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Regularity and Bernstein-type results
for nonlocal minimal surfaces

By Alessio Figalli at Austin and Enrico Valdinoci at Berlin

Abstract. We prove that, in every dimension, Lipschitz nonlocal minimal surfaces are
smooth. Also, we extend to the nonlocal setting a famous theorem of De Giorgi [6] stating that
the validity of Bernstein’s theorem in dimension nC 1 is a consequence of the nonexistence of
n-dimensional singular minimal cones in Rn.

1. Introduction

Given n > 1 and s 2 .0; 1/, we investigate the regularity of nonlocal s-minimal surfaces
in RnC1. To begin, we recall the notion of s-perimeter and s-minimal surface, as introduced
in [3].

Given two disjoint measurable sets F;G � RnC1, we consider the s-interaction between
them defined by

L.F;G/ WD

“
F�G

dX dY

jX � Y jnC1Cs
:

Given a measurable set E and a bounded set � � RnC1, the “s-perimeter” of the set E
inside � is defined as

Pers.E;�/ WD L.E \�;RnC1 nE/C L.E n�;� nE/:

We say that E is an “s-minimal surface” in � if Pers.E;�/ < C1 and for any measurable
set F � RnC1 with F n� D E n� we have that

Pers.E;�/ 6 Pers.F;�/:

IfE is an s-minimal surface in any ball, we simply say thatE is an s-minimal surface. Namely,
s-minimal surfaces are local minimizers of the s-perimeter functional. The “s-mean curvature”
of E at a point X 2 àE is defined by

(1.1) I ŒE�.X/ WD

Z
RnC1

�E .Y / � �Ec .Y /

jX � Y jnC1Cs
dY;
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where Ec WD RnC1 nE. We remark that if àE is C 2 in a neighborhood of X , then I ŒE�.X/
is well-defined in the principal value sense. On the other hand, while a priori an s-minimal
surface E may not be smooth, it is shown in [3] that it satisfies the equation I ŒE�.X/ D 0 for
any X 2 àE in a suitable viscosity sense (in particular, it satisfies the equation in the classical
sense at every point where àE is C 2).

With this notation, s-minimal surfaces have vanishing s-mean curvature, and the anal-
ogy with the classical perimeter case is evident. To make the analogy even stronger we recall
that, as s % 1, the s-perimeter converges to the classical perimeter, with good geometric and
functional analytic properties, see [1, 4].

From the results in [2, 3, 8] it is known that boundaries of s-minimal surfaces are C1

with the possible exception of a closed singular set of Hausdorff dimension at most n � 2.

The first result of this paper shows that Lipschitz s-minimal surfaces are smooth. Notice
that, in the classical case, this result is a consequence of the De Giorgi–Nash Theorem on the
Hölder regularity of solutions to uniformly elliptic equations in divergence form. However, in
this nonlocal setting it does not seem possible to use the regularity theory for nonlocal equations
to deduce this result and we need to employ geometric arguments instead.

Theorem 1.1. Let n > 1 and let E be an s-minimal surface in B1 � RnC1. Suppose
that àE \ B1 is locally Lipschitz. Then àE \ B1 is C1.

We say that an s-minimal surfaceE is an “s-minimal graph” if it can be written as a global
graph in some direction (that is, up to a rotation, E D ¹.x; �/ 2 Rn �R W � < u.x/º for some
function u W Rn ! R), and it is an “s-minimal cone” if it is a cone (that is, up to a translation,
E D tE for any t > 0). A variant of the techniques used in the proof of Theorem 1.1 allows
us to show that the validity of Bernstein’s theorem in dimension nC 1 is a consequence of the
nonexistence of n-dimensional singular s-minimal cones in Rn, thus extending to the fractional
case a famous result of De Giorgi for minimal surfaces [6]:

Theorem 1.2. Let E D ¹.x; �/ 2 Rn �R W � < u.x/º be an s-minimal graph, and
assume that there are no singular s-minimal cones in dimension n (that is, if C � Rn is an
s-minimal cone, then C is a half-space). Then u is an affine function (thus E is a half-space).

The above result combined with the nonexistence of s-minimal cones in Rn for n 6 2

(see [8]) implies the following:

Corollary 1.3. Let E D ¹.x; �/ 2 Rn �R W � < u.x/º be an s-minimal graph, and
assume that n 2 ¹1; 2º. Then u is an affine function.

When n D 1, Corollary 1.3 is a particular case of the result in [8], but for n D 2 the result
is new.

The paper is organized as follows. Some preliminary results on Lipschitz functions are
collected in Section 2, and a useful observation on the asymptotic behavior of the s-minimal
cones at large scale is given in Section 3. Then, the proofs of Theorems 1.1 and 1.2 are given
in Sections 4 and 5, respectively.
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2. Technical lemmata on Lipschitz functions

This section contains some auxiliary results of elementary nature.
In the first lemma we show that Lipschitz functions whose gradient is almost constant in

a suitably large set need to be uniformly close to an affine hyperplane:

Lemma 2.1. Let M > 0 and ! 2 Rn with j!j 6 M . Given " > 0 there exists a con-
stant ı D ı.n; ";M/ > 0 such that the following holds: if u W B1 ! R is an M -Lipschitz
function satisfying ˇ̌

¹x 2 B1 W jru.x/ � !j > ıº
ˇ̌

6 ı;

then ju.x/ � u.0/ � ! � xj 6 " for any x 2 B1.

Proof. In this proof, C will denote a generic constant depending only M , which
may change from line to line. Set w.x/ WD u.x/ � ! � x. It is immediate to check that w is
.2M/-Lipschitz and from our assumptions on u we getZ

B1

jrw.x/j dx D

Z
B1\¹jrwj<ıº

jrw.x/j dx C

Z
B1\¹jrwj2Œı;2M�º

jrw.x/j dx 6 Cı:

Hence, by Hölder inequality,

krwkLnC1.B1/
6 krwk1=.nC1/

L1.B1/
krwk

n=.nC1/

L1.B1/
6 Cı1=.nC1/;

and applying Sobolev inequality in W 1;nC1.B1/ we deduce that there exists a constant ` 2 R
such that

kw � `kL1.B1/ 6 CkrwkLnC1.B1/
6 Cı1=.nC1/:

Since

kw � w.0/kL1.B1/ 6 kw � `kL1.B1/ C j` � w.0/j 6 2kw � `kL1.B1/;

this concludes the proof with " D Cı1=.nC1/.

In the next result, we observe that if a Lipschitz function has local growth close to the
maximal one at many points, then it needs to be uniformly close to an affine map:

Proposition 2.2. LetM > 0. Then, for any " > 0 there exists a constant�D �.n; ";M/

with
0 < � < min¹1;M º

such that the following holds: fix � 2 àB1, and let u W B1 ! R be an M -Lipschitz function
satisfying

(2.1)
ˇ̌
¹x 2 B1 W u.x C tk�/ � u.x/ > .M � �/ tkº

ˇ̌
> .1 � �/ jB1j

for some sequence tk & 0. Then ju.x/ � u.0/ �M� � xj 6 " for all x 2 B1.

Proof. Up to a rotation we can assume that � D e1. Set

(2.2) Ak WD ¹x 2 B1 W u.x C tke1/ � u.x/ > .M � �/ tkº
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and

A? WD

C1\
kD0

C1[
jDk

Aj :

Notice that jAkj > .1 � �/ jB1j (thanks to (2.1)) and

m\
kD0

C1[
jDk

Aj � Am:

Therefore, by monotone convergence,

(2.3) jA?j D lim
m%1

ˇ̌̌̌
ˇ
m\
kD0

C1[
jDk

Aj

ˇ̌̌̌
ˇ > lim

m%1
jAmj > .1 � �/ jB1j:

Let D � B1 denote the set of differentiability points of u (recall that D has full measure). We
claim that

(2.4) sup
x2A?\D

jru.x/ �Me1j < �
1=4:

For this, we take x 2 A? \D. By the definition of A?, there exists a subsequence jk %1
such that x 2 Ajk , thus, by (2.2),

u.x C tjke1/ � u.x/ > .M � �/ tjk :

Dividing by tjk > 0 and letting k %1, we obtain (recall that tjk & 0 as k %1)

(2.5) à1u.x/ > .M � �/:

As a consequence

M 2 > jru.x/j2 > .M � �/2 C

nX
iD2

jàiu.x/j2;

which gives
nX
iD2

jàiu.x/j2 6 2M�:

Also (2.5) and the fact that à1u.x/ 6 M imply that

�� 6 à1u.x/ �M 6 0;

hence jà1u.x/ �M j 6 �. We conclude that

jru.x/ �Me1j
2
D jà1u.x/ �M j2 C

nX
iD2

jàiu.x/j2 6 �2 C 2M� <
p
�

provided � is sufficiently small, proving (2.4).
By (2.3) and (2.4) we deduce thatˇ̌

¹x 2 B1 W jru.x/ �Me1j > �1=4º
ˇ̌

6 jB1 n A?j 6 � jB1j 6 �1=4:

Hence, if � is small enough, we can apply Lemma 2.1 with ı D �1=4 to obtain the desired
result.
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3. A remark on flat blow-downs

First of all, we recall here the notion of blow-up and blow-down of a s-minimal surfaceE,
which will be used in the proofs of Theorems 1.1 and 1.2.

Assume that 0 2 àE, define the family of sets Er WD E=r , and let E0 (resp. E1) be
a cluster point with respect to the L1loc-convergence for Er as r & 0 (resp. r %1).

With this notation, the set E0 is called a “blow-up” of E (at 0), while the set E1 is
called a “blow-down”. By [3, Theorem 9.2], we know that both E0 and E1 are s-minimal
cones passing through the origin.

In the proof of Theorem 1.2 we will use the following observation:

Lemma 3.1. If E1 is a half-space, then E D E1.

Proof. Up to a rotation we can assume that

E1 D ¹.x; �/ 2 Rn �R W � 6 0º:

Let rk %1 be a sequence such thatErk ! E1, and let "0 be the universal flatness parameter
in [3, Theorem 6.1]. By the uniform density estimates for s-minimal surfaces (see [3, Theo-
rem 4.1]), we have that

àErk \ B1 ! àE1 \ B1

in the Hausdorff distance1) as rk %1.
Hence, for rk sufficiently large we have thatErk \ B1 lies in an "0-neighborhood ofE1,

and [3, Theorem 6.1] yields that àErk \ B1=2 is a C 1;˛-graph parameterized by a function
urk W B1 ! R, with kurkkC1;˛.B1=2/ 6 C for some universal constants ˛ 2 .0; 1/ and C > 0

(to be precise, [3, Theorem 6.1] gives that urk 2 C
1;˛.B1=2/, and the fact that the C 1;˛-norm

is universally bounded is pointed out for instance in [7, Corollary 3.5]).
Scaling back, we deduce that àE \ Brk=2 coincides with the graph of a function u which

satisfies u.x/ D rkurk .x=rk/ and u.0/ D 0 (since 0 2 àE). Hence

r˛k Œru�C˛.Brk=2/
D Œrurk �C˛.B1=2/ 6 C;

and by letting rk %1 we see that ru is constant. Thus u is a linear function, which implies
that E is a half-space. Since 0 2 àE, it is immediate to check that E D Er for all r > 0,
therefore (by letting r %1) E D E1 as desired.

1) The fact that density estimates improve the L1-convergence into Hausdorff convergence is a classical
fact. For completeness, we sketch the argument. Let Xk 2 àErk \ B1, and consider X a cluster point. Taking the
limit in the density estimate

min¹jErk \ B�.Xk/j; jB�.Xk/ nErk jº > c�n for all � 2 .0; 1/;

we deduce that

(3.1) min¹jE1 \ B�.X/j; jB�.X/ nE1jº > c�n for all � 2 .0; 1/;

which implies that X 2 àE1.
Viceversa, ifX 2 àE1\B1, then (3.1) and theL1loc-convergence ofEk toE1 imply that, for any � 2 .0; 1/,

àErk \ B�.X/ ¤ ; for k � 1. Then, the arbitrariness of � yields the existence of a sequence Xk 2 àErk \ B1
converging to X .
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4. Proof of Theorem 1.1

The idea of the proof is that, in some cases, nonlocal equations give a measure theoretic
estimate on the separation of approximate solutions which in turn is helpful to control the
pointwise fluctuations of the solution.

By [3, Theorem 6.1] and [2, Theorem 5], there exists an "0 > 0 such that, if Br.X/ � B1
and àE \ Br.X/ lies in a slab of height 2"0r , then àE \ Br=2.X/ is C1. Hence we only need
to show that, for any X 2 B1, there exists a radius r < 1 � jX j such that àE \ Br.X/ lies in
a slab of height 2"0r .

So, we fix X0 2 B1, we suppose (up to a change of coordinates) that àE is a Lipschitz
graph in the enC1-direction in a neighborhood of X , and we assume by contradiction that, for
any r > 0 small,

(4.1) àE \ Br.X0/ is never trapped inside a slab of height 2"0r .

After translating the system of coordinate, we can assume that X0 D 0, and we consider
a blow-upE0 ofE (recall the notion of blow-up introduced in Section 3). By [3, Theorem 9.2],
we know that E0 is a Lipschitz s-minimal cone passing through the origin.

We claim that

(4.2) àE0 \ BR is never trapped inside a slab of height 2"0R,

for any R > 0. Indeed, if by contradiction àE0 \ BR is trapped inside a slab of height 2"0R,
then [3, Theorem 6.1] and [2, Theorem 5] imply that àE0 is C1, hence (since E0 is a cone)
àE0 is a hyperplane. Then by the uniform density estimates for s-minimal surfaces (see [3, The-
orem 4.1], or footnote 1 here) we obtain that àEr \ B1 lies in a "0-neighborhood of àE0, and
scaling back we obtain that àE \ Br lies in a slab of height 2"0r . This is in contradiction
with (4.1), and the proof of (4.2) is complete.

Now, up to a standard “dimension reduction argument” (see [3, Theorem 10.3]) we can
“remove” all the singular points of àE0 except the origin and we end up2) with the following
situation: E0 is a Lipschitz cone passing through the origin,

(4.3) àE0 \ B1 does not lie in a slab of height "0,

and àE0 is a Lipschitz graph in the enC1-direction which is smooth outside the origin, that is,

E0 D ¹X D .x; �/ 2 Rn �R W � < u.x/º;

where

(4.4) u.0/ D 0; u 2 C 2.Rn n ¹0º/; jru.x/j 6 M for any x ¤ 0:

To be precise, the dimension reduction argument in [3] gives that u 2 C 1;˛.Rn n ¹0º/, and
by [2, Theorem 1] we obtain that u 2 C1.Rn n ¹0º/. Of course, we can take M > 0 to be the
smallest possible (i.e., M is the optimal Lipschitz constant of u).

2) We notice that, since àE0 is a Lipschitz graph, one can perform the dimension reduction argument without
changing system of coordinates. Therefore, after a finite number of blow-ups, we still end up with a Lipschitz graph.
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Take �0 WD �.n; "0=2;M/ as in Proposition 2.2. Then it follows from (4.3) that (2.1)
cannot hold true. Hence, for any � 2 àB1 there exists t� > 0 such that

(4.5)
ˇ̌
¹x 2 B1 W u.x C t�/ � u.x/ < .M � �0/ tº

ˇ̌
> �0 jB1j for all t 2 .0; t� /.

Now we take w0 2 C1.R; Œ0; 1�/, with w0.t/ D 0 for any t 2 .�1; 1=4� [ Œ3=4;C1/ and
w0.t/ D 1 for any t 2 Œ2=5; 3=5�. We set w.x/ D w0.jxj/ and observe that

(4.6) w.x/ D 1 for any x 2 B3=5 n B2=5.

Our goal is to show that there exists a constant # > 0 such that

(4.7) u.x C t�/ 6 u.x/CMt � #tw.x/ for all x 2 B1; t 2 .0; t� /; � 2 àB1:

Before proving (4.7) we observe that, once (4.7) is established, we easily reach a contradiction
and complete the proof of Theorem 1.1. Indeed, letting t & 0 in (4.7) and using (4.6) we
deduce that

ru.x/ � � 6 M � #w.x/ DM � # for all x 2 B3=5 n B2=5; � 2 àB1;

hence
jru.x/j 6 M � # for all x 2 B3=5 n B2=5

by the arbitrariness of � . Since ru is homogeneous of degree zero, it follows that

jru.x/j 6 M � #

for any x ¤ 0, which contradicts our assumption that M was the optimal Lipschitz constant
of u. So, it only remains to prove (4.7).

For this we consider the sets

F WD ¹.x; �/ 2 Rn �R W � < u.x C t�/º

and
G#;˛ WD ¹.x; �/ 2 Rn �R W � < u.x/C .M � #w.x//t C ˛º;

and notice that (4.7) is equivalent to

(4.8) F � G#;0:

To prove (4.8), we first observe that

u.x C t�/ 6 u.x/CMt 6 u.x/C .M � #w.x//t CMt

provided # 6 M , thus F � G#;˛ for any ˛ > Mt . Now we reduce ˛ until we find a critical ˛0
for which G#;˛0 touches F from above. We claim that

(4.9) ˛0 6 0:

Suppose by contradiction that ˛0 > 0. Since u is M -Lipschitz, we have that

u.x C t�/ 6 u.x/CMt < u.x/CMt C ˛0;

Brought to you by | Università degli Studi di Milano
Authenticated

Download Date | 5/3/18 6:05 PM



270 Figalli and Valdinoci, Regularity and Bernstein-type results for nonlocal minimal surfaces

which implies that G#;˛0 and F can only touch at a some point X0 D .x0; t0/ 2 Rn �R with
x0 2 supp.w/ � B3=4 n B1=4. Hence, it is easy to see (by compactness) that a contact point
X0 D .x0; t0/ exists, and since x0 2 B3=4 n B1=4 we have that both sets are uniformly C 2

near X0, so the s-mean curvature operators I ŒF � and I ŒG#;˛0 � (recall (1.1)) may be computed
at X0 in the classical sense.

Since F and G0;˛0 are s-minimal surfaces, we have that

(4.10) I ŒF �.X0/ D 0 D I ŒG0;˛0 �.X0/:

Also, since G#;˛0 is a C 2-diffeomorphism of G0;˛0 of size #t , and G#;˛0 is uniformly C 2 in
a neighborhood of X0, we have that

(4.11) jI ŒG#;˛0 �.X0/j 6 C#t;

for some universal constant C > 0 (see also [5] for detailed computations on the effect of
a small diffeomorphism on the fractional mean curvature). Furthermore, since F � G#;˛0 , we
have that

(4.12) �G#;˛0 � �G
c
#;˛0

� �F C �F c D 2�G#;˛0nF
:

Now we define

Z WD ¹x 2 B1 W u.x C t�/ � u.x/ < .M � �0/ tº � Rn

and

W WD

²
.x; �/ 2 Rn �R W x 2 Z and u.x C t�/ < � < u.x C t�/C

�0t

2

³
� RnC1:

We remark that jZj > �0 jB1j thanks to (4.5), therefore jW j > �20 t jB1j=2. (Notice that, by
abuse of notation, we are using j � j to denote both the Lebesgue measure in Rn and RnC1.)

We claim that

(4.13) .G#;˛0 n F / � W

provided # is sufficiently small. Indeed, let .x; �/ 2 W . Then x 2 Z and

u.x C t�/ < � < u.x C t�/C
�0t

2
;

which implies that .x; �/ 62 F and

� < u.x C t�/C
�0t

2
< u.x/C .M � �0/ t C

�0t

2

6 u.x/CMt � #t

6 u.x/CMt � #w.x/t

provided # 2 .0; �0=4/. This shows that .x; �/ 2 G#;˛0 proving (4.13).
Since by construction Z � B1 � Rn and u is M -Lipschitz with u.0/ D 0, we deduce

that W � B1 � Œ�1 � 2M; 1C 2M�, which implies that

sup
Y2W

jX0 � Y j 6 CM

for some CM > 0, and (by (4.13)) that

j.G#;˛0 n F / \W j D jW j >
�20 t jB1j

2
:
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From this, (1.1), and (4.12), we conclude that

I ŒG#;˛0 �.X0/ � I ŒF �.X0/ D

Z
RnC1

2�G#;˛0nF
.Y /

jX0 � Y jnC1Cs
dy

>
Z
W

2�G#;˛0nF
.Y /

jX0 � Y jnC1Cs
dy

> 2C�n�1�sM

Z
W

�G#;˛0nF
.Y / dy

D 2C�n�1�sM jW j

> C�n�1�sM �20 t jB1j:

Hence, combining (4.10) and (4.11) we get

(4.14) C#t > I ŒG#;˛0 �.X0/ D I ŒG#;˛0 �.X0/ � I ŒF �.X0/ > C�n�1�sM �20 t jB1j;

which is a contradiction if # is sufficiently small. This contradiction proves (4.9), that in turn
implies (4.8) and so (4.7). This concludes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

Let E1 be a blow-down of E, that is, a cluster point for Er WD E=r as r %1. In this
way, we get an s-minimal cone, and the assumption that no singular s-minimal cones exist in
dimension n combined with a standard dimension reduction argument implies that E1 can
only be singular at the origin.

Also, because àE was a graph, E1 is an hypograph in RnC1, that is,

(5.1) .x; �/ 2 E1 H) .x; � � t / 2 E1 for all t > 0:

To check (5.1), one can observe that, as àEr is a graph, the above property holds with Er in
place of E1. Then, since Er ! E1 in the Hausdorff distance (see for instance footnote 1 in
the proof of Lemma 3.1), the claim in (5.1) follows.

Now we show that E1 is in fact a graph (and not only an hypograph). For this, suppose
by contradiction that there exists �1 > 0 such that àE1 touches àE1 C �1enC1 at some
point. Then, by the strong maximum principle,3) we get E1 D E1 C �1enC1, from which
(iterating this equality) we get E1 D E1 C k�1enC1 for any k 2 N. This fact combined
with (5.1) implies that

E1 D C �R;

where C is an s-minimal cone in Rn. Hence it follows by our assumption that C is a half-space,
and Lemma 3.1 gives that E D C �R which is in contradiction with the fact that E was
a graph.

3) A simple and direct way to see the strong maximum principle is to use that E1 and E1 C �1enC1
are smooth cones outside the origin. So, if they touch, we can find a contact point X0 ¤ 0, and by computing
the operator I defined in (1.1) at X0 for both surfaces, since both E1 and E1 C �1enC1 are s-minimal and
E1 � E1 C �1enC1, we get

0 D I ŒE1 C �1enC1�.X0/ � I ŒE1�.X0/ D

Z
RnC1

2�E1C�1enC1nE1
.Y /

jX0 � Y jnC1Cs
dy;

which implies that E1 D E1 C �1enC1, as desired.
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Hence we have shown that àE1 and àE1 C �enC1 never touch for any � > 0, which
implies that àE1 is the graph of a function u1 W Rn ! R. In addition, since E1 is smooth
outside the origin, we can compute jru1.x/j at any point x ¤ 0 (though, in principle, it can
be infinite at points with vertical tangent hyperplanes).

Now, as in the proof of Theorem 1.1, we consider a bump function w0 2 C1.R; Œ0; 1�/,
with w0.t/ D 0 for any t 2 .�1; 1=4� [ Œ3=4;C1/ and w0.t/ D 1 for any t 2 Œ2=5; 3=5�,
and we define w.x/ D w0.jxj/. Then, we fix � 2 àB1 and consider the family of sets

Ft WD ¹.x; �/ W � 6 u1.x C t#w.x/�/ � tº;

where t 2 Œ0; 1� and # > 0. By compactness, we see that, if # is sufficiently small, then
F1 � E1. Let t0 2 Œ0; 1� be the smallest t for which Ft � E1, and assume by contradiction
that t0 > 0. Since E1 is a graph, we see that Ft0 can only touch E1 from below at some point
X0 D .x0; t0/ with x0 2 supp.w/ � B3=4 n B1=4. Hence, it is easy to see (by compactness)
that a contact point X0 D .x0; t0/ exists, and since x0 2 B3=4 n B1=4, we have that both sets
are smooth near X0.

Therefore, we can easily adapt the arguments provided in (4.10)–(4.14) as follows:
First, by the s-minimality of E1 we have that I ŒE1�.X0/ D 0 D I ŒF0�.X0/. Also, since Ft0
is a C 2-diffeomorphism of F0 of size #t0 and F0 is uniformly C 2 in a neighborhood of X0,
we have that

(5.2) jI ŒFt0 �.X0/j 6 C#t0:

On the other hand, since the graph of u1 is uniformly Lipschitz in a nontrivial fraction of
points (just pick a point where the tangent space to àE1 is not vertical and consider a small
neighborhood of this point), we see that àFt0 and àE1 lie at distance > ct0 on a nontrivial
fraction of points, therefore

j.E1 n Ft0/ \ B1j > c0t0

for some c0 > 0. Hence, arguing as in the proof of Theorem 1.1, we get

jI ŒFt0 �.X0/j D jI ŒFt0 �.X0/ � I ŒE1�.X0/j > c0t0

for some c0 > 0, which is in contradiction with (5.2) if # was chosen sufficiently small.
This proves that t0 D 0, which implies that Ft � E1 for any t 2 .0; 1/, or equivalently

u1.x C t#w.x/�/ � u1.x/

t
6 1 for all t 2 .0; 1/:

Hence, letting t & 0, we obtain

#w.x/ru1.x/ � � 6 1 for all x 2 Rn n ¹0º; � 2 àB1;

which combined with the fact that w D 1 in B3=5 n B2=5 and � 2 àB1 is arbitrary implies

jru1.x/j 6 1=# for all x 2 B3=5 n B2=5:

Since u1 is 1-homogeneous, we deduce that u1 is globally Lipschitz. So by Theo-
rem 1.1 it is smooth also at the origin, hence (being a cone) E1 a half-space. Using again
Lemma 3.1, we deduce that E is a half-space as well, concluding the proof of Theorem 1.2.
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