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Abstract

Background

The randomized clinical trial, SafeBoosC II, examined the effect of monitoring of cerebral oxy-

genation by near-infrared spectroscopy combined with a guideline on treatment when cere-

bral oxygenation was out of the target range. Data on cerebral oxygenation was collected in

both the intervention and the control group. The primary outcome was the reduction in the bur-

den of cerebral hypo- and hyperoxia between the two groups. In this study we describe the

associations between the burden of cerebral hypo- and hyperoxia, regardless of allocation to

intervention or control group, and the biomarkers of brain injury from birth till term equivalent

age that was collected as secondary and explorative outcomes in the SafeBoosC II trial.

Methods

Cerebral oxygenation was continuously monitored during the first 72h of life in 166 ex-

tremely preterm infants. Cranial ultrasound was performed at day 1,4,7,14, and 35 and at

term. Electroencephalogram (EEG) was recorded at 64h. Blood-samples taken at 6 and 64

hours were analysed for the brain injury biomarkers; S100beta, brain-fatty-acid-binding-pro-

tein, and neuroketal. All analyses were conducted post hoc.

Results

Significantly more infants with a cerebral burden of hypoxia within the 4th quartile versus

infants within quartile 1–3 were diagnosed with severe intracranial haemorrhage (11/39 ver-

sus 11/117, p = 0.003), had low burst rate on EEG (12/28 versus 21/103, p = 0.015), or died
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(14/41 versus 18/123, p = 0.006), whereas none of these events were significantly associ-

ated with cerebral hyperoxia. The blood biomarkers were not significantly associated with

the burden of cerebral hypo- or hyperoxia.

Conclusions

The explorative analysis showed that early burden of cerebral hypoxia, but not hyperoxia

was significantly associated with low brain electrical activity and severe intracranial haemor-

rhage while none of the three blood biomarkers were associated with the burden of either

cerebral hypo- or hyperoxia.

Introduction

Extremely preterm infants have an immature cardiorespiratory system and cerebral autoregula-

tion can be impaired, especially during the first days of life [1,2]. This makes the developing brain

of the preterm infant susceptible to fluctuations in the cerebral blood flow (CBF) [3] and may

cause episodes of cerebral hypo- and hyperoxia. Near-infrared spectroscopy (NIRS) is a non-inva-

sive method for estimating tissue oxygenation. NIRS measures the ratio of the concentrations of

oxygenated haemoglobin to total haemoglobin on an absolute scale with a range of 0% to 100%

[4]. Changes in cerebral NIRS-values are correlated to CBF [5]. A number of biomarkers–charac-

teristics that is objectively measured and evaluated as an indicator of normal biological processes,

pathogenic processes, or pharmacologic responses to a therapeutic intervention [6]—may be

present if the brain is suffering from hypo- or hyperoxia. Severe intraventricular haemorrhage

(IVH grade III) and periventricular haemorrhagic infarction (PVHI) mainly develop within the

first 3 days of life [7], during the period of transition from intra- to extra-uterine life when the

brain is especially vulnerable. Low cerebral oxygenation, as estimated by NIRS, during this transi-

tion has been associated with higher grades of intraventricular haemorrhage and lower 2-year

developmental quotients [8–10]. In addition high values of NIRS in animal studies are associated

with brain injury [11], as confirmed in human asphyxiated term new-borns [12]. Cerebral NIRS

monitoring is currently used in some neonatal intensive care units as part of the standard of care

for extremely preterm infants and infants with hypoxic-ischemic encephalopathy. Yet it remains

to be determined if monitoring cerebral oxygenation combined with clinical interventions when

cerebral oxygenation levels are out of range actually prevents cerebral injury, improves neurologi-

cal outcome, and/or increases the survival of the extremely preterm infants [13].

The phase II randomized clinical trial, SafeBoosC II, demonstrated that it is possible to

reduce the burden of cerebral hypoxia during the first 72 hours of life [14]. The SafeBoosC II

study was, however, not powered to detect differences in clinical outcomes [15]. In the present

post hoc analysis, we use the SafeBoosC II data to explore the association between the burden

of cerebral hypo- and hyperoxia regardless of trial allocation to intervention or control group,

and the secondary and explorative outcomes of the trial (all being potential biomarkers of

brain injury or death): namely serial cranial ultrasound (cUS), electroencephalographic (EEG)

measures, and blood molecular markers.

Patients and methods

Infant characteristics and study design

SafeBoosC II is a multicentre randomised clinical feasibility trial [15]. A total of 166 extremely

preterm infants were included in the SafeBoosC II study before 3 hours of age: 86 infants were
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randomised to the experimental group (cerebral NIRS monitoring in combination with an evi-

dence based intervention guideline [16] for NIRS values out of range (55–85%)) and 80 infants

to the control group (blinded collection of NIRS values combined with treatment as usual).

The inclusion criteria were infants born more than 12 weeks before term (gestational age<27

weeks and six days) with a decision to provide full life support and the possibility to start cere-

bral NIRS monitoring within three hours after birth. Written informed consent from the

parents was mandatory before inclusion and randomisation. The randomisation was web

based and handled by The Copenhagen Trial Unit. The generated allocation sequence of 1:1

with block sizes 4 and 6 in random order concealed for the investigators. The intervention

period was 72 hours. The 2y-followup of the infants is on going. The infants were recruited

from 8 European countries each represented by one neonatal intensive care unit (June 2012 to

December 2013). The trial is registered at ClinicalTrial.gov, NCT01590316, the protocol is

available in full at http://www.safeboosc.eu.

The burden of cerebral hypo- and hyperoxia

The primary outcome of the SafeBoosC II trial was the burden of hypo- and hyperoxia. This

was calculated as the time spent below or above the target limits multiplied by the mean devia-

tion from the lower (55%) or the upper limit (85%) during the first 72 hours of life, expressed

in percentage hours (%hours). The burden was computed from un-edited NIRS-values and

extrapolated to 72 hours, without knowledge of any other outcomes of the trial [14].

Cranial ultrasound

On day 1 (anytime during the first 24 hours of life), 4 (± 1), 7 (± 1), 14 (± 1), and 35 (± 1) and

at term equivalent age (week 38 to 44) standardized cUS (6 coronal and 5 sagittal images

through the anterior fontanel and one through the mastoid window) was performed. The

images were anonymised and uploaded to a central server. The images were centrally analysed

by two experts (CH and MB) using the software program OsiriX version 6.0 (Pixmeo, Geneva,

Switzerland). The process of the central scoring is described in detail elsewhere [17]. IVH

grade III, PVHI, post haemorrhagic ventricular dilatation, porencephalic cysts, cystic periven-

tricular leukomalacia, cerebral atrophy at term, stroke and cerebellar haemorrhage at one

or more of the scans were classified as severe brain injury, and thereby as severe adverse

outcome.

Electroencephalogram

EEG was analysed in 133 infants, the median age at EEG-recording was 65 hours postnatal and

the median time of recording was 2 hours [18]. Electrodes were placed at P3 and P4 position

according to the international 10-20-system. Needle, disc or hydrogel electrodes were used

according to local practice. The electrode impedance was less than 20kO during the record-

ing. If the child was treated with morphine, other opioids, or sedative medications this was

documented.

All EEG analysis was performed in Matlab version R2014b using custom build programmes

(MathWorks, Natick, Massachusetts, USA), without knowledge of the medical history of the

infant. The analysis of the EEGs is described in detail elsewhere [18].

The raw EEG was band pass filtered (0.5–30 Hz) using a zero phase filter and converted

into range-EEG (rEEG) [19]. Artefacts in the rEEG were independently visually identified by

two of the authors (GG and AMP) blinded to the clinical history of the infant. The EEG analy-

sis was conducted on the remaining artefact-free data.
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Burst rate was calculated as the number of bursts per minute. A burst was defined as nested

(high frequency) oscillations within large slow-wave depolarisations using an extraction algo-

rithm based on the co-occurrence of a slow (0.5–2 Hz) wave and higher (8–22 Hz) frequency

oscillation, as described by Hartley et al. [20]. Consecutive events occurring within 0.5 seconds

of one another were counted as one and events of duration less than 4/22 of a second were dis-

counted [20]. Burst rates were significantly affected (decreased burst rate) by the use of mor-

phine and EEG-recordings with an online filtration at 2–15 Hz (decreased burst rate) [18].

Therefore the burst rates were adjusted for these variables. Adjusted burst rate within the 1st

quartile was considered an adverse outcome.

Spectral-analyses were conducted using Matlab routines (Neurospec 2.0, Neurospec.org).

The EEG data was segmented into epochs of 2 seconds with an overlap of 50% (1 second).

After fast Fourier transformation the 95% spectral edge frequency (SEF95) for each infant was

defined as the frequency between 0.5 and 30 Hz, below which 95% of the power was present.

SEF95 was significantly affected by the EEG sampling frequency (high sampling frequency

higher SEF95) [18]. Therefore the SEF95 was adjusted for this. Adjusted SEF95 within the 1st

quartile was considered an adverse outcome.

Blood biomarkers

At the age of 6 and 64 hours (±1 h) 1 ml of blood was drawn from 123 infants with an indwell-

ing arterial or venous line [18]. After inclusion of the last patient, the samples were shipped

and analysed centrally (HaemoScan, Groningen, The Netherlands) without knowledge of the

medical history of the infant. S100beta (50 μl) was assessed by ELISA: clone 1B2 monoclonal

antibody (Abnova, Taipei, Taiwan) and biotinylated clone 8B10 (Hytest, Turku, Fi). Intra-

assay variance is 4.6% and the lower level of quantification (LLOQ) is 39 pg/ml. Brain fatty
acid binding protein (BFABP) (50 μl) was determined by ELISA with BFABP polyclonal capture

antibodies and monoclonal detection antibody (HaemoScan). Intra-assay variance is 6.4% and

the LLOQ is 150 pg/ml. Neuroketal (60 μl) was performed by competitive enzyme immunoas-

say (HaemoScan). Intra-assay variance is 10% and the LLOQ is 4.1 pg/ml. The laboratory anal-

yses are described in detail elsewhere [18]. An increase in the biomarker concentration from 6

to 64 hours was considered as a marker of potential cerebral injury during the intervention

period, therefore and adverse outcome was defined as an increase in the absolute value of the

biomarker concentration from 6 hours to 64 hours within the 4th quartile.

Statistics

The median and inter quartile range of burden of cerebral hypo- and hyperoxia was deter-

mined. The infants were divided in groups according to a burden within or below the 4th quar-

tile of the burden of cerebral hypo- and hyperoxia, respectively. The infant characteristics were

compared between the burden-groups using the chi-square test or independent t-test as appro-

priate. Odds ratios with 95% confidence intervals were determined for adverse outcomes for

infants within the 4th quartile of the burden of hypo- or hyperoxia versus infants in quartile

1–3. Thereafter univariate correlation analysis was conducted to determine the patient charac-

teristics associated with the composite outcome of severe brain injury or death. Finally, a mul-

tiple logistic regression was used with the composite outcome as dependent variable, centre,

gestational age above or below 26 weeks (the stratification variables used in the randomized

SafeBoosC II trial), and intervention as forced entry independent variables, and the patient

characteristics which had significant correlation to the composite outcome as independent

variables in a backward stepwise elimination procedure (P-out 0.1).
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The between twins inter-cluster correlation for the burden of hypo-and hyperoxia was low

(0.02) [14]. Therefore, there was no need to exclude one infant from each twin-cluster thus

data from all infants were included in the analysis.

None of the analyses reported here were specified in the SafeBoosC-II study protocol. The

dichotomisation between one quartile and the three other quartiles was copied from previous

work on biomarkers in our group [21], and chosen before any correlations were calculated.

The statistics was performed using IBM SPSS Statistics for Windows Version 20.0

(Armonk, New York, USA).

Ethics

The SafeBoosC phase II trial was approved by each hospital’s research ethics committee

(Hopital Femme Mere Enfants, Lyon, France; Rigshospitalet, Copenhagen, Denmark; La Paz

University Hospital, Madrid, Spain; Cork University Maternity Hospital, Cork, Ireland; Wil-

helmina Children’s Hospital, Utrecht, The Netherlands; Medical University of Graz, Graz,

Austria; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; and

Rosie Hospital, Cambridge University Hospitals, United Kingdom), and where required (Aus-

tria, Denmark, and France) by the competent authority responsible for medical devices. Writ-

ten informed parental consent was mandatory before inclusion in the trial. The trial was

conducted in compliance with the guidelines of the Declaration of Helsinki in its latest form

and the International Conference on Harmonisation good clinical practice guidelines.

Results

One-hundred-and-sixty-six infants were included in the SafeBoosC II trial, Fig 1. Cerebral

oximetry data was missing for two infants due to technical issues (n = 1) and withdrawal of

consent (n = 1).

The median (min—max) burden of cerebral hypoxia was 30.6%hours (0.7–803.9). The lim-

its for hypoxia quartile 4 were 99.3–803.9%hours and for quartile 1–3; 0.7–99.2%hours. The

median (min—max) burden of cerebral hyperoxia was 1.2%hours (0.0–223.0). The limits for

quartile 4 were 14.2–223.0%hours and for quartile 1–3; 0.0–14.1%hours. As expected accord-

ing to the primary result of the SafeBoosC II trial [14], there were significantly fewer infants

form the intervention group with a burden of hypoxia in the 4th quartile, than in quartile 1–3,

whereas the burden of cerebral hyperoxia within the 4th quartile versus quartile 1–3, was unaf-

fected by allocation in the SafeBoosC trial, Table 1. Male sex was associated with less cerebral

hypoxia and more cerebral hyperoxia. Furthermore, gestational age was positively associated

with cerebral hyperoxia whereas the other baseline characteristics were not associated with

either cerebral hypo- or hyperoxia.

Serial ultrasound scans of 155 infants were available for evaluation by central reading.

Twenty-seven (27/155) had severe brain injury, of which 22 had IVH grade III or PVHI. The

remaining five infants had stroke (n = 2), cerebral atrophy (n = 2), or cerebellar haemorrhage

(n = 1). Cerebral hypoxia was significantly associated with severe brain injury and death,

Table 2. There was no significant association between cerebral hyperoxia and severe brain

injury and death, Table 3. Cerebral hypoxia was significantly associated with early occurrence

(day 1 to 4) of severe intracranial haemorrhages whereas there was no association between

cerebral hypoxia and later occurrence (day 5 to day 14) of severe intracranial haemorrhages,

Table 2. Cerebral hypoxia was also significantly associated with low EEG burst rates at 64

hours of age whereas there was no association between cerebral hypoxia and SEF95 at 64

hours of age. Of the 14 infants with early severe IVH ten (10) infants had EEG measurement

and of these five (5) infants had burst rates within the 1st quartile, for the infants without severe
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haemorrhages the number of recorded EEGs was 115 and hereof 26 had burst rates within the

1st quartile (chi-square analysis between groups p = 0.12). The three plasma-biomarker-levels

were not associated with cerebral hypoxia, Table 2. Cerebral hyperoxia was not associated with

EEG burst rate, SEF95 or plasma biomarkers, Table 3. The odds ratios (ORs) and 95% confi-

dence interval for adverse outcomes are illustrated in Figs 2 and 3.

Correlation analyses of the following variables showed a significant correlation (p<0.05)

between gestational age, birth weight, clinical chorioamnionitis, surfactant, mechanical venti-

lation, use of vasopressors, blood transfusions, and the burden of cerebral hypoxia within the

4th quartile on one hand and the composite outcome of severe brain injury or death on the

other. These variables were included in the multiple logistic regression model with backward

stepwise elimination. As described in the methods, centre, gestational age below 26 weeks, and

intervention were forced-entry variables in the model. The following variables remained statis-

tically significant: intervention (OR (95% CI) 0.29 (0.12–0.69; p = 0.003,)), gestational age

below 26 weeks (3.33 (1.38–8.06; p = 0.007)), use of vasopressors (3.26 (1.26–8.44; p = 0.014)),

and blood transfusion (2.97 (1.22–7.23; p = 0.016)). There was no centre-effect.

Fig 1. Flowchart. Flow of participants through the SafeBoosC II study.

https://doi.org/10.1371/journal.pone.0173440.g001
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Discussion

This post hoc analysis shows that early burden of cerebral hypoxia, but not hyperoxia, is asso-

ciated with a reduction of brain electrical activity, severe brain injury (especially early IVH

grade III and PVHI), and death. There were no significant associations between the burden of

cerebral hypo- and hyperoxia and the three blood biomarkers. Multiple logistic regressions

showed significant associations between intervention, gestational age below 26 weeks, use of

vasopressors, and blood transfusion on one hand and the composite adverse outcome severe

brain injury or death on the other.

Low cerebral oxygenation has previously been associated with IVH and lower developmen-

tal quotients at 2-year follow up [8–10]. In a study by Noori et al, involving 22 extremely pre-

term infants, lower levels of cerebral oxygenation, cardiac output, and cerebral hypoperfusion

were found prior to the development of IVH II and PVHI [8]. In term piglet models, however,

while low cerebral oxygenation when accompanied by low cerebral blood flow caused perma-

nent brain damage, prolonged cerebral hypoxia alone seemed to be of less importance [22,23].

Piglets had to be exposed to cerebral hypoxia as low as 30–35% for several hours before signifi-

cant histological damage appeared [23].

In the present analysis the burden of cerebral hypoxia was associated with decreased EEG

burst rates. This is in agreement with a previous demonstration of an association between low

cerebral blood flow and suppressed EEG in preterm infants [24]. EEG burst rate is decreased

in infants with severe IVH [25,26] and suppressed EEG is correlated to adverse developmental

outcome [27,28]. In the present analysis we did not find significantly more infants with low

burst rates and early severe IVH grade III or PVHI.

Table 1. Baseline characteristics and treatment during the first 72 hours of life according to burden of cerebral hypo- or hyperoxia split in the

three lowest quartiles and the highest quartile.

Burden of hypoxia Burden of hyperoxia

Quartile 1 to 3 Quartile 4 Quartile 1 to 3 Quartile 4

n = 123 n = 41 P-value n = 123 n = 41 P-value

Baseline characteristics

Gestational age (week), mean (SD) 26.4 (1.2) 26.5 (1.5) 0.78 26.3 (1.3) 27.7 (1–0) 0.35

Gestational age below 26 weeks 38 (31) 14 (34) 0.7 42 (34) 10 (24) 0.025

Birth weight (gram), mean (SD) 847 (211) 875 (207) 0.47 849 (208) 872 (216) 0.54

Male sex 65 (53) 13 (32) 0.02 53 (43) 25 (61) 0.047

Twins 21 (17) 12 (29) 0.09 23 (19) 10 (24) 0.43

Antenatal steroids full course 82 (67) 31 (78) 0.2 88 (72) 25 (61) 0.18

Prolonged rupture of membranes 40 (33) 17 (36) 0.21 42 (34) 15 (38) 0.72

Maternal chorioamnionitis 6 (5) 5 (13) 0.1 9 (8) 2 (5) 0.59

APGAR-score <5 points at 5 minutes 21 (17) 8 (20) 0.69 20 (16) 9 (23) 0.38

Umbilical arterial pH, mean (SD) 7.32 (0.1) 7.31 (0.1) 0.62 7.32 (0.1) 7.29 (0.1) 0.13

SafeBoosC II intervention group 74 (60) 12 (29) 0.001 67 (54) 19 (46) 0.37

Treatment during the first 72h of life

Surfactant treatment 90 (73) 35 (85) 0.11 90 (73) 35 (85) 0.11

Mechanical ventilation 79 (64) 30 (73) 0.29 80 (65) 29 (70) 0.5

Patent ductus arteriosus treatment 17 (14) 4 (10) 0.52 15 (12) 6 (15) 0.71

Use of vasopressors/inotropes 22 (18) 16 (40) 0.004 29 (24) 9 (22) 0.79

Any red blood cell transfusion 31 (26) 18 (45) 0.025 41 (35) 8 (20) 0.07

Corticosteroids 4 (3) 4 (10) 0.1 6 (5) 2 (5) 0.99

Values are numbers (percentages) unless stated otherwise. P-values have not been corrected for multiple comparisons.

https://doi.org/10.1371/journal.pone.0173440.t001
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The three blood biomarkers measured in the SafeBoosC II trial were not significantly asso-

ciated with either cerebral hypo- or hyperoxia. We did not register whether the samples were

drawn from arterial or venous line, therefore we are unable to determine whether the concen-

trations of the blood biomarkers differ between arterial and venous blood.

S100beta is a calcium binding protein present in high concentration in Schwann cells and

astrocytes [29] and is released to the systemic circulation after cerebral damage. S100beta is an

established marker of brain injury in adult trauma patients [30] and the levels of S100beta in

blood and urine from term and preterm infants has been associated with the severity of both

hypoxic ischemia and IVH [31–33]. And in a study including 64 term and late preterm infants

the levels of S100beta was significantly negatively correlated to NIRS-values [34]. However a

study by Rogers et al [35] including 130 extremely preterm infants reporting no associations

between the S100beta levels and severe intracranial haemorrhages. S100Beta has also been

investigated as a potential biomarker of brain injury in paediatric patients undergoing cardiac

surgery–the infants with unfavourable neurological outcome 12 months after surgery had sig-

nificantly lower cerebral NIRS values during surgery, whereas the levels of S100Beta did not

differ [36]. We evaluated the effects of the accumulated burden of hypoxia during the first 72

hours of life rather than correlating specific NIRS-values to the levels of S100beta, and there-

fore we cannot determine whether the S100beta levels measured in the SafeBoosC II study

were correlated to the NIRS-levels. We found no differences between the levels of S100beta

between the 4th quartile of cerebral hypoxia where the proportion of infants with severe IVH

was highest vesus the three lowest quartiles of cerebral hypoxia. The conflicting results of the

Table 2. Distributions of early and late adverse outcomes of cranial ultrasound, EEG variables, blood biomarkers, term diagnoses, and death

according to the burden of cerebral hypoxia within or below the 4th quartile.

Burden of hypoxia Quartile 1–3 Quartile 4

n = 123 n = 41 P-value *P-value OR (95% CI)

Cranial ultrasound

IVH 3–4 day 1–4 6/117 8/38 0.003 0.045 4.93 (1.59–15.30)

IVH 3–4 day 5–14 5/111 3/31 0.63 >0.95 2.27 (0.51–10.09)

IVH 3–4 at any time 11/117 11/39 0.003 0.045 3.77 (1.49–9.63)

Severe brain injury—any time 14/116 13/39 0.002 0.03 3.64 (1.53–8.69)

EEG variables time 64h

Burst-rate in the 1st quartile 21/103 12/28 0.015 0.23 2.93 (1.20–7.12)

Spectral edge frequency in the 1st quartile 15/99 5/27 0.67 >0.95 1.27 (0.42–3.88)

Plasma biomarkers difference between 6 and 64h

S100beta increase in 4th quartile 25/92 6/30 0.43 >0.95 0.67 (0.25–1.83)

BFABP increase in 4th quartile 24/89 8/31 0.90 >0.95 0.94 (0.37–2.39)

Neuroketal increase in 4th quartile 22/92 9/30 0.51 >0.95 1.36 (0.55–3.41)

Other major adverse outcome at term age

Necrotising enterocolitis 13/123 6/41 0.48 >0.95 1.45 (0.51–4.10)

Retinopathy of prematurity 18/123 4/41 0.43 >0.95 0.63 (0.20–1.98)

Bronchopulmonary dysplasia 52/104 14/27 0.86 >0.95 1.08 (0.46–2.51)

Death 18/123 14/41 0.006 0.09 3.03 (1.34–6.84)

Combined adverse outcome

Death or severe brain injury 28/117 20/41 0.003 0.045 3.03 (1.44–6.38)

Death or IVH 3 or 4 25/118 19/41 0.002 0.03 3.21 (1.51–6.84)

Values are given as numbers of events / numbers of infants investigated for event.

* P-value after Bonferoni correction for multiple comparisons.

https://doi.org/10.1371/journal.pone.0173440.t002
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associations between S100beta and severe intracranial haemorrhages make the clinical value of

this biomarker questionable and further research is needed to evaluate whether S100beta is

suitable as an early biomarker of brain injury in extremely preterm infants.

BFABP, a brain-specific marker, is rapidly released from astrocytes as a response to ische-

mia, mechanical and oxidative brain damage [37]. BFABP was chosen as a potential biomarker

for brain injury in the SafeBoosC II trial, as it is known to rapidly increase in hypoxic-ischae-

mic stroke patients, and the high levels persist for several days after an event [37]. BFABP

might be a more sensitive marker of minor traumatic brain injury than S100beta [38] and is

elevated in patients with various neurodegenerative diseases[39]. A study involving 57 patients

undergoing cardiac surgery reports that neither S100beta nor BFABP had any clear prognostic

value for postoperative cognitive dysfunction [40]. We found no association between BFABP

and the burden of cerebral hypo- or hyperoxia–this might be because of the different nature of

the acute and severe local hypoxic-ischemia occurring in stroke patients compared to the

global relative cerebral hypoxia measured in the SafeBoosC II trial. Our study ads information

to the current litterateur of BFABP and brain injury–suggesting that there is no associations

between the burden of cerebral hypoxia at 72h of age and the increase of the levels of BFABP

from 6 to 64h of life. Further research on the associations between BFABP and brain injury in

extremely preterm infants is needed.

Neuroketals are compounds produced by free radical induced peroxidation of docosahexe-

noic acid, have been associated with white matter damage on MRI in preterm infants [41] and

are solely present in the brain [42]. Neuroketal is mainly released as a reaction to cerebral

Table 3. Distributions of early and late adverse outcomes of cranial ultrasound, EEG variables, blood biomarkers, term diagnoses, and death

according to the burden of cerebral hyperoxia within or below the 4th quartile.

Burden of hyperoxia Quartile 1–3 Quartile 4

n = 123 n = 41 P-value *P-value OR (95% CI)

Cranial ultrasound

IVH 3–4 day 1–4 11/116 3/39 0.74 >0.95 0.80 (0.21–3.01)

IVH 3–4 day 5–14 6/100 2/36 0.98 >0.95 0.92 (0.18–4.79)

IVH 3–4 at any time 17/117 5/39 0.79 >0.95 0.87 (0.30–3.52)

Severe brain injury—any time 21/117 6/38 0.76 >0.95 0.86 (0.32–2.31)

EEG variables time 64h

Burst-rate in the 1st quartile 27/95 3/36 0.17 >0.95 0.50 (0.19–1.35)

Spectral edge frequency in the 1st quartile 13/91 7/35 0.43 >0.95 1.50 (0.54–4.14)

Plasma biomarkers difference between 6 and 64h

S100beta increase in 4th quartile 24/93 7/29 0.86 >0.95 0.92 (0.35–2.41)

BFABP increase in 4th quartile 23/92 9/28 0.45 >0.95 1.42 (0.57–3.58)

Neuroketal increase in 4th quartile 25/93 6/29 0.5 >0.95 0.71 (0.26–1.95)

Other major adverse outcome at term age

Necrotising enterocolitis 17/123 2/41 0.12 >0.95 0.32 (0,07–1,45)

Retinopathy of prematurity 20/123 2/41 0.064 >0.95 0.26 (0.06–1.18)

Bronchopulmonary dysplasia 55/97 11/34 0.015 0.23 0.37 (0.16–0.83)

Death 26/123 6/41 0.36 >0.95 0.64 (0.24–1.68)

Combined adverse outcome

Death or severe brain injury 38/120 10/38 0.53 >0.95 0.77 (0.34–1.75)

Death or IVH 3 or 4 35/120 9/39 0.46 >0.95 0.73 (0.31–1.69)

Values are given as numbers of events / numbers of infants investigated for event.

* P-value after Bonferoni correction for multiple comparisons.

https://doi.org/10.1371/journal.pone.0173440.t003
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oxidative stress, and may due to their reactivity be involved in formation of protein cross-

links, which is a common feature in neurodegenerative diseases, where neuroketal is known to

be increased [43]. Neuroketal has been reported elevated in cerebrospinal fluid during the first

3 weeks of life infants with white matter damage on MRI performed at term equivalent age

[41]. We expected that the levels of neuroketal would be increased in the infants with cerebral

hyperoxia in the 4th quartile, but that was not the case. This might be explained by the early

measure of neuroketal– 6 to 64 hours of life and the fact that the level of cerebral hyperoxia in

the SafeBoosC phase II trial was low [14]. In addition neuroketal is still only an experimental

biomarker of cerebral injury and might not be a good marker of early acute brain injury in

extremely preterm infants. Whether neuroketal in the future can serve as a marker of later

white matter injury in extremely preterm infants remains to be determined.

Limitations

The explorative post hoc analysis of the SafeBoosC II trial data presents the association

between the early cerebral oxygenation and short-term adverse cerebral outcomes and death

in extremely preterm infants. However, this study has some limitations. Most importantly,

cranial ultrasound was conducted at pre-specified days of life, but the exact timing of IVH

grade III and PVHI and other severe brain damages is not available and therefore we cannot

know if cerebral hypoxia preceded IVH or vice versa. However, one small study in very pre-

term infants recently identified a significantly lower regional cerebral oxygenation during the

Fig 2. Risk for adverse outcomes for infants with a burden of cerebral hypoxia within or below the 4th quartile.

Odds ratio (OR) and 95% confidence interval.

https://doi.org/10.1371/journal.pone.0173440.g002
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early transition in infants who later developed IVH versus the infants who did not [44]. Simi-

larly, EEG was only recorded once. While the timing at 64 hours of age was expected to assess

the potential effects of the accumulated burden over the intervention period, finer details of

preceding or concurrent cerebral hypoxia could not be extracted, such as the relative signifi-

cance of longer periods of moderate hypoxia versus peaks of severe hypoxia. We did not collect

data on continuous blood pressure, arterial oxygen saturation, or CBF, which may have con-

tributed to both low cerebral NIRS values and severe brain damage [8,22,23].

The analyses are based on a dataset from our randomised clinical trial; therefore, the multi-

ple logistic regression models were adjusted for the stratification variables (centre and gesta-

tional age below 26 weeks), as well as the randomisation indicator (experimental vs. control

group). As the burden of hypoxia was reduced by 50% in the experimental group compared

with the control group [14], it was therefore not surprising that adjusting for the randomisa-

tion indicator did reduce the statistical significance of the burden of hypoxia. We do not think

that this changes the main conclusion of the study. On the other hand, the statistical signifi-

cance of the randomisation indicator means that the risk of severe brain injury or death in the

experimental group of the SafeBoosC-II trial was less in the experimental group than in the

control group when adjusted for a number of other factors. However, neither the composite

outcome nor the particular statistical analyses were specified in the trial protocol. This post-

hoc finding must therefore be interpreted conservatively. Finally, the 2-year follow up of the

infants included in the SafeBoosC II trial will further explore if cerebral hypoxia and/or the

intervention is related to patient-relevant outcomes such as psychomotor deficit. Larger

Fig 3. Risk for adverse outcomes for infants with a burden of cerebral hyperoxia within or below the 4th

quartile. Odds ratio (OR) and 95% confidence interval.

https://doi.org/10.1371/journal.pone.0173440.g003

Cerebral hypoxia and early markers of brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0173440 March 22, 2017 11 / 15

https://doi.org/10.1371/journal.pone.0173440.g003
https://doi.org/10.1371/journal.pone.0173440


randomised clinical trials investigating possible patient-relevant benefits of continuous NIRS

monitoring in extremely preterm infants is needed before the method is implemented as stan-

dard care in this population.

Conclusions

Our analysis is currently the largest dataset published on cerebral oxygenation in extremely

preterm infants providing data on short-term neurological outcomes. The results support the

previous findings of associations between low cerebral oxygenation in extremely preterm

infants during the first days of life and EEG suppression, severe intracranial haemorrhage, and

death. However, our analyses are exploratory and we were unable to determine which came

first: cerebral hypoxia or severe intracranial haemorrhage. We did not find any evidence that

cerebral hyperoxia is associated with either death or severe brain damage. We found no associ-

ations between the burden of cerebral hypo- or hyperoxia and the three blood biomarkers

(S100beta, BFABP, and Neuroketal).
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