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Abstract
Measuring the spatiotemporal complexity of cortical responses to direct perturbations provides a reliable index of the
brain’s capacity for consciousness in humans under both physiological and pathological conditions. Upon loss of
consciousness, the complex pattern of causal interactions observed during wakefulness collapses into a stereotypical slow
wave, suggesting that cortical bistability may play a role. Bistability is mainly expressed in the form of slow oscillations, a
default pattern of activity that emerges from cortical networks in conditions of functional or anatomical disconnection.
Here, we employ an in vitro model to understand the relationship between bistability and complexity in cortical circuits. We
adapted the perturbational complexity index applied in humans to electrically stimulated cortical slices under different
neuromodulatory conditions. At this microscale level, we demonstrate that perturbational complexity can be effectively
modulated by pharmacological reduction of bistability and, albeit to a lesser extent, by enhancement of excitability,
providing mechanistic insights into the macroscale measurements performed in humans.
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Introduction
An emerging idea in theoretical neuroscience is that complex
behaviors and cognitive functions rely on an optimal balance
between functional integration and functional differentiation in
cortical circuits, otherwise defined as brain complexity (Tononi
and Edelman 1998; Sporns et al. 2000; Bassett and Bullmore 2009;

Deco et al. 2015). Neurophysiologically, this balance is contingent
on the ability of multiple, functionally specialized groups of corti-
cal neurons (differentiation) to engage in rapid causal interac-
tions (integration) and produce complex patterns of activity.

Different metrics have been devised to gauge brain com-
plexity based on the analysis of spontaneous activity in terms
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of entropy and mutual information (Tononi et al. 1994; Amigo
et al. 2015), causal density (Seth et al. 2011), or through the inte-
gration of neuroimaging data in graph theoretical models
(Bullmore and Sporns 2009; Deco et al. 2015). Recently, these
metrics have been complemented by a novel measure of brain
complexity in humans that is based on direct cortical perturba-
tions: the Perturbational Complexity Index (PCI) (Casali et al.
2013; Koch et al. 2016). Measuring PCI involves 2 steps: (1) per-
turbing a subset of cortical neurons with transcranial magnetic
stimulation (TMS) to engage distributed, causal interactions in
the brain (integration) and (2) measuring the compressibility
(algorithmic complexity) of the resulting electroencephalo-
graphic (EEG) response.

Empirically, it has been demonstrated that the complexity
of cortical responses (i.e., PCI) reliably discriminates between
consciousness and unconsciousness in healthy humans during
sleep and anesthesia as well as in brain-injured patients.
Indeed, when consciousness is lost during non-rapid eye
movement (NREM) sleep (Massimini et al. 2005), anesthesia
(Ferrarelli et al. 2010), and the vegetative state (Rosanova et al.
2012), the large-scale differentiated pattern of cortical activa-
tion usually triggered by TMS during wakefulness invariably
collapses into a low-complexity slow wave. Crucially, perturba-
tional complexity is recovered upon awakening from NREM
sleep or anesthesia and when patients recover consciousness
from the vegetative state (Rosanova et al. 2012). In all these
cases, the TMS-evoked slow wave typical of unconscious states
is replaced by a complex spatiotemporal response with high
PCI. These bedside TMS/EEG measurements are clinically rele-
vant (Casarotto et al. 2016) and raise the general question of
which fundamental mechanisms underlie the reduction and
the recovery of complex responses in cortical circuits.

Intracranial electrical stimulations (ESs) and recordings in
humans (Pigorini et al. 2015) suggest that, at least during NREM
sleep, the slow-wave-like response evoked by direct perturba-
tion might be reflective of an underlying network bistability,
that is, the tendency of cortical neurons to fall into a silent
period or Down state after an initial activation (Sanchez-Vives
and Mattia 2014). An interesting possibility is that such bistable
dynamics prevents causal interactions between distributed
groups of cortical neurons (Pigorini et al. 2015), ultimately lead-
ing to the loss of complexity observed during sleep, anesthesia,
and pathological conditions in humans (Massimini et al. 2012).

Thoroughly exploring and understanding the relationships
between bistability, causality, and complexity in cortical net-
works requires a simplified model. To this end, in vitro cortical
slices represent a good option for different reasons: (1) they are
accessible to direct ES and multielectrode recordings; (2) they
have been extensively validated as a model for cortical bistabil-
ity through the emergence of spontaneous sleep-like slow
oscillations (SOs) (Sanchez-Vives and McCormick 2000); (3) they
reproduce the fundamental behavior of cortical circuits after
deafferentation (Timofeev et al. 2000), a common consequence
of brain injury; and (4) the emergent activity can be manipu-
lated by different means, such as pharmacological agents.

Here, we test whether the ability of cortical circuits to engage
in complex patterns of causal interactions can be enhanced by
reducing sleep-like bistability or by manipulating excitability in
cortical neurons. To this end we employed 2D arrays to record
the response of cortical slices to direct ES performed in different
conditions: (1) during a pattern characterized by sleep-like bist-
ability reflected in the emergent SOs, (2) in an “awake-like” state
where neuronal bistability is reduced by bath application of nor-
epinephrine (NE) and carbachol (CCh), drugs with effects largely

mediated through blockade of K+ channels (Foehring et al. 1989;
Schwindt et al. 1989), and (3) after bath application of kainate
(Ka), which increases excitability of the cortical network
(Cunningham et al. 2003). We then measured the ability of the
networks to sustain a deterministic pattern of activation by
means of phase-locking analysis and we computed the complex-
ity of multisite cortical responses by developing an in vitro
adapted version of PCI (henceforth, slice PCI or sPCI).

We found that bistability in cortical slices is associated with
an early break-off of phase-locking of the response and with
low-sPCI values. A reduction of bistability in awake-like states
resulted in sustained phase-locking and higher sPCI values, a
result that was not the consequence of merely increasing excit-
ability. These findings show that cortical complexity can be
neuromodulated in vitro and provide a valid model to under-
stand the mechanisms of loss and recovery of complexity as
measured by means of TMS/EEG in healthy and pathological
human brains.

Materials and Methods
Slice Preparation and Pharmacological Manipulation

Ferrets were cared for and treated in accordance with Spanish
regulatory laws (BOE 256; 25 October 1990), which comply with
the European Union guidelines on protection of vertebrates used
for experimentation (Strasburg 18 March 1986). All experiments
were approved by the Ethics Committee of the Hospital Clinic.

Slices were prepared as previously described (Sanchez-Vives
2012). Briefly, animals (4–7 months old, either sex) were anesthe-
tized with sodium pentobarbital (40mg/kg) and decapitated. The
entire forebrain was rapidly removed and placed in oxygenated
cold (4–10 °C) bathing medium. 400-μm-thick coronal slices of the
occipital cortex containing primary and secondary visual cortical
areas (areas 17, 18, and 19) were used. A modification of the
sucrose-substitution technique was used during the preparation
to increase tissue viability (Aghajanian and Rasmussen 1989).

Slices were then placed in an interface style recording chamber
and bathed for 15min in an equal mixture of the sucrose-
substituted solution and artificial cerebrospinal fluid (ACSF).
Afterwards slices were maintained 1–2h in ACSF for recovery.
Throughout the rest of the experiment an in vivo-like ACSF was
applied. Solutions were aerated with 95% O2, 5% CO2 to a final pH
of 7.4, and the temperature during the experiment was maintained
at 34.5–36 °C. ACSF contained (in mM): NaCl, 126; KCl, 2.5; MgSO4, 2;
NaH2PO4, 1; CaCl2, 2; NaHCO3, 26; and dextrose, 10. The modified
ACSF had the same ionic composition except for different levels of
(in mM): KCl, 4; MgSO4, 1; and CaCl2, 1. Electrophysiological record-
ings started after allowing at least 2h of recovery.

Pharmacological manipulation was done by dissolving drugs
in the ACSF: CCh (Sigma-Aldrich) and NE (Sigma-Aldrich) were
applied at a concentration of 0.5 and 50 μM respectively, while
Ka (Tocris) was applied at a concentration of 0.2 μM. We usually
waited more than 2000 s after the application of the drugs in
order to let them act and to obtain a stable pattern of electrical
activity.

Electrophysiological Recordings

Extracellular local field potentials (LFPs) were obtained with a
16-channel SU-8-based flexible microprobe (Illa et al. 2015) with
a spatial distribution spanning both infra- (8 channels) and
supra-granular (8 channels) layers (see Fig. 1a). The raw signal
was amplified by 100 and high-pass filtered (cut frequency
0.1 Hz) (Multichannel System MCS GmbH—Harvard Bioscience
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Inc, Reutlingen, Germany) and digitized at 10 kHz (Power1401
analog-to-digital converter/digital-to-analog converter (ADC/
DAC), Cambridge Electronic Design).

Electrical Stimulation

Single pulse ES was applied using concentric electrodes (125 μm
diameter; FHC) placed in infragranular layers close to recording
sites 3 and 7 as illustrated in Fig. 1a. The site of stimulation (infra-
granular or deep layers) was chosen based on the notion that
spontaneous Up states are initiated in layer 5 (Sanchez-Vives and
McCormick 2000; Chauvette et al. 2009; Sakata and Harris 2009).
Pulses had a duration of 0.1ms, an intensity of 150 μA, and were
applied every 10 s, with a random jitter of 0.5–1.5 s to avoid activity
entrainment to the specific frequency of stimulation. Such param-
eter selection was based on preliminary tests in order to assure
consistency and repeatability of the responses. In particular, we
aimed at obtaining a complete SO cycle in response to each pulse
when the network was showing spontaneous SOs (Shu et al.
2003). This assured in turn consistency in the responses to electric
pulses in the conditions of higher excitability (NE + CCh, Ka). The
stimulation was triggered from Spike2 using a Power1401 ADC/
DAC (Cambridge Electronic Design) and converted to a current
pulse using a stimulus isolator (360A, WPI). For each of the three
conditions (SO, NE + CCh, Ka), we recorded 50 s of spontaneous
activity before starting the stimulation phase, which lasted for
160 s such that the number of ESs applied was 15.

Data Preprocessing, Multiunit Activity, and SO
Parameters

Analysis was performed with custom software written in
Matlab (Mathworks). Multiunit activity (MUA) was estimated as

previously described (Reig et al. 2010): given that power spectra
of population firing rate have Fourier components proportional
to the firing rate itself (Mattia and Del Giudice 2002), high-
frequency components of the LFP can be seen as a linear trans-
form of spiking activity. Thus, power changes in the Fourier
components at high frequencies of the LFP provide a reliable
estimation of the population firing rate. MUA traces were calcu-
lated then as the average power of the normalized spectra in
the frequency band 0.2–1.5 kHz, and downsampled at 200 Hz.
To balance large fluctuations of nearby spikes, MUAs were
scaled logarithmically. Furthermore, a moving average with a
sliding window of 80ms was applied to smooth the MUA time
series. The MUA waveforms (or firing rate) cited in the main
text refer to these filtered logarithmic traces. Upward and
downward transitions to identify Up states were individuated
by posing a time and an amplitude threshold on the smoothed
MUA traces. Up state frequency of a recording period was then
defined as the inverse of the mean interval between consecu-
tive Up state onsets.

To analyze the response to stimulation, MUA waveforms of
every trial were aligned at the stimulation time, and a range
starting 1 s before the pulse and ending 2 s after was taken into
account. The total amount of firing was calculated by adding
up MUA values for each time sample across channels, subtract-
ing baseline (averaged value of the prestimulus activity) and
then averaging across slices.

Relative Power Spectrum and Approximated Entropy

Power spectrum density analysis was carried out by Welch’s
method with Hanning windowing on 50 s of spontaneous activ-
ity. For each channel and slice, the values in the range
(200–1500 Hz) of the obtained spectra in NE + Cch and Ka

Figure 1. Cortical slice recording setup and experimental conditions. (a) Setup arrangement of recording and stimulating electrodes on a V1 ferret coronal slice includ-

ing cortex (A) and white matter (B). The recording array was placed on the cortex, with 8 out of 16 recording sites (C) covering deep layers (numbers from 1 to 8 in the

electrode scheme), and the remaining 8 spanning superficial layers (D) (from 9 to 16 in the scheme). Stimulation was carried out through a concentric electrode placed

next to recording sites 3 and 7 (red asterisk in the scheme), reaching the cortex through a hole in the recording array. (b) Three fragments of spontaneous emerging

activity in the slice, LFP (top) and MUA (bottom) in the control condition (SOs, blue). Black triangles at the top and discontinuous lines indicate moments of ES. (c)

Same in 50 μM NE and 0.5 μM CCh, red. (d) Same in 0.2 μM kainic acid, gray. (e) Normalized increase in firing rate following the application of NE + CCh (red) and of Ka

(gray) with respect to the control (SOs) condition. Average across slices and channels. (f) Same for entropy measurements.
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conditions were added up and then normalized to each respec-
tive measure during SO.

Approximated Entropy (ApEn) was computed to measure sig-
nal irregularity based on how frequently individual temporal pat-
terns reoccur in the data (Pincus and Goldberger 1994; Schmidt
et al. 2013), and was obtained using a script for Matlab written by
Kijoon Lee based on (Chon et al. 2009). Briefly, the algorithm scans
the data looking for approximated matches for detected patterns
of 30ms of length, imposing a tolerance threshold on similarity of
0.5 × std of the analyzed data (both parameters were chosen as
the ones that maximized the entropy measure (Chon et al. 2009)).
For each of these patterns, all matches are evaluated considering
the first subsequent point: if this data point is different, ApEn is
increased. ApEn was computed separately for each channel and
slice on 50 s of spontaneous MUA traces, after low-pass filtering
(cut-off frequency 2Hz) to capture regularity of firing rate changes
at low frequencies.

Phase-Locking Analysis

Instantaneous phase-locking factor (PLF) was computed as
reported in (Sinkkonen et al. 1995). Briefly, PLF is obtained as the
absolute value of the average of the Hilbert Transform of MUA
responses for all single trials. Statistical differences from baseline
were assessed for each channel by using a bootstrap procedure:
for each channel, prestimulus points (from −1 to −0.5 s with
respect to the stimulation) were random shuffled (Lv et al. 2007)
and the instantaneous maximum value across such surrogated
data set was computed. This procedure was repeated 350 times
to obtain a distribution of 35 000 bootstraps (350 permutations ×
100 samples). The 1-tail (1-α) 100th percentile of this distribution
was used to estimate a significance threshold for the centered
averaged data for that channel and those PLF values below
threshold were set to zero. Then, in order to eliminate spurious
significant points, values over the threshold that did not last for
at least 3 consecutive time stamps (i.e., for at least 15ms) in at
least 3 channels, were also set to 0. Comparisons between slices
and conditions were computed by averaging across slices the
mean maximum time in which PLF was significant across chan-
nels (i.e. maximum time of significant PLF or max PLFt).

Adaptation of PCI Algorithm for In Vitro Recordings

The PCI was computed with an adapted version for in vitro
recordings of the original algorithm (Casali et al. 2013) describing
EEG responses in humans to TMS stimulation. The main differ-
ences are on the data preprocessing. In the original algorithm,
Current Source Density Analysis was performed on EEG record-
ings to avoid effects of volume conduction, and processed data
were then centralized. As the number of sources was very high
(about 3000), data were normalized with the standard score
method in order to have a robust procedure for multiple compar-
isons. In the case of in vitro LFP recordings volume conduction is
negligible, thus we decided to calculate PCI directly from the
recorded signal. sPCI was calculated from the MUA traces since
the LFP is often subject to noise originating from many sources,
such as fluctuations in the solution flux, electrical power, and
because MUA is directly tight to neuronal activity. Furthermore,
the number of channels in our case was much lower (16), so we
switched from a global to a local statistics procedure, and chan-
nels were analyzed independently. Data centralization was made
by subtracting for each channel the mean prestimulus activity.
Statistical comparison was performed through the same boot-
strap procedure used for phase-locking analysis, but in this case

surrogate averaged waveforms were centralized. The final boot-
strap distribution was constructed out of the instantaneous
mean values of the surrogate data set (instead of the maximum),
and finally composed by 70 000 points as we took into account
the entire 1 s preceding the stimuli. In this way, a binary spatio-
temporal distribution of significant activity (SS(x,t)) was calcu-
lated: SS(x,t) = 1 for significant activity at channel x and time t,
SS(x,t) = 0 otherwise (Casali et al. 2013). Statistical significant
level α was set to <0.001 to have very conservative statistics.

The remaining part of the in vitro sPCI algorithm is identical
to the original one as explained in detail in (Casali et al. 2013).
Briefly, Lempel-Ziv complexity (cL) was computed on the SS(x,t)
binary matrices of dimension L (total number of spatiotemporal
samples = number of channels × number of samples), using an
adapted routine from (Kaspar and Schuster 1987). The algorithm
ran through the first columns of the input matrix searching for
patterns, and this search was repeated for each subsequent col-
umn while keeping track of patterns encountered in previous
columns. The asymptotic behavior of cL for random strings is
LH(L)/log2 (L), where H(L) is the source entropy:

( ) = − ( ) − ( − ) ( − )H L p p p plog 1 log 11 2 1 1 2 1

and p1 is the fraction of “1” contained in the binary string of
length L.

The sPCI was then defined as the normalized Lempel-Ziv
complexity (¯ )cL of the evoked MUA spatiotemporal patterns, SS
(x,t), with x = 1…L1 and t = 1…L2. Channels were sorted by their
number of significant samples, as an approximation of the
equalization with the lower complexity of the spatial ordina-
tion of the binary matrices.

Having these matrices as input, for each sample t the algo-
rithm calculated a number cl(t) that corresponded to the
Lempel-Ziv complexity of the bi-dimensional sequence of
length l(t). sPCI was then equated to the Lempel-Ziv complexity
of the complete bi-dimensional sequence of length L = L1 × L2,
normalized by LH(L)/log2 (L):

= ( = ) ×
( )

( )
c t L

L

LH L
sPCI

log
.l 2

2

The normalization on the source entropy assures that the
complexity measure is minimally dependent on the total
amount of significant activity, and maximally dependent on
the formation of patterns in the data.

Furthermore, the time evolution of sPCI can be studied by
computing the index for intervals of increasing duration:

( ) = ( ) ×
( )

( )
t c t

L

LH L
sPCI

log
.l

2

Other Analyses and Statistics

The onset of the Down state evoked during SOs (Fig. 3c) was
identified by searching in each slice and channel for strong pos-
itive deflections in the averaged LFP signal and a correspondent
fast suppression of the firing rate in the MUA waveforms. A
supervised automatic procedure was applied to detect the
transition from the Up to the Down state, which was identified
as the moment when the MUA was sustained for a minimum
of 50ms and then dropped 10% below the baseline activity. The
correlation of those values with the max PLFt measure was
described with multiple linear regressions. Outlier values were
individuated by imposing a threshold of 10 standard deviations
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from the data median, and excluded from the regressions.
Before fitting, data were grouped by computing the agglomera-
tive hierarchical cluster tree (Matlab “linkage” function), using
the Weighted Average Distance method, with first-order
Minkowski metrics. Then clusters were constructed from the
tree by imposing 4 as the maximum number of clusters (Matlab
“cluster” function). Sixty points (light-gray cluster in Fig. 3c)
were excluded from the fit since they corresponded to those
channels in which stimulation was not effective. While such
condition created a bias in the recognition of the Down state
onset, it did not affect the computation of PLF or of the PCI. The
statistics in both procedures assured that parts of the
responses not reproducible across ESs did not result in false
phase-locking or significant points in the binary matrices from
which the PCI is calculated (see below).

Significant changes in the firing rate and ApEn for the NE +
CCh and Ka conditions with respect to the SOs condition were
evaluated with 1-sample t-tests, while significant changes in
PLFt and sPCI populations to compare the NE + CCh and Ka
conditions with the SOs condition were evaluated with the 2-
sample Kolmogorov–Smirnov test (α = 0.01).

Results
Extracellular LFPs were recorded from a total of 29 ferret acute
primary visual cortex (V1) coronal slices (Sanchez-Vives and
McCormick 2000) initially engaged in the generation of Up and
Down states or SOs (Steriade et al. 1993; Sanchez-Vives and
McCormick 2000; Compte et al. 2008). An additional sample (n =
21) including recordings from other cortical areas (prefrontal,
motor, and somatosensory cortex) is reported in the
Supplementary Data. We recorded cortical activity by means of
16-channel arrays covering an area of 3mm by 0.866mm. Eight
channels were used to record from the upper half of the cortex
and eight channels from the lower half, corresponding to
superficial versus deep layers, respectively (Fig. 1a). ES was
delivered through bipolar electrodes in the form of single
pulses applied to layer 5 (Fig. 1a). The stimulation parameters
(intensity 150 μA, duration 0.1ms, 15 trials, interval 10 s ± a ran-
dom jitter between [0.5–1.5] s) were empirically selected based
on preliminary experimental trials in order to assure consis-
tency and reliability of the responses. From the LFP, we com-
puted the MUA. The MUA provides a reliable estimation of the
local population firing rate (Mattia and Del Giudice 2002; Reig
et al. 2010). The responses to the ES were observed under 3 dif-
ferent conditions: during SOs, in an “awake-like” state in the
presence of bath-applied NE (Constantinople and Bruno 2011)
and CCh, and in a condition of increased network excitability
induced by the bath application of Ka (Cunningham et al. 2003).
For more detailed information see the “Materials and Methods”
section. The values in the following sections will be presented
as “mean ± SEM.”

Intrinsic Bistable Dynamics: Low Causality and Low
Complexity

First, we recorded spontaneous SOs generated by the visual cortex
in vitro without pharmacological treatment (Sanchez-Vives and
McCormick 2000). The emergent SOs were characterized by a
mean frequency of 0.23 ± 0.04Hz (n = 29). The active periods of
the oscillation, or Up states, were identified by negative deflections
in the LFP traces and by an increase in the MUA for a mean dura-
tion of 0.30 ± 0.03 s. Up states alternated with silent periods, or
Down states, that lasted on average 4.76 ± 0.70 s and where the

LFP underwent a positive deflection and the firing rate was low
(Fig. 1b).

In this network state, the electric pulses delivered randomly
to layer 5 invariably evoked a SO (Shu et al. 2003) (Fig. 1b).
Evoked Up states were highly similar to the spontaneous ones
(Shu et al. 2003) and reproducible across trials (Fig. 2a, n = 15).
The evoked Up states were characterized by a strong negative
deflection in the LFP (#1 in Fig. 2a) and were associated with an
increased level of firing visible in the MUA trace (Fig. 2b). This
period of activation was followed by a long-lasting Down state,
characterized by a positive deflection in the LFP (#2 in Fig. 2a)
and by cessation of firing. Thus, following a stimulus, the net-
work engaged in the generation of a slow wave, revealing its
own bistable dynamics in response to electrical stimuli. After
this stereotyped bistable response, the neuronal activity gradu-
ally returned to the prestimulus level (#3 in Fig. 2a).

Next, we investigated the impact of such intrinsic bistable
dynamics on the deterministic effect of the perturbation and
the overall network complexity. To this end, we first subtracted
the mean prestimulus activity in each channel from the

Figure 2. PLF and PCI calculated in three representative visual cortex slices dur-

ing SOs, NE + CCh and Ka. In (a) and (b) blue traces represent respectively LFP

and MUA of all single (n = 15) trials obtained during a SO representative record-

ing from one single channel. Numbers from 1 to 3 in the LFP panel represent

the evoked Up state, the subsequent Down state and the recovery of spontane-

ous activity, respectively. Black lines indicate the average. For all channels of

the same slice (black arrow on the right), panels c, d, and e show centralized

averaged MUA, statistically significant PLF and binary statistics matrices of sig-

nificant activity, respectively. In all these cases, channels are sorted by the total

amount of statistically significant activity. f–j. Same for a representative NE +

CCh recording (n = 15). k–o. Same for a representative Ka recording (n = 15).
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average MUA responses (centralization, see “Materials and
Methods”) to emphasize the departure from the baseline and to
allow comparison across trials. An example of the result of this
procedure is depicted in Fig. 2c, which shows the centralized
MUA obtained from all the channels recorded in a representa-
tive slice for the SO condition. Then, based on the MUA, we
assessed the deterministic effects of the stimulation by com-
puting the instantaneous PLF (Pigorini et al. 2015), defined as
the absolute value of the mean Hilbert Transform of the single
trial responses. A bootstrap procedure was employed to iden-
tify when the instantaneous PLF was significantly different
from the baseline and all values below the threshold (α < 0.001)
were set to zero (see “Materials and Methods”). Figure 2d shows
the time course of the significant PLF for all channels of a slice
in the SO condition.

Finally, in order to quantify the complexity of the spatio-
temporal response induced by ES, we computed the sPCI by
using a procedure adapted from the one originally used to cal-
culate the PCI from TMS-evoked cortical activations in humans
(Casali et al. 2013). Here, the spatiotemporal response was
represented by the statistically significant poststimulus activity
of the centralized MUA for each time sample and channel, with
respect to the prestimulus activity. Significant increases and
decreases of MUA activity with respect to baseline were then
set to 1 whereas nonsignificant variations were set to 0, result-
ing in a binary matrix. By analogy with the matrices of TMS-
evoked cortical significant sources obtained in humans, these
matrices of electrically evoked significant MUA are called SS(x,t)
(Fig. 2e). As in the original PCI calculation, the Lempel-Ziv com-
plexity was then computed on the SS(x,t) binary matrix of spa-
tiotemporal activation and the result was normalized by the
source entropy, thus obtaining sPCI (see “Materials and
Methods”). In the SO condition (n = 29), the deterministic com-
ponent of the response was limited to the initial activation and
was soon obliterated by the occurrence of a long-lasting Down
state followed by a stochastic resumption of MUA. Thus, the SS
(x,t) binary matrix was restricted and easily compressible
(Fig. 2e).

Reducing Bistability Increases Causality and
Complexity

We next simulated the neuromodulatory activating system
(Foehring et al. 1989; Schwindt et al. 1989) by means of bath
application of noradrenergic (50 μM NE) and cholinergic (0.5 μM
CCh) agonists to 14 visual cortex slices and to 21 slices from
other cortical areas: prefrontal (n = 11), somatosensory (n = 5),
and motor cortex (n = 5) (see Supplementary Data). We report
here the results from the visual cortex slices. The concentration
of these neuromodulators varies with arousal (Jones 2004) and
they are known to affect cortical dynamics (Constantinople and
Bruno 2011) by reducing network bistability consisting of Up
and Down states. Following the application of NE + CCh, the
slow, regular alternation between Up and Down states was
replaced by irregular fluctuations of the LFP at around 2–3Hz
(Fig. 1c), on a background of enhanced high-frequency (beta,
gamma) activity. The population firing rate was increased on
average by 1.48 ± 0.08 (Fig. 1e, P = 3.98 × 10−8, 1-sample t-test)
with respect to the firing observed during the Up states of the
SO condition. To further compare the “awake-like” state with
the departing SO condition, we calculated an index of pattern
regularity, the ApEn (Pincus and Goldberger 1994) computed for
the spontaneous MUA patterns recorded through each channel.
In the presence of NE + CCh, the ApEn increased by 1.39 ± 0.04

(Fig. 1f, P = 1–50 × 10−13, 1-sample t-test) with respect to the SO
condition (Schmidt et al. 2013).

NE + CCh induced clear-cut changes in the slice responses
to electrical perturbation in the LFP (Fig. 2f). The activation pro-
duced by the ES led to a sharp response followed by a short-
lasting (<0.25 s) decrease in firing rates (−1.15 ± 0.04 a.u. with
respect to the prestimulus baseline in the representative chan-
nel in Fig. 2g), which was followed by a rebound of neuronal
activity. This resumption of neuronal firing had a temporal
structure, including a chain of responses activated at different
latencies (Fig. 2h. Frequency 1.47 Hz for the representative
channel in Fig. 2f,g) that recurred for up to 2 s.

The PLF duration increased substantially in NE + CCh (up to
2 s) with respect to the SO condition (Fig. 2i). In this case, the SS
(x,t) was extended in space and time (Fig. 2j) throughout the
sequence of significant decreases and increases of MUA evoked
by the stimulation and thus the sPCI attained higher values.

Increases in Causality and Complexity Cannot be
Explained in Full by Enhanced Excitability

Finally, we asked whether the increase in complexity and
phase-locking duration observed during NE + CCh administra-
tion could be simply due to increased excitability in the network.
To address this question, we applied 0.2 μM Ka in the bath to 15
visual cortex slices that presented spontaneous SOs. Ka is an
ionotropic glutamatergic receptor agonist that has often been
used to enhance excitability; it is known to induce a broadband
power increase in the activity with emerging peaks in the beta
and gamma ranges (Cunningham et al. 2003), probably following
enhanced spiking activity (Ray et al. 2008). Similar to the NE +
CCh condition, the application of 0.2 μM Ka resulted in an irregu-
lar pattern characterized by a dominant 2–3Hz rhythm (Fig. 1d)
and enhanced high-frequency oscillations (beta and gamma) in
the LFP (not shown). Consistently, the population firing rate
increased by a factor of 2.56 ± 0.45 with respect to the one
detected during the Up states of the SO (Fig. 1e, P = 7.27× 10−4,
1-sample t-test), thus enhancing excitability to a greater extent
than in the NE + CCh condition (P = 0.041, 2-sample
Kolmogorov–Smirnov test). Further strengthening this notion,
we calculated the ApEn (Pincus and Goldberger 1994). In the
presence of Ka, the ApEn increased by a factor of 1.71 ± 0.08
with respect to the SO condition (Schmidt et al. 2013) (Fig. 1f, P =
7.44× 10−17, 1-sample t-test). Ka, therefore, increased the ApEn
of the population firing rate significantly more than NE+CCh did
(P = 6.76× 10−4, 2-sample Kolmogorov–Smirnov test). Despite
such increased excitability, the ES during Ka triggered a simple
LFP response (Fig. 2k). The response was associated with a sharp
activation followed by a brief silent period (−1.38 ± 0.02 a.u. with
respect to the prestimulus baseline in the MUA trace of the rep-
resentative channel in Fig. 2l). This was followed by a prompt
resumption of firing (Fig. 2l,m). Crucially, the rebound of activity
observed during Ka was not time-locked to the stimulation and
lacked an organized sequence of evoked waves like the one
observed in the NE + CCh condition. Hence, kainic acid produced
a stronger enhancement of network excitability (as reflected in
the firing rate and in the entropy measures), but failed to
increase the PLF duration (Fig. 2n), and SS(x,t) (Fig. 2o) resulting
in low-sPCI values in the visual cortex.

To investigate whether these observations could extend to
other neocortical areas, we applied 0.2 μM Ka to an additional
sample of 21 slices: prefrontal (n = 11), somatosensory (n = 5),
and motor cortex (n = 5). In this more heterogeneous sample,
Ka induced a significant increase in sPCI with respect to
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control; however, this increase was significantly smaller than
the one induced by NE + CCh (see Supplementary Data Figs 1
and 3). This finding points to a certain dependence of sPCI on
excitability, which is negligible in the visual cortex but more
evident in other areas of the neocortex. Nevertheless, no rela-
tionship was found between the firing rate and the sPCI within
conditions (see Supplementary Data Fig. 2).

Phase-Locking and Complexity of Cortical Responses
Across Conditions

To systematically assess significant differences across condi-
tions, we computed, for each visual cortex slice, the average
duration of the significant PLF across all channels (max PLFt,
Fig. 3a). Despite inter-channel variability in the intensity of the
response, the values of max PLFt in the SOs condition (blue his-
togram) were narrowly distributed with an average max PLFt of
0.25 ± 0.02 s (n = 29, Fig. 3b), roughly corresponding to the dura-
tion of the evoked Up state. Interestingly, in the SO condition
we found that the time of decay of PLF was linearly correlated
with the onset of the Down state (see “Materials and
Methods”), shown for each channel and slice in Fig. 3c (P = 1.54
× 10−78, multiple linear regression between black and green
points, black line). Sixty points (out of 464; light-gray cluster in

Fig. 3c) identified by hierarchical clustering analysis were
excluded from the fit because of the inconsistency of their
response to the stimulus (for details see caption of Fig. 3c ).

In NE + CCh the average max PLFt across channels and slices
(Fig. 3a) was significantly prolonged by 0.79 ± 0.09 s with respect to
the SO condition (Fig. 3b, P = 4.38× 10−6, 2-sample Kolmogorov–
Smirnov test). In Ka, the average max PLFt across all slices was
0.51 ± 0.07 s, which was significantly longer when compared with
the SO condition (Fig. 3b, Ka condition vs. SO condition: P = 8.90×
10−3, 2-sample Kolmogorov–Smirnov test), and with a trend
towards being shorter than the one observed in NE + CCh (not sta-
tistically significant; 2-sample Kolmogorov–Smirnov test).

Finally, we computed and compared the values and the time
course of sPCI for all channels and slices across the 3 conditions.
Figure 4a shows that, on average, sPCI values in the SO condition
and in the Ka condition were not statistically different (0.103 ±
0.005 and 0.117 ± 0.001, respectively) and, in both cases, were sig-
nificantly lower with respect to the NE + CCh condition (0.184 ±
0.004, P = 2.84× 10−7, 2-sample Kolmogorov–Smirnov test). Along
the same line, the time courses of sPCI calculated across slices in
the SO condition and in the Ka condition (respectively blue and
gray line in Fig. 4b) were comparable, reaching the plateau 0.25 s
after the stimulation, in spite of the differences in terms of firing
rates and excitability between both conditions. In NE + CCh,
instead, sPCI increased during the first 0.5 s after the stimulus
and kept growing, albeit at a slower rate, up until 2 s (red line in
Fig. 4b).

Discussion
Bistability, Causality, and Complexity in Different
Cortical Dynamic States

A series of recent studies in humans have shown that quantify-
ing the information content of the patterns of causal interac-
tions induced by a direct cortical perturbation with TMS
provides an index (PCI) that reliably correlates with the loss
and recovery of consciousness in different conditions (Casali
et al. 2013). These macroscale-level studies have practical
implications at the bedside and raise the important question
regarding the basic neuronal mechanisms responsible for the
collapse and recovery of complexity as assessed through corti-
cal perturbations. In the present work, we aimed at addressing
this problem by applying a similar perturbational approach to
cortical slices that were set to different functional states
through pharmacological manipulations. At this microscale
level, we found that: (1) during slow wave sleep-like dynamics
(SO) the overall network complexity was low, (2) complexity in

Figure 4. Population values and time evolution of slice PCI. (a) sPCI values aver-

aged across visual cortex slices (0.103 ± 0.005 for SO condition, n = 29; 0.184 ±

0.004 for NE + CCh condition, n = 14, P = 2.84 × 10−7, 2-sample Kolmogorov–

Smirnov test; 0.117 ± 0.001 for Ka condition, n = 15). (b) Time evolution of sPCI

in the 3 experimental conditions.

Figure 3. Population PLF of responses and its relationship to the initiation of

the Down state. (a) Distribution of max PLFt (maximum time of significant PLF)

values for each channel and slice in the SO condition (blue, n = 464 correspond-

ing to 16 channels for 29 slices), in the NE + CCh condition (red, n = 224 corre-

sponding to 16 channels for 14 visual cortex slices) and in the Ka condition

(gray, n = 240 corresponding to 16 channels for 15 slices). (b) Average max PLFt

across channels and slices averaged from the data in a (*P = 8.90 × 10−3; **P =

4.38× 10−6, 2-sample Kolmogorov–Smirnov test). (c) Correlation of Down state

starting time with max PLFt for each channel and slice during SOs (black and

green points, n = 464 corresponding to 16 channels for 29 slices). Values are

reported with respect to the stimulation time. Four outliers (red dots in the

inset on the right-hand side) were identified by posing a threshold of 10 STD of

distance from the data median, and were excluded from the fit. Data were

grouped by hierarchical clustering analysis, and then fitted with a linear regres-

sion taking into account 2 of the 3 obtained clusters (P = 1.54× 10−78, multiple

linear regression, black and green points, black line). Those 2 clusters represent

channels with shorter lasting responses and long-lasting responses. Sixty

points (light-gray cluster) were excluded from the fit since it was a clear-cut

population with no relationship between the Down state initiation and max

PLFt, corresponding to cases where the stimulation seldom evoked a SO (for

more information check “Materials and Methods”).
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the visual cortex was not increased by simply increasing neuro-
nal excitability and firing rates (Ka), (3) the administration of
noradrenergic and cholinergic agents (NE + CCh), which reduce
sleep-like bistability, was more effective in increasing perturba-
tional complexity. In other neocortical areas (prefrontal, motor,
and somatosensory cortices; Supplementary Data) we also observed
a significant increase in PCI in NE+CCh that returned to control
values after their washout (see Supplementary Data Fig. 1).
Differently from visual cortex, in those areas a significant increase
in PCI in the Ka condition was also detected, albeit significantly
smaller than that in the NE + CCh condition.

The baseline condition of our experiment was the default mode
of activity typical of isolated cortical circuits in vitro (Sanchez-
Vives and McCormick 2000). In this condition, cortical networks
display sleep-like spontaneous activity characterized by recurrent
SOs. SOs are the hallmark of an intrinsic bistability between Up
and Down states of cortical networks (Sanchez-Vives et al. 2017).
The onset and maintenance of Up states is due to local reverbera-
tion in the cortex (Contreras et al. 1996; Sanchez-Vives and
McCormick 2000; Compte et al. 2003; Mattia and Sanchez-Vives
2012), while the transition back to the Down state is thought to be
controlled by a slow negative feedback given by slow K+ currents
(either Ca2+- and Na+-dependent [Sanchez-Vives and McCormick
2000; Sanchez-Vives et al. 2010], or adenosine triphosphate-
dependent [Cunningham et al. 2006]), although other activity-
dependent mechanisms such as synaptic depression (Holcman
and Tsodyks 2006) or GABAB activation (Mann et al. 2009) have also
been suggested. The network fails to maintain the self-activated
Up state when the build-up of activity-dependent K+ currents over-
comes the positive feedback inherent to local circuits (Compte et al.
2003). At this moment, the network falls into a silent state, and the
persistence of the outward currents generates a prolonged hyper-
polarization (Sanchez-Vives and McCormick 2000; Cunningham
et al. 2006; Sanchez-Vives et al. 2010) that acts as a refractory
period. Thus, due to bistability, cortical neurons tend to fall into a
silent, hyperpolarized state (Down state) after an initial activation.

One interesting possibility is that bistability may prevent
cortical circuits from engaging in sustained complex patterns
of causal interactions. Indeed, when we applied local electrical
stimuli to the slice in the baseline (SO) condition, we recorded
an LFP characterized by an initial activation, similar to sponta-
neous Up states, followed by a silent Down state, after which
MUA activity resumed with no relation to the stimulus, as dem-
onstrated by phase-locking analysis. Thus, the Down state not
only transiently interrupts neuronal firing but also disrupts the
chain of deterministic effects brought about by the initial acti-
vation. In essence, the analysis of the MUA shows that cortical
neurons, upon receiving an input (ES), following an initial acti-
vation, tend to hush and then forget. This observation is in line
with previous studies showing that the resumption of neuronal
firing after a spontaneously occurring Down state is a stochas-
tic process (Sanchez-Vives and McCormick 2000; Compte et al.
2003; Luczak et al. 2007; Chauvette et al. 2011). Notably, in the
SO condition, the onset of the evoked Down state coincided
with both the timing of the drop of PLF (Fig. 3c) and the timing
at which sPCI stopped growing (Fig 4b). This points to a mecha-
nism by which bistability may lead to loss of complexity: (1) the
bistable network falls into a silent Down state, (2) the Down
state brings about an irreversible loss of causality, and (3) at
this point, sPCI, which captures the information content of the
deterministic network response, stops growing and only attains
a low value (Figs 2 and 4).

Crucially, reducing bistability by adding NE and CCh to the
bath prevented this process. NE (1–100 μM) and CCh (<1 μM)

have been shown to increase spontaneous firing rate by a com-
bination of a pronounced and instantaneous effect of the cho-
linergic agonist and a more moderated but outlasting effect of
adrenergic neuromodulators (Schmidt et al. 2013), whose net
effect is largely mediated by blocking K+ conductances
(Foehring et al. 1989; Schwindt et al. 1989). In this condition,
the initial activation evoked a chain of deterministic causal
interactions leading to high values of both PLF duration and
sPCI. On the other hand, bistability could not be reduced by the
application of Ka, a glutamate agonist that is known to
enhance excitability, high-frequency synchronization, and fir-
ing rates (Cunningham et al. 2003) but has a limited action on
K+ channels. Here, we observed that Ka in the visual cortex
increased the firing rate (Fig.1e) and entropy (Fig.1f) of ongoing
activity, but had no effects on causality and perturbational
complexity (Figs 3 and 4). This observation is relevant for 2 rea-
sons. First, it highlights a fundamental difference between
spontaneous entropy and perturbational complexity; while the
first may be maximal for random patterns that are not neces-
sarily integrated, the latter captures only the share of informa-
tion that is integrated through causal interactions. Second, it
shows that increasing excitability is not enough to restore cau-
sality and complexity. In the additional sample from other cor-
tical areas (prefrontal, motor, and somatosensory cortices
reported in the Supplementary Data) Ka did induce a significant
increase in PCI with respect to control, albeit signficantly smal-
ler than that in NE + CCh. Still, no relationship was detected
between firing rate and PCI for different slices and conditions
(see Supplementary Data Fig. 2).

A certain dependence of PCI on excitability levels is
expected based on the original formulation of this index (Casali
et al., 2013): PCI measures the information content of brain
responses that are integrated in space and time. Low levels of
cortical excitability prevent the network from producing sus-
tained responses and thus integration. Hence, a certain level of
excitability may be necessary but not sufficient to attain high
PCI. This principle is relevant for developing measures in
humans, as there are different conditions, such as seizures,
sleep, and some types of anesthesia, in which the cortex pro-
duces hyper-excitable, large responses that lack information
content, or complexity (Massimini et al. 2007).

Implications for Human Studies

Unlike the PCI measured in humans, which is calibrated based
on subjective reports (Casali et al. 2013; Casarotto et al. 2016),
sPCI has obviously no relevance for consciousness; nonetheless,
it provides a fundamental link between macroscale-level mea-
surements and microscale neuronal events. At the macroscale
level, the complex pattern of causal interactions triggered by
TMS in awake humans collapses during sleep into a low com-
plexity response associated with a stereotypical slow wave
(Massimini et al. 2005). Such low complexity state reflects in part
the local functional connectivity dominating the network during
slow wave sleep or deep anesthesia (Bettinardi et al. 2015), which
may be relevant for the functions of slow wave sleep (for a
review see Diekelmann and Born 2010). At the mesoscale level,
simultaneous intracortical ES and LFP recordings in humans sug-
gest that the slow wave evoked during sleep might be associated
with a Down state followed by a break-off of deterministic inter-
actions (Pigorini et al. 2015). Crucially, the present microscale
level exploration directly links neuronal bistability to perturba-
tional complexity and further demonstrates that by manipulat-
ing the first it is possible to affect the latter.
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These findings are relevant for understanding how cortico-
cortical information integration changes from wakefulness to
NREM sleep, but may also have important implications for
brain-injured patients. Indeed, cortical slices could be con-
sidered a simplified model of the electrophysiological state of
cortical circuits under conditions of severe deafferentation,
such as the ones associated with major brain lesions. Following
traumatic brain insults, subcortical lesions, and diffuse axonal
injuries may leave large portions of the cerebral cortex largely
devoid of ascending inputs, including noradrenergic and cho-
linergic projections (Giacino et al. 2014). Beyond a critical level,
such disconnection may force cortical circuits–that are other-
wise intact–into a bistable, low-complexity state. In this way,
some types of brain lesions may impair cortical information
integration, above and beyond the associated anatomical dis-
connection. Clearly, understanding and promoting the mecha-
nisms of such recovery is very important. In the simplified slice
model tested here, the ability to sustain causal interactions and
complex patterns of activity could be restored by a manipula-
tion that selectively reduced neuronal bistability. In this per-
spective, the microscale model of perturbational complexity in
the slice may represent a platform for testing increasingly
selective pharmacological neuromodulation for defining novel
therapeutic approaches aimed at brain-injured patients in
whom brain complexity and consciousness are impaired in
spite of preserved cortical activity.
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Supplementary material is available at Cerebral Cortex online.
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