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Abstract

The origin of the brittle-to-ductile transition, experimentally observed

in amorphous silica nanofibers as the sample size is reduced, is still debated.

Here we investigate the issue by extensive molecular dynamics simulations

at low and room temperatures for a broad range of sample sizes, with open

and periodic boundary conditions. Our results show that small sample-

size enhanced ductility is primarily due to diffuse damage accumulation,

that for larger samples leads to brittle catastrophic failure. Surface effects

such as boundary fluidization contribute to ductility at room temperature

by promoting necking, but are not the main driver of the transition. Our

results suggest that the experimentally observed size-induced ductility of
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silica nanofibers is a manifestation of finite-size criticality, as expected in

general for quasi-brittle disordered networks.
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Introduction

Despite its relevance for several applications, from basic tools to nano-technology, the un-

derstanding of the mechanical response of amorphous materials is still incomplete. The

long-standing engineering issue is to ensure simultaneously high strength and extended de-

formability. These two properties are unfortunately nearly mutually exclusive: Very strong

structural materials (e.g. ceramics) can sustain enormous stresses but fail catastrophically,

with no signs of plasticity, while metallic alloys are able to sustain a degree of plastic strain

by sacrificing strength. We broadly distinguish two ideally-opposite kinds of mechanical

failure: brittle failure where a catastrophic fracture event happens soon after the elastic

deformation limit, and ductile failure involving a considerably amount of plastic deforma-

tion before failure. Between these two extremes lies the quasi-brittle behavior, observed in

many disordered materials such as concrete and rocks, where failure is preceded by extensive

damage accumulation.1

Traditionally, a transition from brittle to ductile failure in the same material can be

achieved by decreasing the strain rate2,3 or increasing the temperature,2,4,5 but it is also

possible to reach the same goal by modifying sample preparation and composition. For ex-

ample, silica glasses quenched under increasingly high pressures show enhanced ductility,6

suggesting a role for increased defect concentration. Recent results are changing the conven-

tional view of the brittle-to-ductile transition (BDT) suggesting that it is possible to induce

ductility just by reducing the sample size towards the nanoscale,7–12 as demonstrated for
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silica glass nanofibers under tensile load.9,10

The physical origin of this sample-size induced BDT in silica glasses is currently debated.

The main physical mechanism invoked to explain the onset of ductility at the nanoscale in-

volves the interplay between surface and bulk effects, whose relative importance clearly

changes with the sample size. This appears to be a widely observed phenomenon, man-

ifested not only in amorphous solids,13–16 but, to some extent, also in crystals.14,17,18 A

“fluid-like” surface layer similar to those observed in glassy polymers19,20 was reported in

recent experiments on amorphous silica.9,10 The idea is that when stress is applied, surface

atoms (and group of atoms) more mobile than in the bulk due to lower bond coordination,

would be the first to switch bonds and rearrange or even migrate along the surface. As the

fiber diameter decreases, this surface effect is expected to have a growing influence in the

deformation process with respect to bulk processes like crack nucleation and propagation.

To shed light on the mechanism leading to the observed BDT in silica glass, we perform

extensive molecular dynamics simulations. The advantages of this approach are the direct

visualization of microscopic bond breaking and the possibility to compare open and periodic

boundary conditions to highlight the role of the free surface. Our results demonstrate that

bond breaking plays a central role for the enhanced small-size ductility, while free surfaces

only play a role at high temperatures.

Results

Low temperature deformation of amorphous silica glass nanowires

We simulate the tensile deformation of cylindric nanofibers of amorphous silica glass (a-

SiO2) using different sample sizes with open boundary condition (obc). To disentangle the

role of structural disorder from thermal fluctuations, we first perform simulations at very

low temperature, ∼1 K (see Methods section for details).

Figure 1a shows typical stress-strain curves obtained from the deformation of two cylin-
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Figure 1: Brittle-to-ductile crossover as the sample size is reduced – (a) (top) Stress-strain
curves of two typical samples of diameter D= 2.5 nm and D= 15 nm, and (bottom) snapshots of the
same nanofibers during the deformation at configurations marked by labels on the corresponding
stress curves. (Violet spheres: Si atoms, pink spheres: O atoms. Arbitrary scale). See SI Movie 3
and 4 for full animations. (b) (top) Deformation up to peak stress ε∗≡ ε(σmax), total deformation
εtot before fracture, plastic deformation εpl≡ (εtot− ε∗), and (bottom) the average maximum stress
σ∗ as a function of the sample diameter. In the latter, scattered symbols show the σ∗ value of each
individual sample, while blue squares correspond to the average.

dric nanofibers of different size, together with visual snapshots at different applied strain

during the deformation at 1 K. For large fiber diameters, we observe an abrupt fracture right

after the deviation from a purely elastic regime, signaling a brittle response also reflected by

the relatively sharp crack surfaces formed in the fracture region. At very small diameters,

beyond the elastic limit we observe instead a sustained stress-strain curve of jagged shape,

and a more irregular crack surface with appreciable necking at the onset of fracture. We

note that, differently than in metallic glass nanofibers11 where the crack is oriented at 45◦

with respect to the loading direction, in SiO2 glasses9 the crack is oriented at 90◦ . This is

due to the fact that metallic glasses fail along the direction of maximum shear, while silica

glasses fail along the direction of maximum tensile stress.
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To quantify the brittle to ductile crossover, we average over several stress-strain curves

four characteristic quantities: (i) the strain at which the engineer stress peaks, ε∗. This

would be ideally a measure of elastic elongation previous to the yielding point, but since

a non-negligible – and sometimes important – plastic deformation occurs before the stress

peak, this does not necessarily coincides with the plastic onset; (ii) the total strain before

fracture, εtot; (iii) the plastic strain, εpl≡ (εtot − ε∗), (iv) the maximum stress or peak

stress, σ∗. Fig. 1b (top panel) shows that ε∗, converging to ∼17.5% at large diameters,

starts to increase below a threshold diameter of ∼8 nm and exceeds ∼20% at the smallest

considered size. Such increased endurable strain in the pre-yield deformation stage is in well

agreement with experimental data.10 Similarly, the sample averaged εtot increases below the

same threshold diameter from ∼19% up to ∼24%, more steeply than ε∗, which reflects on

the plastic strain εpl trend.

Turning our attention to the fracture strength, the peak stress value σ∗, shown in Fig. 1b

(bottom panel) presents a distribution of values broader for smaller samples, without an

appreciable variation of the average with the system size, at least for the range of sizes

we study. The experimental evidence of Luo et al. 9 , showing a weak strength increase at

decreasing D could be related to the broadening of the sample-to-sample fluctuations that

we observe. Furthermore, our data clearly support a nanoscale size effect which reduces the

elastic modulus E at small size, suggesting a weaker contribution from the surface region

(see S.I. Fig. S1).

Origin of small-size ductility

We inspect the x-y mean-squared displacement of the atoms composing the smallest nanofiber

at different radial positions (see S.I. Figs. S2, S3). Notice that in our simulations, regardless

the sample diameter, the outer layer – defined as the layer in which the density drops from its

bulk value to zero – has an approximate fixed width of 0.5 nm (see S.I. Fig. S4). Therefore,

as we decrease the sample diameter the surface layer becomes more and more relevant. We
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Figure 2: Obc and pbc comparison for small sample sizes at 1 K – (a) Stress strain curves
of obc and pbc samples with D= 2.5 nm (top panel) and D= 5 nm (bottom panel) at T = 1 K.
Triangles at left, top, and bottom axes report σ∗, ε∗, and εtot, respectively, averaged over 100
runs (16 shown). The inset in top panel is a magnification of the region pointed by the arrow.
(b) Average values comparison as a function of size: (top panel) strain at peak ε∗ and rupture
strain εtot, and (bottom panel) peak stress σ∗.

find indeed that even at very low temperature, atoms in the outer rim display a much larger

mobility than the others. In particular, we estimate a diffusion coefficient at the surface

that is from 4 to 5 times larger than in the bulk. This result is in agreement with the role

of surface-induced plasticity advocated in Wingert et al. 10 . To corroborate this point, we

analyze the behavior of the equivalent small system size samples but with periodic boundary

conditions (pbc). We perform simulations of the tensile deformation of samples of length L

and cross-section M×M ≡πD2/4, with applied pbc along x and y directions (see Methods).

Figure 2a shows a comparison of the stress-strain curves for the D= 2.5 nm and D=

5.0 nm samples at T = 1 K for pbc and obc. Size dependent average of εtot, ε
∗, and σ∗ are
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Figure 3: Coordination and damage accumulation in obc samples at 1 K – Stress (blue)
and percent variation of the number of undercoordinated Si atoms (magenta) as a function of the
applied strain for cylindric nanofibers with (a) D= 2.5 nm and (b) D= 15 nm. Snapshots report
in green and red the dynamically broken and newly formed (or reformed) bonds, respectively (see
SI Movie 3 and 4 for full animations).

reported in Fig. 2b. Our findings show that pbc samples present larger stress peaks, while

preserving similar or even larger attainable strains εtot. Furthermore, the smallest sample

clearly displays a large plastic-like deformation regime, even when no surface is present (pbc),

suggesting that ductility can not be due only to surface effects.

To investigate the origin of the observed ductile-like behavior, we inspect the evolution

of the atomic coordination during deformation, a method previously used in numerical sim-
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ulations of amorphous silica, both in quiescent relaxation21,22 and tensile deformation,15,16

to reveal bond switching, an important source of stress release.13,14 A careful inspection

shows that both small (Fig. 3a) and large (Fig. 3b) obc systems display similar trends in

the variation of the atomic coordination. The same is observed for pbc systems. After an

initial stationary period with no changes in the coordination number, roughly coincident

with the purely-elastic phase of the deformation, at large-enough strain we observe a pro-

gressive decrease of well-coordinated Si4+ and O2− atoms, compensated by an increase of

under-coordinated silicon (Si3+, Si2+; magenta curve in the figure) and oxygen (O1−) atoms

(see also S.I. Fig. S5). A similar mechanism is evinced from the change of the Si-O-Si angle

distribution during the tensile deformation, showing a main peak at ∼141.5◦ which reduces

linearly at increasing applied strain, in favor of accumulation at larger angles, especially

around ∼161◦ (see S.I. Fig. S6).

These results provide clear evidence that damage accumulation is taking place. While

these localized events might go unnoticed in the stress-strain curve of a large system, in

small systems they correspond to relatively large stress drops (correlated with energy jumps,

see S.I. Fig. S5). We therefore conclude that the released stress due to bond breaking is at

the origin of the ductility shown by our small sized samples.

Note that some damage is already present in the unstretched samples in terms of intrinsic

defects. In this respect, more defective samples are consistently shown to break earlier, being

less capable of accumulating damage (see S.I. Fig. S7). A more refined structure-property

relationship could be provided by the identification of polyhedral clusters in the SiO2 glass,

some of which have been identified as energetically favored and thus more stable.23 The

failure statistics could therefore be described, in a coarse-grained like fashion, in terms of

the interaction among these hard clusters.
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Figure 4: Stress-drops distributions – (a) P (∆σ) for different sample sizes with obc. The
main plot shows a power law distribution P (∆σ)∼∆σ−τ for the larger ∆σ with exponent τ ∼1.75;
(upper inset) Lin-log plot of the ∆σ→∆σD2 scaling, showing a collapse of the distributions for
small stress drops; (lower inset) example of stress drop and its derivative, alternative thresholds
are also showed. (b) Stress-drops distribution for different temperatures and boundary conditions
for the smallest system size.

Stress drop statistics displays power-laws

In order to further characterize the observed ductility, we study the statistical features of

stress drops during loading. For each set of samples of a given size, we analyze the stress-time

series (such as those reported in Fig.2a). After the initial elastic regime, we locate stress

drops ∆σ following a standard procedure:24–26 we identify time intervals where the negative

time-derivative of the stress −dσ/dt exceeds a threshold and compute the corresponding

stress drops (see the lower inset of Fig. 4a for a visual explanation).

Figure 4 shows stress drop distributions for different system sizes, temperatures and

boundary conditions. In the obc case, we observe a size-dependent crossover from an expo-

nential distribution at ‘small’ ∆σ to a power-law distribution at ‘large’ ∆σ (Fig. 4a). The

exponentially distributed small drops (e.g. ∆σ<3 × 10−2GPa for the D= 2.5 nm case) are

associated to a surface effect, since they are not present in pbc simulations (see Fig. 4b), and

correspond to small and short localized rearrangements occurring during the loading phase

(see the inset of Fig. 2). The upper inset of Fig. 4a reports a rescaled log-lin plot showing

both the ‘thermal-like’ exponential distribution of these small drops and their disappearance
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as the system-size increases (the crossover to a power-law distribution moves towards smaller

values of ∆σ as D increases).

The observation of a power-law tail in P (∆σ) for all system sizes suggests the presence

of correlated events and collective behavior causing larger stress drops. Such an avalanche

statistics associated with fracture can be understood via simple arguments based on percola-

tion and mean-field theory.27 The deformation proceeds through localized bond failures that

provoke a stress redistribution in the rest of the samples that can trigger other failure events

through a cascade mechanism. An explicit correlation between stress drops and change in

atomic coordination (bond breaking) is reported in S.I. Fig. S5. Notice that the power-law

distribution P (∆σ)∼∆σ−τ shows up both for obc and pbc samples at low temperature (see

Fig. 4b). For the system sizes and strain rate used here, it decays with the exponent is found

in the range τ ∼1.7−2 depending on the conditions. We have checked that the exponent does

not depend significantly on the chosen threshold (see S.I. Fig. S8). This value is somewhat

larger than the mean-field exponent τ = 3/2 expected according to Shekhawat et al. 27 . In our

interpretation the disagreement is mainly due to the very large deformation rate adopted in

our simulations (ε̇= 2.5× 108 s−1), that is far away from the quasistatic conditions employed

in Shekhawat et al. 27 . Furthermore, as shown by several works devoted to the plastic defor-

mation of amorphous solids,28 the avalanche-related critical exponents measured in spatial

models in d= 2 and d= 3 as well as in experiments, often differ from mean-field theory. We

also measure the distribution of waiting times Tw between stress drops, which decays as a

power law P (Tw)∼T−α
w , with an exponent α'1.5 (see S.I. Fig. S9).

In Fig. 4b, we compare the cases of T '1 K and T '300 K for both obc and pbc. At high

temperature, P (∆σ) is exponential in practically all its extension and indistinguishable for

pbc and obc cases, only recovering a power-law shape at its latest stage1, suggesting that the

jerkiness of the stress-time series at high temperature (Fig.5) is mainly thermally induced.

This observation confirms our interpretation as ‘thermal-like’ of the small stress discharges

1This thermal feature seems to be quite general, as has been recently observed on waiting time distribu-
tions in the bond breaking of a model gel.29
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Figure 5: Stress-strain curves comparison at 300 K – Stress strain curves of obc and pbc
samples with D= 2.5 nm (left panel) and D= 5 nm (right panel) at T = 300 K. Triangles at left, top,
and bottom axes report σ∗, ε∗, and εtot, respectively, averaged over 32 runs (16 shown).

happening at T '1 K for the obc pillars.

Thermal effects increase ductility through necking

Finally, to clarify the role of thermally activated events, we have performed comparative

obc–pbc simulations at T = 300 K (see Fig. 5). When the temperature is raised in both

obc and pbc, the maximum stress σ∗ is reduced with respect to the low temperature case

(Fig. 2), owing to the reduced rigidity of the sample. On the other hand, the maximum

strain εtot increases with temperature only for obc, while no significant changes are observed

for pbc, in agreement with Pedone et al. 30 . The increase in strain in obc is due to re-entrant

strengthening – the linear σ(ε) segments with small positive slope – signaling the occurrence

of necking. Since the Young modulus is size dependent (Fig. S1), we can connect the slope

of these segments to the neck thickness, showing a progressive reduction of the narrowing

size until, at very low stress values, these segments become almost horizontal, meaning

that a single bond is bridging the two detaching pieces of the fiber. We notice that during

this process, thermal effects become more pronounced as necking starts. As a consequence,

plasticity effects grow and become dominant in the last part of the process. We further note

that surface effects become detrimental already at D= 5 nm by reducing the average εtot
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with respect to pbc. We expect, however, that the threshold diameter for such effect would

shift toward larger D at the slower strain rates typically employed in experiments.

Discussion

Amorphous silica glass represents the quintessential brittle material, failing abruptly in the

elastic regime. Yet, recent experimental measurements revealed that nanoscale silica fibers

become increasingly ductile as the size is decreased.7–12 The origin of this puzzling size-

induced brittle to ductile transition is still debated with possible explanations based on

surface fluidization.9,10 Indeed, experiments and simulations report evidence of a boundary

layer where atoms are more mobile.9,10 Since the ratio of surface to volume increases as the

sample size is decreased, it is conceivable to assume that plastic relaxation at the surface

becomes more prevalent thus explaining the observed transition.

Here, we tackled the question by molecular dynamics simulations. To disentangle the

individual roles of sample size and geometry from thermal induced mobility, we compared

simulations with obc and pbc, performed at low and room temperature. Our main finding is

that small silica glass samples are ductile even at low temperatures and with pbc, suggesting

that surface fluidization can not be the only cause for the experimentally observed behavior.

We observed instead that departure from brittleness in small samples is due to the diffuse

bond breaking before failure. This form of damage accumulation is found with both pbc and

obc, at low and room temperature.

A damage dominated size-dependent transition similar to the one observed here was an-

alyzed theoretically in an idealized network model for the fracture of quasi-brittle disordered

solids.27 According to the theory, a disordered network should always fail catastrophically

in the infinite sample size limit, unless the disorder is infinitely strong in which case bonds

would fail one by one as in percolation. In the more relevant case of finite disorder in a

finite sample, the theory predicts a finite-size critical regime characterized by a power law
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distribution of stress drops and size dependent scaling. In small samples, failure is dominated

by the coalescence of many disorder-induced cracks, but as the sample size is increased the

probability to nucleate an unstable critical crack becomes larger. Hence, in large samples

the effect of disorder becomes less and less relevant, leading to brittle catastrophic failure.

The theoretical scenario discussed above is in agreement with the results of our simula-

tions, showing power law distributed avalanches, size-dependent damage accumulation and

increased brittleness for larger sample sizes. The prediction of the theory do not specifically

depend on the presence of a surface, in agreement with our results. Furthermore, the rele-

vance of damage nucleation and accumulation in the failure of silica glass would be supported

by in situ atomic force microscopy experiments in macroscopic samples, some of which de-

scribe the fracture propagation through the formation of nanoscale cavities ahead of the main

crack.31,32 This picture was, however, questioned by other observations suggesting instead

conventional brittle fracture.33–35 Regardless of the exact mechanism of fracture propagation

in macroscopic samples, our results show that coalescence of accumulated damage is the

triggering mechanism of fracture in nanoscale samples.

Thermal effects provide an additional layer of complexity to the landscape, increasing

surface mobility and inducing sample necking, in agreement with previous work.9,10 Yet, the

driver of the transition lies in the competition between disorder induced diffuse damage and

stress enhancement at the tip of the cracks. Statistically larger samples will have longer

cracks and therefore higher stresses at their tips, resulting in unstable crack propagation

typical of brittle fracture.
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Methods

Table 1: Cylindrical samples – Size of the simulated cylindric silica glass nanofibers in terms
of lenght L, diameter D, and total number of atoms Nat. For each sample, the number Nruns of
statistical realizations is also reported.

Sample L (nm) D (nm) Nat Nruns

[a] 10 2.5 3282 100
[b] 15 3.7 11076 100
[c] 20 5.0 26250 100
[d] 30 7.5 87900 100
[e] 40 10 210000 100
[f] 60 15 708000 74
[g] 80 20 1680000 15

Obc samples preparation – We have considered a set of seven cylindric samples, with

length L ranging from 10 to 80 nm and diameter D from 2.5 to 20 nm, and with fixed aspect

ratio L/D= 4 (see Table 1). For each size, Nruns statistically-equivalent samples have been

prepared starting from Si and O atoms randomly arranged in a cylindrical box. The number

of atoms was chosen to match the target density and the charge neutrality was maintained.

Constraining the atoms to stay in a cylindrical configuration, a NVT quenching scheme from

4000 K down to 1 K was performed to anneal the silica liquid into glass state, with a nominal

cooling rate of 50 K/ps. A time step of 1 fs was used. Afterwards, an equilibration run was

performed at T = 1 K for 20 ps upon the removal of the cylindrical constraint.

Pbc samples preparation – Periodic samples have been obtained starting from an

orthogonal box of size M×M×L, with square cross sectional area matching that of the

corresponding cylindrical sample, and periodic boundaries along all directions. After the

same annealing procedure of the obc case, we have removed the pbc along z and performed

an additional NPT relaxation step with cell relaxation along x-y in order to minimize the

lateral pressure. The same lateral barostat was applied during the tensile deformation, using

the same protocol described above.

Strain – The uniaxial tensile deformation was performed at a constant strain rate of

14



λ= 2.5×108 s−1, by moving the external 5 Å of the sample (end caps) with constant velocity

v=λL/2 along the axial z direction, right after an initial linear velocity ramp (10 ps) with

v=at where t is the simulation time and a= 10−4 Å/fs2. The end caps atoms are free to

move along the perpendicular x-y directions. Temperature and pressure were controlled by

Nosé-Hoover thermostat and barostat as implemented in LAMMPS,36 with applied damping

time factors of 1 ps and 10 ps, respectively.

Force fields – Atomic interactions were described by the Watanabe potential,37,38 an

extension of the Stillinger-Weber (SW) potential,39 which has been proven to well reproduce

the experimental features of Si-O mixed systems also under applied strain.37,38,40,41 The force-

field consists of two terms: a two-body interaction that depends on distance and a three-body

interaction that describe rotational and translational symmetry. The short cutoff distances

and the replacement of the usual Coulomb interaction term by a coordination-based bond

softening function for Si-O atoms accounting for the environmental dependence, allow to

perform computationally efficient simulations of large scale systems.

The density obtained with the Watanabe potential in a bulk system was ρ0 = 2.196 g/cm3,

well matching the experimental value of 2.2 g/cm3.42 The effective radius R of the cylindric

samples, which defines the volume V and thus the calculated stress σ, was chosen at 50% of

the normalized radial density profile. The radial density profile of all the cylindric samples

shows a smooth drop of the density at the fiber surface, with a skin size of about 0.5 nm

(see S.I. Fig. S4). The surface roughness has been measured by considering the Nsurf most

external atoms, with Nsurf = 2πRLρ, ρ being the surface density fixed to 10 atoms/nm2.

Given Ravg the average radial position – from the cylinder axis – of these Nsurf atoms,

the surface roughness is calculated as standard deviation of the radial coordinate from such

average: σ2
s = 〈(r−Ravg)

2〉. The value σs is averaged over 20 random-generated samples. For

the D= 2.5 nm and D= 5 nm sizes, the average 〈σs〉 results 0.93±0.15 Å and 0.90±0.05 Å,

respectively, showing no substantial variation of the surface roughness with the nanofiber

size.
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