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ABSTRACT Two series of self-assembled TiO2 nanotube (NT) arrays were grown by 

electrochemical anodization on a metallic titanium substrate with different anodization times and 

applied potentials in HF-containing ethylene glycol electrolyte solutions, and post-calcined at 

450 °C. The so obtained thin films were characterized by FESEM, XRD, UV-vis-NIR DRS 

analyses and tested as photoanodes in Incident Photon to Current Efficiency (IPCE) 

measurements and in a two compartment photoelectrochemical cell (PEC) for separate H2 and O2 

production. The photocatalytic performance of the NT arrays significantly increased with 

increasing the potential applied during anodization (i.e., with increasing the NT inner diameter). 

IPCE measurements reveal that such unexpected behavior is due to a red shift of the activity 

threshold that allows harvesting and converting a larger portion of the solar spectrum. This 

phenomenon is ascribed to the parallel shift of the photonic bandgap position originated by the 
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intrinsic photonic crystal properties and demonstrates the important role played by ordered 

hierarchical structures in improving the photocatalytic performance of NT arrays by confining 

and manipulating light.  

KEYWORDS photocatalytic water splitting; photoelectrochemical cell; TiO2 nanotubes; 

photonic crystals; photonic bandgap; electrochemical anodization. 
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1. INTRODUCTION 

Photoelectrochemical cells (PECs) are the most promising devices for solar energy harvesting 

and storage in the form of hydrogen as solar fuel, because they allow water cleavage with 

separate H2 and O2 production.
1–6

 Fabrication of stable and efficient photoelectrodes is the 

crucial task for the future development and application of such devices. Thin films consisting of 

self-assembled, vertically oriented TiO2 nanotube (NT) arrays, directly grown on a conductive Ti 

foil by electrochemical anodization,
7,8

 represent an attractive and cost-effective method to 

prepare photoanodes.
6,9–12

 Their well-organized architecture provides: i) efficient percolation 

pathways for vectorial transfer of photopromoted electrons, ensuring effective charge separation; 

ii) large internal surface area which guarantees enhanced photon absorption and reactant 

adsorption on the photoactive surface; and iii) optimal adhesion of the photoactive film to the 

conductive support ensuring high stability and improved electron transfer.  

The ordered 2D structure of the NT arrays confers them the photonic crystal properties due to 

the periodic modulation of the dielectric constant.
13–15

 This provokes the formation of a photonic 

band gap (PBG), i.e. a range of forbidden wavelengths in certain directions that are totally 

reflected and cannot propagate through the periodic structure, due to Bragg diffraction and 

scattering. Moreover, the electromagnetic field is predominantly localized in the low-dielectric 

material (air or water) at the blue-edge of the PBG (air band), whereas it is predominantly 

localized on the high-dielectric material (TiO2 NT walls) at the red-edge (dielectric band). A 

third important property of photonic crystal arises from the flattening of the air and dielectric 

bands in some directions. Because the group velocity of the photons is proportional to the slope 

of the dispersion curves at the high and low energy edges, light travels at a speed approaching 

zero where the photonic bands are flat, generating the so called “slow photons”.
14,15
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Hence, the PBG can in principle be exploited in photocatalysis to confine, control, and 

manipulate photons with the intent to intensify the efficiency of light harvesting and absorption. 

The major effort in this field has been addressed towards 3D TiO2 inverse opal structures.
16–21

 

However, only in few reports
22,23

 the photonic crystal properties of TiO2 NT films has been 

explored for photocatalytic applications despite the large number of publications on this topic. 

The physicochemical properties and morphology of NTs can be easily tailored by controlling 

the synthesis parameters such as the anodization time, the applied DC voltage, the electrolyte 

composition and the thermal post-treatment conditions.
7
 In this work we show, with the support 

of theoretical calculations, that the PBG position and width are affected by the NT inner diameter 

and wall thickness, and by the distance between the tubes. The PBG can be easily tuned in order 

to maximize the harvesting efficiency especially at the absorption edge. In particular, a linear red 

shift of the photoactivity edge with a consequently up to 50% increased photocatalytic H2 

production rate under polychromatic irradiation can be attained by simply increasing the NTs 

inner diameter (i.e., red shifting the PBG) without any chemical doping or electronic structure 

modification. 

2. METHODS 

2.1 TiO2 NT films preparation. Thin films of vertically oriented TiO2 nanotube (NT) arrays 

self-assembled on a conductive Ti support were prepared by electrochemical anodization. A 

homemade electrochemical cell was employed consisting of a PVC conical bath with a 40 mm 

diameter hole at the bottom, placed on a stainless steel support. The hole is closed underneath 

with a 45  45 mm
2
 Ti foil (Advent, temper annealed, purity 99.6 %, thickness 100 μm), firmly 

sealed against an O-ring by a screw with a plexiglass plaque on top. A copper wire is inserted 

between the Ti foil and the plexiglas to ensure electrical contact. A 45  45 mm
2
 Pt mesh 
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(Goodfellow, 0.25 mm aperture, 65% open area) was used as counter electrode to allow the 

release of hydrogen gas produced underneath during the anodization process. The Pt mesh was 

immersed in the electrolyte solution and suspended 20 mm above the Ti foil. The Ti foil (anode) 

and the Pt counter electrode (cathode) were connected to a EA-PS 2384-05B power supply and a 

Tektronix DMM4040digital multimeter. Prior to anodization, the Ti foils were degreased and 

cleaned with acetone, then methanol, and finally with MilliQ water in an ultrasonic bath, for 15 

min each.  

A two-anodization process was employed in order to obtain more homogeneous TiO2 NT 

films. During the first step, the samples were anodized at 35 V for 120 min in a 1.0 M H2O + 0.1 

M NH4F in ethylene glycol electrolyte solution. The obtained TiO2 NT film was removed by 

ultrasonic treatment in water. This step flattens the Ti foil surface and leaves a pattern of little 

grooves that helps the formation of more homogeneous NT films during the second anodization. 

A 8.0 M H2O + 0.2 M HF in ethylene glycol electrolyte solution was used during the second 

anodization. In order to study the effect of the anodization time and applied voltage, two series of 

samples were prepared. In the first series the anodization time was changed from 10 min to 240 

min, with a fixed applied voltage of 50 V. Because the NTs growing rate increases with 

increasing the applied voltage, in the second series the voltage was changed from 30 V up to 80 

V while decreasing the anodization time, in order to obtain ca. 1 m-long TiO2 NTs. After the 

second anodization, the samples were washed in ethanol in the ultrasonic bath for 15 min and 

calcined in oven at 450 °C for 2 h, with a heating ramp of 10 °C min
-1

. 

2.2 Characterization of TiO2 NT films. Scanning electron microscopy (SEM) analysis was 

carried out on a LEICA LEO 1430 instrument. Field emission scanning electron microscopy 

(FESEM) images were obtained with a ZEISS Supra40 apparatus. X-ray diffraction patterns 
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were recorded on a Philips PW3020 powder diffractometer, by using the Cu K radiation (λ= 

1.5418 Å). UV-Vis-NIR diffuse reflectance (DR) spectra were recorded in the 220 nm < λ < 

2600 nm range with a Shimadzu UV3600 Plus spectrophotometer equipped with an ISR-603 

integrating sphere.  

2.3 IPCE measurements. Incident photon to current efficiency (IPCE) was measured on an 

optical bench equipped with a 300 W Xe lamp (Lot-Oriel), a monochromator (LOT-Oriel Omni-

λ 150), a shutter (Thorlabs SC10) and a homemade plexiglas cell with a pyrex glass window. A 

25  25 mm
2
 platinum foil (cathode) was used as counter electrode and placed below the 

irradiated TiO2 NT film (anode). Both cathode and anode were immersed in a 1.0 M NaOH 

electrolyte solution. The photocurrent was measured with a Tektronix DMM4040 digital 

multimeter in the 250-550 nm wavelength range with a 2 nm step and a 4 s time per step. The 

incident light power was measured with the same scan parameters using a calibrated Thorlabs 

S130VC photodiode connected to a Thorlabs PM200 power meter placed at exactly the same 

distance as the TiO2 NT film, with the pyrex window in between to account for the transmittance 

of the cell window. The percent IPCE at each wavelength was calculated employing the 

following formula: 

       
  
  

   
    

  
     

where Iλ is the short circuit photocurrent density (mA cm
-2

) measured with the digital multimeter 

at a specific incident wavelength λ (nm), Pλ is the incident power density (mW cm
-2

) measured 

with the photodiode at the same λ, and 1240 (J nm C
-1

) = h c e
-1

, h being the Planck constant, c 

the speed of light and e the charge of a single electron.  

2.4 Separate H2 and O2 photocatalytic production tests. The synthetized TiO2 NT films 

were tested as photoanodes in a two compartment photocatalytic cell for separate H2 and O2 
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production similar to that already described.
5
 The cell allows one to simultaneously measure the 

evolved gases and the direct photocurrent. In particular, the TiO2 NT photoanode was immersed 

in a 0.5 M H2SO4 solution (anodic compartment) and connected to a Pt counter electrode 

immersed in a 1.0 M NaOH solution, by an external circuit including a digital Tektronix 

DMM4040 multimeter. The two compartments were separated by an ion exchange Nafion 117 

membrane. The irradiation source was an iron halogenide mercury arc lamp (Jelosil HG200, 250 

W) emitting in the 350 nm < λ < 450 nm range, with a full irradiation intensity of ca. 32  mW 

cm
-2

. The emission spectrum of the lamp was measured by means of a Thorlabs CCS100 

spectrometer with a compact CCD. The evolved H2 and O2 were collected in two graduated 

burettes surmounting the two electrodes, initially filled with the two electrolyte solutions; their 

volume was measured every 30 min irradiation from the displacement of the liquid inside the 

burettes. No electrical bias or sacrificial agent was ever employed during the tests. 

2.5 Computational methods. The photonic band structure and the electromagnetic modes 

were calculated employing the MIT Photonic-Bands code (MPB).
24

 The TiO2 NTs periodic 

structure was modeled as a continuum with a frequency-independent isotropic dielectric constant 

of 7.13, equal to that of bulk anatase at 3 eV (i.e., just below the absorption edge) as reported by 

Jellison, et al.
25

 The adopted simulation was purely two-dimensional (i.e., assuming NTs of 

infinite length) with a periodic array of spatially separated hollow cylinders with a hexagonal 

lattice arrangement. The effect of the three different geometrical parameters (inner radius from 

10 to 100 nm, wall thickness from 6 to 20 nm, and gap between tubes from 10 to 40 nm) on the 

photonic bandgap position was investigated. When varying one parameter the other two were set 

as follows: the inner radius at 50 nm, the tube thickness at 10 nm, and the distance between tube 
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walls at 20 nm. The empty space was assumed to have a dielectric constant of 1.7, to model the 

effect of interstitial water. 

 

3. RESULTS AND DISCUSSION 

3.1 Morphology of TiO2 NT arrays. TiO2 NTs growth during Ti anodization in organic 

solvents containing water and fluoride ions proceeds through two steps, i.e., i) the electric-field-

assisted formation of a dense TiO2 layer at the metal surface, according to the reaction: Ti + 2 

H2O  TiO2 + 2 H
+
 + 2 e

-
; ii) the both field-assisted and chemical dissolution at the 

oxide/electrolyte interface of the so produced oxide layer, due to the formation of the soluble 

Ti[F6]
2-

 complex.
7
 Whereas the field-assisted processes takes place at the NTs bottom, chemical 

dissolution can occur along the whole NT surface. At the same time, H2 evolution occurs at the 

Pt cathode. Because of the competition between oxide formation and its dissolution, NT 

formation can be obtained only in the presence of an optimal fluoride concentration (usually 0.05 

M < F
-
 < 0.5 M). Different morphology aspects of typical TiO2 NTs can be appreciated in Figure 

1, showing several SEM images obtained from a NT film etched by gently scratching it with a 

cutter tip (Figure 1A). By this way small fragments of the film were detached, which randomly 

rotated over the NTs film surface, as shown in Figure 1C and 1F. In particular, Figure 1C 

displays a SEM micrograph of a film fragment rotated by 180° showing the typical closed and 

hemispherically shaped bottom of the NTs, together with a limited view of the NTs cross section 

(lower part of Figure 1C), revealing the characteristic inner V-shape of TiO2 NTs (i.e. their wall 

thickness increases towards the bottom).
26,27

 Moreover, the thickness of the NTs bottom (the 

barrier layer) increases with increasing anodization time and applied potential.
28
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Figure 1. (A) SEM image along a mechanical scratch over a TiO2 NT film with the 

magnification of (B) the top, (C) the bottom and (D) the side views of the NTs, together with (F) 

a fragment of NT film showing the film thickness, and of (E) the metal Ti surface underneath the 

NT film.  

The detachment of the NTs film leaves a pattern of little grooves on the metal Ti surface 

(Figure 1E) specular to the NTs bottom. In the two steps anodization process adopted in the 

present work the formation of this pattern is exploited to obtain more homogeneous and better-

aligned NTs array. The top view of the NTs film (Figure 1B) shows a rather homogeneous 

surface characterized by the hexagonally shaped, closely packed NTs open mouths. The 

fragments rotated by 90° (Figure 1 F and 1D) exhibit the side morphology of the NT array 

consisting of well self-assembled and vertically aligned individual NTs. These micrographs were 

used to measure the thickness of the TiO2 NT films (i.e. the NTs length). 

2m

200nm
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Figure 2 shows that, as expected, the NTs length linearly increases with increasing the 

anodization time under the here adopted anodization conditions, up to ca 120 min.  

 

Figure 2. Length of TiO2 NTs determined from SEM micrographs and by UV-vis-NIR DR 

spectroscopy as a function of the anodization time under 50 V constant applied potential.  

After 2 h the NTs growing rate decreases with increasing anodization time because chemical 

dissolution becomes predominant leading to an extended etching of the NTs top. Moreover, a 

prolonged exposure to the fluoride containing electrolyte leads to the appearance of undesired 

irregularly shaped oxide aggregates laying over the top of the tubes, commonly called 

“nanograss”.
6,7

 The NTs growing rate, which can be obtained from the slope of the linear part of 

the curve shown in Figure 2, is also affected, among other parameters, by the potential applied 

during the anodization process. Furthermore, by increasing the anodization potential both the 

inner NTs diameter (Figures 3 and 4) and the NTs growing rate (Figure 3) linearly increase. 

Moreover, Figure 4 shows that the wall thickness (ca. 10±1 nm) at the top of the TiO2 NTs is not 

substantially affected by the applied potential, at least under the here investigated experimental 

conditions and applied potential range. 
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Figure 3. Effect on the NTs growing rate and inner diameter of the potential applied during Ti 

anodization. 

 

Figure 4. Top view FESEM micrographs of TiO2 NT arrays synthesized by Ti anodization in a 

H2O and HF containing ethylene glycol electrolyte solution at 30 V, 50 V and 80 V for 1.21 h, 

0.72 h and 0.45 h, respectively. 

3.2 XRD investigation. The as prepared self-assembled, vertically oriented TiO2 NT arrays 

are notoriously amorphous, their XRD patters being dominated by the reflections of the 

underneath metal Ti foil. A post calcination treatment is therefore necessary to confer them the 

crystallinity required for photocatalytic applications. The main peaks of crystalline TiO2 appear 

after calcination at 450 °C (Figure 5).  
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Figure 5. XRD patterns of pristine Ti foil and of TiO2 NTs films grown by anodization at 50 V 

for different times, followed by calcination at 450 °C. The peaks position and relative intensity 

of anatase (A) and rutile (R) are reported on the top of the figure for comparison. 

Their intensity increases with increasing the anodization time whereas those of the Ti foil 

decrease in parallel, in agreement with the increasing thickness of the NTs films. All NT arrays 

prepared with anodization times above 20 min show only the reflections characteristic of the 

anatase crystal structure. By contrast, the sample prepared by 10 min – long anodization (i.e. the 

thinner one of the series) exhibits the reflections of rutile as well, due to the fact that rutile grows 

at the interface between metallic Ti and the NT bottom, where the metal undergoes thermal 

oxidation during the calcination process.
6,8

 The series of NT arrays obtained at different applied 

potentials (30 to 80 V) by adjusting the anodization time so as to keep the NTs length fixed at 1 
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m shows similar XRD patterns (Figure S1 in the supporting information), typical of pure 

anatase. 

3.3 Diffuse reflectance UV-vis-NIR spectroscopy. The UV-vis-NIR DR spectra recorded in 

the 220 nm < λ < 2600 nm range are shown in Figure 6, with the abscissa axis in energy. In the 

vis-NIR region the NTs thin films synthesized with anodization times up to 60 min display the 

typical fringes originated by the interference of waves reflecting off the top surface with those 

propagating through the film and reflecting from the bottom surface. The frequency of the 

fringes increases and their amplitude decreases with increasing film thickness. The film 

thickness d (i.e. the NTs length) can be calculated from the interference fringes as follows. The 

reflectance is approximately  periodic in    (where k is the component of the wavevector 

normal to the film), i.e. if λ1 and λ2 are two consecutive peaks or valleys wavelengths, the 

following equation holds:  

  
 

  
 

 

  
              

where n is the refractive index of the film (ca. 2.5 for anatase in the range 450-600 nm) and    

the refraction angle. Using the Snell’s law to replace    with the incidence angle   one obtains: 

  
 

       
      

 
     

     
 

where    is the refractive index of the incidence medium (      for air). This result holds 

irrespectively of the properties of the supporting substrate (e.g. Ti), provided its reflectivity is 

approximately constant in the spectral region of interest. The d values calculated by this equation 

are in very good agreement with the NTs length determined by SEM analysis (see Figure 2). 
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Figure 6. UV-vis-NIR DRS spectra of TiO2 NTs films grown by anodization at 50 V for 

different times, followed by calcination at 450°C. The spectrum of an anatase TiO2 dense film 

prepared by RF-Magnetron Sputtering (gray curve) is also shown for comparison.  

Also reported in Figure 6 is the DR spectrum of a ca. 1 m thick film consisting of randomly 

packed TiO2 anatase nanoparticles produced by Radio Frequency Magnetron Sputtering (gray 

curve in Figure 6). The NTs films display increased reflectance just before the semiconductor 

absorption threshold that might be due to the overlapping with the photonic band gap. Such 

increase of reflectance does not occur in the dense film made by Magnetron Sputtering, because 

it does not have photonic crystal properties. 

The absorption edge of the NTs films are all located around 3.2 eV, which is typical of bulk 

anatase, independently of the anodization time or applied voltage (see also Figure S2 in the 

supporting information). Overlapping of the absorption edge with the interference fringes is 

particularly evident in the case of the thinner film (10 min anodization time). Moreover, the 

absorption step increases and the reflectance in the UV region decreases with increasing the 

anodization time (i.e. the film thickness) up to 2 m – thick films (obtained by 90 min 
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anodization time). This suggests that ca. 2 μm is the maximum penetration depth of the incident 

light in TiO2 NTs.  

3.4 Photonic bandgap theoretical calculation. The typical photonic band structure calculated 

for a 35 Å NT inner radius is shown in Figure 7.  

 

Figure 7. Photonic bands structure of TiO2 NT arrays with 35 nm inner radius, 10 nm wall 

thickness and 20 nm gap between the tubes. The photonic bandgap is highlighted by a gray 

stripe. The two insets show the electromagnetic field localization at the air and dielectric bands. 

Only the first few modes are shown as a function of the photon momentum. The resulting 

dispersion for the lowest mode (the light mode) is linear for small momenta and it shows a 

forbidden bandgap at about 4.5 eV. This interval of forbidden photon energies is located above 

the TiO2 anatase absorption threshold (typically 3.2 eV). The obtained value is very likely 
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overestimated, because a frequency-independent dielectric constant was used for anatase. In fact, 

the solver implemented in the MIT Photonic-Bands code (MPB)
 24

 does not allow either 

frequency-dependence or an imaginary part of the dielectric constant. This limitation of the 

computational method prevents a direct prediction of the PBG position of our TiO2 NTs film. 

Despite this limitation, very important qualitative information can be obtained on the dependence 

of the photonic bandgap position on geometrical parameters (Figure 8). Indeed, our simulations 

show that the photonic gap shifts to lower energy (higher wavelength) as the tube radius 

increases (Figure 8A). For a tube inner radius of 50 Å the photonic gap falls below the anatase 

absorption threshold. Interestingly, there is a maximum value for the tube radius, beyond which 

the photonic gap vanishes. 

 

Figure 8. Effect on the PBG position of TiO2 NTs (A) inner radius, (B) tube thickness and (C) 

gap between tubes.  

The band gap also shifts to lower energy and widens as the tube thickness increases (Figure 

8B). In this case, there is a minimum thickness, below which the photonic gap closes. The 

dependence of the photonic gap is less affected by the spacing of the tubes (Figure 8C), but if the 

tubes are made further apart, our calculation predicts a vanishing bandgap. Therefore, there is a 

very good agreement on a quantitative level between present experimental results and 
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calculations, and a photonic bandgap is expected for hollow tubes in a narrow range of geometric 

parameters (radius, thickness, and distance), around those reported in this work. Moreover, the 

most important result arising from these calculations is the possibility of tuning and engineering 

the PBG position so that it falls in the most convenient photonic energy position, by simply 

adjusting the proper TiO2 NT synthesis parameters. 

The insets in Figure 7 show the localization of the electromagnetic field at the blue (air band) 

and red (dielectric band) edges of the PBG. As already mentioned above, at the high energy band 

the light traveling perpendicular to the NT arrays is predominantly localized in the empty spaces, 

i.e. air or water (low dielectric medium). By contrast, at the low energy band the light is 

predominantly focused on the TiO2 NTs walls (high dielectric medium) leading to an increased 

photonic density on the semiconductor material. This is a peculiar characteristic of photonic 

crystals. Indeed, in dense and randomly packed films of TiO2 nanoparticles light propagates as a 

flat wave. 

3.5 IPCE measurements. The photocurrent curves measured as a function of the incident 

wavelength exhibit a Gaussian-like shape (Figure 9A and B). Indeed, the photocurrent increases 

with increasing wavelength because of the increasing incident light power (gray curve in Figure 

9B) followed by a photocurrent decrease above the semiconductor absorption edge. All films 

prepared by increasing the anodization time show a photocurrent maximum located at 344 nm. 

As shown in Figure 9C and in Figure 10, at the beginning the maximum IPCE linearly increases 

with increasing the anodization time (i.e. with increasing the NTs length) reaching a maximum 

of 25% for the NTs array anodized for 40 min (1 m length). Above this time the maximum 

IPCE slightly decreases and reaches a plateau above 90 min (2 m length).  
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Figure 9. Effect of (A, C) anodization time and (B, D) applied potential on (A, B) photocurrent 

and (C, D) IPCE as a function of the incident wavelength. The gray curves in B and D are the 

incident power of the Xe lamp used for the IPCE measurements and the spectrum of Hg vapor 

lamp used for separate H2 and O2 evolution photocatalytic tests, respectively. 

The initial maximum IPCE growth can be ascribed to the increasing NTs length leading to a 

surface area and incident photon absorption efficiency enhancement up to the maximum light 

penetration depth (i.e., 2 m as suggested by the DR analysis in Figure 6). Above this limit the 

maximum IPCE decreases because the beneficial effect of further surface area growth is 

compensated by the longer percolation path for photopromoted electron transfer, with a 

consequent higher probability of electron-hole recombination. Moreover, longer NTs can 

introduce mass transfer limitations due to penetration and diffusion of the electrolyte and of the 
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produced O2 along the NT pores.
29

 These results demonstrate that the optimal NTs length under 

the investigated preparation conditions is 1 m.  

 

Figure 10. Effect of the anodization time (i.e., TiO2 NTs length) on the maximum IPCE. 

Based on this result, the second series of films was prepared at different applied potential by 

adjusting the anodization time in order to keep the NTs length fixed at ca. 1 m (Table 1). This 

allowed a systematic investigation on the effect of the sole tube diameter on the photocatalytic 

performance of the NT arrays. The so obtained photocurrent measurements and IPCE results are 

presented in Figure 9B and D, respectively. All photocurrent curves are characterized by a 

similar magnitude in agreement with the similar NTs length (Figure 9B). The maximum IPCE 

linearly decreases with increasing the NT pores diameter (Figure 11), very likely because of the 

decreased surface area for geometrical reasons.  

However, the most relevant result is the red shift of the photocurrent curves (Figure 9B) with 

increasing NT pores diameter that provokes a likewise red shift of the photoactivity threshold 

(Figure 9D), as underlined by the linear shift of the first derivative minimum of the IPCE curves 

(Figure 11).  

0

5

10

15

20

25

30

0 50 100 150 200 250

m
a
x
  

IP
C

E
 %

 

anodization time / min



 20 

 

Figure 11. Effect of applied potential (i.e., TiO2 NTs pore diameter) on the maximum IPCE and 

on the minimum of the first derivative of the IPCE curves. 

This result, achieved by simply changing the pore diameter without any chemical doping or 

electronic structure variation, has an important impact in the frame of solar light harvesting and 

conversion. In particular, the red shift can be explained by considering the parallel red shift of 

the PBG position as shown in Figure 8A. Indeed, in a perfect photonic crystal the presence of a 

PBG can be expected to decrease the absorption efficiency because of the total reflection 

properties. However, several defects are present in the periodical structural arrangement of our 

NT arrays produced by Ti anodization, which can act as gates for light penetration inside the 

film, where it is then confined. Thus, the red shift of the maximum photocurrent can be ascribed 

to the increased absorption probability of these trapped photons. Moreover, the red shift of the 

IPCE threshold can be attributed to the parallel shift of the dielectric band which improves the 

photons absorption efficiency thanks to the generation of the slow photons and the localization of 

the electromagnetic field on the TiO2 NT walls. By contrast, at the high energy band (at lower 

wavelengths) the electromagnetic field is predominantly localized on water causing the parallel 

shift (photocurrent decrease) at lower wavelengths with increasing the TiO2 NTs pore diameter. 
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3.6 Separate H2 and O2 production. In the previous section we showed that an increase of the 

NTs inner diameter leads to a red shift of the IPCE curves (Figure 9D) thanks to the parallel shift 

of the PBG. These curves together with the emission spectrum of the employed light source 

(Figure 9D) can be used to calculate the expected quantum efficiency in H2 production (exp) 

under polychromatic irradiation (i.e. the “expected portion of converted spectrum”), obtained as 

the product of the IPCE curve times the emission spectrum of the lamp (Figure S3). Thus, exp 

can be calculated as the ratio of the integral of these curves over the integral of the whole 

incident spectrum in the 300 < λ < 400 nm range. The obtained results are presented in Figure 12 

and in Table1.  

 

Figure 12. Effect of anodization applied potential on the rates of photocatalytic H2 and O2 

production and on the expected quantum efficiency exp. 

The H2 production rates calculated by the produced gas collected in the graduated burettes 

placed above the two electrodes are in agreement with those calculated by the photocurrent 

profiles (Figure S4), as shown in Table1. The H2 production rate significantly increases with 

increasing the NTs inner diameter. In particular, a remarkable 50% increment of the H2 
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production rate was attained by simply increasing the inner diameter from 35 nm (0.101 mmol 

H2 / h) to 70 nm (0.153 mmol H2 / h).  

 

Table 1. Effect of applied potential during the anodization synthesis of the TiO2 NTs array films 

on the hydrogen (rH2) and oxygen (rO2) production rates and on the expected quantum efficiency 

(exp) 

 

Because the H2 production rate follows the same trend as exp, the improved photoactivity can 

be ascribed to the red shift of the IPCE curve that allows harvesting and converting a larger 

portion of the incident lamp spectrum thanks to the exploitation of the photonic crystal properties 

of the NTs array film. A similar effect of the anodization voltage on the H2 production rate was 

recently reported by Sun and Yan,
10

 who synthesized a series of NTs films with the same 

anodization time at each applied potential and attributed the observed trend to the increased 

surface area consequent to the longer tubes. By contrast, here we are able to discern the effect of 

the sole inner diameter variation by comparing films with the same NTs length. This allows us to 

Applied  Anodization rH2
 / mmol h

-1
 exp / % rO2

 / mmol h
-1

 

potential / V time / min from gas from photocurrent   

30 72 0.101 0.110 4.43 0.023 

40 54 0.120 0.122 4.70 0.039 

50 43 0.133 0.142 5.30 0.029 

60 36 0.140 0.147 5.38 0.033 

70 31 0.132 0.144 5.39 0.033 

80 27 0.153 0.154 5.95 0.042 
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discuss our results in terms of photonic crystal properties, as supported by the IPCE 

measurements. 

4. CONCLUSIONS 

This work demonstrates that the photonic crystal properties typical of ordered periodic 

structures can be profitably exploited to increase the efficiency of solar light harvesting and 

conversion and the photocatalytic performance of TiO2 NT arrays-based photoanodes. This can 

be attained taking advantage of three characteristics of the photonic band structure: i) the PBG 

can be used to confine the incident light of proper wavelength within the TiO2 NTs film; ii) the 

dielectric band can be used to concentrate the incident photons of corresponding wavelength on 

the TiO2 NTs walls; and iii) the absorption efficiency of these photons is further boosted by their 

reduced group velocity (slow photons) due to the flattening of the photonic band in certain 

propagation directions. Theoretical calculations demonstrate that the position and width of the 

PBG are both affected by TiO2 NTs inner diameter, wall thickness and distance between the 

pores. Thus, the PBG can be easily tuned by adjusting the TiO2 NTs synthesis parameters in 

order to fit with the semiconductor absorption band aiming at red shifting the photoactivity 

threshold. By this way a 50% higher H2 production rate under polychromatic irradiation was 

attained by simply increasing the inner TiO2 NT diameter. This important result can in principle 

be transferred to any other semiconductor material and can be exploited in the field of solar fuels 

production to harvest and convert a larger portion of the solar spectrum. 
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