (fig. 

10). 

Figure 10. (a) Components and structure of a microtubule. (b) Scheme of dynamic instability of 

microtubules. (From Conde and Cáceres, 2009) 

The polarized nature of the microtubules gives them different polymerization rates at 

the two ends: higher at the “plus end” and lower at the “minus end”. This difference 
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comes from the different ability of α- and β-tubulin to hydrolyze GTP (guanosine-5'-

triphosphate). At the plus end, the GTP located on the exposed β-tubulin monomer is 

easily hydrolysed, while at the minus end, where the exposed monomer is α-tubulin, 

the GTP hydrolysis is slower (Carlier et al., 1987). During or shortly after 

polymerization, the GTP is hydrolysed and becomes non-exchangeable. As a result, 

the microtubule is mainly composed of GDP-tubulin, with the GTP presents only at 

the plus end, where it forms a “GTP cap”. The GTP cap is generally made of 

minimum one tubulin layer and stabilizes the microtubule structure. The GDP-

tubulin, instead, destabilises the microtubule, because it is more stable in a curved 

state. The lost of the GTP cap causes the opening of the microtubule that rapidly 

shrinks (Burbank and Mitchison, 2006). Shrinking microtubules then undergo to a 

rapid loss of GDP-tubulin, dimers or oligomers, from their plus ends. In conclusion, 

microtubules grow when the addition of free tubulin is faster than the GTP hydrolysis 

on incorporated tubulin, leading to the formation of GTP cap that stabilizes MT. 

The polymerization rate of tubulin dimers into microtubules is proportional to the 

concentration of free tubulin and is regulated by the presence of GTP and Ca
2+

 at 

intracellular level (Keith et al., 1986) and by temperature. As long as Mg
2+

 and GTP 

are present, it is possible to follow the in vitro kinetics of tubulin assembly into 

microtubules by light scattering measurements. The resulting polymerization curve 

(fig. 11) shows the characteristic shape, with an initial lag phase, corresponding to 

nucleation, followed by a fast growing phase, microtubule elongation, and concluding 

with an equilibrium phase where a plateau level is reached (steady state). 
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Figure 11. The polymerization curve of tubulin in vitro. The amount of microtubules, measured by 

light scattering, follows a sigmoidal curve, with the three typical phases of polymerization: 

nucleation, elongation and steady state. (From Alberts et al., 2008) 

During the lag phase tubulin dimers associate to form metastable aggregates, that can 

become polymerization nuclei. The lag phase reflects a kinetic barrier to the 

nucleation process, that is slow, and can be reduced or abolished by adding pre-made 

nuclei, such as fragments of polymerized microtubules. During the elongation phase, 

tubulin dimers add to the free ends of growing microtubules. In this phase, the rate of 

polymerization drops with time because it is proportional to the concentration of free 

tubulin. Finally, during the plateau phase, polymerization and depolymerization are 

balanced, because the amount of free tubulin has dropped to the point where a critical 

concentration has been reached and subunits are dissociating from the ends of 

microtubules as well as adding to them (Alberts et al., 2008). 

The dynamic instability of microtubules allows the cell to rapidly adapt to 

environmental changes and to respond to cellular needs. For example, cells promptly 
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reorganize the cytoskeleton throughout mitosis or during the extension of growth 

cones from neurons (Burbank and Mitchison, 2006). This complex process is 

probably controlled by the combination of a number of proteins and post-translational 

modifications of α- and β-tubulin (Dubey et al., 2015). 

The proteins that interact with microtubules are divided in two categories: motor 

proteins and (non-motor) microtubule associated proteins (MAPs). Motor proteins 

include dyneins and kinesins and are involved in different intracellular functions, first 

of all intracellular transport (Janke and Chloë Bulinski, 2011). Dyneins are involved 

in retrograde transport along the microtubules, while kinesins in anterograde. Due to 

the viscosity of the cytosol, active transport is necessary and so the motor proteins 

use hydrolisis of ATP (adenosine 5'-triphosphate) to generate the necessary force 

(Luby-Phelps, 1999). Microtubule transport is particularly important for neurons, 

where it needs to work over long distances. 

The non-motor MAPs include proteins that can both stabilize or destabilize 

microtubules, by changing the frequencies of transition between growing and 

shrinking state. Structural MAPs bind and stabilize microtubules and, among them, 

tau, MAP1 and MAP2, were specifically found in neuronal cells, while MAP4 is 

expressed in others cell type (Conde and Cáceres, 2009). One of the mechanisms 

implicated in MAP regulation is phosphorylation, which promotes the detachment 

from microtubules and impairs their stabilizing function (Trinczek et al., 1995). 

A second group of MAPs consists of the plus end tracking proteins that specifically 

accumulate at the plus end of growing microtubules. These proteins help to control 

microtubule dynamics, interaction with cellular organelles and subcellular domains 

and signalling molecules (Akhmanova and Steinmetz, 2008). Some kinesins, which 

belong to that family, regulate microtubule dynamics and depolymerize microtubules, 

promoting spindle assembly and chromosome segregation (Kline-Smith and 

Walczak, 2004). On the other side, end-binding proteins usually promote microtubule 

polymerization and inhibit catastrophes, increasing the rescue frequency and 

decreasing the depolymerization rate (Lansbergen and Akhmanova, 2006). They are 
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often used conjugated to fluorescent protein as a tool in live cell imaging approach to 

follow MT growth (Akhmanova and Steinmetz, 2008). 

Another class of MAPs includes spastin and katanin, severing enzymes able to 

destabilize the microtubule lattice generating internal breaks. They are involved in 

the regulation of neurite outgrowth and branching formation (Roll-Mecak and 

McNally, 2010). 

Besides interacting proteins, microtubule functions are also regulated trough the 

presence of different tubulin isoforms and a number of their post-translational 

modifications. Post-translational modifications of tubulin mark subpopulations of 

microtubules and selectively affect their functions. They are preferentially made on 

microtubules other than on free dimers (Conde and Cáceres, 2009) and the majority 

of them are on the C-terminal domains of α-tubulin. The first discovered post-

translational modification is detyrosination/tyrosination. Detyrosination was mostly 

found on stable and long-lived microtubules, especially in neurons, and it was 

assumed that promotes or correlates with microtubule stability. The opposite 

modification, tyrosination, happens exclusively on free tubulin dimers and is 

associated to dynamic microtubules, with the newly assembled microtubules almost 

formed of tyrosinated tubulin (Janke and Chloë Bulinski, 2011). By the removal of its 

two C-terminal glutamate, detyrosinated tubulin can be further converted to the so-

called Δ2 tubulin. This is considered an irreversible post-translational modification, 

because it cannot undergo retyrosination (Janke and Chloë Bulinski, 2011). Δ2 

tubulin is typical only for very stable microtubules and is very frequent in neurons, 

where it occurs in about 35% of brain tubulin. It seems that its function is simply to 

lock microtubules in the detyrosinated state (Janke, 2014). The second tubulin post-

translational modification to be discovered was the acetylation of lysine 40 (K40) on 

α-tubulin (L’Hernault and Rosenbaum, 1985). It is applied on microtubules and is 

enriched on stable microtubules.ε 
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Microtubules in the neuron 

Microtubules are particularly important for neurons. Neurons are highly polarized 

cells generally consisting of a cell body with several protrusions, a long axon and 

many short dendrites (fig. 12). Besides morphology, these neurites also differ in 

function, with the dendrites specialized to receive signal and the axon to transmit it. 

Figure 12. Microtubule organization and organelle distribution in axons and dendrites. Axons have 

tau-bound microtubules of uniform orientation, whereas dendrites have microtubule associated 

protein 2 (MAP2)-bound microtubules of mixed orientation. Dendrites also contain organelles that 

are not found in axons, such as rough endoplasmic reticulum, polyribosomes and Golgi outposts. 

(From Conde and Cáceres, 2009) 

In axons and dendrites, microtubules form dense parallel arrays that are required for 

their growth and maintenance. In the early stages of neuronal differentiation, 

microtubules pilot the growth cone and axon elongation and during the life of the 

neurons the shape changes during neuroplasticity. 



Microtubules in the neuron 

26 

Microtubule organization differs between axons and dendrites in at least two major 

aspects (fig. 12). The first one is the orientation: axonal microtubules have uniform 

orientation, with their plus ends facing the axon tip, whereas dendritic microtubules 

have mixed orientation, with their plus ends facing either the cell body or the 

dendritic tip (Baas et al., 1988). The plus end of microtubules is a crucial site for 

tubulin polymerization, while the minus end is often anchored to a microtubule-

organizing center (MTOC) that constitutes the major centre of microtubule 

nucleation. In animals, the most important microtubule-organizing center is the 

centrosome (Vinet and Zhedanov, 2010). The nucleating structure is called γ-tubulin 

ring complex (γ-TuRC) and is made by γ-tubulin, a tubulin isoform that functions as 

a template for the correct assembly of microtubules (Erickson, 2000) and establishes 

their polarity orientation. Microtubule polarity allows the selective trafficking of 

cargo inside the neurons and its disorganization can result in the incorrect localization 

of cargo (Dubey et al., 2015) and can impair the transport system. Some microtubules 

remains attached to the nucleating structure while others are rapidly released by the 

microtubule severing protein katanin (Ahmad et al., 1999; Yu et al., 2005). The 

released microtubules are then transported away from the centrosome through the 

molecular motors as short polymers (Vale, 2003; Baas et al., 2005). The second 

aspect of the differences between axons and dendrites is in their complement of 

MAPs: for example, MAP2 is found mostly in dendrites and tau in axons. MAPs and 

post-translational modifications modulate the microtubule stability, thus influencing 

their functions. As a consequence, the expression of post-translational modifications 

varies throughout neuron compartments and changes during neuronal differentiation. 

Older microtubules are the most stable because post-translational modifications of 

tubulin accumulate over time, whereas the newly synthesized ones are more dynamic. 

For instance, in developing neurons, with an extending axon and not yet 

differentiated dendrites and synapses, detyrosination and Δ2 tubulin are relatively 

low. In the growing axon, acetylation and detyrosination are high, while they are 

reduced in the growth cone that is enriched in tyrosinated tubulin. The minor neurites 
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have a low level of acetylated tubulin, but a relatively high level of detyrosinated 

tubulin. In mature neurons there is an enrichment of tubulin post-translational 

modifications associated to stable microtubules. Detyrosinated and Δ2 tubulin remain 

relatively high in axonal microtubules and acetylation increase in axon, dendrites and 

also in the synaptic region (Song and Brady, 2015). As for post-translational 

modifications, during the differentiation and maturation of neurons, there are also 

changes in MAPs (Song and Brady, 2015). 

Tubulin post-translational modifications are involved in regulating most of the 

processes in which microtubules could directly or indirectly lead to disease, 

especially those involving neurons where microtubules are normally subjected to 

high levels of post-translational modifications, such as neurodegeneration (Janke and 

Chloë Bulinski, 2011). 

Many human neurodegenerative diseases, including Parkinson's disease, have been 

shown to display axonal transport impairment, particularly important due to the 

extreme polarity and size of these cells. In these disorders, some cargoes that are 

usually conveyed along the axons can accumulate in the proximal segment of the 

axon, the perikaryon, or in the distal part of it. Long-range microtubule-based 

transport is the main mechanism to deliver cellular components to their actions site. 

Anterograde axonal transport is used to supply proteins, lipids and organelles to the 

distal synapse, while retrograde transport is involved in removing misfolded and 

aggregated proteins from the axon and in the intracellular transport of distal signals to 

the soma. The major components of this system are molecular motors and 

microtubules, the railway on which molecular motors run. Thus, the disruption of the 

system could occur via damage of molecular motors, microtubules, transported 

cargoes or ATP supply, the fuel for the activity of molecular motors. They all 

contribute to neurodegeneration (De Vos et al., 2008) and it is also possible that they 

lead to a convergent pathway. The idea that defective intracellular transport can 

directly trigger neurodegeneration is strongly supported by the identification of 

mutations in genes encoding proteins involved in axonal transport and by the 
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observation that chronic exposure to some chemicals can provoke axonal transport 

perturbation and subsequent neurodegeneration (Millecamps and Julien, 2013). For 

example, tauopathies are neurodegenerative diseases with alterations in the 

microtubule-associated protein tau and as a consequence a reduction in microtubule 

stability that leads to impairment in axonal transport (Forman et al., 2004). Other 

neurodegenerative diseases that affect microtubule stability and microtubule-based 

transport are α-synucleinopathies, that result in protein aggregates inclusion bodies, 

the Lewy bodies. All these observations support the idea that in neurodegenerative 

disorders associated with axonal transport, alteration of microtubule system is an 

early event that can cause cell death by accumulation and mislocalization of different 

organelles within neuron. 

Microtubules and Parkinson's disease 

The molecular mechanism underlying neuronal death in Parkinson’s disease results 

still unknown and current therapies offer just the management of symptoms. Several 

pathogenic pathways, correlated each others, have been implicated in dopaminergic 

neurons degeneration such as, oxidative stress, mitochondrial dysfunctions, 

accumulation of misfolded proteins and local inflammation (Kumaran and Cookson, 

2015). Understanding which mechanism might be the primary insult leading to 

Parkinson’s disease is a major challenge to deal. Notably, the early microtubule 

dysfunction is becoming established as a key alteration in Parkinson’s disease 

pathogenesis (Pellegrini et al., 2017). Within neurotoxins associated to Parkinson’ 

disease, MPTP (1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine) and rotenone are 

implicated in microtubule dysfunctions. MPTP has many effects: i) its toxic 

metabolite, MPP+, affects MT dynamics in vitro, acting as catastrophe promoter, 

increasing its frequency (Cappelletti et al., 2005); ii) in MPP+-exposed PC12 cells, 

alterations of microtubule stability have been shown to precede mitochondria 

transport defect and neurite degeneration (Cartelli et al., 2010); iii) the systemic 
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injection of MPTP to mice induces microtubule alteration very early, before tyrosine 

hydroxylase depletion, neuron degeneration and axonal transport impairment, 

suggesting an important role of microtubule dysfunction in triggering 

neurodegeneration (Cartelli et al., 2013); iv) MPP+ has also been proved to decrease 

anterograde and increase retrograde axonal transport of membranous vesicles in squid 

axoplasm (Morfini et al., 2007). The effect of rotenone, instead, is to depolymerize 

microtubules, both in vitro and in the cell (Marshall and Himes, 1978; Ren et al., 

2005), thus disrupting vesicular transport in dopaminergic neurons, with their 

subsequent accumulation in the cytoplasm. As a consequence, the leakage of 

dopamine from the vesicles leads to the generation of oxidative stress, induced by its 

oxidation, and to neuronal death (Ren et al., 2005; Choi et al., 2011). Other proteins 

linked to Parkinson’s disease that affect the microtubule system are LRRK2 (leucine-

rich repeat kinase 2), parkin and DJ1. LRRK2 modulates microtubule stability by 

interacting with and phosphorylating β-tubulin isoforms in the brain (Law et al., 

2014). In addition, fibroblasts obtained from Parkinson’s disease patients carrying 

LRKK2 mutations show an altered microtubule stability (Cartelli et al., 2012). DJ-1 

deficiency reduces microtubule dynamics by downregulation of β-tubulin III and 

causes a decline in dendritic complexity and the loss of dendritic spines in striatal 

medium spiny neurons (Sheng et al., 2013). Finally, parkin affects microtubules in 

many ways: i) it is a tubulin-binding protein, as well as a MT-associated protein, 

which increases the ubiquitination and degradation of both α-and β- tubulin (Ren et 

al., 2003); ii) it stabilizes microtubules trough a strong binding with both tubulin and 

microtubules (Yang et al., 2005); iii) it protects midbrain dopaminergic neurons 

against PD-causing substances by stabilizing microtubules (Ren et al., 2009); iv) its 

mutations decrease microtubule stability, an effect restored by pharmacological 

microtubule stabilization (Cartelli et al., 2012) or overexpression of native parkin, but 

not its mutants (Ren et al., 2015); v) its absence accelerates microtubule ageing, 

affects mitochondria mobility via an alteration of the MT system that is rescued by 

paclitaxel, and causes the fragmentation of stable microtubules (Cartelli et al., 2018). 
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α-Synuclein and microtubules 

Among the proteins that interact with microtubules, it has been included α-synuclein, 

whose intraneuronal accumulation is the pathological hallmark of Parkinson's 

disease. α-Synuclein interacts with tubulin (Alim et al., 2002; Zhou et al., 2004) and 

with the microtubule interacting protein tau (Jensen et al., 1999; Zhou et al., 2004). 

Regarding the influence of microtubules on α-synuclein, it is known that tubulin 

promotes α-synuclein fibrillation in vitro (Alim et al., 2002; Kim et al., 2008). The in 

vivo effects, instead, are not clear. Esteves and colleagues (Esteves et al., 2010) had 

found that the destabilization of the microtubule cytoskeleton potentiates α-synuclein 

aggregation and that a treatment with taxol, a microtubule stabilizer, decreases this 

aggregation. On the contrary, Nakayama and co-workers (Nakayama et al., 2009) 

reported that the destabilization of the microtubule cytoskeleton prevents α-synuclein 

aggregation. Conflicting results had been also obtained overturning the roles of α-

synuclein and microtubules. It was found that α-synuclein induces polymerization of 

purified tubulin into microtubules (Alim et al., 2004), as well that monomeric and 

oligomeric α-synuclein have not significant effects on tubulin polymerization in vitro 

(Chen et al., 2007). In addition, it was found that the α-synuclein mutants A30P and 

A53T do not promote microtubule polymerization, but that they induce the formation 

of amorphous tubulin aggregates (Alim et al., 2004). However, a very recent study 

reported that the direct assembly of microtubules by α-synuclein in vitro is not 

reproducible (Oikawa et al., 2016). Looking at cell cultures, it was found that the 

treatment with both extracellular α-synuclein (Zhou et al., 2010) or α-synuclein 

oligomers (Prots et al., 2013) destabilizes microtubules. Besides, it was shown that 

experimental overexpression of α-synuclein disrupts microtubule-dependent vesicle 

trafficking in cultured cells (Lee et al., 2006). 

These conflicting findings, especially about how α-synuclein affects microtubules, 

suggest that the correct target and function of α-synuclein are still unknown and need 

to be further investigated. In addition, evidence of the destabilizing effect of α-
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synuclein on the microtubule system were found, but very little is known about how 

this effect arise and particularly about the involvement of possible changes in the 

microtubule structure and dynamics. 
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Aim of the Project 

α-Synuclein is a presynaptic protein supposed to be involved in the control of 

neuronal synapse functions. Intraneuronal accumulation of α-synuclein is the 

pathological hallmark of the so-called synucleinopathies, including Parkinson’s 

disease, and has been widely studied. However, due to the variable structure and 

multiple interactions of α-synuclein with a number of proteins, its physiological role 

remains elusive. 

The overall aim of this project is to investigate the interaction of α-synuclein with the 

microtubule network, which is very important for any cell but especially for neurons. 

Nowadays, conflicting results have been obtained about their interaction whereas the 

potential impact of α-synuclein on microtubule structure and dynamics has been 

mainly neglected.  

Our first aim was to assess if α-synuclein interacts with tubulin/microtubules and 

affects microtubule dynamics, both in vitro and in cell. The interaction between α-

synuclein and tubulin has been investigated in vitro, using multiple approaches as 

mass spectroscopy and 
1
H-NMR diffusion measurements, which allow the analysis of 

their binding, and circular dichroism, which reveals the descending changes in the α-

synuclein secondary structure. The interaction between α-synuclein and microtubules, 

instead, has been investigated by light microscopy, both in vitro and in cell, using live 

cell imaging and VE-DIC light microscopy. 

Next, we aimed at deeply analysing the influence of α-synuclein on microtubule 

structure by use of transmission electron microscopy. The structural parameters of 

microtubules assembled in the presence of wild type α-synuclein and of their variants 

linked to Parkinson’s disease were investigated starting from microtubule diameter 

and tubulin periodicity. To address this task, we carried out negative staining, a 

relatively simple and fast technique. As a second step, we computed a number of 3D 

reconstructions from the best quality images obtained and calculated almost all the 
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structural parameters of the microtubules, including protofilament number, number of 

helix start and supertwist helix pitch. 

Furthermore, since negative staining method produces variable results, due to the 

presence of staining itself, our succeeding aim was to employ cryo-electron 

microscopy, a challenging technique that allows the observation of biological 

samples in quasi-natural conditions. In this way, we were also able to extend the 

large-scale examination to the protofilament number, which is a crucial parameter 

defining microtubule structure. 

Finally, we aimed at assessing the hypothesis that the impact of α-synuclein on 

microtubule ultrastructure depends on its direct binding to the microtubules 

themselves throughout immuno-gold strategy. 
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Main Results 

The interaction between α-synuclein and microtubules is one of the current topics in 

our laboratory. α-Synuclein co-localizes with the most dynamic microtubules, at the 

pre-synapse in PC12 cells and human neurons, and it has conflicting effects on 

microtubules, such as enhancing both microtubule growth rate and catastrophe 

frequency, in vitro and in cell. Interestingly, α-synuclein changes its conformation 

when binds to α2β2-tetramers, acquiring some α-helix content. Furthermore, α-

synuclein mutants are much less sensitive than wild type to fold upon tubulin binding 

(Cartelli et al., 2016, in PART II). 

This project investigated the effects of α-synuclein on microtubule structure. We 

analysed microtubule assembly in vitro by use of transmission electron microscopy 

(TEM), both with negative staining methods and cryo-electron microscopy. 

In the first part we added our contribution to the ongoing project of the laboratory and 

inspected the presence of aggregates following microtubule polymerization, by use of 

negative staining methods. We found that in the absence of α-synuclein only few and 

small aggregates were present. We obtained the same situation when wild type α-

synuclein was present, while, when α-synuclein mutant A30P, A53T and E46K were 

used, we found some aggregates. The amount of the aggregates was inversely 

proportional to the ability of the mutant to fold upon tubulin and they were formed by 

crowds of microtubules, but also by other protein aggregates. These protein 

aggregates should contain α-synuclein, because they were recognized by the anti-α-

synuclein antibody, as shown by other laboratory members (Cartelli et al., 2016, in 

PART II). 

Next, we investigated how α-synuclein influences microtubule ultrastructure. We first 

investigated the effect of folded α-synuclein on microtubule diameter and tubulin 

periodicity in negative stained microtubules by TEM and 2D-analysis. We found that 

microtubules assembled in the presence of wild type α-synuclein displayed the 

significant increase in diameter while no changes were observed in tubulin 
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periodicity. About mutants, A30P α-synuclein increased both microtubule diameter 

and tubulin periodicity, while A53T and E46K mutants had the opposite influence, 

reducing both parameters. The E46K mutant is the one that showed the most 

interesting results, with some very low values of microtubule diameter and a shift 

toward low values of tubulin periodicity with respect to all the other samples (Cantele 

et al., manuscript in preparation, in PART III). 

From the best quality images of microtubules we obtained by TEM, we computed 3D 

reconstructions using the 3D helical reconstruction method (DeRosier and Moore, 

1970; Lanzavecchia et al., 1994; Arnal et al., 1996; Sosa et al., 1997; Hirose et al., 

1997). The obtained reconstructions had very variable parameters and did not give 

statistical significance, but some peculiar results were obtained. In particular, 

microtubules assembled in the presence of E46K mutant had high number of 

protofilaments, even if they had small diameters (Cantele et al., manuscript in 

preparation, in PART III). 

We then inspected the variation of protofilament number among the microtubule 

population by use of cryo-electron microscopy and we found different distributions of 

the microtubule protofilament number for each sample. The microtubules of the 

control, assembled from purified tubulin alone, had a very high percentage of 13-

protofilament microtubules, the most stable ones, while for α-synuclein variants, we 

found a relatively low amount of 13-protofilament microtubules and a high 

percentage of 12-protofilament ones, with a particularly high presence of highly 

twisted microtubules for mutant A53T. In these experiments, we found a high 

number of flattened microtubules that are not analysable and thus reduced the size of 

the microtubule population to be inspected. Thus we decided to analyse the 

microtubule population also at a higher time of polymerization, 4 hours instead of 1 

hour, to be sure to reach the assembly plateau, where more and more stable 

microtubules should be present. After 4 hours of polymerization, we actually found a 

higher amount of microtubules respect to that found after 1 hour of polymerization, 

with only few flattened microtubules. Interestingly, in this condition, we found 



Main Results 

36 

significant differences between almost all the samples. In particular, for microtubules 

assembled in the presence of α-synuclein mutant E46K, we found significant 

differences with respect to all the other α-synuclein variants, but not with those 

assembled from tubulin alone. Nevertheless, it is interesting to note that, as after 1 

hour of polymerization, the microtubules assembled in the presence of E46K α-

synuclein were the only ones that include protofilament numbers lower than 12. The 

lack of significant differences between the number of protofilaments in microtubules 

assembled in the presence and in the absence of E46K α-synuclein seems in contrast 

with the differences observed in the microtubule diameter. However, this could be 

explained by the reduction in the space between adjacent protofilaments, which might 

lead to a change in microtubule diameter without affecting the protofilament number, 

as suggested by the comparison of 3D reconstructions. The microtubules observed 

after 4 hours of polymerization showed a further characteristic, namely the relatively 

high presence of highly twisted microtubules. The overall high amount of highly 

twisted microtubules, which have been shown to be energetically unfavourable 

configurations, could be explained by the presence of glycerol in the assembly buffer 

that stabilizes the microtubule structure. The particularly high values obtained for the 

α-synuclein variants, on the contrary, can be explained by a “stabilizing” effect of α-

synuclein, that is the change in the microtubule structure making more stable the 

energetically unfavourable ones (Cantele et al., manuscript in preparation, in PART 

III). 

In conclusion, we found that α-synuclein variants induce significant changes in the 

structural parameters of microtubules, increasing their variability and the presence of 

generally energetically unfavourable structures. In addition, α-synuclein, particularly 

the mutant variants, makes the overall microtubule population less stable. 

In the last part of the thesis, we faced up the hypothesis that the effect on microtubule 

structure strictly depends on the amount of α-synuclein bound to the microtubules. 

With this aim, we performed immuno-gold labelling experiments with anti-α-

synuclein antibody. We then count the number of gold particles marking 
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microtubules and the number of that “free” or marking aggregates. We found the 

significant differences between microtubules assembled in the presence of E46K α-

synuclein and all the other groups. This should confirm the high propensity of E46K 

α-synuclein mutant to bind to tubulin. In addition, we found a labelling of amorphous 

aggregates and a remarkable presence of “free” gold particles that are always 

significantly different from the number of particles linked to microtubules. The “free” 

gold particles should be linked to free α-synuclein or tubulin/α-synuclein small 

oligomers and their presence suggested that the sucrose cushion we used for 

separating microtubules from small aggregates and free α-synuclein, did not work 

well enough. Another possible explanation was suggested by the fact that, at the end 

of the immunogold-labelling process, the microtubule ultrastructure was not well 

conserved. This could mean that the procedure damages the microtubules, leading to 

amorphous aggregates and “free” α-synuclein (Cantele et al., manuscript in 

preparation, in PART III). 
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Conclusions and Future Prospects 

This thesis is centred in one of the current topics in our laboratory: the study of the 

interaction between microtubules and α-synuclein. Therefore, in the first part of the 

thesis we contributed to this project by investigating the gross ultrastructure of 

microtubules assembled in the presence or in the absence of wild type and mutated α-

synuclein. The main result of this project is the evidence that α-synuclein, whose 

accumulation is the pathological hallmark of Parkinson’s disease, is as a novel, 

foldable, microtubule dynamase, which could participate in the organization of the 

microtubule cytoskeleton at the pre-synapse, through its binding to tubulin and its 

regulation of microtubule nucleation and dynamics (Cartelli et al., 2016, in PART II). 

The term dynamase raised from data showing that α-synuclein co-localizes with the 

most dynamic microtubules, in PC12 cells and human neurons, and that it has 

conflicting effects on microtubules, such as enhancing both microtubule growth rate 

and catastrophe frequency, in vitro and in cell. Interestingly, α-synuclein mutants are 

much less sensitive than wild type α-synuclein to fold upon tubulin binding. Looking 

at the structures formed at the end of tubulin assembly we found that mutated α-

synucleins are more prone to cause tubulin aggregation rather than polymerization 

into conventional microtubules (Cartelli et al., 2016, in PART II). Altogether these 

results support the idea that interactions between α-synuclein and microtubules play 

an important role in modulating synaptic physiology and that its alteration can cause 

neuronal dysfunction via impairment of the proper microtubule organization. 

In the second part of the thesis, we deeply investigated the effect of α-synuclein on 

microtubule ultrastructure (Cantele et al., manuscript in preparation, in PART III). 

We summarized the multifaceted impact that wild type and mutated α-synucleins 

exert on the most common parameters defining the structure of microtubules in 

Figure 13. 

Wild type α-synuclein induces changes in microtubule diameter and protofilament 

number, increasing the presence of microtubules with uncommon structures. On the 
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other end, it has no effect on tubulin periodicity. The increasing presence of 

microtubules with uncommon structures, that have energetically unfavourable 

configurations, could suggest a mild “stabilising” effect of wild type α-synuclein on 

microtubules. First, this supports the results of Alim and colleagues (2004) showing 

that α-synuclein induces microtubule polymerization. Second, our data also support 

the findings of Toba and colleagues (2017) that wild type α-synuclein promotes the 

assembly of twisted microtubules, like 14-protofilament ones, and stabilizes them. In 

addition, the lack of effects on tubulin periodicity suggests that wild type α-synuclein 

could not directly impair the functionality of microtubules. 

Focusing on α-synuclein mutants, we found that they all affect microtubule structure, 

although with some peculiarities. A30P α-synuclein increases both microtubule 

diameter and tubulin periodicity, but does not affect protofilament number. In 

addition, the high number of flattened microtubules we found in samples analysed by 

cryo-electron microscopy suggests that A30P α-synuclein leads to the assembly of 

less robust microtubules. These results are in agreement with the findings of Eguchi 

et al. (2017), who showed that overloading wild type α-synuclein into presynaptic 

terminals has an inhibitory effect on vesicle endocytosis, while the overloading of 

A30P α-synuclein has no effect (Eguchi et al., 2017). They suggested a mechanism 

based on microtubule overassembly, which is an excess of microtubule assembly, 

since vesicle endocytosis was rescued by the pharmacological block of tubulin 

polymerization by nocodazole and the photo-switchable microtubule inhibitor 

photostatin-1. Our results suggest that A30P mutant reduces the overall stability of 

microtubules. Thus, the A30P mutant might prevent the achievement of the 

microtubule “overassembly”, advising for a different mechanism for its pathological 

effect. Looking at A53T and E46K α-synuclein, we observed that they exert similar 

effects by decreasing microtubule diameter and tubulin periodicity, but differently 

impact on microtubule protofilament number. In addition, E46K mutant induces the 

strongest effect, being the one that binds more to microtubules and leads to the 

formation of peculiar microtubules, with high protofilament number and small 
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diameters. The fact that the two mutants have similar effects on microtubule diameter 

and tubulin periodicity supports the idea that the functional site of α-synuclein is in 

the same region of the two mutations and suggests this might be the region devoted to 

the interaction with tubulin (as previously hypothesized in Cartelli et al., 2016, in 

PART II). The differences arise from the fact that E46K mutation is “stronger” that 

A53T one, because it changes an acidic amino acid into a basic one and just in the 

middle of a α-helix domain (Zarranz et al., 2004). Our results suggest that this change 

in α-synuclein can affect the microtubule structure in the inter-protofilament contact 

region, changing the inter-protofilament distance (Cantele et al., manuscript in 

preparation, in PART III). This can lead to microtubules that retain some but not all 

of their functions. 

Taken together, the effects of mutant α-synucleins we found are in contrast with those 

of Toba and colleagues (2017), which found the loss of interaction between mutated 

α-synucleins and microtubules and the consequent accumulation of α-synuclein in the 

cell body. On the other hand, our findings suggest an active role of both wild type α-

synuclein and its mutated forms, due to the fact that they all have different effects on 

microtubule ultrastructure and that the mutated forms do not merely reduce the effect 

of wild type α-synuclein. To our opinion, this is in agreement with the idea that the 

toxic species of α-synuclein are monomers or small oligomers (Plotegher et al., 

2017), like those we used in our experiments, while the accumulation of α-synuclein 

in the cell body has a neuroprotective role achieved by consumption of toxic free α-

synuclein (Pinotsi et al., 2016). Such a hypothesis favours an active role of α-

synuclein, both wild type and mutated, compared to a loss of interaction, this last 

being a result that can also be obtained by consumption of free α-synuclein. 

From a global point of view, our results confirm the findings that α-synuclein has a 

complex function, more probably a regulatory function, with a generally mild initial 

effect on the microtubule network, which can accumulate over the time. We also 

suggest that the impairment of the transport function of microtubules could be the 

most important effect of α-synuclein. In addition, they provide hints for the 
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pathogenesis in Parkinson’s disease, suggesting that microtubule-stabilizing 

strategies may offer an opportunity for treating it, but also that different strategies 

should be required for different mutants. 

Future work will be focused on the further characterization of microtubule assembly 

and dynamics in the presence of α-synuclein mutants by spectroscopy and VE-DIC 

light microscopy. Next, we will complete the ultrastructural study for assessing the 

effect of α-synuclein on microtubule using cryo-electron microscopy and 3D 

reconstructions of microtubules decorated with α-synuclein, both wild type and 

mutated. Finally, we will inquire the effects of α-synuclein presence on the 

microtubule transport power by use of in vitro microtubule translocation. 
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Figure 13. Schematic representation of the impact of α-synuclein variants on microtubule 

ultrastructure. The characteristics inspected are: the presence of aggregates (Ag), the microtubule 

diameter (Ø), the tubulin periodicity (tp), the protofilament number (Npf), the supertwist helix pitch 

(L2π), the presence of flattened microtubules (fl) and the amount of gold particles associated to 

microtubules (onMT). They are grouped by the methodology used to study them: negative staining 

electron microscopy (TEM), cryo-electron microscopy (Cryo) and immuno-gold labelling (Gold). 

The variation of each parameter found respect to the microtubules obtained in the absence of any   

α-synuclein variant (w/o) is indicated with the symbols:   (no variation), ↑ (increase) and ↓ 

(decrease). 
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ABSTRACT 

α-Synuclein is a presynaptic protein supposed to be involved in the control of 

neuronal synapse functions. It is widely expressed in brain tissue and associated 

to Parkinson's disease. When free in the cytoplasm, α-synuclein is unstructured, 

while it adopts a α-helical conformation when bound to vesicles. Its variable 

structure allows α-synuclein to interact with multiple partners and makes 

difficult to understand its physiological role, which remains elusive despite 

decades of intense study. 

Here, we looked at the interaction between α-synuclein and microtubules. We 

investigated the influence of α-synuclein, both wild type and mutated, on the 

structure of microtubules assembled in vitro using transmission electron 

microscopy. We found that α-synuclein deeply affects microtubules causing 

changes in some of the parameters that define their ultrastructure, namely 

microtubule diameter and tubulin periodicity. It also impacts on the number of 

microtubule protofilaments, increasing the presence of some microtubules with 

uncommon structures. 

INTRODUCTION 

α-Synuclein, a presynaptic protein widely expressed in brain tissue, is supposed 

to be involved in the control of neuronal synapse functions. It is a soluble 
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naturally unfolded protein (Burré et al. 2013), being able to adopt multiple 

conformations. Its physiological localization is mainly at neuronal synapses, 

where it can be present as a monomer or as a tetramer (Burré et al. 2013), 

whereas it forms fibrils and intracellular aggregates in neurodegenerative 

diseases (Spillantini et al. 1998). In particular, α-synuclein was the first mutated 

protein identified in familial Parkinson’s disease cases (Krüger et al. 1998; 

Polymeropoulos et al. 1997). The absence of a unique and rigid structure allows 

α-synuclein to interact with multiple partners, including synaptic vesicles 

(Larsen et al. 2006) and actin cytoskeleton (Sousa et al. 2009). Nevertheless, 

despite decades of intense study, conflicting results have been reported and the 

physiological role of α-synuclein remains elusive. 

Microtubules have been proposed to be cellular partners of α-synuclein. They 

are highly dynamic polymers that control many aspects of neuronal function: 

they provide a scaffold to sustain axonal and dendritic architecture and supply 

the railway for axonal transport (Conde and Cáceres 2009). In spite of the fact 

that the regulation of microtubule organization and dynamics has been 

extensively studied during axon and dendrite formation and maintenance, much 

less is known about the regulation of microtubule dynamics at synaptic 

terminals. Regarding the interaction of microtubules with α-synuclein, it is 

known that tubulin promotes α-synuclein fibrillization in vitro (Alim et al. 

2002), although it is not clear whether destabilization of the microtubule 

cytoskeleton potentiates (Esteves et al. 2010) or prevents (Nakayama, Suzuki, 

and Yazawa 2009) α-synuclein aggregation in vivo. Recently, it was also found 

that tubulin binds α-synuclein in vitro, causing its partial folding due to α-helix 

formation (Cartelli et al. 2016). On the other side, it was shown that α-synuclein 

induces polymerization of purified tubulin into microtubules (Alim et al. 2004) 

and that, even if unfolded monomeric α-synuclein has not significant effects on 

tubulin polymerization (Chen et al. 2007) folded α-synuclein promotes 
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microtubule nucleation and increases microtubule dynamics (Cartelli et al. 

2016). 

Here we investigate the influences of α-synuclein, wild type and some mutated 

forms, on the microtubule structure using transmission electron microscopy 

(TEM) of both negative stained and frozen samples. We found that α-synuclein 

causes significant changes in the parameters that define microtubule structure, in 

particular with the apparition of abnormally unstable microtubule 

conformations. In addition, one of the mutants shows a high aggregation 

propensity that leads to the formation of microtubule piles. Collectively, these 

alterations could have a direct impact on microtubule functions. 

MATERIALS AND METHODS 

Protein purification. 

Tubulin was purified from young cow brain according to Castoldi and Popov 

(2003) by two cycles of polymerization/depolymerization in high molar Pipes 

buffer. Then it was suspended in BRB80 buffer (80 mM Pipes, 1 mM MgCl2, 1 

mM EGTA, pH 6.8) and stored at -80°C. 

Recombinant wild type α-synuclein, A30P α-synuclein and A53T α-synuclein 

were produced and purified according to Martinez et al. (2003), and 

recombinant E46K α-synuclein (kindly gifted by prof. Luigi Bubacco, 

University of Padova, Italy) was produced and purified according to Plotegher et 

al. (2017). Synuclein variants were suspended in Hepes buffer (20 mM Hepes, 

pH 7.4, 100 mM KCl) and stored at -80°C. 

Proteins aliquots were clarified by ultracentrifugation (tubulin: 124000 × g at 

4°C for 30 minutes; α-synuclein: 230000 × g at 4°C for 45 minutes) 

immediately before use. 
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Microtubule assembly. 

Tubulin was pre-incubated for 10 minutes at 20°C, alone or in the presence of 

one of the α-synuclein variants, at concentrations of 80 µM tubulin and, when 

present, 20 µM α-synuclein, in BRB80 buffer. Then the polymerization was 

started by adding an equal volume of the polymerization buffer (BRB80, GTP 2 

mM and glycerol 20%) and rising the temperature to 37°C. 

Negative stain electron microscopy. 

After 1 hour of polymerization, each sample was quickly but gently diluted with 

warm polymerization buffer (BRB80, GTP 1 mM and glycerol 10%, at 37°C) to 

the final concentration of 2 µM tubulin, and, when present, 0.5 µM α-synuclein. 

Then, 5 µl drops of sample were placed on glow discharged 200 mesh 

Formvar/carbon coated copper grids (Electron Microscopy Sciences), negative 

stained with 1% aqueous uranyl acetate and observed with a Philips CM10 

transmission electron microscope at 80 kV equipped with a Morada Olympus 

digital camera. Images were taken at 23500×. 

2D-image analysis and 3D reconstruction. 

Microtubules were first straightened using STIRA, an interactive unpublished 

software developed in the Laboratory of image elaboration of the Department of 

Chemistry. Then the microtubule diameter was computed from the average 

image of each microtubule, calculated along its length, using the values obtained 

with the intercept at 0.25 of the maximun intensity (Chrétien and Wade 1991). 

The tubulin periodicity was calculated from the position of the “4 nm” line of 

the power spectrum of the straightened microtubules. 3D reconstructions were 

computed from the straightened image of microtubules using FT3D and its 

updates, a software allowing to compute 3D reconstruction of helical structures 

(Lanzavecchia et al. 1993, 1995). 
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Cryo electron microscopy. 

After 1 hour or 4 hours polymerization, 4 µl of sample were placed on glow 

discharged 400 mesh holey carbon copper grids (Quantifoil) and automatically 

blotted and plunged into liquid ethane with a Vitrobot (FEI Vitrobot MARK IV) 

set at 100% humidity, 37°C, 2 seconds and force 1 or 0. The grids were 

observed with a FEI Tecnai F20 cryo-electron microscope at 200 kV equipped 

with a 4kx4k Ceta FEI camera. Images were taken at 29000×. 

Immuno-gold labelling. 

1 hour assembled microtubules were fixed with 0.5% glutaraldehyde by adding 

equal volumes of fixation buffer (BRB80, GTP 1mM, glycerol 10% and 

glutaraldehyde 1%). Then, they were centrifuged through a sucrose cushion 

(30% w/v sucrose in BRB80) for 1 hour at 150000 × g and 20°C. The pellet 

microtubules were retrieved and resuspended in BRB80 and 5 µl drops were 

placed on glow discharged 200 mesh Formvar/carbon coated nickel grids 

(Electron Microscopy Sciences). The grids were first incubated with anti-α-

synuclein antibody (polyclonal rabbit antibody, S3062, Sigma Aldrich) for 45 

minutes at 37°C and then with 5 nm gold-conjugated secondary antibody (anti-

rabbit antibody, 5 nm gold conjugate, EM.GAR5, BBI Solutions) for 30 minutes 

at room temperature. They were then post-fixed with glutaraldehyde 1% in 

BRB80 for 10 minutes at room temperature, washed with 5 mM EDTA and 

negative stained with 1% aqueous uranyl acetate. Negative controls were 

obtained incubating the grids with only the secondary antibody. 

Statistical analysis. 

The statistical significance was assessed by one-way or factorial ANOVA with 

Tukey HSD or Fischer LSD post hoc testing (STATISTICA software, StatSoft 

Inc., Tulsa, OK) or by 2x2 contingency table analysis with two-tailed Fisher's 
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exact test (GraphPad Software, QuickCalcs tool, 

“www.graphpad.com/quickcalcs/contingency1.cfm”). 

RESULTS 

In order to investigate how α-synuclein influences microtubule structure, we 

analysed microtubules assembled in vitro using transmission electron 

microscopy. We assembled the microtubules in the presence of wild type α-

synuclein or A30P, A53T and E46K mutants, with a tubulin/α-synuclein ratio of 

4:1. The assembly was carried out for at least 1 hour at 37°C. At the end of the 

assembly, samples were either fixed by negative staining or quickly frozen to 

obtain vitrified samples. As a control, we assembled microtubules from tubulin 

alone, in the same conditions. 

Investigating the influence of α-synuclein on microtubule diameter and 

tubulin periodicity. 

We first investigated the effect of folded α-synuclein on microtubule diameter 

and tubulin periodicity in negative stained microtubules by TEM (fig. 1) and 

2D-analysis (as described in Materials and methods). We found that 

microtubules assembled in the presence of wild type α-synuclein display a 

significant increase in diameter (fig. 2a) while no changes were observed in 

tubulin periodicity (fig. 2b). We investigated also the effects of mutant α-

synuclein A30P, A53T and E46K, and we found that they significantly impact 

both the microtubule diameter and tubulin periodicity (fig. 2a,b). In particular, 

A30P α-synuclein increases both microtubule diameter and tubulin periodicity 

(fig. 2a,b,c,d). Mutants A53T and E46K, instead, have the opposite influence, 

reducing both parameters. Other differences among the samples arise from the 

inspection of the distribution plots of the two parameters (fig. 2e,f). The profile 

of the microtubule diameter shows, for the E46K mutant, two almost equal 
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peaks (at about 25 and 27 nm) around the average value (about 26 nm) that is 

almost unrepresented and, in addition, some very low values (less than 20 nm). 

The other α-synuclein variants, instead,  show a principal peak that includes the 

average value. About the tubulin periodicity, the E46K α-synuclein mutant 

shows a peak of values shifted to the lowest ones that is also asymmetric and a 

second small peak at high values, whereas all the other samples show only one 

almost symmetric peak of values. 

In conclusion, these first results unravel different effects of synuclein variants on 

microtubule structures as wild type α-synuclein and A30P mutant significantly 

induce the increase in microtubule diameter, while A53T and E46K mutants 

significantly reduce both microtubule diameter and tubulin periodicity. 

Evaluating the α-synuclein effects on microtubule 3D structure and its 

parameters. 

From the best quality images of microtubules we obtained by TEM, we 

computed 3D reconstructions using the 3D helical reconstruction method (Arnal 

et al. 1996; Lanzavecchia et al. 1994). Using this approach, we were able to 

compute three principal parameters of the microtubule structure: protofilament 

number (Amos and Klug 1974), number of helix start and supertwist helix pitch 

(Mandelkow and Mandelkow 1985). The obtained reconstructions have very 

variable parameters and we did not find any statistically significant difference in 

these parameters (data not shown) but, interestingly, some peculiar results were 

obtained. In particular, we found a relevant difference between two microtubules 

obtained in the presence of A30P and E46K α-synuclein: they have the same 

protofilament number but very different microtubule diameter and tubulin 

periodicity, which are lower for the microtubule assembled in the presence of 

the E46K mutant (fig.3). This suggests a specific effect of E46K α-synuclein on 
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the lateral interaction of protofilaments during the building up of the 

microtubule. 

Assessing the α-synuclein impact on the microtubule population through an 

analysis of their protofilament number. 

To inspect in detail the protofilament number of the microtubule population we 

moved to cryo-electron microscopy (cryo-EM), a challenging technique that 

allows the observation of biological samples in quasi-natural conditions. The 

microtubules were, in fact, fixed in vitrified ice directly in the assembly buffer, 

without the addition of any external substance to enhance the contrast, and so 

what is observed is only the sample itself (fig. 4). We performed microtubule 

assembly in the same conditions than those used for negative staining 

experiments, i.e. 1 hour assembly at 37°C with tubulin/α-synuclein ratio of 4:1, 

and at a longer time, 4 hours. After one hour of assembly of tubulin in the 

absence of α-synuclein, we found a good number of intact microtubules, while 

for microtubules assembled in the presence of α-synuclein variants we found a 

lot of flattened microtubules (fig. 4, asterisks), which do not show the 

characteristic fringe pattern that allows the recognition of the protofilament 

number. This greatly reduced the population of the overall analysable 

microtubules. In the case of E46K α-synuclein mutant, we also found some 

parallel microtubule co-alignements (fig. 4) where the microtubules are not 

flattened. These piles were also evident in all the samples after 4 hours of 

assembly. We analysed the protofilament number distribution in the microtubule 

population by inspecting the microtubule fringe pattern (Chrétien and Wade 

1991). The total microtubule length of the microtubule populations we analysed 

for each sample is shown in figure 5a,b. To evaluate the statistical differences of 

the microtubule populations assembled in absence and in presence of α-

synuclein variants, we divided the different types of microtubules into two 
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groups: i) microtubules with less than 13 protofilaments and ii) microtubules 

with 13 or more protofilaments. We then applied 2x2 contingency table analysis 

with two-tailed Fisher's exact test. After 1 hour of assembly we found significant 

differences between microtubules assembled in the presence of wild type, A53T 

and E46K α-synuclein versus microtubules assembled in the absence of α-

synuclein (fig. 5c). 

On the other side, after 4 hours of assembly we found significant differences 

between microtubule populations assembled with wild type α-synuclein, A30P 

and A53T compared to the control, whereas the microtubule population 

assembled with E46K was similar to the control (fig. 5d). We also found 

significant differences between the α-synuclein variants. In detail, wild type and 

A30P mutant had similar effects, while A53T mutant led to a microtubule 

population that differs from that of all the other α-synuclein variants. 

A detailed report of the different distributions we found for each sample is 

shown in table 1. At 1 hour of assembly the characteristics of the microtubule 

population for the control condition are i) the presence of a very high percentage 

of 13-protofilament microtubules, the most stable ones, and ii) the absence of 

microtubules with less than 12 or more than 14 protofilaments. The population 

of microtubules assembled in the presence of α-synuclein variants, instead, has 

less microtubules with 13 protofilaments and more of the others. In details, wild 

type and A53T α-synuclein have similar distributions, with a relatively low 

amount of 13-protofilament microtubules and a very high percentage of 12-

protofilament ones. The population of microtubules assembled in the presence 

of A30P α-synuclein has the peculiarity of a large amount of 14-protofilament 

microtubules, with a still high presence of 12-protofilament ones. Finally, the 

microtubule population assembled in the presence of the last α-synuclein 

mutant, E46K, has an intermediate amount of 12- and 13-protofilament 

microtubules, a very low one of 14-protofilament microtubules and the unique 

presence of 11-protofilament microtubules. Interestingly, some of the α-
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synuclein variants (A53T α-synuclein and to lesser extent, A30P and E46K) also 

induce the apparition of microtubules with highly twisted protofilaments 

representing 13 or 14 microtubules arranged on 4-start helices instead of 3-start. 

It is interesting to note that microtubules assembled with E46K are the only ones 

that include protofilament numbers lower than 12, both for 1 hour and for 4 

hours of assembly (table 1). 

 After 4 hours of polymerization time the microtubule population generally 

revealed more highly twisted microtubules than after 1 hour for all conditions 

including the control (table 1), which represent energetically unfavourable 

configurations. 

Summarizing, α-synuclein variants significantly impact on the protofilament 

number distribution in the microtubule population, both with respect to the 

control population and to the other α-synuclein variants, generally increasing the 

amount of unfavourable microtubule configurations, like highly twisted ones. 

Inquiring the presence of α-synuclein in microtubules using immuno-gold 

labelling. 

In order to investigate the hypothesis that the effect on microtubule structure 

depends on the amount of α-synuclein bound to the microtubules, we performed 

immuno-gold labelling experiments, using the anti-α-synuclein antibody (fig. 

S1). We obtained an evident labelling of microtubules and we carried out a 

quantitative analysis by dividing each image into squares 100 nm wide. Then we 

counted the gold particles in each square, considering two different categories: i) 

squares with microtubules, even with only small portions, and ii) squares 

without microtubules. The differences between the microtubule samples are 

generally not significant (fig. S2a) except microtubules assembled in the 

presence of E46K α-synuclein, which differ from all the other groups. This 

should confirm the high propensity of E46K α-synuclein mutant to bind to 
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tubulin. In addition to gold particles linked to microtubules, we found a labelling 

of amorphous aggregates and a remarkable presence of “free” gold particles that 

are always significantly different from the number of particles linked to 

microtubules (fig. S2a). The “free” gold particles should be linked to free α-

synuclein or tubulin/α-synuclein small oligomers, because in the negative 

controls, without using the anti-α-synuclein antibody, only few particles are 

present, indicating a good specificity for α-synuclein of the labelling process 

(fig. S2b).  

In conclusion, only E46K α-synuclein significantly impact on the amount of α-

synuclein bound to microtubule by increasing it. 

DISCUSSION 

α-Synuclein is a presynaptic protein widely expressed in brain tissue that is 

supposed to be involved in the control of neuronal synapse functions and is 

associated to Parkinson's disease. It interacts with multiple partners and despite 

decades of intense study, conflicting results have been reported, thus its 

physiological role remains elusive. Here we show that α-synuclein causes 

significant changes in the microtubule ultrastructure. These changes are more 

relevant for mutated than for wild type α-synuclein and suggest a reduction in 

microtubule functionality that could have a direct impact on microtubule 

functions. Thus, our data gives new hints in understanding the physiological and 

pathological roles of α-synuclein. 

Wild type α-synuclein induces changes in microtubule diameter and 

protofilament number, resulting in an increased presence of microtubules with 

uncommon structures. These are energetically unfavourable configurations of 

microtubules (Chrétien and Fuller 2000) and could suggest a mild “stabilising” 

effect of wild type α-synuclein, which could result in promoting microtubule 

assembly. For this reason, our results are in agreement with those from Alim and 
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colleagues (2004) showing that α-synuclein induces microtubule 

polymerization, and with the findings of Eguchi and co-workers (2017), who 

demonstrated that α-synuclein impairs vesicle endocytosis through a 

microtubule overassembly-dependent mechanism. Our results also support the 

findings of Toba and colleagues (2017) that wild type α-synuclein promotes the 

assembly of twisted microtubules, like 14-protofilament ones, and stabilizes 

them. 

Mutations in the α-synuclein gene are linked to Parkinson's disease. 

Interestingly, the analyses of their impact on the microtubule ultrastructure 

unravelled some similarities and also differences with respect to wild type α-

synuclein. 

A30P α-synuclein increases microtubule diameter, like wild type form does, but, 

unlike wild type, it impacts on tubulin periodicity without affecting 

protofilament number. Next, using cryo-electron microscopy, we revealed that 

A30P α-synuclein leads to a large amount of flattened microtubules, thus 

suggesting a reduction in the overall stability of microtubules. This is exactly the 

contrary to wild type α-synuclein. Again, this is in agreement with the findings 

of Eguchi and co-workers (2017), which showed that, unlike wild type, over-

expression of A30P α-synuclein has no effect on vesicle endocytosis and does 

not lead to microtubule overassembly. Thus, the A30P mutant might prevent the 

achievement of the microtubule overassembly by reducing the microtubule 

stability. 

Looking at A53T and E46K α-synuclein, the impact on microtubules is 

multifaceted. We observed that they both exert similar effects by decreasing 

microtubule diameter and tubulin periodicity, the opposite of what wild type and 

A30P α-synuclein do. The impact on microtubule protofilament number, 

instead, is similar to that of wild type, suggesting a mild “stabilising” effect. 

However, for A53T mutant, the presence of flattened microtubules, which could 

be the result of their weakness, might suggest a mild “destabilising” effect. The 
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same result is achieved in the case of E46K α-synuclein, but it seems to be 

caused by its high propensity to aggregate as we found here and previously 

described (Cartelli et al., 2016). In addition, E46K mutant induces the formation 

of peculiar microtubules, which have smaller diameter than the ones with the 

same protofilament number previously described by other authors (Metoz, 

Arnal, and Wade 1997). This suggests that E46K mutant could affect  

microtubule inter-protofilament distance thus explaining the lack of significant 

differences in the number of protofilaments whereas the microtubule diameters 

significantly differ. The fact that E46K mutation seems to be the more impacting 

among the mutated forms, both in terms of the number of microtubule 

parameters that change and of the high significance of the evoked effects, could 

be dependent on its specific point mutation, i.e. the switch from an acidic amino 

acid to a basic one just in the middle of a α-helix domain (Zarranz et al., 2004). 

Otherwise, its similarities with A53T could be due to the fact that they both 

affect the same α-helix domain. 

Taken together, the effects of mutant α-synucleins we found are in contrast with 

those of Toba and colleagues (2017), which found the loss of interaction 

between mutated α-synucleins and microtubules and the consequent 

accumulation of α-synuclein in the cell body. On the other hand, our findings 

suggest an active role of both wild type α-synuclein and its mutated forms, due 

to the fact that they all have different effects on microtubule ultrastructure and 

that the mutated forms do not merely reduce the effect of wild type α-synuclein. 

To our opinion, this is in agreement with the idea that the toxic species of α-

synuclein are monomers or small oligomers (Plotegher et al., 2017), like those 

we used in our experiments, while the accumulation of α-synuclein in the cell 

body has a neuroprotective role achieved by consumption of toxic free α-

synuclein (Pinotsi et al., 2016). Such a hypothesis favours an active role of α-

synuclein, both wild type and mutated, compared to a loss of interaction, this 

last being a result that can also be obtained by consumption of free α-synuclein. 
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From a global point of view, the fact that different variants of α-synuclein have 

opposite effects on the same microtubule parameters, and that they have both 

“stabilizing” and “destabilizing” effects, confirms that α-synuclein could have a 

complex and regulatory function on the microtubule network. Since 

microtubules are the railway along which molecular motors run, their 

distribution and stability, but also their structure, influence the cellular transport 

system (Black, 2016). The molecular motors dyneins and kinesins, in fact, run 

on microtubules by steps, the length of which is linked to tubulin periodicity and 

the direction to protofilament directionality. Changes in microtubule parameters 

could then affect the efficiency of the microtubule transport system, suggesting 

that it could be the most important pathological effect of α-synuclein (Hunn et 

al., 2015). Besides this, the fact that A53T and E46K α-synuclein affect all the 

investigated parameters that defines microtubule structure, while A30P does not, 

supports the idea that the region of these two mutations might be the one 

devoted to the interaction with tubulin, as recently proposed (Cartelli et al., 

2016). The three α-synuclein mutants are linked to different clinical features of 

Parkinson’s disease, with a relatively early disease onset and a severe form of 

the disease for A53T and E46K mutations and a more typical late-onset and late 

and relatively mild dementia for A30P α-synuclein (Gasser et al., 2011). The 

correspondence between the extent of the effects of α-synuclein mutants on 

microtubules and the severity of the pathology supports the idea that the 

pathogenesis of Parkinson’s disease is strictly linked to the dysfunction of the 

microtubule network. Microtubule regulating strategies may then offer an 

opportunity for treating synucleinopathies, including Parkinson’s disease 

(Dubey et al., 2015; Cartelli and Cappelletti, 2017; Cappelletti et al., 2017), but 

different strategies could be probably advantageous for different mutants, 

because they sometimes have opposite effects. 

Future analysis are required to verify the effects of various α-synuclein variants 

on microtubule transport capacity and, in addition, further structural analysis, 



 

15 

particularly on the interaction between α-synuclein and microtubules, could give 

an explanation of the reason why α-synuclein variants differently impact on 

microtubules. 

LEGENDS 

 

Figure 1. Negative staining electron microscope images of microtubules 

assembled in vitro at 40 μM tubulin concentration, alone (tub) or in the presence 

of 10 μM of wild type (WT) or mutated (A30P, A53T and E46K) α-synuclein. 

 

Figure 2. (a, b) Box plots of the microtubule diameter and tubulin periodicity of 

microtubules observed by negative staining. *p<0.05 vs tub, 
#
p<0.05 vs WT and 

A30P and §p<0.05 vs A53T, according to ANOVA, Fischer LSD post hoc test. 

(c, d) Numeric parameters of the data showed in (a) and (b). (e, f) Distribution 

of microtubule diameter and tubulin periodicity in the microtubule population. 

 

Figure 3. 3D reconstructions and calculated parameters of two selected 

microtubules following assembly in the presence of A30P and A53T α-

synuclein mutants. Both microtubules have the same protofilament number (16), 

but different diameter (33.1 vs. 30.4 nm), due to a different distance between 

adjacent protofilaments. Lattice structure corresponds to: protofilament number 

(16), number of helix start (3 or 5) and handedness (L or R). 

 

Figure 4. Cryo-EM images of microtubules assembled in vitro at 40 μM tubulin 

concentration, alone (tub) or in the presence of 10 μM of wild type (WT) or 

mutated (A30P, A53T and E46K) α-synuclein. Asterisks mark flattened 

microtubules. 
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Figure 5. (a, b) Total length of the microtubules analysed on cryo-electron 

microscope images following 1 hour (a) and 4 hours (b) assembly in vitro at 40 

μM tubulin concentration, alone (tub) or in the presence of 10 μM of wild type 

(WT) or mutated (A30P, A53T and E46K) α-synuclein. (c, d) Percentage of 

microtubules displaying less than 13 protofilaments (Npf13) or 13 and more 

protofilaments (Npf≥13) for each type of sample, at 1 hour and 4 hours 

polymerization time. *p<0.05 vs. tub, 
#
p<0.05 vs. WT, 

§
p<0.05 vs. A30P, 

+
p<0.05 vs. A53T and °p<0.05 vs. E46K, according to 2x2 contingency table 

analysis with two-tailed Fisher's exact test. 

 

Table 1. Analysis of the microtubule protofilament number distribution (ranging 

from 10 to 16) and the percentage of twisted microtubules (including 12, 13 and 

14 twists) following 1 hour and 4 hours of polymerization in the absence (tub) or 

in the presence of wild type (WT) or mutated (A30P, A53T and E46K) α-

synuclein. This analysis was performed on cryo-EM images. 

 

Figure S1. (a) Negative staining image of microtubules assembled in the 

presence of wild type α-synuclein and immunolabelled with anti-α-synuclein 

antibody and 5 nm gold-conjugated secondary antibody. (b) 300x300 nm box 

enlargement of the indicated portion of the image in (a). 

 

Figure S2. (a) Average number of gold particles found for 100x100 nm squares 

in negative staining electron microscope images of microtubules assembled in 

the absence or presence of α-synuclein variants and immunolabelled with anti-α-

synuclein antibody and 5 nm gold-conjugated secondary antibody. (b) Average 

number of gold particles found for 100x100 nm squares in negative staining 

electron microscope images of microtubules assembled in the absence or 

presence of α-synuclein variants and incubated with 5 nm gold-conjugated 
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secondary antibody following omission of the primary antibody. *p<0.05, 

according to ANOVA, Tukey HSD post hoc test. 
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FIGURE 1 
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FIGURE 2 

 

e f 

Sample Valid N

tub 27.36 ± 2.16 123

WT 28.79 ± 1.97 90

A30P 28.32 ± 2.29 93

A53T 26.23 ± 2.5 107

E46K 26.08 ± 4.21 77

Mean ± Std.Dev.c Sample Valid N

tub 3.96 ± 0.08 123

WT 3.98 ± 0.07 90

A30P 3.99 ± 0.10 93

A53T 3.93 ± 0.07 107

E46K 3.87 ± 0.13 77

Mean ± Std.Dev.d 

b 

*#§ * *# 

a 

* * *# *# 
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FIGURE 3 

 

A30P Sample E46K

33.1 Diameter (nm) 30.4

4.08 Tubulin periodicity (nm) 3.77

16_3 L Lattice structure 16_5 R

1.6 Supertwist half-helix pitch (µm) 2.4
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FIGURE 4 
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FIGURE 5 
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Table 1 

 

 

10 11 12 13 14 15 16 12tw 13tw 14tw

tub 14,3% 73,1% 12,5% 0,3%

WT 34,8% 53,2% 11,6% 0,3%

1h A30P 24,7% 54,1% 21,2% 3,9%

A53T 31,9% 58,3% 9,4% 0,5% 24,9%

E46K 1,1% 27,4% 65,3% 6,3% 2,9%

tub 3,5% 77,3% 19,0% 0,1% 0,2% 2,4% 3,2%

WT 5,8% 68,8% 24,9% 0,3% 0,1% 1,6% 7,1% 2,5%

4h A30P 8,9% 77,5% 13,2% 0,4% 6,2% 10,5% 6,3%

A53T 30,2% 63,0% 6,8% 0,9% 0,4% 3,2%

E46K 0,2% 0,5% 2,1% 77,9% 18,0% 1,4% 9,5% 4,7%
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FIGURE S1 
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FIGURE S2 
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