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Abstract

Developing neuronal systems intrinsically generate coordinated spontaneous activity that

propagates by involving a large number of synchronously firing neurons. In vivo, waves of

spikes transiently characterize the activity of developing brain circuits and are fundamental

for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or

network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the

development of 2D and 3D neuronal cultures. Several studies have investigated this type of

activity and its dynamics, but how a neuronal system generates these coordinated events

remains unclear. Here, we investigate at a cellular level the generation of network bursts in

spontaneously active neuronal cultures by exploiting high-resolution multielectrode array

recordings and computational network modelling. Our analysis reveals that NBs are gener-

ated in specialized regions of the network (functional neuronal communities) that feature

neuronal links with high cross-correlation peak values, sub-millisecond lags and that share

very similar structural connectivity motifs providing recurrent interactions. We show that the

particular properties of these local structures enable locally amplifying spontaneous asyn-

chronous spikes and that this mechanism can lead to the initiation of NBs. Through the anal-

ysis of simulated and experimental data, we also show that AMPA currents drive the

coordinated activity, while NMDA and GABA currents are only involved in shaping the

dynamics of NBs. Overall, our results suggest that the presence of functional neuronal com-

munities with recurrent local connections allows a neuronal system to generate spontane-

ous coordinated spiking activity events. As suggested by the rules used for implementing

our computational model, such functional communities might naturally emerge during net-

work development by following simple constraints on distance-based connectivity.
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Author summary

Coordinated spontaneous spiking activity is fundamental for the normal formation of

brain circuits during development. However, how ensembles of neurons generate these

events remains unclear. To address this question, in the present study, we investigated the

network properties that might be required to a neuronal system for the generation of

these spontaneous waves of spikes. We performed our study on spontaneously active neu-

ronal cell cultures using high-resolution electrical recordings and a computational net-

work model developed to reproduce our experimental data both quantitatively and

qualitatively. Through the analysis of both experimental and simulated data, we found

that network bursts are initiated in regions of the network, or “functional communities”,

characterized by particular local connectivity properties. We also found that these regions

can amplify the background asynchronous spiking activity preceding a network burst

and, in this way, can give rise to coordinated spiking events.

As a whole, our results suggest the presence of functional communities of neurons in a

developing neuronal system that might naturally emerge by following simple constraints on

distance-based connectivity. These regions are most likely required for the generation of the

spontaneous coordinated activity that can drive activity-dependent circuit formation.

Introduction

Neuronal systems, including brain circuits’ in vivo and cultured networks, intrinsically gener-

ate coordinated and spatiotemporally propagating spontaneous spiking activity during their

development [1]. This type of spontaneous activity (or “waves”) has been studied in several

brain circuits, including the cerebellum [2], the hippocampus [3,4], the thalamus [5] and in

sensory systems such as the retina [6]. These studies have shown that coordinated spontaneous

waves of spikes transiently characterize the firing regime of early developing brain circuits and

are associated with activity-dependent circuit formation [7,8]. For instance, in the visual sen-

sory system, waves of spikes are required for the normal development of sensory representa-

tions before visual experience formation, and several studies have investigated the underlying

cellular and molecular mechanisms that can change the dynamics of these spontaneous waves

[6,9]. Indeed, as brain circuits form, the spatiotemporal dynamics of the coordinated spiking

activity changes and characterizes different stages of development. Successively, through the

effect of neuromodulation, the spiking activity switches from a coordinated firing regime to a

regime characterized by asynchronous spiking neurons [1,7].

Interestingly, neurons in vitro can also self-organize and rewire to form networks [10,11]

that spontaneously express a rich repertoire of coordinated spiking activity after a few weeks of

growth. The network activity of these isolated neuronal systems does not switch to a sparse

spiking regime as occurs in vivo, and collective spiking patterns can rather persist over time,

lasting up to a few months [12,13]. During collective spiking events, referred to as network

bursts (NBs) [14], most neurons in the network fire together [15,16]. As clearly unveiled only

recently with high-resolution electrical recordings [17,18] or Ca2+ functional imaging [19],

cultured networks also propagate waves of spikes.

Even though the specific dynamic of these spiking waves varies depending on the neuronal

system and point in development, all of these spontaneous coordinated events share remark-

ably similar macroscopic properties. Indeed, these events typically last up to a few hundreds of

milliseconds, spatiotemporally propagate through the network and occur with an interval in
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the order of minutes. Additionally, the number of spatiotemporal patterns tends to be

restricted to a few classes, each one having distinct regions that initiate these propagating

events. However, despite the large interest in the dynamics of this type of activity, the mecha-

nism by which a neuronal system can generate coordinated spiking events and whether the

regions initiating these events require specific cellular or connectivity properties remain

unclear. Previous works have suggested that the presence of hub neurons [20] and the local cel-

lular properties of sub-populations of neurons [21] might underlie the sub-networks that act

as nucleation centres of coordinated spiking activity events.

Here, we investigate the generation of NBs in primary neuronal cultures by combining high-

resolution electrical recordings and computational modelling. Neurons in culture form isolated

networks that can intrinsically generate coordinated spiking activity interleaved with phases of

asynchronous spikes and offer several advantages for our study. Indeed, while coordinated spik-

ing activity in developing brain circuits has been suggested to depend on the specific topological

properties of the circuit (hub neurons in the hippocampus or short connections between Pur-

kinje cells in the cerebellum) [20], cultured networks can display this type of spontaneous activity

without a clear physiological organization of the cellular network topology. Additionally, neuro-

nal cultures are the neuronal system that currently offers the lowest undersampling of firing neu-

rons when recorded with high-resolution multielectrode arrays (MEAs) [22] that consist of

complementary metal-oxide-semiconductor (CMOS) devices [17,23]. The detailed and simulta-

neous access to the spiking activity of several thousands of neurons provided by 4096-electrode

CMOS-MEAs allows for the fine quantification of mean activity parameters [22,24], the tracking

of spatiotemporal propagations and the localization of the sites generating the NB events [18].

To evaluate the potential contribution to the generation of NBs of different and experimentally

hidden structural and functional variables, we combined the analysis of high-resolution electrical

recordings with similar analyses of simulated data. The computational network model developed

in this work consists of 4096 conductance-based point-process neurons [25] connecting near

neurons with a higher probability than far neurons. This rule was found to enable our model to

both quantitatively and qualitatively mimic the experimental spontaneous spiking activity of cul-

tured neuronal networks. The model was also further assessed by comparing simulated and

experimental data under conditions of pharmacological manipulation of synaptic transmission,

thus also allowing for the verification of the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepro-

pionic acid (AMPA), γ-aminobutyric acid (GABA) and N-methyl-D-aspartic acid (NMDA) cur-

rents in the generation of NBs and in shaping their dynamics. We then used the experimental

data and the full details of our model to investigate the connectivity properties of the network

regions associated with the generation of NBs (or ignition sites, ISs). This allowed us to identify

functional communities (fCOMs) of neurons associated with the regions initiating NBs, to char-

acterize their structural and functional properties and to suggest a possible mechanism for the

local initiation of NBs that relies on the connectivity properties of the fCOMs. Finally, as previ-

ously suggested in [21], by analysing the temporal motifs of the spike patterns, we investigated

whether the spiking activity preceding an NB can be predictive of the following NB.

Results

High-resolution recordings of spontaneous activity in neuronal cultures

The spontaneous electrophysiological activity of 15 hippocampal neuronal cultures (19–21

days in vitro, DIVs) was recorded at high resolution with the 4096 electrodes of CMOS-MEAs

(Fig 1A). The recordings show two alternating firing regimes consisting of long epochs of

sparse asynchronous spiking lasting several seconds interleaved with short periods of NB

events, see Fig 1B. During an NB, a large fraction of neurons in the network fired action
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potentials at a high rate (’ 100 Hz) for a short time (<100 ms). In contrast, before and after

an NB, neurons rarely fired action potentials and showed a low mean firing rate (MFR) (’

0.1Hz). As shown in Fig 1C, NBs comprised the sequential activation of neighbouring neurons

recruited to propagate the spiking activity throughout the entire network. The origin and the

propagation trajectory of each NB was estimated by computing the average position of the

spiking activity over time using a centre-of-activity trajectory (CAT) analysis [18]. The results

of this analysis are reported in Fig 1D for the two NBs shown in Fig 1C. Based on the CAT

analysis [26], NBs could be sorted into a few classes (i.e., < 10) of spatiotemporal patterns,

with each class including events sharing a similar average propagation trajectory and origin. In

accordance with previously reported data [15], the cross-correlation matrix of NBs (Fig 1E and

1F) computed on our high-resolution recordings shows that NB classes are preserved along

Fig 1. Spontaneous spiking activity recorded with CMOS-MEAs in hippocampal cultures. (A) High-density CMOS-MEAs simultaneously record

extracellular electrical signals from an array of 64 x 64 electrodes covering a 5.12mm x 5.12mm area (three representative traces in black).

Coordinated spontaneous spiking activity, or network bursts (NBs), propagates through the network, as indicated by the temporal differences in the

spiking activity (black ticks). The three traces are part of the propagating activity shown on the right. (B) Raster plot of 40 s of spontaneous activity. The

spike count (blue line, 5-ms time bins) displays a peak in correspondence of the NBs. (C) Raster plots and (D) Centre-of-activity trajectories (CATs,

time of the propagation is colour coded) of two consecutive NBs exhibiting different propagations lasting approximately 100 ms. (E) The cross-

correlation matrix of NBs shows that events of the same cluster do not occur with a periodicity. (F) Instead, the reordered cross-correlation matrix of

NBs shows that the NBs are clustered in a few classes.

https://doi.org/10.1371/journal.pcbi.1005672.g001
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the whole recording duration and that the temporal sequence of these different NBs does not

show any recognizable time-periodicity or class-related structure [15,18].

Simulations of spontaneous and pharmacologically manipulated

neuronal culture activities

We developed a computational network model to investigate experimentally hidden network

variables based on the recorded experimental activity. Briefly, this network model (see the

Materials and Methods section for more details) consisted of 4096 conductance-based point-

process neurons [25] with a connectivity determined using a Gaussian radial basis function.

Other connectivity rules, such as the random and radius graphs, were discarded because they

were unable to reproduce the propagation patterns and velocities of the experimental NBs (see

S1 Appendix for a comparison with other network topologies). In the model, each neuron

receives independent Poisson inputs that generate fluctuations in the membrane potential and

lead to asynchronous spiking activity in the network.

The simulated spontaneous network activity was qualitatively comparable to the activity of

our experimental recordings (compare Fig 2A with Fig 1B). In addition, the adopted connec-

tivity rule enabled the generation and propagation of NBs throughout the entire network (Fig

2B and 2C) and mimicked our experimental recordings (Fig 1B and 1C). As shown in the ras-

ter plots, different neurons involved in an NB fired with different timings depending on their

recruitment in the NB propagation. As observed in the experimental data, the simulated NBs

also did not show any recurrent or periodic organization (Fig 2D). Simulated NBs could be

clustered in a few classes of spatiotemporal patterns (Fig 2E and 2F) based on the CAT analysis

as in the previous experiments and in [18]. Finally, the statistical results of the simulated net-

work activities were in accordance with those obtained from the experimental data (Fig 2G),

including the MFR, the mean bursting rate (MBR), mean firing intra-burst (MFIB) and mean

burst duration (MBD) (see the Materials and Methods section). These results show that our

computational network model can spontaneously generate NBs as expressed by neuronal cul-

tures in our recordings and similar to NBs reported in previous studies [12,27,28].

To further validate our model, we assessed its performance in reproducing pharmacologi-

cally manipulated network activity. Given that synaptic signalling is a fundamental component

in the relay of information among neurons in a network, we investigated its role in the dynam-

ics of NBs by exploring the contribution of three main excitatory and inhibitory currents (i.e.,

AMPA, NMDA and GABA). In accordance with previous works [29,30], we observed that our

computational network model endowed with AMPA and GABA conductance (or AG-net-

works) could trigger NBs. Experimentally, impairing excitatory synaptic transmission with

CNQX (a selective blocker of AMPA receptors) caused the silencing of NBs [31,32,33]. To

understand the extent to which manipulations of AMPA can affect NBs, we tested the response

of the AG-network by decreasing AMPA conductance from 48 to 30 μS, leaving GABA inhibi-

tion unaltered. Our simulation results show that a decrease in AMPA induced a reduction in

spontaneous spiking activity, as quantified in Fig 3A with the MFR. For low values of AMPA

conductance (< 38 μS), the network stopped firing NBs (MBR was close to zero; Fig 3B, black

dashed lines), and the percentage of random spikes (not belonging to a burst) were predomi-

nant (Fig 3B, red dashed lines). Under this low-AMPA condition, the addition of NMDA cur-

rents (or AGN-network) partially compensated for the reduction in AMPA excitation (Fig 3A

and 3B, solid lines). Indeed, we observed that for a 30% decrease in AMPA conductance, the

spiking activity of the AGN-networks became very sparse, with inter spike intervals (ISIs) of

several seconds (Fig 3C, red distribution). Conversely, in AGN-networks in the control condi-

tion (0% decrease in AMPA conductance), the ISI distribution (Fig 3C, blue line) showed both

Local connectivity and initiation of propagating spiking activity in
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Fig 2. Simulated spontaneous spiking activity in the neuronal network model. (A) Raster plot of spiking activity displaying networks bursts (NBs)

comparable to the experimental ones (c.f. Fig 1A). (B) Close-up on two subsequent NBs showing clear spatiotemporal propagations. (C) Plots of the CATs

for the two NBs shown in B. (D) Cross-correlation matrix of NBs showing the absence of any temporal correlation among NBs, as in the experimental data

(c.f. Fig 1E). (E) The reordered cross-correlation matrix of simulated NBs shows similar features to the one computed for the experimental data (c.f. Fig 1F).

(F) Clustered CATs share common ignition sites (circles) and propagating paths through the network. (G) The activity parameters, mean firing rate (MFR),

mean bursting rate (MBR), mean firing intra-burst (MFIB) and mean burst duration (MBD) are in accordance with the experimental data (n = 15 experimental

recordings, n = 20 simulations, p-values 0.27, 0.97, 0.95, and 0.35, respectively).

https://doi.org/10.1371/journal.pcbi.1005672.g002
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short (< ~100 ms) and long (> ~500 ms) ISIs, indicating the presence of NBs interleaved with

asynchronous spikes. Notably, previous experimental observations [34] reported that homeo-

static changes in AMPA currents comparable to those of our results are required to drive the

network from uncoordinated to coordinated firing regimes.

In addition to the effects of AMPA, we investigated those of GABA inhibition on NBs, both

experimentally by blocking GABA-receptors with bicuculline (n = 4 recordings, 30 μM) and

with simulations (n = 5) by setting a null GABA conductance in the model. The blockade of

GABA currents has previously been shown to not prevent the firing of NBs in cell culture net-

works [35,36,37]. Compared with the results in control conditions (i.e., unblocked GABA;

“GABA-ON”), the blockade of inhibitory synapses in the model (GABA-OFF) caused an

increase in the MFR, MBR, MFIB and a decrease in the MBD, both in our recordings and in

simulations (Fig 3D; for further details see S5 Appendix).

Fig 3. Effects of synaptic transmission on network bursts. (A) Mean firing rate (MFR) as a function of the decreasing AMPA conductance in AG-

networks (i.e., networks with AMPA and GABA conductance, dashed lines) and AGN-networks (i.e., networks with AMPA, GABA and NMDA conductance,

solid lines). (B) The reduction in AMPA conductance decreases the mean bursting rate (MBR) and increases the number of asynchronous spikes (random

spikes). (C) The reduction in AMPA conductance determines a shift in the ISI distribution, from a multi-peak (0% AMPA reduction) to a single-peak

distribution (30% AMPA reduction). (D) The model predicts changes in the activity parameters (MFR, MBR, MFIB, MBD), reproducing recordings under

pharmacological blockade of inhibition with bicuculline (BIC, 30 μM, p-values: 0.052, 0.473, 0.189, and 0.449, respectively; independent t-tests, n = 5

simulations, n = 4 recordings). (E) AG-networks show single NBs, while AGN-networks show superbursts, both in recordings (n = 3, gray) and in simulations

(n = 10, blue). (F) In AGN-networks, (black, n = 10), the ISI distribution has three peaks: P1 relates to the firing within an NB, P2 to the firing between

consecutive NBs, and the peak highlighted by a solid arrow (at approximately 100 ms) to the time intervals across consecutive NBs of a superburst. Blockade

of NMDA (AG-network) removes the latter peak from the distribution (red, n = 10). (G) Exemplary simulated trace of the membrane potential of a single cell

during a superburst and total conductance of AMPA (black) and NMDA (orange) for the same neuron. Note that during the first NB, the NMDA conductance

is negligible compared with that of AMPA.

https://doi.org/10.1371/journal.pcbi.1005672.g003
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We finally investigated the impact of NMDA on the dynamics of the network activity.

Experimentally, the main consequence of blocking NMDA currents (50 μM of APV, n = 3)

was the suppression of their superburst firing regime [12](sequences of NBs interleaved by ~

200 ms) in favour of the single-NB firing regime (Fig 3E). Interestingly, we could mimic the

superburst firing regime by including NMDA conductance in our model (Fig 3E, n = 10 simu-

lations, AGN-networks). In the full model with the NMDA current, the ISI distribution of sin-

gle spiking neurons was tri-modal (Fig 3F, black, n = 10 AGN-networks), whereas without

NMDA currents (Fig 3F red, n = 10, AG-networks) it was bi-modal. The first peak (P1) corre-

sponded to the mean firing within an NB and the second peak (P2) to the mean firing between

consecutive NBs. The third peak was only obtained in AGN-networks (Fig 3F, highlighted

with an arrow) and accounted for the time intervals between consecutive sequences of NBs in

superbursts (see S6 Appendix for a detailed analysis of superbursts).

Overall, our results show that our computational model can express propagating NBs, as

well as express different dynamics resulting from the manipulation of the main excitatory and

inhibitory synaptic currents. Consistent with other previous studies [31,32,35,36,37], we found

that AMPA currents drive NBs, while NMDA and GABA currents are only involved in shap-

ing the dynamics of these coordinated spiking activity events. Following these results, the sim-

ulations in the next sections were performed with AG-networks endowed with AMPA and

GABA conductance only. NMDA was not included because we found that its build-up during

the initiation phase of an NB is much slower than the kinetics of AMPA (see Fig 3G).

Local network properties at sites initiating coordinated spiking activity

Here, we investigated the properties of the network that might underlie the generation of NBs.

To do so, we quantified the correlated spiking activity among pairs of neurons in both experi-

mental and simulated data. Based on the obtained cross-correlation matrices, we built func-

tional graphs, whose functional links connect highly correlated neurons (see Material and

Methods). Interestingly, even though the cross-correlation does not explicitly takes into

account the position of neurons (or of the electrodes), the functional connectivity analysis of

both simulated and experimental data shows that these functional links tend to cluster into a

few regions of the network (Fig 4A and 4B, see S7 Appendix for additional example). A further

post-processing of the functional graph (i.e., with the Infomap algorithm) confirmed that

these links clustered in a few (<10) spatially segregated regions of the network. In the follow-

ing sections, we will refer to these regions of the network as functional communities (fCOMs).

Since in each dataset we have found a number of fCOMs regions that is similar to the one

of the initiation sites (ISs) of NBs, we wondered whether the fCOMs regions might be associ-

ated with the initiation sites (ISs) of the NBs. As quantified in Fig 4C and 4D, we found that

the position of the fCOMs co-localized with the ISs of the NBs and that the fCOMs covered a

small area of the networks (Fig 4E). This overlap exceeded the 95% bootstrap threshold (see

the Materials and Methods section) in 18 out of 20 simulated networks and in 10 out of 15

experimental recordings. We also observed the presence of fCOMs without any corresponding

ISs (Fig 4B bottom-right), but all ISs of a cluster of NBs were always associated with a distinct

fCOM. Therefore, these results indicate that the analysis of the fCOMs can be used to identify

the potential regions of a network that initiate NBs. Indeed, the functional connections among

neurons belonging to the same fCOM showed high cross-correlation peak values (0.52±0.06

and 0.19±0.04 for simulated and experimental data, respectively) and small time lags (less than

1ms, i.e., the neurons belonging to an fCOM fire almost synchronously).

These findings reveal that the fCOMs are associated with the ISs of the NBs and that the

fCOMs show particular functional connectivity properties. This latter result suggests that the
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fCOMs (and, consequently, the ISs) may be formed by neurons with a particular local struc-

tural connectivity. Given that our simulation results have shown a good similarity with respect

to experimental results (spontaneous activity (Fig 2G), pharmacological manipulations (Fig

3D and 3E) and on the fCOMs-ISs correspondence), thus validating the goodness of our

model, we further exploited this network model to access experimentally hidden quantities.

Specifically, we exploited the model to investigate the structural connectivity underlying the

fCOMs. To do so, we quantified the occurrence of small template subgraphs, or structural

Fig 4. Network regions initiating spontaneous NBs correspond to functional communities. Spatial maps of the functional communities

(fCOMs) and CATs (for clarity, CATs are only depicted up to 50 ms after NB initiation) computed for NBs in simulations (A) and recordings (B), show

that the ignition sites (ISs, blue dots) of the NBs and the fCOMs (regions delimited by black solid curves) tend to overlap. A further quantification

confirms that the overlap is statistically significant. (C) Fraction of NBs with ISs in a specific fCOM over the total number of NBs, for simulated

(black) and experimental (blue) data. (D) Fraction of NBs with ISs located in an area defined by an increasing number of fCOMs (‘area covered’)

over the total number of NBs (black: n = 20 simulations, blue: n = 15 recordings, mean value: solid line, standard deviation: shaded area). As

shown, NBs originate from <50% of the network area. (E) Boxplots of simulated and experimental areas covered by fCOMs with respect to the total

network area, showing that even though not all fCOMs are associated with an IS, the mean total area covered by all fCOMs is <40%.

https://doi.org/10.1371/journal.pcbi.1005672.g004
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motifs [38] (all possible non-isomorphic graphs up to six nodes, see the Materials and Methods

section), in the structural connectivity underlying the fCOMs. In particular, we found a clear

positive correlation (Fig 5A, gray line) between the clustering coefficient and relative abun-

dance of motifs between the structural connectivity of fCOMs and rndCOMs (i.e. random

graphs with the same number of edges, see Materials and Methods). To further test whether

the clustering coefficient could be a key feature underlying the fCOMs in the anatomical net-

work, we repeated the same quantification with respect to the rCOMs and sCOMs (i.e. graphs

derived from the same network that generated the fCOMs but characterized by a high cluster-

ing coefficient, see Materials and Methods). Interestingly, although the clustering coefficient

and the abundance of motifs were not anymore positively correlated in both rCOMs (Fig 5B,

gray) and sCOMs (Fig 5C, gray), we found that a subset of all tested templates (Fig 5D)

occurred preferably in the fCOMs. Among these motifs, the correlation between abundance

and clustering coefficient (Fig 5A–5C, red dots), was always significantly positive (red lines,

Fig 5A–5C), independently from the compared null model. In particular, the overabundant

motifs in the fCOMs were characterized by a significantly higher number of recurrent connec-

tions (average clustering coefficient of 0.56±0.30, Fig 5D positive indexes), whereas the motifs

underrepresented in the fCOMs were mainly composed of simple connectivity paths (average

clustering coefficient of 0.19±0.27, Fig 5D negative indexes). This result was robust across dif-

ferent simulated networks (n = 20), suggesting that the high recurrence in the structural con-

nectivity is a fundamental property of the regions eliciting NBs.

Generation of network burst events in the functional neuronal

communities

Next, we investigated possible mechanisms of NB generation associated with the structural

properties of the fCOMs. Indeed, these regions may act as local amplifiers of spontaneously

elicited spikes (i.e., Poisson spikes) or fading activities deriving from previous activation of the

network. We tested this hypothesis of local amplification in our model by perturbing regions

of the network with mild subthreshold stimulations (Fig 6A). Importantly, to assess differences

among different network regions, we used a mild perturbation that did not ensure the genera-

tion of an NB, but rather, could be ineffective (Fig 6B.1) or effective (Fig 6B.2) at generating an

NB. As shown in Fig 6B.3, the selected stimulation amplitude gave rise either to a small or

large fraction of spiking neurons depending on the effective initiation of an NB but indepen-

dent of whether the region was an fCOM.

In a representative case (see Fig 6C), we stimulated seven regions of the network described

in Fig 4A. These regions consisted of four fCOMs (i.e., I, II, III and IV) and three reference

regions (RI, RII, PII). The latter reference regions were chosen to test the effectiveness of a per-

turbation when delivered to the center, the border of the network (RI versus RII) or to a shifted

position in an fCOM (PII versus II). Each protocol of stimulation consisted in the perturbation

of four target regions (I-II-III-IV), (I-II-IV-RII), (I-IV-PII-RI) and (I-IV-PII-RII) as depicted in

Fig 6D. The simulation results show that the subthreshold stimulation delivered to the fCOMs

had a significantly higher probability of evoking NBs than stimulations delivered to reference

regions of the network (Fig 6D). Moreover, as shown in the figure, the results indicate that to

evoke NBs reliably, the stimulation has to be focused in the centre of the fCOMs (the probabil-

ity of evoking an NB by confining the stimulation to II is significantly higher than by delivering

it to PII, RI and RII). Therefore, fCOMs are spatially selective to subthreshold stimulations. On

the other hand, the number of reference regions probed can enhance the probability of evok-

ing NBs in fCOMs (c.f.r. I and IV across different paradigms of stimulation). Altogether, these
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results indicate that fCOMs are specialized regions of the network that can initiate NBs by

locally amplifying background spiking activity.

Fig 5. Analysis of the structural connectivity motifs in the functional communities of the network. Clustering coefficient of structural motifs tested (up

to six nodes and isomorphic subgraphs) against the relative abundance of structural motifs in fCOMs and the null-models: rndCOMs (A), rCOMs (B) and

sCOMs (C) (see Materials and Methods section). Red dots mark the structural motifs occurring with a significant frequency difference (p-value<0.05, t-test)

for all null-models. Regression lines visualize the trend (where a and p denote the value of the slope and the p-value respectively) among all tested motifs

(gray) and the statistically different ones (red). (D) Illustration of overabundant (positive index) and under-represented (negative indexes) structural motifs

found in fCOMs with respect to the null models depicted in A-C. As highlighted by the red lines, a high clustering coefficient characterizes the structural motifs

that are significantly over-expressed in fCOMs; conversely, significantly under-represented structural motifs resulted in low clustering coefficients (0.56±0.30

vs. 0.19±0.27, respectively).

https://doi.org/10.1371/journal.pcbi.1005672.g005
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Spiking activity patterns anticipating network bursts in the functional

communities

Finally, we investigated whether the spiking activity preceding an NB (or pre-NB spikes) could

be predictive of the following NB, as previously suggested [39]. To compare the pre-NB spiking

activity of different coordinated events, we isolated the largest spiking pattern (see the Materi-

als and Methods section) shared by the pre-NB activity of each pair of NBs (Fig 7A, number of

shared spikes M = 12). Illustrative examples of these temporal motifs shared by the pre-NB

Fig 6. Ready-to-fire state of the functional communities. The fCOMs of the simulated networks (n = 10 networks simulations) were perturbed with

mild-subthreshold stimuli to test their sensitivity in eliciting NBs (see the Materials and Methods section). (A) Raster plot of the activity (black dots) with

overlaid electrical stimuli (red dots). As shown, stimuli can either marginally affect the spontaneous activity (B.1) or evoke an NB (B.2). When an NB is

elicited, almost all of the stimulated neurons fire (B.3, eNB) a spike within 50 ms. In contrast, when an NB is not elicited, only a small fraction of

stimulated neurons fire a spike. In this case, the neuronal activity is not significantly different between the probed regions. (C) Representation of the

spatial arrangement of the fCOMs and reference regions that were probed in this example. Neurons are colour coded according to the strength of the

stimulus. Stimuli are delivered to fCOMs I, II, III and IV (c.f. Fig 4A) and to reference regions RI, RII, PII. (D) The perturbation of the fCOMs evokes NBs

with a higher probability than the reference sites.

https://doi.org/10.1371/journal.pcbi.1005672.g006
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Fig 7. The pre-NB activity shares similar temporal motifs for NBs in the same class and is informative of the

following coordinated event. (A) Illustrative representation of the analysis chain used for the pre-NB temporal motifs,
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spiking activity of events in an NB cluster are reported in Fig 7B (see S8 Appendix for addi-

tional examples).

We found that the similarity measure of the temporal motifs (see the Materials and Meth-

ods section) computed for the pre-NB activity of an NB cluster was significantly higher than

for the pre-NB activity of NBs belonging to different clusters (Fig 7C). The similarity measure

increased with the maximal size of the temporal motifs and reached a plateau at approximately

M = 50 spikes (Fig 7D). While most of the pre-NBs activities shared only from M = 6 to M =

20 spikes, some of them shared more than M = 40–50 spikes, suggesting that NBs might need

the coordination of a different number of spiking neurons for their generation. Given the simi-

larity of the pre-NB activities of events belonging to the same NB cluster, we used this measure

of similarity to cluster the NBs rather than using the analysis of the CATs. We found that upon

reordering the NB events with a hierarchical clustering algorithm and considering pre-NB

activities (Fig 7E), the similarity matrix exhibited a block structure similar to the one obtained

with the clustering of the CATs (c.f. Fig 2E). Next, to verify these computational findings in bio-

logical neuronal networks, we investigated whether stereotyped pre-NBs activities also charac-

terize the initiation phase of NBs in our recordings. Consequently, we computed the similarity

matrix of pre-NB activities on experimental recordings and, although less pronounced than in

simulations (Fig 7F), we also obtained a block structure similar to that obtained from the simu-

lated activity (Fig 7E). In summary, these results, obtained by simulation and verified experi-

mentally, suggest that NBs are not induced by random spiking activity patterns in the fCOMs,

but are rather induced by similar patterns of pre-NB spikes.

Discussion

While changes in the dynamics of coordinated, spontaneous spiking activity have been investi-

gated in different in vivo and in vitro neuronal systems, the mechanisms underlying the gener-

ation of these propagating waves of spikes still remain unclear. In this work, we investigated

the generation of these events, or NBs, in spontaneously active neuronal cultures by exploiting

high-resolution multielectrode array recordings, computational network modelling and the

reduced complexity of these isolated 2D network models. As shown in our experimental

results and in accordance with previous studies [15,18,37], a cultured network expresses only a

few classes of NBs, each one having a distinct and local IS. We found that the initiation sites of

NBs correspond to the fCOMs of neurons where the strongest neuronal functional links of the

network are clustered. The analysis of the structural connectivity in the computational model

reveals that these regions initiating NBs in the network share similar connectivity motifs and

have a higher level of recurrent local connections with respect to other similar regions of the

network. We also show that the local connectivity properties of the fCOMs may enable these

regions to act as amplifiers of the pre-NB spiking activity and that this property is most likely

where we considered the following: two NBs (α,β), their pre-NB activity (αPRE,βPRE), the NB-graphs (αG,βG), the largest

connected components (αL,βL) and the corresponding number of spikes in the shared temporal motifs (αM,βM, M = 12

spikes). (B) All NBs of the same cluster (e.g., cluster ID 0) share common pre-NB temporal motifs (cyan spikes). For

instance, the NB occurring at time t0 shares a temporal motif with the event at time t1 but differs from the temporal motif

shared between NBs occurring at time t2 and t3. (C) Normalized similarity matrix among pre-NBs activities (M-motif, with

M > 5) for clustered NBs. The clustered NBs share the highest number of motifs (i.e., higher values on the diagonal),

indicating that the pre-NB activity is informative of the following NB. (D) Cumulative similarity plot corresponding to the

data in panel C but normalized with respect to the cluster size (per-cluster, dashed line) or to the total number of NBs

(solid lines). The similarity is consistently higher for the pre-NB activity of NBs belonging to the same cluster (IN) than for

the NBs of other clusters (ACROSS). (E) Reordered similarity matrix of pre-NB activity of a simulated network, showing

a block structure. Each block is relative to an NB cluster characterized by similar pre-NB spiking patterns. (F) Reordered

similarity matrix of recorded pre-NB activity in a cultured network, still shows a block structure.

https://doi.org/10.1371/journal.pcbi.1005672.g007
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the underlying mechanism generating NBs. Indeed, when stimulated with sub-threshold sti-

muli, the fCOMs show a higher probability of generating an NB than any other equivalent

sub-region of the network. Consequently, the fCOMs may initiate NBs by amplifying local

asynchronous spiking activity, a concept similar to the ‘noise-focusing’ proposed in [19]. Inter-

estingly, previous works [21,39] have indicated that NBs are preceded by the activation of a

subset of overactive electrodes. As suggested by our simulations and confirmed with experi-

mental data, our analysis of the pre-NB activity shows that NBs of the same class (sharing a

similar propagation trajectory and initiation site) are indeed triggered by pre-NBs spiking pat-

terns sharing similar temporal motifs. These patterns of spiking activity preceding NBs of the

same class are not only spatially confined to the surround of the sites initiating an NB but also

determine the following NB propagation.

To perform this study, we developed a computational network model able to both qualita-

tively and quantitatively replicate the spontaneous network activity recorded in our experi-

ments. This allowed us to study the properties of the regions initiating NBs with full access to

the structural and functional neuronal connectivity. Previous computational modelling studies

on cultured networks have shown that NBs can be robustly replicated using different cellular,

synaptic and network settings [14,30,40,41,42,43]. However, none of these computational net-

work models displayed spontaneously propagating NBs as obtained in our model. In our

work, the simulated spontaneous activity of each neuron is induced by independent subthresh-

old synaptic inputs whose occurrence is modelled by a Poisson process. However, this process

gives rise only to sparse single-neuron spikes in the network and it is not sufficient for the gen-

eration of coordinated spiking events. Here, we have exploited our model to investigate what

allows a network to turn this sparse activity into travelling waves of spikes and to explain why

NBs are always elicited from specific regions of the network as observed experimentally. Nota-

bly, by adopting rather simple and biologically plausible connectivity rules (i.e., the connectiv-

ity probability among neuron pairs decays with the relative distance), we found that the model

is able to: i) spontaneously express a few classes of propagating NBs as observed in in vitro
experiments, ii) fire asynchronous and synchronous spiking activities with statistical proper-

ties close to those of experimental recordings, and iii) recapitulate previously reported experi-

mental findings on cultures manipulated with AMPA, GABA and NMDA pharmacological

blockers.

The validation of the model against pharmacological manipulations also allowed us to eval-

uate the contribution of AMPA, GABA and NMDA synaptic currents in shaping the NB

dynamics. In accordance with previously reported results, our data show that AMPA is

required to drive the network from uncoordinated to coordinated firing regimes, while

NMDA and GABA synaptic currents are mainly involved in shaping the NB dynamics. The

inhibitory GABA current mainly regulates the duration, strength and frequency of NB occur-

rences. Interestingly, the shorter NB duration in the GABA-OFF condition, observed in both

the in vitro experiments [17] and in the model, suggests that inhibition keeps the firing rate

low and prevents a strong depression of the excitatory synapses. The excitatory NMDA, in

turn, is a key player for the insurgence of the superburst firing regime. Our model suggests

that the slow dynamics of the NMDA currents counteract synaptic depression and neuronal

adaptation, indicating that the closure of a superburst event occurs when the latter two mecha-

nisms prevail over the NMDA current. These results show, similar to previously reported in
vivo [44] and in vitro [45] experimental data, that the NMDA current can sustain persistent

activities in the network.

Overall, our results suggest that the generation of events of coordinated spontaneous activ-

ity in a neuronal system might be related to the presence of fCOMs rising from the local and

inhomogeneous connectivity of neurons in the network. This finding suggests that for a
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developing neural system that is able to express coordinated spontaneous activity, parallel to

reshaping the cellular and synaptic properties [46], forming regions in the network with local

heterogeneities (such as neuronal density or neuronal processes density) that can establish a

high degree of local recurrent structural connections might be very important. However, our

considerations are derived from the study of in vitro neuronal cultures that certainly show a

simpler organization compared to that of brain circuits developing in 3D. Given that 3D neu-

ronal cultures have been shown to display spontaneous NBs [47,48] and considering that a 3D

implementation of our model has been shown to allow for the interpretation of distinct spiking

activity regimes characterizing 2D and 3D experimental preparations [47], the generation of

NBs in a 3D neuronal network might be investigated in future works. The results of the present

study allow us to suggest that fCOMs of neurons may naturally emerge by following simple

constraints of distance-based connectivity. However, to address this hypothesis with simula-

tions, a probabilistic growth model [49] describing the critical parameters during the process

of network formation should be developed in future work. Finally, the presented network

model might be directly applicable to the interpretation of experimental recordings of sponta-

neous activity changes induced by neuroactive compounds or may provide complementary

information on the integration at the cellular scale of electrical [50] or optogenetic [51] exter-

nal stimuli.

Materials and methods

Ethics statement

All procedures involving experimental animals were approved by the institutional IIT Ethic

Committee and by the Italian Ministry of Health and Animal Care (Authorization number

110/2014-PR, December 19, 2014).

Large-scale recording of neuronal spiking activity in cultured networks

Cell cultures and high-resolution CMOS-MEA recordings. Primary hippocampal neu-

rons from rat embryos (at embryonic day 18, E18) were dissociated following procedures as

described in [22,52] and plated on CMOS multielectrode arrays (CMOS-MEAs, Biochip

4096E, from 3Brain GmbH). Chips were previously sterilized with 70% ethanol, conditioned

overnight in an incubator with cell culture media and coated with adhesion-promoting mole-

cules, i.e., a double layer of 0.1 mg/ml poly-L-lysine (Sigma P-6407) and 0.1 mg/ml laminin

(Sigma L-2020). A few hours after plating at a nominal cellular density of approximately 3000

cell/mm2, the cell culture reservoir of each device was filled with 1.5 mL of Neurobasal cell cul-

ture media (Thermo Fisher, #21103049) supplemented with B-27 (Thermo Fisher, #17504044)

and placed in a humidified incubator (5% CO2) at 37˚C. Cell cultures were grown on a chip

for 19–21 days in vitro, an age where sustained spontaneous electrical activity characterized by

single spikes and short bursts propagating through the network is observed.

The extracellular activity of the cultures was recorded from 4096 electrodes for 10 minutes

using a custom recording system similar to the BioCam platform commercially distributed by

3Brain GmbH. The electrode array provides 4096 square electrodes (21 x 21 μm2, 82 μm elec-

trode pitch) covering an active area of approximately 5 x 5 mm2. Pharmacologically manipu-

lated activity with bicuculline (BIC) at 30 μM or (2R)-amino-5-phosphonovaleric acid (APV)

at 50 μM was also recorded for some cultures after adding the compound to the cell culture

media. All the raw data were stored as .brw files (BrainWave, 3Brain GmbH) and then

exported to Python (Python Software Foundation, Python Language Reference, version 2.7.)

for further analysis (c.f. “Data analysis of experimental and simulated data”). The spike trains

of neuronal recordings are available at doi:10.5061/dryad.5k67r.
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Computational network model

Spiking neuron model. The computational network model is composed of a set of excit-

atory and inhibitory spiking neuronal models implemented in NEURON [53]. We used the

Adaptive Exponential Integrate and Fire (AdExp) neuron model described in [25], which, sim-

ilar to the Izhikevich model [54], represents a good compromise between computational costs

and the capability of mimicking the variety of firing patterns exhibited by real neurons. The

differential equations governing the AdExp dynamics are as follows:

C
dV
dt
¼ � gLðV � ELÞ þ gLDTe

V � VT

DT

� �

� wþ
X

Isyn þ Ibg

tw
dV
dt
¼ aðV � ELÞ � w

8
>>>><

>>>>:

The variable V represents the membrane potential, and w is an internal state variable

responsible for any adaptive phenomena. The voltage V is governed by a leak current (con-

ductance gL, reversal potential EL), a Na+ -like current involved in the upswing of the action

potential given by the exponential term, an adaptive current w, the synaptic currents Isyn
and a background noise Ibg current. The adaptive current w is modulated by the voltage

and relaxes back to its equilibrium with the adaptation time constant τw. Regarding the

spiking mechanisms, whenever the voltage crosses the threshold of 0 mV, a spike is emit-

ted, and the state variables are reset (V! Vreset, w! w + b). In our model, the parameter

settings of the AdExp were adapted from [55]. Because neurons do not fire isolated bursts

at the mature stage of cell culture [11], we assumed standard spiking models for the excit-

atory and inhibitory neurons [30] with the same 4:1 ratio. Excitatory neurons were mod-

elled as characteristic adaptive firing neurons, and inhibitory neurons mimicked the firing

of fast-spiking interneurons. Then, to consider the heterogeneity of cells in neural cultures

and to ensure that network synchronization was not a consequence of identical properties

of single cells [40,14], the parameters of the modelled neurons were drawn from a normal

distribution (see S2 Table for values).

Synaptic communication

Previous studies highlighted that the coordinated activities in cell cultures are determined by

the chemical synapses and not by gap junctions or extracellular substances [56]. Therefore, we

modelled the dynamics of excitatory AMPA and NMDA as well as inhibitory GABA chemical

synapses. Synaptic transmission was delayed by a fixed time (0.5 ms) to account for synapse

activation and a variable delay (maximum 1.5 ms) to account for the propagation of the pre-

synaptic spike. Each type of synapse contributed with a current Isyn modelled as follows:

Isyn ¼ gsynðv � ErevÞ

tsyn

dgsyn
dt
¼ � gsyn

8
><

>:

where gsyn is the synaptic conductance and Erev is its reversal potential. The synaptic conductance has a

bi-exponential profile (parameters in S3 Table):

tsyn

dgsyn
dt
¼ � gsyn

trise
dgrise
dt
¼ � grise

Isyn ¼ ðgsyn � griseÞðv � ErevÞ

8
>>>>><

>>>>>:
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Each time an action potential is delivered to a target neuron (i.e., a time tsp), the conduc-

tance parameters gsyn and grise are increased by g�y, where g is the maximum value for the syn-

aptic conductance and y is the fraction of the active resources (i.e., released

neurotransmitters). The synaptic current exhibits short-term depression modelled under the

assumption of finite synaptic resources [57]:

dx
dt
¼

z
trec
� u � x � dðt � tspÞ

dy
dt
¼ �

y
t1

þ u � x � dðt � tspÞ

dz
dt
¼

y
t1

�
z

trec

8
>>>>>>>><

>>>>>>>>:

where x, y and z represent the fraction of available, active and recovered resources, respec-

tively. The time constant τ1 regulates the transition between the available and active state, τrec
is the recovery time constant and u represents the fraction of available resources transferred to

the active ones, when the synapse is activated.

The NMDA current was modelled similarly to the AMPA and GABA currents, with an

additional magnesium block mechanism [58]:

INMDA ¼ gNMDA � ðv � ErevÞ � 1=ð1þ expð� ðv � v0Þ=k0ÞÞ

where k0 = 6 mV (steepness of voltage dependence) and v0 = −40 mV (half-activation poten-

tial). The maximum NMDA conductance (gNMDA) is written in terms of the AMPA conduc-

tance: gNMDA ¼ KNMDA � gAMPA such that in basal/standard conditions KNMDA = 0.09 (i.e., gNMDA =

4.32 nS), and while under APV application, an NMDA antagonist, KNMDA = 0. All parameter

values are reported in S3 Table. To mimic the effects of the NMDA and GABA synaptic block-

ers (APV and BIC), the conductance of the target receptor was set to zero. Networks with only

the AMPA and GABA synapses are called AG-networks in the text, and networks with in addi-

tion the NMDA current are called AGN-networks.

Background activity of the network

From its earliest days in vitro, cultured neuronal networks display random spontaneous spik-

ing activity. In the model, this activity was mimicked by injecting sub-threshold synaptic noise

(i.e., miniature events [56]) modelled as independent Poisson processes at a mean frequency of

25 Hz. The summation of the synaptic noise occasionally brought the neurons to fire in the

uncoupled network and it determined a background spiking activity of 0.010 ± 0.007 Hz (close

to the reduction of spiking activity found in experiments when AMPA receptors are blocked

with CNQX [31,33]).

Network topology

Although network topology has been recognized to play an important role in determining network

activity, many works have neglected the spatial constraints derived from the location of neurons in

the network [42,43] (see also S1 Appendix). To be comparable with our experimental recordings,

4096 neurons were uniformly distributed on a unit square, and the connectivity probability among

the neurons depended on the distance according to a radial Gaussian function. The distance-based

connectivity rule allowed for the creation of biologically inspired networks whose graph properties

(i.e., clustering coefficient or the presence of shortcuts) were not imposed but were rather inherited
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from the imposed spatial organization of neurons. Only graphs without any isolated component

were used in the simulations. It is important to highlight that the random arrangement of neurons,

the distance-based connectivity rule and the sparseness of the connections used to establish the net-

work topology gives rise to an inhomogeneously connected network that includes clusters of

nodes with denser connections (see S2 Appendix for additional details). As a consequence,

although the node degree is quite comparable between the Gauss and random graph, the clustering

coefficient of the former is significantly higher than in the latter one, (see S3 Appendix for addi-

tional details on clustering coefficient, link length and shortest path length [38]).

The directionality of the synaptic connections between pairs of neurons was assigned with

equal probability. Although bidirectional connections are quite common in the brain, com-

puter simulations have shown that networks with only depressing synapses (as assumed in this

work) tend to evolve unidirectional connections [59]. Regarding the connectivity of the net-

work, in 2D cell cultures, each neuron receives somewhere from 150 to 400 synapses [60].

Because each neuron is contacted by eight synapses from the same neuron on average [61], the

actual effective synapses in the model were decreased to 41.6 ± 6.4 synapses per neuron. S1

Table summarizes the graph properties (e.g., clustering coefficient, mean path length, degree

[62]) of the simulated network. Note that neurons at the border of the domain were treated

exactly like the other nodes and were consequently connected to a smaller number of neurons.

The network model is available at doi:10.5061/dryad.5k67r.

Stimulation of ignition sites

A stimulation protocol was designed to probe the sensitivity of the modelled network to respond

to local stimulations. To this aim, mild sub-threshold stimuli were delivered to specific sub-

regions of the network (e.g., RI Fig 6C) composed of’ 40 neurons. The stimulation consisted of

Poisson spike trains at 1 Hz (per neuron) that activated currents with the same time course of

AMPA receptors. In addition, to ensure that the stimulation was effectively confined to local sub-

regions of the network, the conductance was imposed to decay from the centre of the sub-

regions. That is, for d � 0:08; 1 � d2

0:08

� �� �
gST with gST ¼ 45nS and for d> 0.08, the conduc-

tance was gST = 0 nS. As depicted in Fig 6D, each stimulation protocol involved four different

sub-regions of the network (100 stimuli per sub-region, maximum two non-fCOMs sub-regions),

which were alternated with a pseudo-random sequence to minimize interferences among subse-

quent stimuli. The rationale for this choice was to probe reference regions of the network while

continuously monitoring the success rate of eliciting NBs by stimulating the fCOMs. NBs occur-

ring later than 150 ms from the stimulation were counted as spontaneous activity.

Data analysis of experimental and simulated data

To facilitate the comparison with the experimental data, the simulated spike trains were sub-

jected to the same filtering criteria used in the experiments. Thus, only neurons whose firing rate

(i.e., average number of spikes per unit time) fell in the interval [0.1–15] Hz were considered for

all subsequent analysis. In the manuscript, significant differences among normally distributed

groups were evaluated through an independent or paired t-test, while a Mann-Whitney’s U test

and Kolmogorov-Smirnov test were used for non-normally distributed samples. In the text and

figures, the reported error bars are standard deviations.

Detection and quantification of network activity

Spike detection and spike-based quantification. We quantified the spiking network

activity by using standard activity parameters [31,50] such as the mean firing rate of the
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network (MFR) and the inter spike interval (ISI) distribution. The MFR is the average of the

firing rates of all of the active neurons of the network, and the ISI is the first order difference of

the spike times. Additionally, to characterize the network burst regime, we quantified canoni-

cal parameters such as the mean bursting rate (MBR), the mean firing intra burst (MFIB) and

the mean burst duration (MBD), as in [63]. Finally, as most of the neurons in these networks

participate in NBs with a burst of spikes, we defined an indirect measure of asynchronous net-

work activity (Random Spikes), as the percentage of spikes that are not part of a burst (a

sequence of 5 or more spikes separated by less than 100 ms). Bursting events (NBs) are stereo-

typed network activities characterized by a large fraction of neurons simultaneously active for

’ 100ms, and thus, these events could be detected by setting a hard threshold on the instanta-

neous MFR [15,39]. This algorithm works well on simulated data, but on real experimental

data, the detection of NBs can be hindered by noise (e.g., false-positive spikes). We have there-

fore designed an alternative algorithm (NB-graph) based on a graph theory approach that

overcomes this limitation. A detailed description of the algorithm and a comparison with the

standard procedure used to detect NBs is reported in S4 Appendix.

Spatial and temporal profile of the network bursts. The temporal and spatial resolution

of our data allowed for the faithful investigation of the dynamics of the network bursts, partic-

ularly how NBs occur over time and if they share some similarity that could be explained from

the underlying organization of the network. To this end, we computed the NB correlation

matrix to study groups of neurons with similar firing patterns. The entries Cn;m of the NB cor-

relation matrix [37,64] were given by the following equation:

Cn;m ¼ max
t
ð
XN

i¼1

Ci
n;mðtÞÞ

where the sum runs over the neurons, and the maximum is taken on the time window of the

event (e.g., 0< τ< 150ms). The term Ci
n;mðtÞ represents the cross-correlation between the NBs

m and n of neuron i. Such entries are then reordered using a standard hierarchical clustering

algorithm aimed at highlighting the presence of similar NBs. The optimal cut point of the den-

drogram was obtained by maximizing the Silhouette score. In addition, the spatial propagation

of the spiking activity during an NB was also represented in terms of its centre-of-activity tra-

jectory (CAT, [26,18]).

The CAT collapses the overall network activity to its centre of mass (i.e., regions of the net-

work with more activity have a higher weight), allowing for the representation of how the

activity in the network evolves over time with just two coordinates and the clustering of NBs

with similar propagation trajectories. In our analysis, at each time point, the CAT was com-

puted over 20-ms time bins with a sliding of 1 ms. To cluster CATs with different durations

(e.g., when inhibition is blocked), the NBs were realigned to a common time interval.

Network dynamic analysis

Emergent network activity can be explained to a large extent by the anatomical connectivity

[38]. However, such activity can also be determined by the particular dynamical state of the

network. Thus, an analysis of the statistical relationships between firing neurons can be infor-

mative of the information flow in the network. To determine the strength of the functional

connections in the network, we performed a cross-correlation analysis [30]. Functional links

were selected to meet two requirements. First, we considered the pairs of neurons whose

cross-correlation peak was above the 95th percentile of all the computed cross-correlation val-

ues. Second, for each selected pair, we assigned a functional link every time that their cross-

correlation peak was ranked in the top of the ten strongest correlation peak values for both
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neurons, thus determining a bi-directional relationship. The first condition avoids the inclu-

sion of spurious functional connections in the analysis. The second condition reveals potential

structural network motifs that determine synchronous activities in the network. The bi-direc-

tional functional connections clearly do not correspond to structural ones (that are unidirec-

tional, see Section Network Topology in the Materials and Methods section). Indeed, the

functional graphs shared only 4.9 ± 1.8% of connections with the anatomical graph. However,

these conditions allow for the determination of pathways of activity of neuronal pairs that

receive similar inputs, either direct or indirect, from common firing neurons. The functional

links with the longest connection (longer than 0.2, which roughly corresponds to 550 μm on

the CMOS-MEA) were discarded from the analysis.

Detection of ignition sites. An additional measure was used to analyse subgraphs charac-

terized by a strong level of internal connectivity (also referred to as community structures

[65]). Ideally, the network is divided into groups of nodes with a maximally possible number

of within-group links and a minimally possible number of between-group links [65]. We esti-

mated communities through the Infomap approach [66], which determines subgraphs in a

given network by minimizing the expected length of random walks over possible network par-

titions. To test the reliability of the procedure, we validated our results by varying the topolo-

gies (i.e., random, radius and Gauss graphs) as well as by changing the neuronal connectivity

within the network (n = 10).

The overlap between the ignition sites (ISs) and the fCOMs was quantified as follows. First,

we defined the area covered by an fCOM as the concave hull defined by the set of neurons of

the fCOM. Second, to address border effect problems (i.e., assign the events that start close to

the border of an fCOM to that fCOM), we extended the confines of the fCOMs by a factor of

5%. To assess if the ISs significantly overlapped with the fCOMs, we randomly reassigned (500

times) the detected fCOMs to another position in the network and quantified the overlap.

Quantification of structural connectivity motifs. To quantify the occurrence of small

template subgraphs, i.e., structural motifs, in a given region of the network, we proceeded as

follow. First, we considered all possible connected graphs of less than six nodes and built a list

of motifs to test. Second, for each motif, we determined the number of isomorphic subgraphs

in the target graph [67]. Finally, those numbers were normalized to the total motifs found in

the target graph. Due to computational limitations for this extensive research, graphs had to be

turned into their undirected counterpart. To assess significant differences in the motif compo-

sition of a given subgraph (fCOM), we defined three different null models (sCOMs, rCOMs,

and rndCOMs) with the same number of nodes as that of the original subgraph. The sCOM

was generated following a two-step procedure. At first, we applied the Infomap algorithm to a

portion of the structural network that excluded the nodes of the fCOMs. The Infomap algo-

rithm [65] allows for the partitioning of the complementary network into structural communi-

ties for which the information flow within the community is maximized and the information

transmission towards the remaining neurons of the network is minimized. To faithfully com-

pare an sCOM to an fCOM, the size of the sCOM was constrained to be the same as that of the

fCOM. This down-sampling was performed by removing nodes from the sCOM and maximiz-

ing the spatial density of the remaining nodes of the subgraph. The latter step was intended to

avoid poorly connected regions of the network.

The rCOM subgraphs were obtained as follows. First, a node in the complementary net-

work was randomly chosen, and the closest K-1 nodes were aggregated (K is the size of the

compared graph).

Finally, the rndCOM subgraphs were obtained by turning the original fCOM into a random

graph, i.e., preserving the number of nodes and edges but randomly reassigning the links.
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Even though the sCOMs and rCOMs have a different number of edges than the fCOMs,

they are useful to compare equivalent regions of the network that do not elicit NBs. However,

the rndCOMs have the same number of edges as the structural graph and can be used as a null

model to investigate the relevance of the topology. The significant difference in the motif com-

position was assessed through paired t-tests (fCOMs compared to null models) at level

p = 0.05.

Detection and clustering of pre-NB spiking activity. To relate the spiking activity pre-

ceding a spontaneous burst event (pre-NBs) to the subsequent propagating event, we took

advantage of the NB-graph algorithm (see S4 Appendix, with parameters τNB = 10 ms, dNB =

1/8). With the aim of determining whether pre-NB spikes shared similar spatiotemporal struc-

tures (i.e., temporal motifs), all pre-NB spikes falling in the 100 ms preceding the starting

point of an NB were analysed. This was done by considering the largest connected component

(i.e., αL, βL of Fig 7A) of the induced NB-graphs (i.e., αG, βG of Fig 7A). Two pre-NB motifs

that share a common subgraph of at least M = 6 spikes (6-motif) are declared as similar (e.g.,

Fig 7B). Importantly, the parameters τNB, and dNB allow for the declaration of two spike pat-

terns as being similar even if they are not identical. That is, shared temporal patterns can be

regarded as jittered versions of the same spike pattern, and the similarity measure is robust to

these variants.

The similarity of the network motifs was computed in terms of the matrix: SM(X,Y) = ∑x∑y
K (x,y)/N, where x,y are NB events of the clusters X,Y and the sums run over the x,y elements

of the clusters X,Y. K(x,y) is the Kronecker distance (equal to 1 if x is similar to y, 0 otherwise),

and N is a normalization factor given by N = ∑y S M (X,y) � ∑x S M (x,Y). To compare the pre-

NB spiking sequences for all NBs, a similarity index was introduced and defined as follows:

S ¼
P

X S MðX;XÞ
P

X;Y S MðX;YÞ

To quantify the similarity among NBs, we defined the ‘per-cluster’ measure as a weighted

average with respect to the cluster size and the ‘ALL’ measure, defined on all trajectories irre-

spective of the cluster’s size. To further characterize how the number of shared pre-NB spikes

influences the measure of similarity, shown in Fig 7D, we reported the cumulative similarity

curve from M = 6 to M = 66. The similarity was also computed for pairs of pre-NB activities

belonging to the same NB cluster (IN) or among pre-NB activities belonging to distinct NB

clusters (ACROSS). Similarity matrices of Fig 7E and 7F were reordered using Ward’s method

as criterion for the hierarchical clustering algorithm.
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