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Abstract

Female reproductive performance is a central component of ungulate population dynamics, and it 

can be influenced by individual, social and environmental factors. Researchers have often assumed 

direct effects of different predictors on reproduction, yet more complex relationships should be con-

sidered when investigating temporal variations in life history traits within a  broader eco-evolution-

ary context. In this study, we explored direct effects of individual, social and environmental predict-

ors on female reproductive performance, and investigated potential causal chains among variables. 

We analysed the variation in fecundity, measured as the probability of being pregnant, in 215 adult 

female deer Cervus elaphus culled on the Italian Alps, with respect to age, body mass, kidney fat, 

jaw length, lactation status, population size, temperature and precipitation in spring-summer, tem-

perature and snow depth in winter, and the delayed effect of spring-summer temperature. We used 

random forest and logistic regression models to select variables whose direct effects best explained 

variation in fecundity. Path analysis was used to test for alternative hypotheses of direct / indirect 

effects between pre-selected weather (spring-summer temperature) and individual (age, KFI) pre-

dictors. The most important direct predictors of fecundity were age, kidney fat and the interaction 

between kidney fat and spring-summer temperature. Path analysis supported the hypothesis that 

higher spring-summer temperature had negative, indirect effects on the probability of being preg-

nant, mediated by decreasing values of kidney fat index. Our study revealed some complex, cause-

effect relationships between weather stochasticity, body condition and reproduction, possibly sug-

gesting a conditional trade-off between opportunity for reproduction and survival, and emphasizing 

how environmental variations and individual characteristics may interact to shape life history traits 

in ungulate populations.

Key words: Cause-effect relationships; Cervus; climate; demography; deer; fecundity; life-history; 

path analysis; ungulates
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INTRODUCTION

Reproduction is a central component of animal population dynamics. Several individual, social and 

environmental factors such as age, body condition, population density and climatic conditions, are 

known to affect reproductive performance of females (Gaillard et al. 2000). The importance of each

factor may vary among species, owing to different life history strategies (Coulson et al. 2000, 

Hamel et al. 2010), and within species, depending on different habitat characteristics (Balbontín and

Ferrer 2008). 

In many species of birds and mammals, female reproduction is strongly related to age in a non-

linear fashion, and different reproductive parameters generally increase from sexual maturity to 

prime age, and then decline later in life (Nussey et al. 2008). The age effect is intimately associated 

with the long-term variations in body condition that occur over an individual’s lifetime, which 

influence its reproductive performance (Nussey et al. 2011, Flajšman et al. 2017). Body condition 

may also undergo great short-term variations, in response to internal and/or external pressures. For 

example, reproductive events may impose high energetic costs on females and negatively affect 

individual condition, thus lowering the probability of reproducing in the following breeding season. 

This pattern has been observed in mammals and in other taxa (Gustafsson and Sutherland 1988, 

Yurewicz and Wilbur 2004, Hamel et al. 2010), especially in food-limited populations (Clutton-

Brock et al. 1989). Density-dependent availability of food supply (Bonenfant et al. 2009) or climate 

effects may in fact trigger short-term changes in body condition and, in turn variation in 

reproductive performance. For example, several studies showed evidence for negative responses of 

reproductive traits to increasing ambient temperature in different taxa, possibly mediated by 

variations in individual conditions (Grazer and Martin 2012). Individual, social and environmental 

variables may thus influence female reproductive traits in a complex manner, operating through 

pathways that include both direct and indirect relationships between different factors, possibly 

reflecting adaptive responses to optimize the trade-offs between reproduction and survival in 

different environmental conditions (Sand 1996).
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A deeper understanding of the adaptive mechanisms underlying variations in female 

reproductive traits may benefit from explicitly assuming non-independence among predictive 

variables. Recent studies have supported the occurrence of more complex causal relationships 

among potential drivers of reproduction: in Norwegian red deer Cervus elaphus, for example, body 

condition during summer is indirectly affected by climate through plant phenology, as higher spring

temperatures accelerate plant development (Mysterud et al. 2008). This, in turn suggests that 

climatic variables may exert an important indirect effect on deer reproductive performance. Indirect 

consequences of rising temperatures on life history traits are increasingly suggested to occur also in 

Alpine ungulates. In highly seasonal, energy-limited mountain temperate environments, fat reserves

are mainly deposited before autumn: warmer spring-summer periods may cause a reduction in food 

acquisition through several mechanisms (Pettorelli et al. 2007, Mason et al. 2014, 2017) and thus 

negatively impact on body condition and, possibly, reproduction in capital breeders (Rughetti and 

Festa-Bianchet 2012). Different hypotheses may be put forward to explain this pattern. A first 

hypothesis suggests that warm temperatures in spring-summer may accelerate plant development 

and reduce the availability of high-quality food resources over the summer (Pettorelli et al. 2007). 

An alternative hypothesis suggests that in mountain dwelling ungulates such as the chamois 

Rupicapra rupicapra, body condition in autumn is not limited by summer resource availability: 

rather, the high spring-summer temperatures may reduce the time spent foraging before autumn thus

limiting the ability of individuals to acquire resources (Mason et al. 2014). More recently, for the 

Alpine ibex Capra ibex it has been suggested that warmer temperatures in summer would force 

animals to thermoregulate by using less productive areas at higher elevations, and thus consume 

lower quality forage, without compensating their foraging effort (Mason et al. 2017). Despite their 

potential demographic and evolutionary significance, however, the indirect effects between 

individual, social and climatic variables on the reproductive performance of female ungulates have 

received comparatively little attention. 
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Owing to its wide geographical distribution, the direct role of individual, social and 

environmental factors on female reproductive performance has been largely investigated in red 

deer. The importance of age on hind reproduction, for example, has been supported in several 

populations (e.g. Albon et al. 1986, Bertouille and de Crombrugghe 2002), while the role of other 

individual drivers appears to be less consistent, varying with latitude and habitats. Body mass and 

fat reserves had positive effects on hind pregnancy probability in Scottish populations (Albon et al. 

1986), but no relationship was found in central Europe (Borowik et al. 2016). Body size also 

showed contrasting effects on pregnancy probability in northern and central Europe (Mitchell and 

Brown 1974, Albon et al. 1986, Bertouille and de Crombrugghe 2002). The negative effect of 

lactation on the probability of being pregnant in the following reproductive season is strong in food-

limited environments (Clutton-Brock et al. 1989), but little information is available in rich 

environments. Similarly, the direct effects of social and environmental variables on hind 

reproduction show site-dependent variations. Negative density-dependent relationships between 

pregnancy probability and body mass were found in Scotland (Albon et al. 1983), while no density-

dependent effects were found in central Europe (Bonenfant et al. 2002; Borowik et al. 2016). In 

Scottish deer, summer precipitation, winter temperature and snow negatively influenced female 

fecundity (Albon and Clutton-Brock 1988, Langvatn et al. 1996), whereas adult pregnancy ratio in 

Rocky Mountain elk increased following summers with high precipitation (Proffitt et al. 2014). 

More recently, no significant effects of winter and summer temperature on deer fecundity were 

found in Poland (Borowik et al. 2016). Overall, the direct effects of individual, social and climatic 

variables on hind reproduction do not show congruent patterns over large geographic scale, and 

little is known about their potential indirect effects. A deeper understanding of the adaptive 

responses to environmental conditions should thus account for more complex interactions (cf. 

Stopher et al. 2014).

In this paper we first investigate the direct effect of individual, social and environmental factors

on reproductive performance in an Alpine population of red deer, as limited information is available
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in this environment. We then explore potential causal pathways affecting female fecundity, 

accounting for the occurrence of direct and indirect relationships between variables (sensu Shipley 

2016). In particular, we test hypotheses about the potential effect of weather conditions on 

fecundity, already suggested for other Alpine ungulates, which indicate that increasing spring-

summer temperatures could negatively and indirectly affect reproductive performance through a 

decline in body condition (Pettorelli et al. 2007, Rughetti and Festa-Bianchet 2012, Mason et al. 

2014). 

METHODS

Study area and population

The study site ‘Valfurva’ lies in the northwestern part of the Stelvio National Park, within the 

Province of Sondrio, central Italian Alps (10°25′N, 46°27′E). Valfurva is the wintering site of a 

large population management unit for red deer, defined by tracking GPS-collared individuals (cf. 

Corlatti et al. 2016), and extends over 4975 ha between 1200 and 2400 m a.s.l. (Fig. 1). About 73% 

of its surface is dominated by spruce Picea abies, larch Larix decidua and Stone pine Pinus cembra 

forests, while the remaining 27% consists of open areas with mesic meadows at lower elevations, 

and Alpine grasslands of Carex spp., Festuca halleri and Sesleria coerulea above the treeline. The 

climate is alpine continental, with mean temperatures between 15.7°C in July and –2.8°C in January

and yearly precipitation of about 765 mm. Between 2011 and 2015, the winter density of the red 

deer population in Valfurva was about 27.4 ind./km2 ( 2.5 SD) (Corlatti et al. 2016). The large 

increase in deer density that occurred in the Park over the last two decades, owing to the good 

environmental conditions within the Park and possibly the absence of hunting pressure inside the 

protected area, severely impacted on forest regeneration, on agricultural activities, and on the 

ecosystem biodiversity. In 2011 the National Park Agency therefore started a culling program 

aimed at reducing population density: given the initial high density of deer (about 31 ind. /km2 in 

winter), the effects of culling were apparent only since 2015 (cf. Corlatti et al. 2016). In 4 years, 
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from 2011 to 2016, within the study site a total of 358 female deer (0.5 years: n = 81; 1.5 years: n = 

39; 2+ years: n = 238) were culled by professional hunters, under the supervision of the Park 

Authority. Culling was conducted between late October and early February of each year (no cull 

occurred in 2013/14). No restrictions were imposed on adult females in terms of age or lactation 

status, therefore the sample of females of 2+ years of age likely reflected the structure of their 

population. 

Data collection

In the literature on ungulate ecology, different terms such as ‘pregnancy probability’, 

‘fecundity’ and ‘fertility’ are often used interchangeably to indicate reproductive performance. For 

the sake of clarity, hereafter we refer to ‘fecundity’ as to the probability of being pregnant. To 

investigate deer fecundity, we focused on adult females (2+ years of age) only, as very few 

yearlings breed. All females were brought to a control centre within 2 hours from culling. For some 

individuals, it was not possible to collect all the parameters needed for the analysis (see below), and

our sample size reduced to n = 215 adults. Pregnancy status was investigated through the presence / 

absence of corpora lutea (i.e. endocrine structures that develop from ovarian follicles during the 

luteal phase of the oestrous cycle) by dissecting ovaries: for nearly all individuals, pregnancy was 

confirmed by the presence of foetuses, which always occurred in conjunction with corpora lutea, 

thus supporting the suitability of this last parameter to assess reproductive status. Potential drivers 

of hind fecundity included individual and external (social and environmental) variables. Individual 

variables comprised age (estimated by counting the cementum annuli), lactation status (evaluated 

through the presence of milk, or cutting into the udder), jaw length (in mm, measured by means of 

an electronic calliper), dressed body mass (in kg) and kidney fat index (KFI, measured following 

Riney 1955). We considered KFI as the most suitable proxy for individual condition in red deer 

(Riney 1955), as it was the most direct proxy of body fat reserves available to us. External variables

included population size in the previous spring (based on mark-resight estimates: Corlatti et al. 
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2016) and meteorological variables. On the Alps, deer fertilization occurs at the beginning of 

October, and fat reserves are mainly deposited in spring-summer: because in this environment 

warmer temperatures are linked to anticipated vegetation growth (Pettorelli et al. 2007), to predict 

fecundity in each year t we used the mean daily temperature (in °C) during the entire vegetative 

season, i.e. from April – when vegetation growth begins – to September – when the seasonal course 

of shoot biomass drops – at year t. Additionally, we also considered the effects of other climatic 

variables on fecundity: the cumulative precipitation (in mm) in spring-summer (April-September) at

year t; the mean daily temperature (in °C) and the mean snow depth (in cm) during winter (January-

March) at year t; the mean daily spring-summer temperature (in °C) at year t-1. Data were retrieved 

from a meteorological station within the study area (cumulative precipitation in spring-summer at 

year t-1 was not available for the year 2010, hence this variable was not included in the analysis).

Statistical analysis

To investigate the direct relationships between female fecundity and individual, social or 

environmental variables, we used both non-parametric and parametric approaches, as different 

selection criteria can give different results even with the same dataset (Gotelli and Ellison 2013). 

Prior to analysis, all continuous explanatory variables were standardized by subtracting each 

sample's mean and then dividing by the sample's standard deviation, to return comparable 

coefficients and reduce issue of collinearity in presence of interaction terms. To investigate direct 

and indirect causal relationships among selected variables (age, KFI, spring-summer temperature), 

we used path analysis (Wright 1934).

Direct relationships: non-parametric approach. – We started exploring the relevance of each 

variable, with respect to fecundity, with a wrapper algorithm based on a random forest classification

method (Breiman 2001), using 99 random forest runs. The algorithm returns a numerical estimate of

the singular variable importance, measured as the loss of accuracy of classification caused by the 
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random permutation of variable values across observations (Kursa and Rudnicki 2010). This non-

parametric approach allows to identify ecologically important predictors of fecundity, and offers 

some advantages over traditional variable selection procedures, as it is more robust to collinearity 

(Cutler et al. 2007). The interpretation of high-order interactions in random forest – based 

approaches, however, is not immediate, and the method is not suitable for hypothesis testing or for 

identifying ecologically important subsets of variables in the way model selection does (Cutler et al.

2007).

Direct relationships: parametric approach. – We proceeded exploring direct effects of 

additive and interactive combinations of individual and environmental variables on deer fecundity, 

by applying a parametric, information-theoretic (IT) model selection approach (Burnham and 

Anderson 2002) on a set of biologically plausible competing models explicitly tied to underlying 

mechanisms linking climate and individual/social variables to fecundity. Specifically, Binomial 

linear regression models were fitted with logit link function: 

Fecundityi ~ B(π i,1)

E(Fecundityi) = π i and var(Fecundityi) = π i×(1−π i)

π i = 
eηi

1+eηi
where ηi = X 1i× X 2i+age i+agei

2

(eqn. 1)

Fecundityi represents the pregnancy status (0/1) of individual i at time t. Individual age i at time

t was fitted as a quadratic term (to account for non-linear effect on fecundity) in each model, as 

preliminary analysis showed that it consistently improved models’ fit. The fixed variable X 1i was 

represented by either individual body massi, KFI i, jaw lengthi, lactation statusi, or by

population¿¿i ¿ , all referred to year t, while the variableX 2i was represented by

mean spring−summer temperaturei at year t, cumulative spring−summer precipitationi at year t,

meanwinter temperaturei  at year t, average snow coveri in winter t, or by
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mean spring−summer temperaturei at year t-1. When assessing the relative importance of variables 

in the information-theoretic framework, it is important to achieve a balance in the number of models

that contain each explanatory variable (Burnham and Anderson 2002). Therefore, to explore the 

effect of every biologically plausible combination of predictors X 1i and X 2i a set of 24 models was

generated (Supporting Information Appendix S1: Table S1). To account for temporal variation in 

the value of body mass and KFI, all the models that included these two variables also included 

individual shootingdatei as a covariate, that is the number of days elapsed from October 30 of each 

year (i.e. the first day of shooting) to individual culling. A preliminary analysis using AICc showed 

that fixed-effect models (eqn. 1) consistently outperformed mixed-effect models fitted with an 

observation-level random intercept (to account for unexplained heterogeneity among subjects: 

Harrison, 2015). Prior to analysis, a matrix based on Pearson’s correlation coefficient (rp) on 

standardized continuous variables was built to identify potential issues of collinearity. In case of 

severe collinearity (rp > 0.7, Dormann et al. 2013), variables were never fitted in the same model, to

avoid bias in parameter estimation. Model parameters were estimated using maximum likelihood. 

All fitted models (n=24) were subsequently ranked based on their AICc values and retained in the 

final candidate set if they had ΔAICc ≤ 2 (Burnham and Anderson 2002). The explained variance of

models in the candidate set was measured by studying the Nagelkerke’s pseudo R2, and the 

goodness-of-fit was assessed by calculating the p-value associated with the Hosmer and Lemeshow 

test statistic (Hosmer and Lemeshow 2000). Additionally, the predictive accuracy of candidate 

models was measured using the area under the receiver operating characteristic (ROC) curve (AUC)

which, in this study, refers to the ability of a given model to discriminate between pregnant and 

non-pregnant females. Bootstrapping is arguably the best alternative for obtaining predictive ability 

measures, as it provides stable estimates with low bias, especially with small sample sizes 

(Steyerberg et al. 2001). To estimate the AUC for each model in the candidate set, we thus 

performed an internal validation using 1000 bootstrap samples following Harrel et al. (1996).
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Causal relationships: path analysis. – Path analysis (Wright 1934) was used to investigate 

potential causal relationships between selected climate (spring-summer temperature) and individual 

(age, KFI) variables and their direct /indirect effects on fecundity. Path analysis requires the 

creation of diagrams that illustrate the hypothesized relationships among the selected variables 

(Gotelli and Ellison 2013), thus we first built three directed acyclic graphs to represent alternative 

causal models (Fig. 2), including direct and indirect relationships (sensu Shipley 2016) reflecting 

biologically plausible hypotheses of causal chains with respect to red deer life history. In Model a, 

temperature had an indirect effect mediated by KFI on fecundity; in Model b, both temperature and 

KFI directly affected fecundity; in Model c temperature had both a direct effect and an indirect 

effect mediated by KFI on fecundity. In all models, age was assumed to have a direct non-linear 

effect on pregnancy status and on KFI. To verify the consistency of the correlational structures 

between the hypothesized models and the sample data, we checked the values of the 2 goodness-of-

fit test (p-values > 0.05 indicate adequate fit) and we calculated the value of the root-mean-square 

error of approximation (RMSEA: Steiger and Lind 1980) which, compared to other indexes of fit, 

offers the possibility to calculate confidence intervals (RMSEA values ≤ 0.6 and p-values > 0.05 

indicate adequate fit: Tomer and Pugesek 2003). Since we used the diagonally weighted least 

squares (DWLS) estimator to fit models with binary response (Rosseel 2016), AIC values were not 

available to compare models’ fit. We therefore used the scaled 2 difference test using the Satorra-

Bentler method (Satorra and Bentler 2001) to compare competitive structures.

All analyses were conducted using RStudio 1.0.136 (RStudio Team 2017) in R 3.3.2 (R Core 

Team 2016). We used the ‘Boruta’ package (Kursa and Rudnicki 2010) to investigate variable 

importance based on random forest classification. The ‘glm’ function was used to fit logistic 

regression models; model selection was performed using the ‘MuMIn’ package (Bartoń 2015), 

while the bootstrap internal validation was conducted with the ‘rms’ package (Harrel 2017). Causal 

relationships using path analysis were tested with the package ‘lavaan’ (Rosseel 2016).
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RESULTS

Direct relationships

The all-relevant feature selection based on the wrapper algorithm around random forest 

classification showed that age and KFI were the most relevant variables directly related to fecundity

in our study population (Table 1, Supporting Information Appendix S2: Fig. S1).

The correlation matrix did not suggest severe issues of collinearity, except between temperature

and population size (rp = -0.88) or winter snow (rp = -0.88): these two pairs of variables were thus 

never included in the same model, to avoid bias in parameter estimation. The model selection 

procedure retained only one model as candidate to explain variation in fecundity of adult hinds 

(ΔAICc ≤ 2, Table 2; see also Supporting Information Appendix S1: Table S2). This model assumes

that the effect of spring-summer temperature at year t on fecundity variation was 

moderated/mediated by body condition, and varied additively with age2. The model fitted the data 

satisfactorily (Hosmer and Lemeshow GOF test: 2= 6.275, d.f.=8, p-value=0.616), explained 16% 

of the variance (Nagelkerke’s pseudo R2) and had acceptable discrimination ability (AUC = 0.71: 

Hosmer and Lemeshow 2000). The parameter estimates showed that age had a strong non-linear 

effect on hind fecundity, with relatively lower values for the extreme classes and higher values for 

the intermediate classes, whereas KFI had a positive effect on pregnancy status (Table 3, 

Supporting Information Appendix S2: Fig. S2). Spring-summer temperature at year t also played a 

role in explaining the variance in fecundity, in relation to KFI: with decreasing values of KFI, the 

probability of being pregnant reduced strongly only with increasing air temperature (Table 3, Fig. 

3). As the 2AICc cut-off might arguably be considered overly conservative, in the supporting 

information we show that consistent results are reached when averaging models using less 

restrictive cut-offs (ΔAICc ≤ 4, see Supporting Information Appendix S1: Table S3).
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Causal relationships

Path analysis, performed to discriminate alternative causal relationships among the selected 

meteorological and individual variables, showed that two of the structures hypothesized in our 

directed acyclic graphs (Model a and Model c) satisfactorily fitted the correlational structure of the 

sample data (2 value > 0.05, RMSEA value ≤ 0.6, Table 4). The Satorra-Bentler test did not show a

significant difference between the two models (2 difference = 0.600, p-value = 0.439). Following 

the principle of parsimony, this result suggests that the additional path assumed in Model c (Fig. 2) 

may be considered uninformative (as confirmed by the estimates reported in Supporting 

Information Appendix S2: Fig. S3). Model a was thus selected as the best model, supporting the 

hypothesis that temperature had an indirect effect on fecundity, mediated by KFI: the standardized 

path coefficients (Fig. 4) show that increasing spring-summer temperatures negatively impacted on 

KFI and, in turn, on pregnancy status (indirect effect: estimate = -0.054, p-value = 0.020). The 

direct non-linear effect of age on fecundity, however, was stronger than the indirect effect of 

temperature (Fig. 4). 

DISCUSSION

The parametric and non-parametric variable selection procedures consistently supported the direct 

role of age and kidney fat index (KFI) to explain fecundity variation within our study population. 

Age had a strong, non-linear effect on fecundity probability, with relatively low values for the 

extreme age-classes and high values for the intermediate age-classes, whereas increasing values of 

KFI had positive effects. In both approaches, the direct, independent effects of climatic variables 

were negligible. Spring-summer temperature was not retained by the non-parametric analysis since 

our approach only evaluates the importance of individual effects, but its influence became 

significant in parametric models when fitted as an interaction with KFI. The result of this 

interaction suggests that a mediation effect might occur between these variables (Baron and Kenny 

1986): indeed, air temperature and KFI were assumed to be causally related, as warm spring-
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summer temperatures might lead to relatively poorer body conditions because of anticipated plant 

development (Mysterud et al. 2008). The path analysis went beyond the simplistic regression 

approach, allowing to confirm that increasing spring-summer temperature negatively, indirectly 

affected hind fecundity through a negative effect on KFI values, thus allowing a deeper 

understanding of the adaptive response of females to different environmental conditions.

The non-linear relationship between age and adult fecundity has been supported in several deer 

populations (e.g. Albon et al. 1986, Stewart et al. 2005, Morano et al. 2013) and in other ungulates 

(e.g. mountain goats Oreamnos americanus, Côté and Festa-Bianchet 2001, Soay sheep Ovis aries, 

Tavecchia et al. 2005). Younger and older individuals are less likely to become pregnant than 

prime-aged individuals, suggesting an age-dependent cost of investment in reproduction. While the 

relatively low pregnancy rates in young age classes may be explained by the necessity to reach a 

threshold body mass to attain primiparity (Gaillard et al. 2000), there is still limited understanding 

of the causes of decline in fecundity in old females. In red deer, however, the disposable soma and 

antagonistic pleiotropy theories of senescence have received some support (Nussey et al. 2006). The

fecundity probability in relation to age in adult females shows contrasting patterns in different 

areas: while in our study population we found a clear non-linear relationship between age and 

fecundity, with relatively low values before 3 years and after 15 years of age (cf. Supporting 

Information Appendix S2: Fig. S2), populations in central Europe showed high values of fecundity 

already at 2 years of age (Bertouille and de Crombrugghe 2002, Borowik et al. 2016). Differences 

in age-dependent fecundity may be explained by variations in local conditions: high population 

density, for example, may lower the proportion of pregnant young adults (Stewart et al. 2005). The 

much lower deer density in the study sites of Borowik et al. (2016) compared to our study site (5.3 

deer/km2 vs. 27.4 deer/km2, respectively) may explain the different patterns of fecundity in young 

adult females between the two populations. Kidney fat exerted a positive effect on hind fecundity 

(cf. Albon et al. 1986), supporting the hypothesis that adult females in good body conditions have 

higher probability of being pregnant (Gaillard et al. 2000). Similar results were obtained by Morano

14

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

14



et al. (2013). The limitations in the use of KFI as a ratio index have been discussed by Serrano et al 

(2008), who suggested the use of residuals of the linear regression log(kidney fat) ~ log(kidney 

weight) instead, as they have the advantage of being size independent. Other works, however, 

pointed out that “size independence does not necessarily mean that residual indices predict body fat 

content better than ratio indices” (Labocha et al. 2014). Given this uncertainty, in this study we 

reported the results obtained using KFI as a ratio index to ensure comparability with other studies, 

although preliminary analyses suggested consistent findings when using KFI residuals.

None of the social and environmental variables that we have considered was directly related to 

temporal changes in fecundity. Spring-summer temperature was found to negatively affect adult 

deer fecundity only when the interaction with body condition was considered. In absence of 

randomised or experimentally controlled experiments, however, the use of multiple regression 

limits the possibility to explore the underlying cause-effect relationships among biological 

variables. Many studies on deer fecundity used multiple regression to investigate the directs effects 

of individual, social and environmental drivers on female reproductive traits, and the occurrence of 

indirect effects between, e.g., climate, density, body condition and fecundity often remained 

descriptive (but see Stopher et al. 2014). Nonetheless, the occurrence of indirect effects between 

different factors is assumed to explain variation in fecundity (Bonenfant et al. 2009) and researchers

have the possibility to formulate clear a priori hypotheses for how the individual, social and 

environmental factors of interest are related to each other to explain variation in the trait under 

investigation (Mysterud et al. 2008). 

Path analysis embraces this philosophical approach, allowing to explicitly consider more 

complex mechanisms underlying variation in fecundity, through the decomposition of biologically 

plausible sources of correlations among variables selected a priori. Path analysis supported our 

hypothesis that in temperate mountain environments, spring-summer temperature may negatively 

affect deer fecundity through variations in body condition. While several studies already 

hypothesized this relationship (e.g. Rughetti & Festa-Bianchet 2012, Mason et al. 2014), to our 
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knowledge this has never been quantitatively investigated. The observed variation in fecundity 

likely reflects an adaptive response of females, to optimize the trade-offs between the opportunity 

for reproduction and survival under different environmental conditions (cf. Sand 1996). It remains 

unclear, however, which mechanism might account for the observed relationships: given the 

predominantly nocturnal behaviour of red deer in our study site, we suggest body condition is most 

likely limited by summer resource availability (cf. Pettorelli et al. 2007), rather than by the 

temperature-mediated time constraints on foraging (cf. Mason et al. 2014). Ideally, to disclose 

which mechanism is at play, individual data on female summer foraging behaviour are needed. This

information should be integrated with information on forage quality in the area occupied by females

over the same period, for example using values of faecal crude proteins, as the use of NDVI in a 

population that inhabits both forested and open habitats within and between seasons might be 

problematic (Borowik et al. 2013), at least without marked individuals.

Path analysis represents an appealing approach to investigate cause-effect mechanisms in 

biology, yet there are limitations in the use of this methodology. Like other frequentist approaches, 

path analysis is concerned with finding a model that does not reject the null hypothesis (i.e. the 

hypothesized correlational structure is consistent with the correlational structure of the sample 

data). If a model is not rejected, however, we cannot be sure it is the ‘true’ model, as other models 

may fit the data equally well (Raykov and Marcoulides 2006). Alternative models may include 

direct or indirect effects of other variables that we did not take into account, and further research is 

needed to identify missed factors and disclose their mechanisms. In this respect, the association of 

model selection and path analysis may be useful, as the first allow to discriminate and identify 

influential variables, while the second may be used to test hypothesized causal relationships, 

helping to discriminate between potentially opposing mechanisms that can generate similar patterns.

Finally, it is worth noting that the ‘direct’ or ‘indirect’ effect of a variable in a path analysis, should 

be interpreted as ‘relative to the other variables that are explicitly invoked in the causal explanation’

(Shipley 2016), not with respect to any other variable that might exist (Shipley 2016). The 
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relationship between age or body condition and fecundity, for example is likely to be mediated by 

variations in other parameters. Parasites, among the others, may play an important role in shaping 

fecundity variation, and their effect may be influenced by age, density, and temperature according 

the transmission routes of the pathogen (Carlsson et al. 2018). In fact, our study population showed 

some evidence of negative consequences of Toxoplasma gondii infection on foetal development, 

and this effect changed with hind age (Formenti et al. 2015). Whether the inclusion of further 

parameters will enable a better prediction of deer fecundity, and whether increasing temperatures in 

the future years could have long-term effects on the life history of our study population, however, 

still remains to be investigated.

Notwithstanding the caveats in the application of path analysis, our study highlights the 

importance of considering more complex relationships between individual, social and 

environmental variables to explain variation in life history traits (cf. Stopher et al. 2014). In this 

respect, it appears crucial to formulate sound a priori hypotheses on which factors to include in a 

causal model, and on the direct and indirect relationships between them. Exploratory data analysis, 

model selection and information available in the literature (e.g. to identify the critical periods of the 

year during which weather conditions may affect the expression of reproductive traits) may help to 

formulate biologically plausible relationships. This, in turn should allow a better understanding of 

the mechanisms underlying the adaptive responses of populations living in changing environmental 

conditions.
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Table 1. Summary of the final results derived from Random forest classification to explain the 

variation in fecundity in adult female red deer culled within the Stelvio National Park between 2011

and 2016. The table shows the Z score statistics (Mean, Median, Min. and Max.) for each attribute. 

The “Hits” column refers to the fraction of random forest runs in which the corresponding attribute 

was more important than the most important shadow attribute. The final column (“Decision”) 

reports whether the attribute was eventually confirmed or rejected (confirmed attributes in bold).

Attribute Mean Z Median Z Min. Z Max. Z Hits Decision

Lactation status

Body mass

KFI

Age

Jaw length

Population size

Spring-summer temperature at t

Spring-summer precipitation at t

Winter temperature at t

Winter snow at t

Spring-summer temperature at t-1

1.111

0.918

3.491

3.586

2.124

-0.280

0.126

-0.376

-0.867

0.199

-0.195

1.096

0.613

3.433

3.529

2.049

-0.250

0.207

-0.274

-0.699

0.068

-0.281

-2.389

-2.188

-0.646

-0.274

-1.692

-2.535

-1.249

-1.964

-2.744

-1.156

-2.026

4.176

4.042

8.089

10.650

9.242

1.797

0.948

1.340

0.317

1.697

2.637

0.152

0.091

0.717

0.707

0.384

0.000

0.000

0.000

0.000

0.000

0.000

Rejected

Rejected

Confirmed

Confirmed

Rejected

Rejected

Rejected

Rejected

Rejected

Rejected

Rejected
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Table 2. Selection of models with ΔAICc ≤ 4, fitted to explain variation in fecundity in adult 

female red deer culled within the Stelvio National Park between 2011 and 2016. The table reports: 

model formula, degrees of freedom (df); differences in Akaike’s information criterion corrected for 

small sample size (ΔAICc) between each model and the model with the lowest AICc; Akaike’s 

weights (weight). For each model, ‘+’ and ‘’ indicate additive and interactive effects, respectively.

Selected models (ΔAICc ≤ 2) in bold.

Model df ΔAIC
c

weight

Fecundity ~ KFI  Spring-summer temperature at t + Age + Age2 + Shooting date

Fecundity ~ KFI  Winter snow at t + Age + Age2 + Shooting date

Fecundity ~ KFI  Spring-summer precipitation at t + Age + Age2 + Shooting date

Fecundity ~ Body mass  Spring-summer temperature at t + Age + Age2 + Shooting date

Fecundity ~ Body mass  Winter snow at t + Age + Age2 + Shooting date

7

7

7

7

7

0.00

2.47

2.89

3.24

3.95

0.537

0.156

0.127

0.106

0.074

26

634

635

636

637

638

639

640

641
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Table 3. Parameter estimates from the model with ΔAICc ≤ 2, retained to explain the variation in 

fecundity in adult female red deer culled within the Stelvio National Park between 2011 and 2016. 

For each predictor, the table reports the standardized values of beta estimate with the corresponding 

standard error and 95% confidence interval (lower confidence limit – LCL, upper confidence limit –

UCL). Relevant effects (i.e. with 95% CI that do not include zero) in bold.

Estimate Standard Error 95 % Confidence Interval

LCL UCL

(Intercept)  

KFI

Spring-Summer Temperature at t

Age

Age2

KFI : Spring-Summer Temperature at t

2.488

0.577

-0.320

0.131

-0.415

0.470

0.325

0.268

0.249

0.230

0.154

0.236

1.851

0.052

-0.808

-0.320

-0.717

0.007

3.125

1.102

0.168

0.582

-0.113

0.933

27

642

643

644

645

646

647

648
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Table 4. Path models fitted to explain the variation in fecundity in adult female red deer culled 

within the Stelvio National Park between 2011 and 2016. For each model, the table reports values 

of the chi-square goodness-of-fit test (2), degrees of freedom (df), p-values for the chi-square test 

(2 p-value), RMSEA values (RMSEA) and p-values for RMSEA (RMSEA p-value).

Model 2 df 2 p-value RMSEA RMSEA p-value

Model a

Model b

Model c

0.776

21.185

0.102

2

2

1

0.678

0.000

0.750

0.000

0.212

0.000

0.793

0.000

0.807
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Figure 1. Location of the study site ‘Valfurva’ (grey-shaded area on the right), within the deer 

management unit (dashed line on the left, solid line on the right), in the Stelvio National Park (grey-

shaded area on the left), Central Italian Alps. 

Figure 2. Graphical representation of the three models built to test for causal relationships among 

age, temperature and fecundity in adult female red deer culled within the Stelvio National Park 

between 2011 and 2016. Dashed arrows indicate the causal links that change among the models.

Figure 3. Relationship between fecundity and kidney fat index (KFI) for increasing values of 

spring-summer temperature in the female red deer population within the Stelvio National Park 

between 2011 and 2016, as predicted by the best logistic regression model. With decreasing values 

of KFI, the probability of being pregnant reduces strongly only when air temperature is increasingly

high.

Figure 4. Pathways of the selected path model (Model a) with standardized coefficients and 

associated 95% confidence interval. Thicker arrows highlight significant relationships, dashed 

arrows indicate non-significant relationships.
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Model a

Temperature

KFI

Age Age2

Fecundity

Model b

Temperature

KFI

Age Age2

Fecundity

Model c

Temperature

KFI

Age Age2

Fecundity
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Temperature

Fecundity

+ 0.97
(0.96, 0.98)

- 0.55
(-1.05, -0.04)

- 0.30
(-0.42, -0.18)

+ 0.93
(0.27, 1.59)

- 1.05
(-1.69, -0.42)

Age

KFI

Age2

+ 0.35
(-0.15, 0.84)

+ 0.18
(0.05, 0.31)


