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Abstract: In recent years, research efforts have focused on the development of safe and efficient H2

generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution in the
near future. Herein, we report the development of Pd nanoparticles supported on carbon nanofibers
(CNFs) via sol-immobilisation and impregnation techniques. Thorough characterisation has been
carried out by means of XRD, XPS, SEM-EDX, TEM, and BET. The catalysts have been evaluated
for the catalytic decomposition of formic acid (HCOOH), which has been identified as a safe and
convenient H2 carrier under mild conditions. The influence of preparation method was investigated
and catalysts prepared by the sol-immobilisation method showed higher catalytic performance
(PdSI/CNF) than their analogues prepared by the impregnation method (PdIMP/CNF). A high
turnover frequency (TOF) of 979 h−1 for PdSI/CNF and high selectivity (>99.99%) was obtained at
30 ◦C for the additive-free formic acid decomposition. Comparison with a Pd/AC (activated charcoal)
catalyst synthesised with sol-immobilisation method using as a support activated charcoal (AC)
showed an increase of catalytic activity by a factor of four, demonstrating the improved performance
by choosing CNFs as the preferred choice of support for the deposition of preformed colloidal
Pd nanoparticles.

Keywords: H2 production; formic acid decomposition; green chemistry; renewable feedstock;
Pd nanoparticles; carbon nanofibers

1. Introduction

Alternative energy sources have been considered to solve the increasing energy demand without
further damage to the environment. Hydrogen is considered as one of the most promising energy
sources in the near future. It is a versatile fuel since conversion to electricity or heat is likely
through electrochemical and catalytic processes [1]. However, the general utilisation for realising
a hydrogen-powered society is limited due to technical obstacles for controlling in a facile way the
storage and release of hydrogen. For the aforementioned reasons, research has been focused on
exploring and finding storage materials able to fulfil these requirements.

Either physical or chemical storage of hydrogen are considered as alternative solutions. Physical
storage of hydrogen has been widely investigated. In this approach, hydrogen is adsorbed into a porous

C 2018, 4, 26; doi:10.3390/c4020026 www.mdpi.com/journal/carbon

http://www.mdpi.com/journal/carbon
http://www.mdpi.com
https://orcid.org/0000-0002-2371-3228
https://orcid.org/0000-0003-0353-9004
https://orcid.org/0000-0001-8656-6256
http://www.mdpi.com/2311-5629/4/2/26?type=check_update&version=1
http://dx.doi.org/10.3390/c4\num [minimum-integer-digits = 2]{2}\num [minimum-integer-digits = 4]{26}
http://www.mdpi.com/journal/carbon


C 2018, 4, 26 2 of 17

network such as carbon materials [2], metal-organic frameworks [3], zeolites [4], clathrate hydrates [5],
and organic polymers [6]. Alternatively, chemical hydrogen storage has been proposed as a feasible
and sustainable approach, in which a hydrogen-rich material is subjected to a decomposition process
and can take place in solid or liquid phase. Possible solid phase compounds as ammonia borane [7],
amines [8], or sodium borohydride [9] have been investigated but they present several disadvantages
that limit their potential applications [10]. Liquid-phase carriers such as alcohols [11], hydrazine [12],
or formic acid (HCOOH), present important advantages as facile transport and safe handling.

Formic acid, a major product formed: (i) during biomass processing and (ii) by the direct
hydrogenation of CO2, has been recently proposed and explored as a safe and convenient liquid storage
material for hydrogen production under mild conditions. Due to properties such as high stability, liquid
at room temperature, high volumetric hydrogen content (4.4 wt. %), environmental benignity, and
non-toxicity, it has become, in the last few years, one of the most studied and promising liquid hydrogen
carriers according to the U.S. Department of Energy. The decomposition of formic acid can proceed
following two main pathways, namely dehydrogenation (HCOOH→ CO2 + H2, ∆G= −48.4 kJmol−1)
and dehydration (HCOOH→ CO + H2O, ∆G= −28.5 kJmol−1), with the dehydration pathway usually
to be facilitated by acidity or heating. Ultrapure hydrogen is necessary since fuel cells are poisoned by
CO, (typically the desired level of CO should be preferably below 20 ppm) resulting in a degraded
long-term performance. Utilisation of mild conditions is of central importance since these fuel cells are
expected to supply energy to portable devices which require a low heat management profile.

Formic acid has been thoroughly investigated for hydrogen generation by either homogeneous or
heterogeneous catalytically decomposition approaches, nevertheless, several issues such as the use of
organic solvents and separation problems prevent the use of homogeneous catalysts for formic acid fuel
cells since practical difficulties appear in the device fabrication [13,14]. Consequently, heterogeneous
catalysts have received much attention in the past few years for hydrogen production. Noble metals
nanocatalysts, such as Pd, Au, or Ag and their alloys have been widely studied [3,13,15–26]. Numerous
types of materials have been used as catalyst supports of the aforementioned metals for formic acid
decomposition, i.e., activated carbon [19–21], zeolites [22], macroreticular resin [23], amines [24], and
metal organic frameworks (MOFs) [3,25,26]. Recently, carbon nanofibers (CNFs) and carbon nanotubes
(CNTs) have been successfully used as supports for the synthesis of supported metal functionalised
nanoparticles for a wide range of important catalytic applications such as alcohols oxidation [27,28],
nitrite reduction [29], and hydrogen generation [30,31].

When compared with other supports, CNFs present several advantages, such as, ability to
tailor the microstructures of CNFs by selecting growing techniques, high degree of controlling the
surface chemistry of the support by surface modification (acidic and basic properties) using chemical
and thermal treatments, and finally, facile recovery of the metal by burning off the support [30].
On the contrary to activated charcoal (AC), where there is a high degree of inaccessible active sites,
CNFs are advantageous supports since most of the metal nanoparticles are accessible to reactants.
For example, Pd/CNFs catalysts showed higher activity than Pd/AC in Heck and Suzuki reactions [32],
hydrogenation of aldehydes [33], and alcohol oxidation [27]. Moreover, the carbon nanofibers used
in this work are produced in a large scale, have similar morphology to multi-wall carbon nanotubes
(MWCNT), are less expensive than MWCNTs, and have applications in industry such as increasing
thermal and electrical conductivity [34,35] or improving mechanical properties [36].

In the present work, the catalytic performance of Pd nanoparticles supported on CNFs was
evaluated using liquid phase formic acid decomposition as the model reaction for hydrogen production
at mild reaction conditions. We report the comparison of two preparation methods for the synthesis
and deposition of metal nanoparticles on CNFs supports, namely the sol immobilisation method
(SI, using polyvinylalcohol (PVA) as stabiliser and NaBH4 as reducing agent) and wet impregnation
method (IMP). By comparing with activated carbon, Zhang et al. reported a 1 wt. % Pd/AC prepared
by impregnation reaching a turnover frequency (TOF) of 228.3 h−1 which we have improved by a
factor of more than four [20]. A similar TOF of 240 h−1 was reached by our group when using activated
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charcoal as support instead of CNFs. Latest reported results on undoped CNFs supported Pd reported
a TOF of approximately 500 h−1 [37] in agreement with our results. The characterisation of these
catalysts series was thoroughly investigated by means of X-ray diffraction (XRD), X-ray photoelectron
spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM)
with energy dispersive X-ray (EDX), and BET (Brunauer–Emmett–Teller) surface area. The performance
of the catalysts toward aqueous formic acid decomposition was carried out in a batch reactor and
after an initial catalytic screening the two most active catalysts were systematically studied by varying
a set of reaction parameters, such as substrate/metal molar ratio, stirrer speed, temperature, and
concentration of formic acid.

2. Materials and Methods

Formic acid (≥95%, Cat. W248703) was obtained from Fischer Scientific. Succinic acid (99%)
from Sigma Aldrich (Cat. S3674-100G) (Milan, Italy). NaBH4 (granular, 99.99% purity) and polyvinyl
alcohol (PVA, Mw = 9000–10,000, 80% hydrolyzed) from Sigma-Aldrich were used for the catalysts
preparation. K2PdCl4 and Na2PdCl4 were purchased from Sigma-Aldrich (99.999% purity) and used
as metal precursors. Deionised water was used as reaction solvent. Activated Charcoal (AC), catalogue
number (C/4010/60) and CNFs PR24-HHT (High Heat Treated carbon nanofiber) were purchased
from Fisher Scientific (Pittsburgh, PA, USA) and Applied Science Company (Cedarville, OH, USA),
respectively. CNFs consists of tubular fibers with an average diameter of 80 ± 30 nm and a specific
surface area of around 50 m2/g. Schlögl and co-workers carried out a detailed characterisation of this
material [38]. HHT grade is produced by treating the fiber at 3000 ◦C converting the fiber to a fully
graphitised form [39].

2.1. Catalysts Preparation

Immobilisation method of Pd sol: the following experimental protocol was used for the synthesis
of Pd supported nanoparticles. Na2PdCl4·2H2O (Pd: 0.094 mmol) and freshly prepared PVA solution
(1 wt. %) were added (PVA/Pd (w/w) = 0.25) to 100 mL of H2O. After 3 min, a freshly prepared aqueous
solution of NaBH4 (0.1 M, NaBH4/Pd (mol/mol) = 8) was added to the yellow-brown solution under
vigorous magnetic stirring. The brown Pd0 sol was immediately formed. An UV-visible spectrum
of the palladium sol was recorded for ensuring the complete reduction of PdII. Within few minutes
from its generation, the suspension was acidified at pH 2 by sulphuric acid and the support (1 g) was
added under vigorous stirring. The catalyst was filtered and washed for several times with distilled
water (2 L). The sample was dried at 80 ◦C for two hours under static air. The amount of support was
calculated to obtain a final metal loading of 1 wt. %. The obtained catalyst was labelled as PdSI/CNF.

Impregnation followed by chemical reduction using sodium borohydride as reducing agent:
Na2PdCl4·2H2O (Pd: 0.094 mmol) diluted in 100 mL of H2O was added to the support (1 g) and stirred
vigorously. After 6 h, a freshly prepared aqueous solution of NaBH4 (0.1 M, NaBH4/Pd (mol/mol) = 8)
was added and stirred for six more hours. The catalyst was filtered and washed for several times with
distilled water (2 L) to ensure the removal of the material arising from the reduction treatment. The
sample was dried at 80 ◦C for two hours under static air. The amount of support was calculated to
obtain a final metal loading of 1 wt. %. The obtained catalyst was labelled as PdIMP/CNF.

Immobilisation method of Pd sol: K2PdCl4·2H2O was used in this case as precursor. A freshly
prepared PVA solution (1 wt. %) was added (PVA/Pd (w/w) = 0.65) to 400 mL of H2O. As in the
previous method, after 3 min, a freshly prepared aqueous solution of NaBH4 (0.1 M, NaBH4/Pd
(mol/mol) = 5) was added to the yellow-brown solution under vigorous magnetic stirring. The brown
Pd0 sol was immediately formed. After 30 min of sol generation, the colloid was immobilised by
adding the desired support (activated charcoal, (AC)) and acidified at pH 1 by sulfuric acid (95 wt. %,
17.83 M) under vigorous stirring. After 1 h, the slurry was filtered and washed for several times with
distilled water (2 L) to remove all the dissolvable species, (such as K+ or Cl−, neutral mother liquors).
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The sample was dried at 110 ◦C for 16 h under static air. The amount of support was calculated to
obtain a final metal loading of 1 wt. %. The obtained catalyst was labelled as PdSI/AC.

2.2. Characterisation of the Pd/CNF Series Catalysts

X-Ray diffraction (XRD) data were collected at ambient temperature with PANanalytical
X’PertPRO X-ray diffractometer (Almelo, The Netherlands) using Cu Kα radiation and operated
at 40 kV and 30 mA. X-ray diffraction patterns were recorded between 10–80◦ 2θ at a step size of
0.017◦. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Scientific K-alpha+
spectrometer (Waltham, MA, USA). Samples were analysed using a monochromatic Al X-ray source
operating at 72 W (6 mA× 12 kV), with the signal averaged over an oval-shaped area of approximately
600 × 400 microns. Data was recorded at pass energies of 150 eV for survey scans and 40 eV for high
resolution scan with a 1 eV and 0.1 eV step size respectively. Charge neutralisation of the sample was
achieved using a combination of both low energy electrons and argon ions (less than 1 eV) which gave
a C (1 s) binding energy of 284.8 eV. All data were analysed using CasaXPS (v2.3.17 PR1.1, Teignmouth,
UK) using Scofield sensitivity factors and an energy exponent of −0.6. Particle size distributions and
mean particle size were obtained by means of transmission electron microscopy (TEM) using a JEOL
JEM 2100 TEM (Peabody, MA, USA) operating at 200 kV. Samples for examination were prepared by
dispersing the catalyst in high purity ethanol. A drop of the suspension was allowed to evaporate
on a holey carbon film supported by a 300-mesh copper TEM grid. Samples were subjected to bright
field diffraction contrast imaging experiments. Mean particle sizes and particle size distributions
were determined by measuring the size of over 200 particles from different selected areas. Scanning
electron microscope (SEM) images were taken on Hitachi TM3030PLUS equipped (Tokyo, Japan)
with a Quantax70 energy-dispersive X-ray spectroscope (EDX) in order to study the morphology
and determine the palladium content of the samples (fresh and used catalysts). BET surface area
was determined from the N2 adsorption-desorption at liquid nitrogen at 77 K using a Quantachrome
NOVA 2200e instrument (Boynton Beach, FL, USA). Samples were outgassed for 3 h under vacuum
at 227 ◦C. Total surface area was determined using the BET (Brunauer–Emmett–Teller) equation and
the multi-point method. Metal content was verified by atomic absorption spectroscopy (AAS) using a
Perkin Elmer 3100 (Waltham, MA, USA). After filtration of the solid catalyst during immobilisation
step, the filtrated solution was analyzed by AAS to detect residual Pd, without dilution. Calibration
was performed using authentic samples.

2.3. Catalytic Decomposition of Formic Acid and Analytical Methods

Liquid-phase formic acid decomposition was conducted in a two-necked 100 ml round-bottom
flask placed in an oil bath with a reflux condenser and a magnetic stirrer at a pre-set temperature
of (30–60 ◦C). The typical experimental procedure was the following: 10 ml of aqueous HCOOH
solution (0.5 M) was placed in the reactor. Once the solution reached the desired temperature, the
chosen amount of the catalyst was added, and the reaction was initiated by stirring. Each reaction was
performed at least twice or three times in order to ensure the reproducibility of the data. TOF (turnover
frequency number: moles of reactant converted per mole of metal per time) was used for evaluating
and comparing initial activity and reaction rates of different catalyst after 5 min of reaction.

An approximation of the reaction order was estimated representing the rate of gas formation vs
the concentration of formic acid and fitting to a power-law model equation:

r = k Cn, (1)

where r is the reaction rate, k is the kinetic coefficient, C is the initial formic acid concentration and n is
the reaction order.
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2.4. Product Analysis

HPLC (high-performance liquid chromatography) was used to calculate the concentration of
formic acid and therefore conversion of formic acid during reaction progress. Liquid samples of the
reaction mixture were withdrawn periodically, diluted 1:100 volumetric ratio with deionised water
and analysed by HPLC model Agilent 1220 Infinity LC using a column MetaCarb 87H 250 × 4.6 mm,
Agilent (Santa Clara, CA, USA), at 60 ◦C and a flow rate of 0.4 mL min−1. The instrument is equipped
with a Variable Wavelength (VW) Detector pre-set at 210 nm. The eluent was an aqueous solution
of phosphoric acid (0.1 wt. %). Succinic acid was used as external standard for the quantification of
formic acid.

2.5. Gas Analysis

Using a gas burette as in the water displacement method, gas evolved from formic acid
decomposition was collected. The gas evolved is measured simply by tracking the volume of water
displaced from an inverted water-filled measuring burette. Analysis for the detection of H2 was
carried out by using a Varian GC-TCD (gas chromatography-thermal conductivity detector CP-3380)
(Palo Alto, CA, USA) with a column Porapak Q 6 m × 1/8” 2.0 mm 80/100 SS using Ar as a carrier
gas. CO and CO2 were quantified using a Varian 450-GC (Palo Alto, CA, USA) fitted with a CP-Sil
5CB capillary column (50 m length, 0.32 mm diameter, carrier gas: He), a methanator unit and both
FID and TCD detectors with a detection limit of CO below 5 ppm. The gases were quantified using
calibration curves constructed from commercial standards (BOC gases). At 30 ◦C, between 50,000 and
60,000 ppm of CO2 were found for both PdIMP/CNF and PdSI/CNF, and 15 and 11 ppm of CO for
PdIMP/CNF and PdSI/CNF, respectively, presenting high selectivity toward H2 (> 99.99%), suggesting
that the reaction mainly follows the desired route (to hydrogen and carbon dioxide). Once both H2

and CO2 were quantified, H2/CO2 ratios were calculated. The typical ratios were from 0.94 to 1.09 for
the catalytic decomposition of formic acid. This deviation could be due to a difference in solubility of
CO2 and H2 or a consumption and adsorption of H2 by PdO as previously reported [21].

3. Results

3.1. Catalysts Characterisation

X-ray diffraction patterns of the catalysts are shown in Figure 1. The most visible feature for all
the samples is the diffraction peak at 26◦, assigned to the presence of graphitic carbon particularly
to the (002) plane [38]. The region between 42◦ and 46◦ forms a broad peak that could be attributed
to the (100) and (101) planes of C but it is difficult to specifically assign since both hexagonal and
rhombohedral graphite peaks are present in this region [38]. Both CNFs samples present as intense and
sharp diffraction peaks at 54◦ and 78◦. The diffraction peaks at 78◦ correspond to the graphitic carbon
(110) plane confirming the presence of rhombohedral graphite [38]. The assignment of the diffraction
peak at 54◦ is not straight forward since both graphite (004) and PdO (112) planes could be assigned for
the same position [38,40]. In order to verify this hypothesis, XRD patterns of the bare supports were
analysed and are shown in Figure S1. It confirms the presence of graphite (004) plane, however, this
peak shows a slightly lower intensity compared with the XRD pattern of the corresponding catalysts.
Therefore, we can presume that PdO (112) plane is overlaid by graphite (004) plane and these results
indicate the presence of PdO species. The characteristic planes (111), (200), and (220) of face-centered
cubic structure of Pd [40,41] are assigned to the reflections at 2θ = 40.4◦, 44.9◦, and 68.3◦ (grey lines in
Figure 1) and are present only in some catalysts as it is evident from the XRD patterns. It is well known
that one of the limitations of the XRD technique is the crystallite size, being approximately 5 nm, the
detectability limit of the apparatus [31]. The higher intensity of the diffraction peak at 2θ = 40.4◦ for
the PdIMP/CNF indicates the presence of larger Pd nanoparticles (above 5 nm), which is in agreement
with the TEM data, presented in the following sections. This has been further investigated by XPS
studies calculating the atomic percent of Pd on the surface and proportion of Pd0.
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Figure 1. X-ray diffraction (XRD) patterns of the catalysts: (a) PdIMP/CNF and (b) PdSI/CNF. 
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content on the surface in contrast with the sol-immobilisation prepared sample as confirmed in Figure 
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are calculated on the surface of the catalysts, existing differences with those percentages calculated 
by EDX since this technique is bulk sensitive in contrast with XPS which is surface sensitive, 
providing information on the state of the surface at a depth of 25–30 Å [44]. From Figure 2 and Table 1, 
we can conclude that the catalyst prepared by sol-immobilisation method display a higher percentage 
of Pd0 species. This can be explained by the presence of PVA. Probably, the ligand containing -OH 
groups, limits the oxidation of the Pd surface at ambient air. Nevertheless, by using PVA as the 
preferred stabiliser, a significant increase of Pd0 species by a factor of more than three has been 
accomplished. 

 
Figure 2. X-ray photoelectron spectroscopy (XPS) spectra of (a) PdIMP/CNF, (b) PdSI/CNF, and (c) 
PdSI/AC. 

Figure 1. X-ray diffraction (XRD) patterns of the catalysts: (a) PdIMP/CNF and (b) PdSI/CNF.

XPS analysis of the as-synthesised samples were carried out to determine the oxidation states
of Pd and the palladium, oxygen atomic contents. The XPS spectra of Pd(3d) of the as-synthesised
catalysts are presented in Figure 2 for impregnation (a) and sol-immobilisation methods (b and c).
Pd atomic content and percentage of Pd0 derived from XPS are shown in Table 1. Pd 3d5/2 component
at 335 eV approximately was assigned to metallic Pd [42] and the component at approximately 337 eV,
to PdII mainly present as PdO [43]. It should be noted that Binding Energy (BE) of Pd0 for Pd/CNFs
(334.9 and 335.0 eV, for PdIMP/CNFs and PdSI/CNFs, respectively) is lower than in the case of PdSI/AC
(335.6 eV). These results can suggest an electron donation from the functional groups present on CNFs
surface to Pd. As presented in Table 1, the impregnated sample displays a lower Pd atomic content on
the surface in contrast with the sol-immobilisation prepared sample as confirmed in Figure 2 in which
the former catalysts series present lower spectral intensities. This feature has an effect on the catalyst
activity as will be discussed later. It is necessary to emphasise that these atomic contents are calculated
on the surface of the catalysts, existing differences with those percentages calculated by EDX since this
technique is bulk sensitive in contrast with XPS which is surface sensitive, providing information on
the state of the surface at a depth of 25–30 Å [44]. From Figure 2 and Table 1, we can conclude that the
catalyst prepared by sol-immobilisation method display a higher percentage of Pd0 species. This can
be explained by the presence of PVA. Probably, the ligand containing -OH groups, limits the oxidation
of the Pd surface at ambient air. Nevertheless, by using PVA as the preferred stabiliser, a significant
increase of Pd0 species by a factor of more than three has been accomplished.

C 2018, 4, x  6 of 17 

 

Figure 1. X-ray diffraction (XRD) patterns of the catalysts: (a) PdIMP/CNF and (b) PdSI/CNF. 

XPS analysis of the as-synthesised samples were carried out to determine the oxidation states of 
Pd and the palladium, oxygen atomic contents. The XPS spectra of Pd(3d) of the as-synthesised 
catalysts are presented in Figure 2 for impregnation (a) and sol-immobilisation methods (b and c). Pd 
atomic content and percentage of Pd0 derived from XPS are shown in Table 1. Pd 3d5/2 component at 
335 eV approximately was assigned to metallic Pd [42] and the component at approximately 337 eV, 
to PdII mainly present as PdO [43]. It should be noted that Binding Energy (BE) of Pd0 for Pd/CNFs 
(334.9 and 335.0 eV, for PdIMP/CNFs and PdSI/CNFs, respectively) is lower than in the case of PdSI/AC 
(335.6 eV). These results can suggest an electron donation from the functional groups present on 
CNFs surface to Pd. As presented in Table 1, the impregnated sample displays a lower Pd atomic 
content on the surface in contrast with the sol-immobilisation prepared sample as confirmed in Figure 
2 in which the former catalysts series present lower spectral intensities. This feature has an effect on 
the catalyst activity as will be discussed later. It is necessary to emphasise that these atomic contents 
are calculated on the surface of the catalysts, existing differences with those percentages calculated 
by EDX since this technique is bulk sensitive in contrast with XPS which is surface sensitive, 
providing information on the state of the surface at a depth of 25–30 Å [44]. From Figure 2 and Table 1, 
we can conclude that the catalyst prepared by sol-immobilisation method display a higher percentage 
of Pd0 species. This can be explained by the presence of PVA. Probably, the ligand containing -OH 
groups, limits the oxidation of the Pd surface at ambient air. Nevertheless, by using PVA as the 
preferred stabiliser, a significant increase of Pd0 species by a factor of more than three has been 
accomplished. 

 
Figure 2. X-ray photoelectron spectroscopy (XPS) spectra of (a) PdIMP/CNF, (b) PdSI/CNF, and (c) 
PdSI/AC. 
Figure 2. X-ray photoelectron spectroscopy (XPS) spectra of (a) PdIMP/CNF, (b) PdSI/CNF, and
(c) PdSI/AC.



C 2018, 4, 26 7 of 17

Table 1. Palladium, Oxygen atomic contents, and Pd oxidation state on the surface from XPS analysis.

Catalyst
Pd3d5/2

Pd Content (at. %) O Content (at. %)
Pd0 Pd2+

PdIMP/CNF BE 334.9 336.5 0.25 0.94
% 25.9 74.1

PdSI/CNF BE 335.0 336.4 0.77 2.72
% 61.5 38.5

PdSI/AC BE 335.6 337.2 3.68 24.51
% 74.2 25.8

When compared with the 1 wt. % PdSI/AC, a high Pd atomic content of 3.68 on the surface is
obtained probably due to a small pore diameter as explained in following paragraphs. The percentage
of metallic Pd for the 1 wt. % PdSI/AC was 74.2; this value is similar to the 1 wt. % PdSI/CNF prepared
by the sol-immobilisation method (61.5%) even though the parameters during the preparation were
slightly different. The total surface oxygen content was evaluated by XPS and it was increased from
0.94–2.72 at. % for the 1 wt. % Pd/CNF samples to 24.51 at. % for the PdSI/AC sample. Moreover,
the relative concentration of sp3 and sp2 hybridisation type from the deconvolution of C1s has been
measured. C1s XPS spectra of the catalysts studied is presented in Figure S3. Table S1 displays
the concentration of sp3 and sp2 hybridisation and its ratio (sp2/sp3) since it determines structural
properties of carbon materials that may have an important impact on final activity of the catalyst.
The component appearing at approximately 284 eV is attributed to sp2 carbon and the component at
285 eV, to sp3-hybridised carbon species. As observed, both catalysts supported on carbon nanofibers
present a high sp2 and ratio sp2/sp3 as a proof of graphitisation of the surface. On the contrary, sp2

hybridisation in the sample supported on activated carbon is very low, suggesting a significant presence
of amorphous carbon on the surface. This significant difference between CNFs and activated carbon in
terms of surface C and O atomic content could attribute to the observed trend in terms of catalytic
activity. It has been reported by Gil et al. that carbonaceous supports with higher graphitization degree
and lower oxygen content promote the activity of Au based catalysts in the case of the liquid phase
oxidation of glycerol with a lower amount of structural defects led to Au particles strongly anchored
to the orderly exposed graphite edges. In another case, M. Zacharska et al. has reported the high
presence of oxygen functional groups is not desirable for improving catalytic activity in the liquid
phase decomposition of formic acid [37].

In summary, the XPS analysis have shown that there are two types of Pd species present in the
samples. The catalyst prepared by sol-immobilisation technique exhibit a higher surface Pd atomic
content and, since PVA ligands tend to inhibit the oxidation of the Pd surface, a higher percentage
of metallic Pd (Pd0= 61.5% for PdSI/CNF), compared to the catalyst prepared by impregnation
(Pd0= 25.9% for PdIMP/CNF). Moreover, Pd/CNF samples possess higher degree of graphitization
and lower oxygen content on the surface than the Pd/AC sample.

Mean particle size and particle size distributions of the catalysts were assessed from analysis
of bright field TEM micrographs (Figure 3). PdIMP/CNF presents a particle size distribution in the
2.5–9 nm range, being approximately 5.4 nm the mean particle size, PdSI/CNF presents a narrower
particle size distribution of 2–8 nm and a smaller mean particle size of 3.9 nm, and PdSI/AC presents a
mean particle size of 3.7 nm and a particle size distribution of 2–8 nm. Table 2 shows the mean particle
size of the as-synthesised catalysts. Regarding the catalysts supported on carbon nanofibers, TEM
analysis provides evidence that the Pd nanoparticles were more evenly distributed on the catalyst
prepared by sol-immobilisation in comparison with the impregnated sample.
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Figure 3. Bright field transmission electron microscopy (TEM) micrographs and corresponding
histograms of the particle size distributions for the catalysts: PdIMP/CNF (A,B); PdSI/CNF (C,D); and
PdSI/AC (E,F).

Table 2. Statistical mean and standard deviation of particle size analysis.

Catalyst Statistical Median (nm) Standard Deviation

PdIMP/CNF 5.4 0.9
PdSI/CNF 3.9 1.2
PdSI/AC 3.7 0.9

For the catalyst supported on activated charcoal, the average pore diameter obtained is 3.77 nm.
Since the mean particle size is very similar, penetration of the nanoparticles inside the pores might be
impeded explaining the abnormally high Pd atomic content on the surface.
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HRTEM image in Figure 4 for the PdSI/CNF is shown as a representative example of a typical
metallic Pd nanoparticle showing a discrete lattice-fringe of the face centered cubic (fcc) Pd crystal
with a d-spacing of 0.224 nm, which is in agreement with the lattice spacing of the (111) plane reported
in literature [20,45].
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The distribution and dispersion of Pd nanoparticles within the CNFs was measured with
SEM-EDX. Figure S2A displays a typical SEM image of the PdIMP/CNF. EDX analysis from an extensive
area during the SEM observation was performed confirming the presence of Pd and its homogeneous
distribution in the catalyst (Figure S2C). Total metal loading derived from EDX and from atomic
absorption spectroscopy (AAS) analysis for the three catalysts is presented in Table 3. As shown,
total metal loading of the as-synthesised CNFs catalysts is in good agreement to the nominal value
of 1 wt. % and it is not considerably affected by the preparation method used in this work. A slight
deviation is observed for the catalyst supported on activated charcoal. An average loading of 1.15 % is
reached. Figure S2B,D display the SEM image and EDX analysis for the PdSI/AC showing as well,
a good dispersion of the metal nanoparticles.

Table 3. Palladium loading from energy dispersive X-ray (EDX) and atomic absorption spectroscopy
(AAS) data for the catalysts studied.

Catalyst
Pd Loading (wt. %)

EDX AAS

PdIMP/CNF 1.03 0.99
PdSI/CNF 0.91 0.95
PdSI/AC 1.15 1.10

In Table S2, the total surface area determined from the BET equation is presented. For the CNFs
bare support, it is 34 m2 g−1 and for the activated charcoal, 64 m2 g−1. For both Pd PdIMP/CNF and
PdSI/CNF, the surface area was 37 and 36 m2 g−1, respectively. Finally, for the Pd/AC the surface area
decreased to 32 m2 g−1.
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3.2. Catalytic Activity Comparison of the Pd/CNF Series Catalysts for the Formic Acid Dehydrogenation

The catalytic performance of 1 wt. % Pd nanoparticles supported on functionalised carbon
nanofibers (1 wt. % Pd/CNFs) was evaluated in the liquid-phase decomposition of formic acid as a
model reaction for hydrogen generation. Figure 5 presents the catalytic activity of the 1 wt. % Pd/CNFs
prepared by impregnation and sol-immobilisation and 1 wt. % PdSI/AC. The catalytic performance of
the catalysts was evaluated at 30 ◦C, 750 rpm, 0.5 M HCOOH, substrate/metal molar ratio of 2000,
and 2 h reaction time. The TOFs obtained are presented in Table 4 and compared with previously
reported data. The products detected in the gas phase were mainly CO2 and H2 with presence of
CO in ppm levels (11 ppm for PdSI/CNF and 15 ppm for PdIMP/CNF). An improvement of 10 % is
observed for the catalyst prepared by sol-immobilisation compared with the catalyst prepared by
impregnation. Taking into account that EDX is a bulk sensitive technique, we observed a similar metal
loading (around 1 wt. %) for both catalysts, therefore we dismiss as an important factor the effect of
metal loading in the observed catalytic trend. XPS data in Table 1 showed that we obtained a higher
Pd atomic percentage on the surface in the sol-immobilised samples by a factor of three, thus, we
can confirm that, with the sol-immobilisation method Pd nanoparticles were preferentially deposited
on the external surface of the nanofibers, whereas with the impregnation method Pd nanoparticles
were deposited in the inner walls of the carbon nanofibers, besides the distribution on the surface
in agreement with previous published results [46]. Graphitisation of the surface observed by means
of XPS is suggested to be one of the main reasons of the differences in activity observed between
the catalysts supported on carbon nanofibers and activated carbon. The higher metal percentage on
the surface for the colloidal method can partially contribute to the higher catalytic activity. Another
important contribution to the activity of the catalyst is the oxidation state of Pd (Figure 2). A higher
percentage of Pd0 was observed for the catalysts prepared by the colloidal method, in agreement with
our previous studies that metallic Pd is responsible for higher catalytic activity [47]. Finally, particle
size of Pd plays an important role in terms of catalytic activity. TEM analysis confirmed a lower particle
size of Pd for the sol-immobilisation samples: 3.9 nm, while for impregnation is 5.4 nm, therefore a
lower particle size of Pd is expected to facilitate the enhancement of catalytic activity since number
of edge and corner of Pd atoms will increase. Previous studies have shown that the decrease of Pd
particle size has a positive influence for the effective decomposition of formic acid [48–51].

When compared with the catalyst supported on activated charcoal, a significant increase on
the conversion by a factor of two is observed for both catalysts supported on CNFs confirming
that this support leads to a significant improvement in catalyst activity. Furthermore, the structure
sensitivity of the Pd nanoparticle catalysts have been further investigated by relating activity data to
Pd nanoparticle size. TOF was calculated based on total number of surface atoms (TOFNs) as described
in the supplementary information section. The TOF values normalized to Ns are expected to be
independent of the Pd nanoparticle sizes, therefore excluding particle size effect. The order of activity
(TOFNs) was the following: PdSI/CNF (TOFNs = 3172.6 h−1) > PdIMP/CNF (TOFNs = 2442.1 h−1)
>> PdSI/AC (TOFNs = 744.2 h−1). As said before, slight differences in the parameters during the
sol-immobilisation method when preparing the catalysts supported on CNF and AC could also have
an effect on the activity but since in the presence of CNF the activity increases by a factor of two, we
could hypothesise that the support is the main cause of this improvement.
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Figure 5. Formic acid dehydrogenation reaction on Pd/CNF. Comparison of preparation method.
Reaction conditions: 0.5 M HCOOH 26.5 mg of catalyst (Substrate/metal molar ratio: 2000:1); 30 ◦C;
750 rpm; and 2 h reaction time.

Table 4. Comparative catalytic activity of various Pd-based catalysts for the liquid-phase formic acid
dehydrogenation at mild conditions.

Catalyst T (◦C) Reagent
TOF (h−1) Activation Energy

(KJ/mol) Ref.
Initial 2 h

PdIMP/CNF 30
Formic acid (0.5 M)

563.2 27.5

This workPdSI/CNF 30 979.1 26.2

PdSI/AC 30 240.5

Pd/C
21

Formic acid (1.33 M)
18 15 a

53.7 [21]
30 48 28 a

Pd/C (citric acid) 25 Formic acid 64 b [41]

Pd/C 30 Formic acid:Sodium
formate 1:9 228.3 [20]

Au41Pd59/C 50 Formic acid (1 M) 230 28 ± 2 [13]

Ag@Pd (1:1)
35

Formic acid

156 c

30 [15]50 252 c

Ag/Pd alloy (1:1) 20 144 c

Ag42Pd58 50 Formic acid (1 M) 382 22 ± 1 [52]

Pd-MnOx/SiO2-NH2
20

Formic acid (0.265 M)
140

61.9 [53]
50 1300

Ag0.1Pd0.9/rGO 25 Formic acid 105 [54]
a TOF calculated after 50 min. b TOF calculated after 160 min. c TOF calculated based on the surface metal sites.

In summary, higher catalytic activity was obtained for the CNFs supported Pd nanoparticles
synthesised by sol-immobilisation method. The main reasons for the improved catalytic activity could
be attributed to: (i) the higher Pd surface content; (ii) higher percentage of metallic Pd on the surface;
and (iii) smaller Pd particle size.

3.3. Kinetic Studies for Pd/CNF for Liquid Phase Formic Acid Decomposition

After the thoroughly characterisation and initial screening in the liquid-phase decomposition of
formic acid, these catalysts have been used to investigate the effect of specific reaction conditions, such
as, stirring speed, substrate/metal molar ratio, and temperature as we have previously reported for a
commercial Pd catalyst [47]. We focused our studies at the aforementioned conditions (e.g., 30 ◦C) since
one of the requirements for portable devices using formic acid fuel cells is the requirement of working
at mild reaction conditions. In order to measure intrinsic kinetics, the experimental data have to be
verified in the absence of external mass transfer limitations (chemical kinetics regime). Therefore, the
occurrence of mass transfer limitations (external) was experimentally investigated. Initially, the effect
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of catalyst mass (substrate/metal molar ratio) was investigated at 30 ◦C, stirring rate of 750 rpm, and
2 h reaction time. Two reaction regimes were identified as shown in Figure 6A. In the first regime, the
conversion followed a linear increase with increase of the catalyst mass up to 26.5 mg (Substrate/metal
molar ratio of 2000:1), which indicates the reaction is not mass-transport limited. In the second regime,
it is evident the presence of external diffusion limitations since the conversion did not follow a linear
increase with mass of catalyst. Turnover frequency (TOF) remained constant (Figure 6B) indicating that
in this range the reaction is kinetically limited. Increasing the catalyst mass above 26.5 mg, a decrease
in TOF was observed, indicating that diffusion limitations were present. Therefore, a catalyst mass of
26.5 mg was used as the chosen experimental value in the following experiments.C 2018, 4, x  12 of 17 
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Figure 6. Effect of catalyst mass on (A) Conversion of formic acid dehydrogenation, (B) TOF. Reaction
conditions: 30 ◦C, 0.5 M HCOOH, 750 rpm, and 2 h reaction time.

We then investigated the effect of stirring rate, which varied in the range of 500 to 900 rpm at 30 ◦C
and using substrate/metal molar ratio of 2000. The stirring rate is another parameter that can influence
the presence of mass transfer limitations and to ensure perfect mixing and to avoid segregation of
both fluid and solid catalyst. In the absence of external mass transfer limitations, the conversion or
TOF should be independent of the catalyst mass. Increasing the stirring rate increased the reaction
rate since the contact and collision between the reactant and the solid catalyst is higher (Figure 7).
Increasing the stirring from 500 rpm (TOF 123 h−1 for PdIMP/CNF and TOF 500 h−1 for PdSI/CNF)
to 750 rpm (TOF 572 h−1 for PdIMP/CNF and TOF 979 h−1 for PdSI/CNF), a substantial increment
was observed in TOF indicating that the reaction is under diffusion regime. Above 750 rpm, the TOF
increased slightly suggesting that the stirrer rate has a minor effect, hence the reaction is kinetically
limited by eliminating external mass transfer limitations. 750 rpm was selected as the optimised value
for the following studies.
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We further studied the effect of temperature on the formic acid decomposition in the range 30
to 60 ◦C. Formic acid conversion was improved with increase of temperature as expected [52,53,55].
Further increase of the temperature was not investigated since mild conditions are necessary to operate
fuel cells in portable devices and as previously reported, CO is evolved above 50 ◦C [15]. As presented
before, at 30 ◦C, 15 and 11 ppm of CO were released for PdIMP/CNF and PdSI/CNF respectively,
however, for PdSI/CNF catalyst, when increasing the temperature, as expected, CO concentration
increased: at 40 ◦C, 29 ppm were released and at 70 ◦C, it remarkably increased to 876 ppm. Apparent
activation energy (Eaapp) for H2 generation from formic acid decomposition was calculated by the
slope of the Arrhenius plot (Figure 8) with a value of 27.5 kJ mol−1 and 26.2 kJ mol−1 for PdIMP/CNF
and PdSI/CNF, respectively. In Table 4, a comparison of activation energy obtained in this investigation
and those previously reported are shown.
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The effect of formic acid concentration was investigated in order to determine the kinetic order
of the reaction (Figure 9). A concentration range of formic acid from 0.1 M to 1 M was selected.
As explained in the introduction, representing rate versus concentration, and fitting to the power-law
equation model, a reaction order of 0.3 and 0.31 for PdIMP/CNF and PdSI/CNF, respectively, were
obtained. In summary, at the optimised reaction conditions of substrate/metal molar ratio of 2000:1
and 750 rpm, 30 ◦C, and a formic acid concentration of 0.5 M, initial TOFs (based on TOF calculated
on total mol of metal) of 572 h−1 for PdIMP/CNF and 979 h−1 for PdSI/CNF were obtained showing
high catalytic activities and promising result for Pd supported nanoparticles on functionalised carbon
nanofibers (Table 4).
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4. Conclusions

Monometallic Pd nanoparticles supported on carbon nanofibers (CNFs) were synthesised and
the catalytic performance was evaluated for the formic acid decomposition in liquid phase as model
hydrogen storage chemical for the production of hydrogen under mild conditions. Sol-immobilisation
and impregnation techniques were selected as model preparation methods for the synthesis and
deposition of Pd nanoparticles.

The catalyst prepared by sol-immobilisation method exhibited higher catalytic activity when
compared with the catalyst prepared by impregnation method due to the higher metal surface content,
higher percentage of Pd0 and smaller Pd particle size. Sol-immobilisation technique tends to distribute
Pd metal nanoparticles more on the surface of the nanofibers whereas, impregnation method leads
to a higher degree of filling Pd nanoparticles within the inner walls of the nanofibers besides the
distribution on the outer surface. As shown in XPS analysis, PVA ligand inhibits the oxidation of the Pd
surface leading to a higher percentage of Pd0. Analysis by TEM showed a smaller Pd particle size for
the samples prepared by sol-immobilisation. The observed different degree of surface graphitisation
of the studied supports could play an important role in terms of catalyst activity and the increment in
catalytic activity for the carbon nanofibers supported catalysts could be addressed to the observed
surface modification. The aforementioned parameters could be the major reasons for the improved
catalytic activity observed.

A TOF of 979 h−1 was produced by PdSI/CNF, the most active catalyst, with high selectivity
(>99.99%) at low reaction temperature (30 ◦C). In future studies, we will focus on long-term catalytic
performance on continuous flow processes.
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(a) PdIMP/CNF; (b) PdSI/CNF; and (c) PdSI/AC in the binding energy region of 281–295 eV corresponding to C1s,
Table S1: Atomic content of sp2 and sp3 carbon and ratio sp2/sp3 from XPS for the catalysts subjected to different
temperature treatments, Table S2: BET surface areas for the as-synthesised catalysts and supports. Calculation of
the number of surface exposed atoms and TOF based on the surface atoms.
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