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Abstract 26 

Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of 27 

Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii 28 

harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential 29 

to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a 30 

two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and 31 

using gas solid phase microextraction chromatograpy-mass spectrometry we specifically 32 

characterize their volatile profiles to identify attractive and non-attractive components produced by 33 

strains from the genera Acetobacter, Gluconobacter and Komagataeibacter. Flies had a preference 34 

for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile 35 

profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted 36 

even after two days of bacterial growth, confirming the relevance of this volatile in the profile of 37 

this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter 38 

isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. 39 

Moreover, variation in the concentration of butyric acid derivatives found in some strains may 40 

influence the preference of D. suzukii. Our results indicate that Gluconobacter and 41 

Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that 42 

could be exploited to develop sustainable mass-trapping-based control approaches. 43 

 44 
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 Environmentally friendly strategies for the management of D. suzukii, like mass trapping, 50 

could benefit from identifying new efficient and specific lures to improve traps designed to 51 

control this pest. 52 

 This work demonstrated that different acetic acid bacteria isolated from D. suzukii have 53 

attractive effects on female flies which may be exploited for bait development. 54 

 Many of volatile substances produced by these strains appear to have essential roles in 55 

modulating D. suzukii preference as well. 56 

.57 
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Introduction 58 

Acetic acid bacteria (AAB) are Gram-negative bacteria belonging to the family Acetobacteraceae 59 

within the class Alphaproteobacteria. Their taxonomy, molecular biology and physiology have been 60 

scrutinized because of their importance in commercial food and chemical compound production 61 

(Raspor and Goranovič 2008). AAB are pervasive in the environment and easy to isolate from 62 

various plants, flowers, fruits and garden soil (Raspor and Goranovič 2008; Crotti et al. 2010).  63 

Although some strains are spoilage agents of wine and beer and others cause plant diseases 64 

(Rohrbach and Pfeiffer 1975; van Keer et al. 1981; du Toit and Pretorius 2000; Bartowsky et al. 65 

2003), numerous studies have also established symbiotic associations between AAB and insects that 66 

feed on sugar-based diets, specifically those belonging to the orders Diptera, Hymenoptera and 67 

Hemiptera (Crotti et al. 2010). Model species from the genus Drosophila, Drosophila melanogaster 68 

Meigen and Drosophila simulans Sturtevant, host several AAB strains, but predominantly those 69 

belonging to the genera Acetobacter and Gluconobacter (Cox and Gilmore 2007; Ren et al. 2007; 70 

Chandler et al. 2011; Wong et al. 2011; Kim et al. 2012; Staubach et al. 2013; Wong et al. 2013); 71 

strains belonging to the genera Gluconacetobacter and Commensalibacter have also been isolated 72 

from some D. melanogaster populations (Roh et al. 2008). 73 

The insect midgut is a favorable niche for growth of AAB because of the availability of 74 

carbohydrate-rich food in an aerobic, acidic environment. Meanwhile, AAB can convey numerous 75 

advantages to their hosts, such as improving their digestive opportunities or by positively 76 

influencing larval development (Crotti et al. 2010; 2011; Chouaia et al. 2012). Some AAB are 77 

implicated in maintaining the immune homeostasis or increasing the lifespan and fitness of their 78 

hosts (Ryu et al. 2008; Shin et al. 2011), while others could be involved in defense against other 79 

harmful microorganisms or may participate in cell-to-cell communication (Crotti et al. 2010). 80 

Therefore, the relationship between AAB bacteria and their hosts is considered to be mutually 81 

symbiotic. 82 
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AAB produce a number of volatile compounds as secondary metabolites in addition to acetic acid 83 

(Raspor and Goranovič 2008), some of which may attract host insects and facilitate the ingestion of 84 

bacteria, as reported for other symbionts (Davis et al. 2013). Pseudomonas putida has been shown 85 

to produce volatiles that attract the olive fly, Bactrocera oleae Gmelin (Liscia et al. 2013), and 86 

numerous bacteria have been shown to produce volatiles that attract the Oriental fruit fly, 87 

Bactrocera dorsalis (Hendel), and the Mexican fruit fly, Anastrepha ludens (Loew) (Jang and 88 

Nishijima 1990; Robacker et al. 1998). Similarly, a recent study on yeasts isolated from the larval 89 

frass and adult midguts of spotted-wing drosophila, Drosophila suzukii Matsumura, and their fruit 90 

food source, found a specific association between the flies and some yeasts with a preference for 91 

Hanseniaspora uvarum (Scheidler et al. 2015). The volatile compounds produced by mutualistic 92 

microorganisms living inside host insects that have a symbiotic relationship with plants might 93 

trigger their trophic interaction (Frago et al. 2012). In the case of pest insects, exploiting the 94 

relationships between bacteria, their hosts and plants may be a useful tool for developing 95 

sustainable control strategies. 96 

Drosophila suzukii, recently introduced from Asia (Asplen et al. 2015), is currently one of the most 97 

serious threats to fruit production in Europe and North America. It was found to host several strains 98 

of AAB (Chandler et al. 2014) and their presence were also detected in a recent companion study 99 

conducted by Vacchini et al. (submitted). However, the attractiveness of the bacterial volatiles has 100 

not yet been investigated. Here, we use a two-way olfactometer to assess the preference of flies for 101 

AAB symbionts versus the control. We then characterize their volatile profiles by gas 102 

chromatography-mass spectrometry analysis. This survey could allow to evaluate differences in fly 103 

preference among strains and species of symbiotic AAB; along with identifying volatiles emitted by 104 

attractive bacteria. These compounds may be very useful for sustainable mass-trapping D. suzukii 105 

management programs. 106 

 107 

Materials and methods 108 
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Insect material and bacterial strains 109 

In the summer of 2014, we collected D. suzukii larvae on blueberries, raspberries and blackberries 110 

in orchards of the Cuneo and Torino provinces of Piedmont (NW Italy). Emerged insects were 111 

reared in plastic cages (24×16×12 cm) containing different types of fruit (strawberries, blueberries, 112 

grapes, bananas and kiwi fruits) at the Dipartimento di Scienze Agrarie, Forestali e Alimentari 113 

(DISAFA) in a growth chamber at 25±1°C, 65±5% RH and a 16 h:8 h L:D photoperiod.  114 

We selected AAB strains based on previous characterizations of the isolates by Vacchini et al. 115 

(submitted), including the most commonly found genera in Italian populations of D. suzukii: two 116 

isolates from the genus Acetobacter (A. persici DS4MR.45 and A. cibinongensis DS5FR.4), two 117 

isolates from the genus Gluconobacter (G. oxydans DS1FC.9A and G. kanchanaburiensis 118 

L2.2.A.15) and two isolates from the genus Komagataeibacter (DS2MC.114 and DS1MA.65A). 119 

Universal bacterial 16S rRNA gene primers 27F (5’-TCG ACA TCG TTT ACG GCG TG-3’) and 120 

1495R (5’-CTA CGG CTA CCT TGT TAC GA-3’) were used to amplify the 16S rRNA gene from 121 

the 2 strains K. hansenii and K. saccharivorans, as previously described (Mapelli et al. 2013). Near-122 

full-length sequencing 16S rRNA was performed and consensus sequences were compared to the 123 

public databases at the National Center for Biotechnology Information using BLASTn (Altschul et 124 

al. 1990); near-full-length 16S rRNA sequences were deposited in the European Nucleotide 125 

Archive’s database under the accession numbers LN901337 and LN901338. 126 

Two-way olfactometer bioassays 127 

Selected AAB strains were tested against the control (sterile growth medium) with a two-way 128 

olfactometer assay to evaluate the preferences of D. suzukii. Isolates were cultured on liquid MA 129 

medium (10.0 g/l glucose, 10.0 g/l glycerol, 10.0 g/l meat peptone, 5.0 g/l yeast extract and 1% 130 

ethanol) for 24 hours at 30°C. Cells were harvested following centrifugation (10 min, 3000 g) and 131 

adjusted to a concentration of 108 cells/ml; 100 μl of the bacterial suspensions were then plated in 132 

plastic flasks containing 20 ml of solid MA (obtained by adding 1.5% agar) and grown at 30°C for 133 

24 or 48 h. The comparison between two sterile MAs serving as a blank was also performed. 134 
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Olfactometer assays were conducted following Mazzetto et al. (2015). The olfactometer consisted 135 

of a plastic box (24×16×12 cm) covered with a fine mesh net on the top, and a layer of wet cotton 136 

on the base to promote humidity. On the bottom of the box, there were two holes (31 mm diameter) 137 

closed by silicon plugs. Two glass funnels (46 mm diameter) were fitted in these plugs and each 138 

was inserted into a 250 ml glass flask placed below the box. An air pump (Air 275R, Sera, 139 

Heinsberg, Germany) was used to supply the air necessary for the trials. Pumped air was humidified 140 

and split into two 5 mm diameter silicon tubes, each entered first into a plastic flask (125 ml) 141 

containing the strain or the sterile MA. The exit air, which was enriched with the volatile 142 

compounds, was provided by another silicon tube (same diameter) into the glass flask through a 143 

separate hole created in the plug, close to the funnel. The glass flasks acted as traps, and the flies 144 

could not escape once they had entered. 145 

The experiment was conducted in a climatic chamber (25±1°C, 65±5% RH). At the beginning of the 146 

experiments, illuminance (9 lux) was measured with a luxmeter (PCE-172, PCE Group, Lucca, 147 

Italy) and the rate of airflow (0.25 l/min) was measured with a digital anemometer (TA-410, PCE 148 

Group, Lucca, Italy) at the downwind end. For each trial, 2–10-d old D. suzukii females were 149 

separated from males according to the external genitalia (Hauser 2011) and females were starved on 150 

1.5% agar (15 ml) for 24 h inside into a plastic tube (30 diameter, height 114 mm). Seventy females 151 

were then introduced to the center of the olfactometer box through a small hole created in the 152 

middle of the net and closed with a plug. After 24 h, we counted the number of flies in the box (no 153 

choice) and in each of the two flasks (one containing the volatiles of AAB strain and the other 154 

containing the volatiles of the sterile MA). Nine replicates at 24 and 48 h of bacterial growth were 155 

carried out; nine replicates of comparisons between two MA controls were assessed too. All flasks, 156 

funnels, plugs and tubes were cleaned with neutral soap and distilled water and sterilized in an 157 

autoclave; the box and the net were cleaned with neutral soap, distilled water and ethanol (70% 158 

v/v). The numbers of flies in the test trap, control trap and those remaining alive in the cage (about 159 

90%) were compared by a Friedman-ANOVA followed by Wilcoxon signed-rank tests with a 160 
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Bonferroni correction factor (P<0.05). Statistical analyses were performed through SPSS Statistics 161 

22 (IBM Corp. Released 2013, Armonk, NY). 162 

 163 

Volatile profile analysis 164 

After testing the preference of flies for cultured AAB strains versus the control, volatile profiles 165 

produced by these isolates were studied. Before the analysis of volatiles, bacteria were grown at 166 

30°C in liquid MA medium. The cells were adjusted to 108 cells/ml as explained above and then 167 

incubated on Petri dishes containing solid MA at 30°C for 24 or 48 hours. 168 

Prior to analyses, 20-ml glass vials (Supelco Inc., Bellefonte, USA) were filled with 4 g of solid 169 

MA + bacteria and 4 g of NaCl and crushed with a spoon. The vials were closed with PTFE septa 170 

and open-top polypropylene (Supelco) caps. Sterile solid MA and 4 g of NaCl, crushed in the vial 171 

was also used as control. The samples were shacked for 2 min at 50°C to accelerate equilibrium of 172 

headspace volatile compounds between the solid matrix and the headspace. Volatile compounds 173 

were extracted by solid-phase microextraction (SPME) by inserting a carboxen-174 

polydimethylsiloxane fiber (black, 75-μm-thick film, 23-Ga needle, Supelco, Bellefonte, PA, USA) 175 

for 30 min at 50°C. After extraction, samples were desorbed into a CIS-4 programed temperature 176 

vaporization injector (Gerstel, Mülheim an der Ruhr, Germany). The volatile compounds were 177 

analyzed using an HP 6890 Series gas chromatography (GC) system equipped with a capillary 178 

column (DB-5MS, 30 m ×0.250 mm, 0.25-µm-thick film). Helium gas was used as the carrier gas at 179 

a constant flow of 1.2 ml/min. Oven temperature of the GC was programmed for a 29.33 min total 180 

running time. From an initial temperature of 35°C, the temperature was increased at a constant rate 181 

of 5°C/min up to 100°C and then 15°C/min up to 300°C where it was held constant for 1 min. A HP 182 

5973 Mass Selective Detector (Hewlett-Packard, Wilmington, NC, USA) connected with the GC 183 

system was operated in electron impact mode with an electron impact energy of 70 eV. GC-MS data 184 

were processed with the MSD-Chemstation software (Agilent Technologies). Volatile compounds 185 

were initially identified by comparison of chromatographic retention times and mass spectra with 186 
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the WILEY6N.L and NIST98.I databases and only those showing match quality higher than 75% 187 

were considered for analyses. Next the volatiles were identified by comparison with authentic 188 

standards (1 μl/ml concentrated) in 10 ml of distilled water in glass vials (20 ml) capped with a 189 

Teflon-lined septum and analyzed with GC-MS. Alkanes (C5 to C18) were also run with 4 g of solid 190 

MA + 4 g of NaCl to calculate retention indices (RI) for the volatiles.  191 

Six replicates were performed for each strain and for the control (three replicates after 24 h growth 192 

and three replicates after 48 h) and the mean percentage of each compound found according to the 193 

total peak area integrated by the analysis program in the three replicates of each strain was 194 

calculated. 195 

 196 

Chemicals 197 

Ethanol (Chem-Lab, ≥99.8%) acetic acid (Acros Organics, 99.5%), 2-propanol (Acros Organics, 198 

99.5+%), 2-propanone (Acros Organics, 99.8%), 2-methylpropanoic acid (Acros Organics, 99+%), 199 

2-methylbutanoic acid (Acros Organics, 98%), 3-methylbutanoic acid (Acros Organics, 99%), 200 

benzaldehyde (Acros Organics, 98+%) and acetaldehyde (Acros Organics, 99.5%). The alkanes: 201 

pentane (Acros Organics, 99+%), hexane (Sigma-Aldrich, ≥97.0%), heptane (Sigma-Aldrich, 202 

≥99%), octane (Sigma-Aldrich, 98%), nonane (Sigma-Aldrich, 99%), decane (Sigma-Aldrich, 203 

≥99%), undecane (Sigma-Aldrich, ≥99%), dodecane (Sigma-Aldrich, ≥99%), tridecane (Acros 204 

Organics, 99+%), tetradecane (Sigma-Aldrich, ≥99%), pentadecane (Sigma-Aldrich, ≥99%), 205 

hexadecane (Acros Organics, 99%), heptadecane (Sigma-Aldrich, 99%) and octadecane (Sigma-206 

Aldrich, ~99%). 207 

 208 

Results 209 

Identification of volatile-producing AAB strains 210 

To perform the two-way olfactometer bioassays experiments, we selected six AAB strains, two 211 

isolates from the genus Acetobacter (A. persici DS4MR.45 and A. cibinongensis DS5FR.4), two 212 
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from the genus Gluconobacter (G. oxydans DS1FC.9A and G. kanchanaburiensis L2.2.A.15) and 213 

two from the genus Komagataeibacter (DS2MC.114 and DS1MA.65A). Sequencing of near-full-214 

length 16S rRNA gene of the two isolates from Komagataeibacter genus was performed to obtain 215 

more information on their taxonomic identification. Results indicated that DS2MC.114 and 216 

DS1MA.65A showed 99% identity with Komagataeibacter hansenii and 100% identity with 217 

Komagataeibacter saccharivorans, respectively. 218 

 219 

Two-way olfactometer bioassays 220 

Results of the two-way olfactometer bioassays, statistical analyses with significant differences and 221 

the rate of no choice are reported in Table 1 and Figures 1-2. 222 

First, we tested the response of D. suzukii to two identical stimuli (sterile MA) and found a high 223 

percentage of no choice in nine replicates and no difference between the two flasks. Thereafter, each 224 

AAB isolate was compared with the control. Flies showed a significant preference for G. oxydans, 225 

G. kanchanaburiensis and K. saccharivorans strains over the control (sterile MA) after both 24 and 226 

48 h of growth (Figs. 1-2). Moreover, response to these strains had the lowest percentages of no 227 

choice after 24 and 48 h of bacterial growth; the strain of K. saccharivorans had the lowest rate of 228 

no choice (Table 1). No significant difference was found in the comparison between A. persici strain 229 

and the control in the first 24 h of growth, accompanied by a high percentage of no choice; 230 

however, after 48 h of bacterial growth, flies significantly preferred the control and the rate of no 231 

choice decreased. No preference was found for the two remaining strains after 24 or 48 h, with a 232 

high percentage of no choice: the rate of no choice was around 50% for K. hansenii strain and over 233 

60% for A. cibinogensis strain (Figs. 1-2). 234 

 235 

Volatile profile analysis 236 

The volatile profiles of the bacterial strains and the control included alcohols, ketones, carboxylic 237 

acids and aldehydes (Table 2). The analysis of compounds conducted on 24- and 48-h-old sterile 238 



 12 

media for the control confirmed a constant emission of ethanol (66-70%), 2-propanol (~ 30%) and 239 

benzaldehyde (0.2%) (Table 2). 240 

Concerning AAB, in the first 24 h, all strains produced 2-propanone and acetic acid with the 241 

exception of A. persici, where acetic acid was not found in any of the three replicates. The relative 242 

amount of 2-propanone produced was similar within genera: Acetobacter strains (above 65%), 243 

Komagataeibacter strains (approximately 50%) and Gluconobacter strains (less than 20%). Ethanol 244 

was still detectable in G. oxydans, G. kanchanaburiensis and K. saccharivorans strains and always 245 

below 3%. Both Gluconobacter and A. cibinogensis were the only strains where 2-propanol was 246 

found. All butyric acid derivatives identified in this work (2-methylpropanoic acid, 2-247 

methylbutanoic acid and 3-methylbutanoic acid) were produced in the first 24 h by A. persici and K. 248 

hansenii, while K. saccharivorans produced only one derivative (2-methylpropanoic acid). 249 

Moreover, the cumulative relative presence of butyric acid derivatives of A. persici (~ 28%) was 250 

double that of K. hansenii and quadruple that of K. saccharivorans strain. Finally, the 251 

Gluconobacter strains were the only where benzaldehyde was present, although only below 2%, 252 

and K. saccharivorans was the only strain to produce acetaldehyde, although only at about 7%. 253 

After 48 h of bacterial growth, 2-propanone was the sole compound continuing to be released by all 254 

strains of bacteria (Table 2), and although a decrease in percentage was observed for all strains with 255 

the exception of K. saccharivorans (66%), Acetobacter strains still had high relative abundance (> 256 

50%) of 2-propanone in the volatile profiles. Even though acetic acid was present in all strains after 257 

24 h of growth, with the exception of A. persici, it was only detected in G. oxydans and G. 258 

kanchanaburiensis after 48 h, although in increased relative abundance. In these two strains the 259 

presence of 2-propanol was still recorded. After 48 h, the cumulative production of the butyric acid 260 

derivatives increased for all strains that expressed them at 24 h with the addition of A. cibinogensis 261 

strain (~ 37% relative production); neither Gluconobacter strain produced these derivatives. After 262 

48 h, no remnant of ethanol or acetaldehyde was present but for G. kanchanaburiensis an emission 263 

of less than 1% benzaldehyde was still detected. 264 
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Discussion 265 

The Acetobacteraceae family was confirmed to include some of the most important bacteria 266 

associated with D. suzukii, similar to those found for other species from the Drosophilidae family 267 

(Chandler et al. 2011). Olfactometer bioassays of six AAB strains among those isolated from D. 268 

suzukii in our companion study (Vacchini et al. submitted) showed that female flies have a 269 

significant attraction for half of the tested isolates with percentage of choice comparable to those 270 

obtained by other authors, either on fruits (Abraham et al. 2015) and on apple cider vinegar 271 

(Mazzetto et al., 2015). Flies always showed an attraction for G. oxydans, G. kanchanaburiensis and 272 

K. saccharivorans strains, no attraction for A. cibinogensis and K. hansenii and no attraction for A. 273 

persici at 24 hours but rejection at 48 hours. 274 

We performed SPME/GC-MS to characterize the attractive and non-attractive profiles of volatiles 275 

of each strain. Qualitative and quantitative differences were identified in the volatile profiles of the 276 

six bacterial strains, including high variability between 24 and 48 hours of bacterial growth. 277 

Considerable differences were evident from the volatile profiles of the preferred strains, which 278 

included both Gluconobacter isolates and K. saccharivorans. This last strain was the most highly 279 

preferred for the duration of the experiment and had the lowest average rate of no choice both after 280 

24 and 48 hours bacterial growth (Figs. 1-2). Gluconobacter oxydans and G. kanchanaburiensis 281 

produced the highest percentage of acetic acid and from both strains ethanol was emitted in the first 282 

24 hours. Similarly, for K. saccharivorans ethanol emission and acetic acid production was present 283 

in the first 24 hours. These compounds are known to be attractive substances to Drosophila, 284 

including D. suzukii (West 1961; Reed 1938; Cha et al. 2012; Landolt et al. 2012), and their 285 

combined presence could be one of the keys of fly attraction. Moreover, although 2-propanone was 286 

the only compound released by all bacteria throughout the experiment, its relative production was 287 

the lowest in Gluconobacter strains (Table 2). Instead, the most attractive strain, K. saccharivorans, 288 

produced relatively high levels of 2-propanone after 24 hours and even higher levels after 48 hours. 289 

The role of 2-propanone is quite controversial: although this compound is reported to be a repellant 290 
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for vinegar flies (Elamrani et al. 2001), Riveron et al. (2009) showed that 2-propanone can be 291 

repellent or attractive to D. melanogaster according to its concentration. Moreover, Newby and 292 

Etges (1998) reported that 2-propanone is a general attractant to D. mojavensis and can engender 293 

increased adult longevity. These evidences combined with our results suggest that 2-propanone 294 

could exhibit different effects according to its concentration and the fly species; its role for D. 295 

suzukii attraction must be further investigated.  296 

Komagataeibacter saccharivorans continued to be the preferred strain despite the absence of acetic 297 

acid and ethanol after 48 hours. Perhaps having the highest production of butyric acid derivatives 298 

after 48 hours can explain why this strain was most preferred. Lactic acid bacteria are known to 299 

produce short-chain fatty acids like butyric acid derivatives that are precursors of many food flavor 300 

compounds (van Kranenburg et al. 2002); the production of butyric acid derivatives is also known 301 

in AAB. For example, 2-methylbutanoic acid, an aromatic compound found in fruits and used in the 302 

food industry, is produced by Gluconobacter from 2-methylbutanol (Saichana et al. 2015). Butyric 303 

acid derivatives produced by AAB may be an attractive volatile for D. suzukii. However, no clear 304 

conclusion can be drawn because while K. saccharivorans strain produced the greatest amount of 2-305 

methylbutanoic acid, one strain that was not preferred (K. hansenii) and one strain that was not 306 

preferred and later rejected (A. persici) also produced this volatile. Thus, the volatile profiles from 307 

K. saccharivorans, K. hansenii and A. persici do not appear to explain the variety in response by D. 308 

suzukii. Potentially an interaction among volatiles could be involved in fly attraction. This might 309 

explain also why A. cibinogensis strain was not preferred by flies and fluctuated considerably for D. 310 

suzukii choice, even producing 3-methylbutanoic acid.  311 

To rule out an effect from the volatiles produced by the medium, we also analyzed its profile and 312 

found that benzaldehyde, ethanol and 2-propanol were always present in the sterile medium. 313 

Previous research reported that benzaldehyde is attractive to D. melanogaster larvae (Larkin et al. 314 

2010; Lavagnino et al. 2013) but has a repellent effect on adult flies (Rodrigues and Siddiqi 1978; 315 

Hoffmann 1983). Hoffmann (1985) found that four species of Drosophila were not attracted by 2-316 
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propanol; on the other hand ethanol is known to be an attractant to Drosophila flies (Devineni and 317 

Hebrlein 2009). In our bioassays, a high percentage of no choice and an equal distribution between 318 

the two control flasks was recorded (Figs. 1-2), indicating that this blend has little effect on 319 

attraction of D. suzukii females. Moreover, some of the compounds detected in the medium could 320 

be involved in bacterial metabolism, as suggested by absence of the medium-related volatiles in the 321 

control in half of the strains.  322 

To better explain D. suzukii preference for some isolates, further studies should investigate the fly 323 

responses to the single volatile (tested at different concentrations) produced by all symbiont strains. 324 

Although we could not provide an overall attraction pattern to the volatile profiles of each bacterial 325 

strain, we did show that Gluconobacter and K. saccharivorans produced the most attractive 326 

volatiles. Thus, a combination of the most effective substances could be used for the optimizing the 327 

traps used in Integrated Pest Management of D. suzukii. Despite intensive research on specific 328 

chemical substances (Landolt et al. 2012; Cha et al. 2013; 2014; 2015; Burrack et al. 2015), a clear 329 

direction to resolve the current problem of D. suzukii as a pest has not yet been established. Traps 330 

developed in the last few years have been unable to prevent crop damage while killing many non-331 

target insects (Iglesias et al. 2014; Asplen et al. 2015). Because the biology of AAB is already well 332 

known and because they are currently used extensively in biotechnological applications (Saichana 333 

et al. 2015), the exploitation of these D. suzukii symbionts has potential for the development of 334 

attractive and selective traps for their management. 335 

 336 
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Captions of Tables and Figure 479 

Table 1 Results of the statistical analysis of the two-way olfactometer bioassays performed after 24 480 

and 48 h of bacterial growth. χ2 values from the Friedman-ANOVA, performed to evaluate the 481 

differences between the number of flies that chose each of the volatiles, the control, or did not 482 

choose, are reported with their significance (df=2 in all tests). Significance of Wilcoxon signed rank 483 

tests with a Bonferroni correction factor between each strain and the control are indicated, whereas 484 

differences with no choice rate were not considered. 485 

Table 2 Volatile compounds identified by GC-MS analysis from six strains of AAB and in the 486 

control (sterile MA medium) after 24 and 48 h of bacterial growth. 487 

Fig. 1 Results of the two-way olfactometer bioassays performed after 24 h of bacterial growth. 488 

Responses of D. suzukii females to volatile compounds produced by a control (sterile medium) and 489 

several strains of AAB: Acetobacter persici DS4MR.45, Acetobacter cibinongensis DS5FR.4, 490 

Gluconobacter oxydans DS1FC.9A, Gluconobacter kanchanaburiensis L2.2.A.15, 491 

Komagataeibacter sp. DS2MC.114 and Komagataeibacter sp. DS1MA.65A. Nine replicates were 492 

performed for each strain. Mean percentages (±SE) on the right report the flies that did not choose 493 

either the control or the volatile. Asterisks (*) indicate significant differences between the number 494 

of flies that chose the control and the volatile according to the Friedman-ANOVA and Wilcoxon 495 

signed-rank tests with a Bonferroni correction (P<0.05) factor. 496 

Fig. 2 Results of two-way olfactometer bioassays performed after 48 h of bacterial growth. 497 

Responses of D. suzukii flies to volatile compounds produced by a control (sterile medium) and 498 

several strains of AAB: Acetobacter persici DS4MR.45, Acetobacter cibinongensis DS5FR.4, 499 

Gluconobacter oxydans DS1FC.9A, Gluconobacter kanchanaburiensis L2.2.A.15, 500 

Komagataeibacter sp. DS2MC.114 and Komagataeibacter sp. DS1MA.65A. Nine replicates were 501 

performed for each strain. Mean percentages (±SE) on the right report flies that did not choose 502 

either the control or the volatile. Asterisks (*) indicate significant differences between the number 503 
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of flies that chose the control and the volatile according to the Friedman-ANOVA and Wilcoxon 504 

signed-rank tests with a Bonferroni correction (P<0.05) factor. 505 
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Table 1 Results of the statistical analysis of the two-way olfactometer bioassays performed after 24 1 

and 48 h of bacterial growth. χ2 values from the Friedman-ANOVA, performed to evaluate the 2 

differences between the number of flies that chose each of the volatiles, the control, or did not 3 

choose, are reported with their significance (df=2 in all tests). Significance of Wilcoxon signed rank 4 

tests with a Bonferroni correction factor between each strain and the control are indicated, whereas 5 

differences with no choice rate were not considered. 6 

 7 

Strain 
χ2; significance  

(Friedman-ANOVA) 

Significance  

(Wilcoxon signed rank test)  

VS control 

 24h 48h 24h 48h 

Control 14.000; 0.001 - ns - 

A. persici 13.886; 0.001 14.114; 0.001 ns 0.012a 

A. cibinogensis 9.556; 0.008 11.556; 0.003 ns ns 

G. oxydans 12.667; 0.002 10.889; 0.004 0.008b 0.008 b 

G. kanchanaburiensis 13.556; 0.001 13.556; 0.001 0.008 b 0.008 b 

K. hansenii 10.889; 0.004 3.556; ns ns ns 

K. saccharivorans 16.222; <0.001 13.771; 0.001 0.008 b 0.008 b 

 8 
ns = not significant (P>0.05) 9 
a = insect preference for the control versus a specific strain 10 
b = insect preference for a specific strain versus the control 11 

 12 

13 
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Table 2 Volatile compounds identified by GC-MS analysis from six strains of AAB and in the 14 

control (sterile MA medium) after 24 and 48 h of bacterial growth. 15 

Strain Compound Identified bya RIb Presencec 

   Exp. Lit. 24 hours 48 hours 

A. persici 

 

2-Propanone 

2-Methylpropanoic acid 

3-Methylbutanoic acid 

2-Methylbutanoic acid 

Database; AS 

Database; AS; RI 

Database; AS; RI 

Database; AS; RI 

ND 

792 

878 

875 

- 

790 

876-882 

876 

70.6%±1.0% 

  7.7%±1.3% 

14.4%±2.6% 

  7.3%±0.1% 

55.0%±5.4% 

26.5%±1.6% 

12.4%±1.9% 

  6.1%±2.6% 

A. cibinogensis 

Acetic acid 

2-Propanol 

2-Propanone 

3-Methylbutanoic acid 

Database; AS; RI 

Database; AS; RI 

Database; AS 

Database; AS; RI 

622 

500 

ND 

879 

600-646 

515 

- 

876-882 

13.0%±3.3% 

18.4%±1.0% 

68.6%±2.5% 

 

 

 

63.3%±4.9% 

36.7%±4.9% 

G. oxydans 

 

Ethanol 

Acetic acid 

2-Propanol 

2-Propanone 

Benzaldehyde 

Database; AS 

Database; AS; RI 

Database; AS; RI 

Database; AS 

Database; AS; RI 

ND 

644 

501 

ND 

988 

- 

600-646 

515 

- 

980 

  1.2%±0.4% 

65.4%±3.6% 

17.4%±1.2% 

14.2%±2.6% 

  1.8%±0.3% 

 

69.4%±9.3% 

17.8%±5.1% 

12.8%±4.4% 

 

G. kanchanaburiensis 

 

Ethanol 

Acetic acid 

2-Propanol 

2-Propanone 

Benzaldehyde 

Database; AS 

Database; AS; RI 

Database; AS; RI 

Database; AS 

Database; AS; RI 

ND 

644 

501 

ND 

990 

- 

600-646 

515 

- 

980 

  0.9%±0.3% 

62.8%±3.7% 

24.5%±2.3% 

10.9%±0.7% 

  0.9%±0.3% 

 

80.4%±0.7% 

13.9%±0.7% 

  5.1%±0.3% 

  0.6%±0.2% 

K. hansenii 

Acetic acid 

2-Propanone 

2-Methylpropanoic acid 

3-Methylbutanoic acid 

2-Methylbutanoic acid 

Database; AS; RI 

Database; AS 

Database; AS; RI 

Database; AS; RI 

Database; AS; RI 

629 

ND 

799 

882 

896 

600-646 

- 

790 

876-882 

876 

38.1%±9.7% 

48.3%±8.1% 

  9.8%±1.0% 

  3.5%±0.5% 

  0.3%±0.1% 

 

11.3%±2.3% 

17.2%±1.3% 

51.3%±0.9% 

20.2%±2.5% 

K. saccharivorans 

 

Ethanol 

Acetic acid 

2-Propanone 

2-Methylpropanoic acid 

3-Methylbutanoic acid 

2-Methylbutanoic acid 

Acetaldehyde 

Database; AS 

Database; AS; RI 

Database; AS 

Database; AS; RI 

Database; AS; RI 

Database; AS; RI 

Database; AS 

ND 

642 

ND 

790 

870 

878 

ND 

- 

600-646 

- 

790 

876-882 

876 

- 

  2.7%±0.3% 

33.6%±4.5% 

49.7%±4.4% 

  6.7%±1.6% 

 

 

  7.3%±0.8% 

 

 

66.0%±2.4% 

  2.4%±0.5% 

  8.0%±0.1% 

23.6%±2.7% 

 

Control (sterile MA) 

Ethanol 

2-Propanol 

Benzaldehyde 

Database; AS 

Database; AS; RI 

Database; AS; RI 

ND 

501 

1003 

- 

515 

980 

66.4%±0.8% 

33.4%±0.8% 

  0.2%±0.1% 

69.9%±1.1% 

29.9%±1.1% 

  0.2%±0.1% 
 16 
a Compound identified through the databases WILEY6N.L or NIST98; application of the Authentic Standard (AS) or 17 

the Retention Index (RI). 18 
b Retention index on the DB-5MS column, Exp.: RI calculated from the experiment, Lit: RI found in the literature 19 

(NIST, 2015) and ND: Not determined. 20 
c Mean percentage ± SE of the substance from the first, second and third replicates performed after 24 and 48 h of 21 
bacterial growth. 22 


