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Abstract

We are concerned with the approximation of probability measures on a compact metric space
(X, d) by invariant measures of iterated function systems with place-dependent probabilities
(IFSPDP). The approximation is performed by moment matching. Associated with an IFSPDP
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is a linear operator A : D(X) → D(X), where D(X) denotes the set of all infinite moment
vectors of probability measures on X . Let µ be a probability measure that we desire to ap-
proximate, with moment vector g = (g0, g1, · · ·). We then look for an IFSPDP which maps g
as close to itself as possible in terms of an appropriate metric on D(X). Some computational
results are presented.

Keywords : iterated function systems, place-dependent probabilities, inverse problem of measure
approximation, collage theorem, moments of measures
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1. INTRODUCTION

We are concerned with the problem of approximat-
ing probability measures on a compact metric space
(X, d) with invariant measures of iterated function
systems (IFS) with place-dependent probabilities
(IFSPDP): systems of constraction mappings on X,
w = {w1, w2, · · · , wN} with associated probabilities
p = {p1, p2, · · · , pN}, the latter of which are place-
dependent, i.e., pi : X → R. (This is in constrast
to the case of IFS with constant probabilities which
has usually been assumed in the literature.) In this
paper, we consider the special case X = [0, 1] with
affine IFS maps and probabilities, i.e.,

wi(x) = aix+ bi , pi(x) = αix+βi , 1 ≤ i ≤ N.(1)

The ideas and methods developed here can, at least
in principle, be extended to the general case [0, 1]n.

IFS with place-dependent probabilities have re-
ceived much attention in the literature but mostly
in the context of place-dependent Markov processes
with invariant measures.1,2 For example, the conver-
gence of a “Chaos Game” to the invariant measure
for eventually contractive IFSPDP was proved by
Barnsley et al.3

This paper, however, is concerned with the
Markov operator M : M(X) → M(X) associated
with an N -map IFSPDP, where M(X) is the space
of probability measures on X. Under appropriate
conditions, M is contractive on M(X) which im-
plies the existence of a unique fixed point µ̄ =Mµ,
the invariant measure of the IFSPDP (w,p). We
then consider the following inverse problem: Given
a target measure ν ∈ M(X), find an N -map IF-
SPDP with Markov operator M such that its in-
variant measure µ is as close as desired to ν. This
inverse problem will be solved by means of a “mo-
ment matching” procedure: Given a target measure
ν ∈ M(X) with moments gn, 1 ≤ n ≤ M , find an
invariant IFSPDP measure µ̄ with moments ḡn that
are as close as possible to the gn.

We now describe briefly our motivation to em-
ploy “moment matching.” Firstly, the study of the
relationships between moments and measures (as
well as orthogonal polynomials) has a long and rich
history.4 Here we simply mention that in two classi-
cal papers in 1894-95, Stieltjes5 posed the following
“Problem of Moments” which he solved by intro-
ducing what would later be known as the Stielt-
jes integral: Find a bounded nondecreasing function

ψ(x) on [0,∞) such that its moments

∫ ∞

0
xn dψ(x),

n = 0, 1, 2, · · ·, assume a prescribed set of values gn.

In the particular case that ψ(x) has compact sup-
port, e.g., [0, 1], then the so-called Hausdorff mo-
ment problem is determinate: If the moments gn
satisfy a set of Hausdorff conditions, then a unique
distribution ψ(x) (or measure µ) exists. In this case,
the moments gn may be viewed as defining a unique
distribution ψ(x) or measure.

This is of great importance in a number of ap-
plications, including numerical analysis and theo-
retical physics, where one is faced with the prob-
lem of computing estimates of integrals of the form
∫ ∞

0
f(x) dψ(x) from a knowledge of the moments

gn of ψ(x). In theoretical physics, for example, the
distribution ψ(x) is not known in closed form, but
its moments – often only a finite number of them –
can be determined. From these moments, one can
then compute desired physical properties of the sys-
tem being examined, e.g, a lattice.6

From the viewpoint of IFS, Barnsley and Demko7

showed how the moments of an affine IFSP can be
computed recursively from the parameters definin-
ing the IFS maps and the probabilities. They then
provided the first example “to demonstrate the
feasibility of reconstructing approximately or ex-
actly, given fractal structures with the aid of linear
i.f.s. and moment theory.” (The target set was a
twin-dragon fractal generated from an IFS.) Later
works8–10 considered the more general inverse prob-
lem of constructing IFSP invariant measures µ with
moments ḡn that matched, as well as possible, a
given and finite number of target moments gn.
The problem of approximating the zero-point vi-
brational energy of a face-centered cubic crystal us-
ing moments, first addressed with the use of Padé
approximants,6 was revisited with the use of IFSP
invariant measures.11

Forte and Vrscay12 – which shall be referred to
as FV12 for the remainder of the paper – presented
a formal inverse problem of measure approximation
using IFSP which was then reformulated as an in-
verse problem of moment sequence approximation
that could be solved by means of a “Collage Theo-
rem for Moments.” The problem was simplified by
considering fixed sets of IFS maps and optimizing
over the probabilities. The squared moment col-
lage distance is a quadratic form in the unknown
probabilities which can be solved numerically using
quadratic programming with constraints. Indeed,
the present paper may be considered as a place-
dependent extension of FV.12
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2. MATHEMATICAL
PRELIMINARIES

2.1. Brief review of IFS with
constant probabilities (IFSP)

In what follows, we let (X, d) denote a compact met-
ric space. An N -map iterated function system (IFS)
on X, w = {w1, · · · , wN}, is a set of N contraction
mappings on X, i.e., wi : X → X, i = 1, · · · , N ,
with contraction factors ci ∈ [0, 1).13–15 Associated
with an N -map IFS is the following set-valued map-
ping ŵ on the space H([a, b]) of nonempty compact
subsets of X:

ŵ(S) :=

N
⋃

i=1

wi(S) , S ∈ H([a, b]) . (2)

Theorem 1.13 For A,B ∈ H(X),

h(ŵ(A), ŵ(B)) ≤ cH(A,B) , (3)

where c = max
1≤i≤N

ci < 1 and h denotes the Hausdorff

metric on H(X).

The following is an immediate consequence of Ba-
nach’s Fixed Point Theorem.

Corollary 2. There exists a unique set A ∈
H([a, b]), the attractor of the IFS w, such that

A = ŵ(A) =

N
⋃

i=1

wi(A). (4)

Moreover, for any B ∈ H([a, b]), h(A, ŵnB) → 0 as
n→ ∞.

An N -map iterated function system with (con-
stant) probabilities (w,p) is an N -map IFS w
with associated probabilities p = {p1, · · · , pN},
∑N

i=1 pi = 1. Let M(X) denote the set of proba-
bility measures on (Borel subsets of) X and dMK

the Monge-Kantorovich distance on this space: For
µ, ν ∈ M(X),

dMK(µ, ν) = sup
f∈Lip1(X)

[
∫

f dµ −

∫

f dν

]

, (5)

where Lip1(X) = {f : X → R | |f(x) − f(y)| ≤
d(x, y) }. The metric space (M(X), dMK ) is com-
plete.13,14 (The Monge-Kantorovich metric is a spe-
cial case of the Wasserstein metric.16)

Associated with an N -map IFSP is a mapping
M : M(X) → M(X), often referred to as the
Markov operator, defined as follows. Let ν = Mµ

for any µ ∈ M(X). Then for any measurable set
S ⊂ X,

ν(S) = (Mµ)(S) =

N
∑

i=1

pi µ(w
−1
i (S)) . (6)

Theorem 3.13 For µ, ν ∈ M(X),

dMK(Mµ,Mν) ≤ c dMK(µ, ν) . (7)

Corollary 4. There exists a unique measure ν̄ ∈
M(X), the invariant measure of the IFSP (w,p),
such that

µ̄(S) = (Mµ̄)(S) =

N
∑

i=1

piµ̄(w
−1
i (S)) . (8)

Moreover, for any ν ∈ M(X), dMK(µ̄,Mnν) → 0
as n→ ∞.

Theorem 5.13 The support of the invariant measure
µ̄ of an N -map IFSP (w,p) is the attractor A of
the IFS w, i.e.,

supp µ̄ = A . (9)

Example 1: The following two-map IFS on X =
[0, 1],

w1(x) =
1

2
x , w2(x) =

1

2
x+

1

2
, (10)

with attractor A = [0, 1]. We now consider two
IFSP having these IFS maps. These examples will
be helpful for an understanding of IFS with place-
dependent maps.

(1) Case 1: p1 = p2 =
1

2
. It is well known that the

invariant measure µ̄ of this IFSP is (uniform)
Lebesgue measure on [0,1]. A histogram approx-
imation to this measure, obtained by using the
“Chaos Game” for IFSP,14 is shown in the left
plot of Figure 1. (In all histogram approxima-
tions presented in this paper, 108 iterates were
generated and placed into 1000 nonoverlapping
bins on [0, 1].) The histogram approximation
may be used to generate a discrete approxi-
mation to the cumulative distribution function
(CDF) for this measure, defined on X = [0, 1]
as follows,

F̄ (x) =

∫ x

0
dµ̄ . (11)

In this case, F̄ (x) = x. The approximation to
the CDF is shown in the right plot of Figure 1.
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Fig. 1 Left: Histogram approximation of invariant measure µ̄ (Lebesgue measure) of the IFSP in Example 1, Case 1. Right:

Approximation to cumulative distribution function F̄ (x) of µ̄.

(2) Case 2: p1 =
2

5
, p2 =

3

5
. A histogram ap-

proximation to the invariant measure µ̄ of this
IFSP is shown in the left plot of Figure 2. Since
p1 < p2, it follows that µ̄([0, 1/2]) < µ̄([1/2, 1]).
This asymmetry is then propagated in a self-
similar manner over smaller dyadic subintervals
of [0,1]. The approximation to the CDF of this
invariant measure generated by the histogram
is shown in the right plot of the Figure.

2.2. IFS with place-dependent
probabilities (IFSPDP)

We now consider the case in which the probabilities,
pi, 1 ≤ i ≤ N , associated with an N -map IFS w are
place-dependent, i.e., pi : X → R such that

N
∑

i=1

pi(x) = 1 , for all x ∈ X . (12)

The result is an N -map IFS with place-dependent
probabilities (IFSPDP).3

In the special case X ⊂ R and affine probabilities
pi as given in Eq. (1), substitution into Eq. (12)
along with the fact that the functions x and 1 are
linearly independent over [0,1] yields the following
conditions on the αi and βi,

N
∑

i=1

αi = 0 ,

N
∑

i=1

βi = 1 . (13)

Two other conditions must be imposed, namely, (i)
0 ≤ pi(0) ≤ 1 and 0 ≤ pi(1) ≤ 1 for 1 ≤ i ≤ N ,
which lead to the following additional constraints,

0 ≤ βi ≤ 1 , 0 ≤ αi + βi ≤ 1 , 1 ≤ i ≤ N . (14)

These constraints also imply that −1 ≤ αi ≤ 1. For
N ≥ 1, we shall let ΣN ⊂ R

2N denote the compact
region defined by all of the above constraints. This
region will be important in our treatment of the
inverse problem.

In the special case αi = 0, 1 ≤ i ≤ N , the IF-
SPDP reduces to an IFSP with constant probabili-
ties pi = βi, 1 ≤ i ≤ N .

Associated with an N -map IFSPDP, (w,p), is a
Markov operator M : M(X) → M(X), defined as
follows. Let ν = Mµ for any µ ∈ M(X). Then for
any measurable set S ⊂ X,

ν(S) = (Mµ)(S)

=
N
∑

i=1

∫

S
pi(w

−1
i (x)) dµ(w−1

i (x)) . (15)

Lemma 6.17 Given M as defined in Eq. (15), then
M maps M(X) to itself. In other words, if µ ∈
M(X), then ν =Mµ ∈ M(X).

We now show that under appropriate conditions,
the above Markov operator can be contractive.
Our method begins in the same manner as that
of Hutchinson13 for the constant probability case.
Some modifications are necessary in order to accom-
modate the place-dependency of the probabilities.
The following Lemma, which is easily proved using
a change-of-variable approach,17 will be useful.

Lemma 7. Let µ ∈ M(X) and ν =Mµ. Then for
any f continuous function f : X → R,

∫

X
f(x) dν(x) =

∫

X
f(x) d(Mµ)(x)

ifspdpwsc-5
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Fig. 2 Left: Histogram approximation of invariant measure µ̄ (Lebesgue measure) of the IFSP in Example 1, Case 2. Right:

Approximation to cumulative distribution function F̄ (x) of µ̄.

=
N
∑

i=1

∫

X
pi(x) (f ◦ wi)(x) dµ.(16)

We shall also need the following Lemma.

Lemma 8. Let (X, d) be a compact metric space
and let f : X → R be Lipschitz on X with Lipschitz
constant M ≥ 0. If f(y0) = 0 for some y0 ∈ X,
then |f(x)| ≤M diam (X) for all x ∈ X.

Proof:

|f(x)| = |f(x)− f(y0)| ≤Md(x, y0)

≤M diam (X) . (17)

Theorem 9.17 Let (X, d) be a compact metric space
and (w,p) an N -map IFSPDP with IFS maps wi :
X → X with contraction factors ci ∈ [0, 1). Fur-
thermore, assume that the probabilities pi : X → R

are Lipschitz functions, with Lipschitz constants
Ki ≥ 0. Let M : M(X) → M(X) be the Markov
operator associated with this IFSPDP, as defined in
(15). Then for any µ, ν ∈ M(X),

dMK(Mµ,Mν) ≤ (c+KDN) dMK(µ, ν) , (18)

where c = max
i
ci, K = max

i
Ki and D =

diam(X) <∞.

Proof: For µ, ν ∈ M(X),

dMK(Mµ,Mν)

= sup
f∈Lip1(X)

[
∫

X
f dMµ −

∫

X
f dMν

]

= sup
f∈Lip1(X)

[
∫

X

N
∑

i=1

pi(x) · (f ◦ wi)(x) dµ

−

∫

X

N
∑

i=1

pi(x) · (f ◦ wi)(x) dν

]

. (19)

Now define the following function, g : X → R,

g(x) =

N
∑

i=1

pi(x) · (f ◦ wi)(x) . (20)

Then

|g(x)− g(y)|

=

∣

∣

∣

∣

N
∑

i=1

[pi(x) · (f ◦ wi)(x)− pi(y) · (f ◦ wi)(y)]

∣

∣

∣

∣

=

∣

∣

∣

∣

N
∑

i=1

[pi(x) · (f ◦ wi)(x)− pi(x) · (f ◦ wi)(y)]

+

N
∑

i=1

[pi(x) · (f ◦ wi)(y)− pi(y) · (f ◦ wi)(y)]

∣

∣

∣

∣

≤

N
∑

i=1

pi(x) · |(f ◦ wi)(x) − (f ◦ wi)(y)|

+
N
∑

i=1

|pi(x)− pi(y)| · |(f ◦ wi)(y)| . (21)

We now analyze the two summations in the final line
of (21) separately. The first summation is treated in
a manner similar to the constant probability case:13

N
∑

i=1

pi(x) · |(f ◦ wi)(x)− (f ◦ wi)(y)|

≤

N
∑

i=1

pi(x) d(wi(x), wi(y))

≤

N
∑

i=1

pi(x) ci d(x, y)

≤

N
∑

i=1

pi(x) c d(x, y)

ifspdpwsc-6
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≤ c d(x, y) . (22)

As for the second summation,

N
∑

i=1

|pi(x)− pi(y)| ◦ |(f ◦ wi)(y)|

≤
N
∑

i=1

Ki d(x, y) |f(wi(y))|

≤ K

N
∑

i=1

|f(wi(y))| d(x, y)

≤ K
N
∑

i=1

Dd(x, y)

= KDN d(x, y) , (23)

where K = max
1≤i≤N

Ki and D = diam(X) < ∞. The

second-last line follows from Lemma 8 and the prop-
erty that f ∈ Lip1(X), i.e., M = 1. Combining the
results of (22) and (23), we have that

|g(x) − g(y)| ≤ (c+KDN) d(x, y) , (24)

from which it follows that the function,

q(x) = (c+KDN)−1g(x) , (25)

is a Lip1(X) function. With reference to the right
hand side of Eq. (19), we have that for an f ∈
Lip1(X), with associated function g defined in (20),
∫

X
f dMµ−

∫

X
f dMν

=

∫

X
g dµ−

∫

X
g dν

= (c+KDN)

[
∫

X
q dµ−

∫

X
q dν

]

≤ (c+KDN) sup
q∈Lip1(X)

[
∫

X
q dµ−

∫

X
q dν

]

= (c+KDN) dMK(µ, ν) . (26)

From the first line in Eq. (19), the desired result,
Eq. (18), follows and the proof is complete.

Theorem 10. The support of the invariant mea-
sure µ̄ of an N -map IFSPDP (w,p) is the attractor
A of the IFS w, i.e.,

supp µ̄ = A . (27)

Theorem 11. Let µ̄ be the invariant measure of an
N -map IFSPDP. Now define the following “Chaos

Game:” For an x0 ∈ X define the sequence {xn} ⊂
X as follows,

xn+1 = wσn(xn)(xn) , (28)

where σn(xn) ∈ {1, · · · , N} is chosen with proba-
bility P [σn(xn) = i] = pi(xn), 1 ≤ i ≤ N . Let
S ⊂ X be Borel measurable and IS(x) the charac-
teristic function of S, i.e., IS(x) = 1 if x ∈ S and
0 otherwise. Then for almost every x0 ∈ X,

lim
N→∞

[

1

N

N
∑

n=1

IS(xn)

]

= µ̄(S) . (29)

These two theorems were proved3 for the more gen-
eral case of eventually contractive IFSPDP which
includes the contractive IFSPDP considered in this
paper as a special case. Also note that the “Chaos
Game” for IFSP14 is a special case of Theorem 11.

Some remarks regarding Theorem 11: It is
well known that this theorem provides the basis
of computing histogram approximations of invari-
ant measures for IFSP and IFSPDP. As described
earlier (in Example 1, Case 2, Section 2.2), the his-
togram approximations presented in this paper were
obtained by dividing the interval [0, 1] into K = 103

nonoverlapping subintervals, Ik = [xk−1, xk), where
xk = k/K, 0 ≤ k ≤ K. From Eq. (29), for a suffi-
ciently large value n (the value n = 108 was used in
this paper) the quantity µ̄(Ik) – the height of the
“bar” of the histogram situated at Ik - is well ap-
proximated by the fraction of iterates which lie in
the set S = Ik, namely the bracketed quantity on
the LHS of Eq. (29).

Of course, as N increases, one expects the re-
sulting histogram approximations to be more “ac-
curate”. And given that invariant measures of IFSP
and IFSPDP are generally singular with respect to
Lebesgue measure, it is important that N be suffi-
ciently large so that these approximations provide
at least some idea of their complicated, self-similar
structures.

Example 2:We return to the two-map IFS on X =
[0, 1] of Example 1,

w1(x) =
1

2
x , w2(x) =

1

2
x+

1

2
, (30)

and consider two two-map IFSPDP maps which are
perturbations of the equal-probability IFSP of Case
1 above, where µ̄ = uniform Lebesgue measure.

ifspdpwsc-7
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(1) Case 1: p1(x) = −
1

10
x+

1

2
, p2(x) =

1

10
x +

1

2
.

Note that p1(0) = p2(0) =
1

2
. For x ∈ (0, 1],

p2(x) − p1(x) =
1

5
x > 0, i.e., the asymmetry

in the probabilities increases from 0 to its max-

imum value
1

5
at x = 1. As such, we expect

that there will be an asymmetry of the invariant
measure µ̄, weighted toward x = 1 at all scales.
However, the asymmetry will be less “drastic”
as compared to the constant probability case

p1 =
2

5
, p2 =

3

5
.

A histogram approximation to this measure, ob-
tained by using the “Chaos Game” for IFSPDP
(Theorem 11) is shown in the left plot of Fig-
ure 3. The approximation to the CDF F (x) of µ̄
yielded by this histogram is shown in the right
plot of the Figure.

(2) Case 2: p1(x) =
1

10
x+

1

2
, p2(x) = −

1

10
x+

1

2
.

Once again, p1(0) = p2(0) =
1

2
. For x ∈ (0, 1],

p1(x) − p2(x) =
1

5
x > 0, i.e., the asymme-

try in the probabilities is reversed from Case
1. We therefore expect that the asymmetry in
the invariant measure µ̄ will be weighted toward
x = 0.
A histogram approximation to this measure is
shown in the left plot of Figure 4. The approx-
imation to the CDF F (x) of µ̄ yielded by this
histogram is shown in the right plot of the Fig-
ure.

2.3. Moment relations for IFSPDP

Because our solution of the inverse problem for
measure approximation will involve the moments
of measures, it is necessary to determine the action
of an IFSPDP Markov operator on these moments.
For the remainder of this section we consider only
the special case X ⊂ R. Let the (infinite) moment
vectors of µ and ν = Mµ be g and h, respectively,
i.e.,

gn =

∫

X
xn dµ , hn =

∫

X
xn dν , n = 0, 1, 2, · · · .(31)

Note that g0 = h0 = 1. We now set f(x) = xn in
Eq. (16) and employ the affine IFS and probability
maps in (1):

hn =

∫

X
xn dν(x)

=

N
∑

i=1

∫

X
(αix+ βi)(aix+ bi)

n dµ

=
n
∑

k=0

un,k+1gk+1 +
n
∑

k=0

vnkgk , (32)

where

un,k+1 =

(

n
k

)

[

N
∑

i=1

αia
k
i b

n−k
i

]

,

vn,k =

(

n
k

)

[

N
∑

i=1

βia
k
i b

n−k
i

]

. (33)

We see that h and g are related as follows,

h = Ag = [U+V]g . (34)

where the infinite-dimensional matrix A is the sum
of a lower triangular matrix V and a matrix U
which contains a lower triangular part along with
one nonzero band above it, i.e., ui,i+1 for i ≥ 1.

Recall that the special case αi = 0, 1 ≤ i ≤
N , corresponds to IFSP with constant probabilities
pi = βi. In this case U = 0 and V is the linear
operator on moments encountered in FV12 for the
constant probability case.

3. INVERSE PROBLEM OF
MEASURE APPROXIMATION
USING IFSPDP AND
MOMENTS

The formal inverse problem of measure approxima-
tion using IFSPDP may be posed as follows:

Given a target measure ν ∈ M(X) and an
ǫ > 0, find an IFSPDP (w,p) with invariant
measure µ̄ such that dMK(µ̄, ν) < ǫ.

Such inverse problems involving fractal transforms
are generally intractable so we consider a reformu-
lated problem based on the Collage Theorem, a sim-
ple consequence of Banach’s Fixed Point Theorem.

Theorem 12. (Collage Theorem)14 Let (Y, dy) be
a complete metric space and T : Y → Y a contrac-
tion mapping with contraction factor cT ∈ [0, 1) and
fixed point ȳ. Then for any y ∈ Y ,

dy(y, ȳ) ≤
1

1− cT
d(y, Ty) . (35)

From the Collage Theorem, we now consider the
following modified inverse problem:
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Fig. 3 Left: Histogram approximation of invariant measure µ̄ of the two-map IFSPDP in Example 2, Case 1. Right:

Approximation to cumulative distribution function F̄ (x) of µ̄.

Fig. 4 Left: Histogram approximation of invariant measure µ̄ of the IFSPDP in Example 2, Case 2. Right: Approximation
to cumulative distribution function F̄ (x) of µ̄.

Given a target measure ν ∈ M(X) and a
δ > 0, find an IFSPDP (w,p) with asso-
ciated (contractive) Markov operator M :
M(X) → M(X) such that dMK(Mν, ν) <
δ. Then, from the Collage Theorem, it fol-
lows that dMK(µ̄, ν) < δ(1 − c)−1.

As in FV,12 our strategy is to work with fixed
sets of affine IFS maps wi : X → X, 1 ≤ i ≤ N ,
optimizing over the unknown probability functions
pi(x), 1 ≤ i ≤ N . The IFS maps will be chosen
from an infinite set of contraction maps on X which
satisfies the following refinement condition:

Definition 13. Let (X, d) be a compact metric
space. An infinite set of contraction maps, W =
{w1, w2, · · ·} is said to satisfy an ǫ-contractivity con-
dition on X if for each x ∈ X, and any ǫ > 0, there
exists an i∗ ∈ {1, 2, · · ·} such that wi∗(X) ⊂ Nǫ(x),
where Nǫ(x) = {y ∈ X | d(x, y) < ǫ} denotes the
ǫ-neighbourhood of x.

If W satisfies the ǫ-contractivity condition on X,
then inf i≥1 ci = 0, where ci is the contractivity fac-
tor of wi. A useful set of affine maps on X = [0, 1]
which satifies the ǫ-contractivity condition is given
by the following wavelet-type functions (here it is
convenient here to use two indices),

wij(x) =
1

2i
[x+j−1] , i = 1, 2, · · · , 1 ≤ j ≤ 2i .(36)

The following result, proved in Theorem 3.9 of
FV,12 provides the existence of a solution to the
inverse problem for measure approximation using
IFSP, i.e., IFS with constant probabilities.

Theorem 14. Let (X, d) be a compact metric space
and µ ∈ M(X) be a target measure. Furthermore,
let W be an infinite set of contraction maps on X
and wN = {w1, w2, · · · , wN}, N ≥ 1 denote an N -
map IFS selected from W. We now consider the N -
map IFSP (wN ,pN ) with probabilities defined over
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the following compact region in R
N ,

ΠN =

{

(pN1 , p
N
2 , · · · , p

N
N ) ∈ R

N

∣

∣

∣

∣

0 ≤ pNi ≤ 1 , 1 ≤ i ≤ N and
N
∑

i=1

pNi = 1

}

,(37)

and let MN denote its associated Markov operator.
Let qN ∈ ΣN be a point at which the collage distance
dMK(µ,MNµ) is minimized and let this minimum
value be denoted as ∆N

min. Then

lim
N→∞

∆N
min = 0 . (38)

The solution to the inverse problem for IF-
SPDP with affine probability functions follows al-
most trivially from the above result. We now re-
place the IFSP associated with an N -map IFS,
wN , selected from the infinite set W by an N -
map IFSPDP (wN , αN , βN ) with parameters rang-
ing over the compact region ΣN ⊂ R

2N defined ear-
lier in Eqs. (13) and (14). Since the N -map IFSP
(wN ,pN ) considered in Theorem 14 corresponds to
the special case α1 = α2 = · · · = αN = 0 and
βi = pi, 1 ≤ i ≤ N , it follows that the (non-

negative) minimum collage distance ∆
N
min achieved

on ΣN ⊂ R
2N must satisfy the inequality,

∆
N
min ≤ ∆N

min , N ≥ 1 . (39)

From (38), it follows that

lim
N→∞

∆
N
min = 0 , (40)

thus proving the existence of a solution to the in-
verse problem for measure approximation for affine
IFSPDP on X.

As in FV,12 we shall perform the measure ap-
proximation with IFSPDP by means of “moment
matching,” i.e., we wish the moments of the IF-
SPDP invariant measure µ to be as close as possi-
ble to the moments of the target measure ν. For the
remainder of this paper, unless otherwise indicated,
we assume that X = [0, 1]. Let D(X) be the set of
all infinite moment vectors of measures in M(X),
i.e.,

D(X) =

{

g = (g0, g1, · · ·)

∣

∣

∣

∣

gn =

∫

X
xn dµ , µ ∈ M(X)

}

. (41)

We define the following weighted l2 metric onD(X):
For g,h ∈ D(X),

dD(X)(g,h) =

[

∞
∑

n=1

w2
n(gn − hn)

2

]1/2

, (42)

where the weights wn satisfy the condition,
∞
∑

n=1

w2
n <∞ . (43)

Note that this is a generalization of the special case
wn = n−1 employed in FV.12

Theorem 15. The metric space (D(X), dD(X)) is
complete.

The proof of this theorem is virtually identi-
cal to that presented in FV12 for the special case
wn = n−1. As such, it will be omitted.

Note: The use of weighting functions which do not
decay as quickly as n−1 is an attempt to increase
the contributions of of higher-order moments gn of
a measure µ to the distance function dD(X), thereby
incorporating more information about the measure
in the approximation procedure. Recall that these
contributions already decrease with n because of
the Hausdorff inequalities for moments on [0, 1], i.e.,
gn+1 ≤ gn. The weighting condition in Eq. (43) is
imposed in order to accommodate the “extreme”
case µ = unit Dirac mass at x = 1, where gn = 1,
n ≥ 0.

Theorem 16. Let (w,p) be an N -map IFSPDP
with Markov operator M : M(X) → M(X) which
is assumed to be contractive in (M(X), dMK). Also
let A : D(X) → D(X) be the associated moment
operator, as defined by Eqs. (32) and (34). Then

(1) A has a unique fixed point, ḡ ∈ D(X), which is
the moment vector of µ̄, the (unique) invariant
measure µ̄ =Mµ̄ of the IFSPDP.

(2) For any g0 ∈ D(X), the sequence defined by
gn+1 = Agn, n ≥ 0, converges to ḡ.

Proof: The proof is a simple consequence of the fact
that there is a 1-1 correspondence between mea-
sures µ ∈ M and moment vectors g ∈ D(X) for
X = [0, 1].

We now arrive at a workable inverse problem of
measure approximation using moment matching:

Given a target measure ν ∈ M(X) with
associated moment vector g ∈ D(X) and
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a δ > 0, find an N -map IFSPDP (w,p)
with associated linear operator A : D(X) →
D(X) such that dD(X)(Ag,g) < δ.

As in FV,12 we shall work with fixed sets of IFS
maps, wN = {wi w2, · · · , wN} which are selected
from an infinite set W of contraction maps which
satisfies the ǫ-contractivity condition on X, opti-
mizing over the probability coefficients αN

i and βNi ,
1 ≤ i ≤ N . For the remainder of this section, the su-
perscripts N on the probability coefficients αi and
βi will be omitted.

For a given N -map IFSPDP, (wN , α, β), the as-
sociated collage distance dD(X)(Ag,g) must be ex-
pressed in terms of the αi and βi. We first rewrite
the result in Eq. (32) so that the components of
h = Ag are expressed in terms of the αi and βi. For
n ≥ 1,

hn =

N
∑

i=1

Aniαi +

N
∑

i=1

Bniβi , (44)

where

Ani =
n
∑

k=0

Cnka
k
i b

n−k
i gk+1 ,

Bni =
n
∑

k=0

Cnka
k
i b

n−k
i gk , 1 ≤ i ≤ N . (45)

It is more convenient to work with the squared col-
lage distance,

∆2
N (α, β)

= [dD(X)(g,h)]
2

=
∞
∑

n=1

w2
n

(

gn −
N
∑

i=1

Aniαi −
N
∑

i=1

Bniβi

)2

.(46)

In practice, only a finite number, M ≥ 1, of mo-
ments can be employed. The resulting approxima-
tion to the squared collage distance, which we shall
denote as SN,M , may be conveniently expressed as
the following quadratic form,

SN,M (x) = xTQx+ fTx+ c , (47)

in the 2N unknowns,

xT = (α1, · · · , αN , β1, · · · , βN ) . (48)

For notational convenience, define the following for
n = 1, 2, · · · ,M ,

Vni = Ani , 1 ≤ i ≤ N ,

Vni = Bni , N + 1 ≤ i ≤ 2N . (49)

Then the elements of the symmetric matrix Q in
(47) are given by

qij =
M
∑

n=1

w2
nVniVnj , 1 ≤ i, j ≤ 2N . (50)

The elements of the 2N -vector f in (47) are

fi = −2

M
∑

n=1

w2
ngnVni , 1 ≤ i ≤ 2N (51)

and, finally,

c =

M
∑

n=1

w2
ng

2
n . (52)

The optimal probability coefficients x = (α, β) are
then obtained by minimizing S2

N,M (x) in (47) sub-

ject to the constraints in Eqs. (13) and (14).

4. RESULTS OF SOME
NUMERICAL EXPERIMENTS

In the examples below, X = [0, 1]. In each case,
for a given N and M , the (approximate) squared
collage distance function SN,M (x) was minimized
subject to the constraints Eqs. (13) and (14) us-
ing the MATLAB quadratic programming routine
quadprog.

Note: In general, the objective function SN,M(x)
is quite shallow with extremely small minimum val-
ues, as can be seen in the tables below. The numer-
ical determination of minima was greatly assisted
by multiplying the objective function SN,M (x) (or
at least the matrix Q and vector f which are passed
into routine quadprog) by a scaling factor, typically
109.

In order to obtain an idea of the relative accu-
racies of approximations to target measures yielded
by our method, we have made use of following result
for probability measures on X = [0, 1].

Theorem 17.18 Let X = [0, 1] and µ, ν ∈ M(X).
Then

dMK(µ, ν) = ‖F −G‖1 =

∫ 1

0
|F (x)−G(x)| dx ,(53)

where F and G are the cumulative distribution func-
tions associated with µ and ν, respectively, as de-
fined in Eq. (11).
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The histogram approximations of measures (see
discussion following Theorem 11) are then used to
approximate their associated CDFs, from which we
obtain estimates of their Monge-Kantorovich dis-
tance. With a little work, one can estimate the error
in approximating dMK(µ, ν) in Eq. (53) by employ-
ing an N -bin histogram approximation to the CDFs
F (x) and G(x), but this is beyond the scope of this
paper since we are using the estimates to provide a
rough comparison of accuracies of approximation.

Finally, the results presented below are intended
to be illustrative. We do not claim that they com-
prise an exhaustive study of this approximation
method.

Experiment No. 1(a):We consider the measure ν
on [0,1] defined by the normalized density function
ρ(x) = 6x(1−x) which was examined in FV12 using
IFSP. The moments of this measure are

gn =

∫ 1

0
xnρ(x) dx =

6

(n+ 2)(n + 3)
, n = 0, 1, 2, · · · .(54)

In this experiment, the wavelet-type IFS maps
wij(x), 1 ≤ i ≤ imax, in Eq. (36) were used, along
with the weighting function wn = n−1 and M = 30
moments. In the second column of Table 1 are
shown the collage distances SN,M obtained by using
N = 2, 4, 14 maps, corresponding to imax = 1, 2 and
3 levels in the dyadic tree. In the third column of
the table are shown the actual (weighted) dD(X) dis-
tances between the moments gn of the target mea-
sure and the moments ḡn of the IFSPDP invariant
measure. (The latter were computed by iterating
the moment operator A in Eq. (34), cf. Theorem
16.)

For comparison, the collage and actual moment
distances obtained from N -map IFSP (which cor-
responds to αi = 0, 1 ≤ i ≤ N) are shown in the
fourth and fifth columns, respectively. (They agree
with those presented in FV.12)

As expected, the collage and actual moment dis-
tances for each method increase withN , the number
of IFS maps employed. Also as expected, for a given
N , the IFSPDP approximations (2N parameters αi

and βi) are better than their IFSP counterparts (N
parameters βi).

At the left of Figure 5 is shown a histogram ap-
proximation of the invariant measure µ̄ of the 14-
map IFSPDP corresponding to the bottom left row
of Table 1. (Once again, it was computed using
the “Chaos Game” for IFSPDP using 1000 bins

on [0,1] and 108 iterates.) Also plotted for com-
parison is the density function ρ(x) of the target
measure (suitably rescaled). What is perhaps quite
striking about this figure is the multispiked nature
of the measure µ̄, i.e., a repeated pattern of regions
of low measure, clearly at dyadic points. This ac-
counts for the regions of overcompensation where
the measure is greater than that defined by the den-
sity function ρ(x). These features are primarily due
to the nonoverlapping nature of the IFS wavelet-
type maps used in the IFSPDP, which prompted
Experiment No. 1(b) below. A plot of the cumula-
tive distribution function (CDF) F̄ (x) of µ is shown
in the right figure, along with that of the CDF of
the target measure, F (x) = 3x2 − 2x3, 0 ≤ x ≤ 1,
for comparison.

Experiment No. 1(b): The same measure ν and
M = 30 moments but with the following set of
“nonwavelet” overlapping IFS maps,

wij(x) =
1

i
x+

j − 1

i
, 1 ≤ j ≤ i , (55)

for 1 ≤ i ≤ imax. The collage and actual moment
distances yielded by IFSPDP with N = 2, 5, 9 and
14 maps corresponding to imax = 1, 2, 3 and 4, re-
spectively, are shown in Table 2. We note that the
distances for N = 14 maps (bottom row) are slighly
higher, yet quite close to, their counterparts in Ta-
ble 1.

In Figure 6 on the left is shown the histogram
approximation of the invariant measure µ of the
14-map IFSPDP corresponding to the bottom row
of Table 2 along with the density function ρ(x) of
the target measure for comparison. The histogram
clearly demonstrates much less spikiness than the
one in Figure 5. The CDF F̄ (x) associated with this
measure, shown at the right of the figure, appears
to be much “smoother” and closer to the CDF of
the target measure ν.

Recalling Theorem 17 and subsequent discussion,
we have used the histogram approximations of Fig-
ures 5 and 6 to compute estimates of the L1 dis-
tances between the target CDF F (x) and that of the
approximating invariant measures for N=14 with
(i) wavelet maps (Figure 5) and (ii) nonwavelet
maps (Figure 6). To five decimal digits,

‖F − Fwavelet‖1 = 0.00716

‖F − Fnonwavelet‖1 = 0.00157. (56)

These L1 distances indicate that even though the
moment distance associated with the nonwavelet
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imax N SIFSPDP
N,30 dD(X)(g, ḡ

IFSPDP) SIFSPN,30 dD(X)(g, ḡ
IFSP)

1 2 1.75× 10−3 1.50 × 10−3 2.13 × 10−2 3.12 × 10−3

2 6 3.05× 10−6 3.08 × 10−6 7.72 × 10−5 7.72 × 10−5

3 14 1.67× 10−8 1.86 × 10−8 1.05 × 10−6 1.03 × 10−6

Fig. 5 Left: Histogram approximation of 14-map IFSPDP invariant measure µ̄ (bottom left row of Table 1) using IFS
wavelet-type maps of Eq. (36). The density function ρ(x) = 6x(1− x) of the target measure ν is also plotted for comparison.
Right: The cumulative distribution function (CDF) yielded by the histogram approximation to µ̄ on the left. The CDF of
the target, F (x) = 3x2 − 2x3, is also plotted for comparison.

imax N SIFSPDP
N,30 dD(X)(g, ḡ

IFSPDP)

1 2 1.75 × 10−3 1.50 × 10−3

2 5 3.91 × 10−6 3.66 × 10−6

3 9 6.05 × 10−8 6.08 × 10−8

4 14 2.11 × 10−8 2.37 × 10−8

IFSPDP is greater, its invariant measure µ̄ provides
a better approximation to the target measure ν, in
terms of the Monge-Kantorovich distance, than that
of the wavelet IFSPDP.

Experiment No. 2: Once again we consider the
measure ν with M = 30 moments from Experiment
No. 1 and use the nonwavelet-type IFS maps wij(x)
in Eq. (55). Here, however, we investigate the effects
of using different weighting functions of the form
wn = n−γ . As mentioned earlier, it is expected that
weighting functions which decay more slowly with
n will allow more information from higher moments
to be incorporated into the “moment fit”.

The collage distances SN,M yielded by different
weight functions are not proper indicators of the
actual “fit” between moment vectors of the target
and approximating moment vectors, g and ḡ, re-
spectively. It is better to use a distance which em-
ploys a common weighting for all distances. Here
we simply use the actual L2 distances between the

M -vectors, i.e.,

‖g − ḡ‖2,M =

[

M
∑

i=1

(gn − ḡn)
2

]1/2

, (57)

In Table 3 are shown the L2 distances using N =
2, 5, 9 and 14 maps and weight function exponents
γ = 1, 0.75, 0.5 and 0. For a given N , the L2 dis-
tances between target and fixed point moment vec-
tors decrease with decreasing γ. Technically, the
cases γ = 0.5 and 0 are not acceptable weights for
the D(X) metric space of infinite moment vectors
since the weighting condition in Eq. (43) is not sat-
isfied. Nevertheless, since we are working with a fi-
nite (M) number of moments, we are free, at least in
principle, to use whatever finite-dimensional metric
we wish to find an operator A which maps the tar-
get M -vector of moments to itself – provided that
the Markov operator M of the resulting IFSPDP is
contractive.

This all being said, even though the moment dis-
tance for the case N = 14 and γ = 0.0 is very sig-
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Fig. 6 Left: Histogram approximation of 14-map IFSPDP invariant measure µ̄ (bottom row of Table 2) using IFS nonwavelet-
type maps of Eq. (55). The density function ρ(x) = 6x(1− x) of the target measure ν is also plotted for comparison. Right:

The cumulative distribution function (CDF) yielded by the histogram approximation to µ̄ on the left. The CDF of the target,
F (x) = 3x2 − 2x3, is also plotted for comparison.

‖g − ḡ‖2,M

N γ = 1 γ = 0.75 γ = 0.5 γ = 0.0
2 1.93 × 10−2 1.73 × 10−2 1.50× 10−2 1.16 × 10−2

5 7.53 × 10−5 6.68 × 10−5 5.98× 10−5 5.27 × 10−5

9 9.13 × 10−7 7.53 × 10−7 6.53× 10−7 5.62 × 10−8

14 4.28 × 10−7 1.58 × 10−7 2.45× 10−8 5.19 × 10−9

nificantly lower than that for N = 14 and γ = 1.0,
the approximation yielded by the former is virtu-
ally identical to that of the latter, which is shown
in Figure 6.

Experiment No. 3: IFSPDP approximation
of the “Feigenbaum attractor”19. This is the
unique invariant measure, to be denoted as ν∞, of
the the logistic function Ta(x) = ax(1 − x) when
a = a∞ = 3.5699456 . . ., the n → ∞ limit of pa-
rameter values an at which period-doubling bifur-
cations from attractive 2n-cycles to attractive 2n+1-
cycles take place. The support of this measure, to
be denoted as S∞, is a Cantor-like set. As such, ν∞
is singular with respect to Lebesgue measure.

Our goal is to approximate ν∞ with invariant
measures of IFSP and IFSPDP using its moments
gn. These are not known in closed form and must
be computed numerically as discussed below. For
reasons mentioned earlier - one being to get an idea
of the structure of the measure ν∞ and its support
S∞, we shall also be making use of histogram ap-
proximations of ν∞.

Using the result of20 that the mapping Ta∞ is er-
godic (see Appendix), the moments and histogram
approximations may be computed from the iter-

ation procedure xn+1 = Ta∞(xn) (for almost all
x0 ∈ X) using the well-known “time average equals
space average” (TASA) property of ergodic trans-
formations as given in Eq. (65) of the Appendix.

Firstly, the interval [0, 1] is once again divided
into K nonoverlapping subintervals, Ik, of equal
length. If, in Eq. (65), we set f(x) = IIk(x), the
characteristic function of Ik, then for N sufficiently
large the quantity ν∞(Ik) is well approximated by
the fraction of iterates xn which lie in Ik. These
estimates of ν∞(Ik) comprise the histogram ap-
proximation of ν∞. The approximation obtained for
K = 1000 and N = 108 iterates xn is shown in
Figure 7 on the left. From this result, we see that
S∞ ⊂ [0.3, 0.9]. (A much smaller number of iterates
– 50,000 – was employed to produce the approxi-
mation in.19)

This histogram approximation to ν∞ was then
used to produce a discrete approximation to the cu-
mulative distribution function of ν∞,

F∞(x) =

∫ x

0
dν∞(x) , 0 ≤ x ≤ 1 . (58)

This approximation is shown in Figure 7 on the
right. The effects of the Cantor-like structure of S∞
are evident.

Secondly, by letting f(x) = xn, n = 1, 2, . . . , 40
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Fig. 7 Left: Histogram approximation of invariant measure ν∞ of the “2∞-cycle” chaotic attractor of the nonlinear dynam-
ical system xn+1 = a∞xn(1− xn). Right: Associated cumulative distribution function F∞(x).

in Eq. (65) of the Appendix, estimates to the mo-
ments gn of ν∞ accurate to 15 decimal digits were
computed using N = 5× 108 iterates. After g0 = 1,
the next two moments, to 10 digits accuracy, are

g1 = 0.6476031720 , g2 = 0.4661989589 . (59)

These moments were then used as “target mo-
ments” in our IFSPDP inverse problem algorithm.
Once again, the wavelet-type IFS maps of Eq. (36)
were used.

Some results of our algorithm are presented in
Table 4. (The collage distances SN,M have been
omitted since they are generally quite close to the
approximation errors shown in the table.) Note that
these results correspond to the use of only one level
of wavelet maps, i.e., wi∗j, 0 ≤ j ≤ N = 2j − 1 for
a fixed level i∗ ≥ 1. When a “full set” of IFS maps
is used, i.e., levels 1 ≤ i ≤ i∗, the algorithm almost
always “prunes” the set to the same number N0 of
maps in that the probabilities of all other maps are
virtually zero. For comparison, the results obtained
by using IFSP are also shown. It is also important
to mention that the weighting exponent γ = 0 was
employed in these computations – in other words,
the algorithm was minimizing the L2 collage dis-
tance. We found that γ = 0 yielded the best results
in terms of approximation error as well as the prun-
ing of IFS maps. Indeed, the pruning of the maps
in order to produce an IFS attractor which approx-
imates as best as possible – given the linear nature
of the maps and the fact that the maps are fixed
– the Cantor-like structure of the set S∞ is quite
encouraging.

In Figure 8 are presented the cumulative distri-
bution functions F (x) of the invariant measures of
the 8-map IFSPDF (left) and IFSP (right) along
with the CDF of the target invariant measure for

comparison. The CDF associated with the IFSPDF
seems to match the height of the constant portions
of the target CDF (corresponding to the gaps in
the Cantor-like attractor) to a better degree than
its IFSP counterpart. With recourse to Theorem
53, we have computed the L1 distances between the
target CDF F∞ and that of the approximating in-
variant measures. To five decimal digits,

‖F∞ − F IFSPDP‖1 = 0.01488 ,

‖F∞ − F IFSP‖1 = 0.01820 . (60)

showing that the IFSPDP approximation is, as ex-
pected, better.

5. CONCLUDING REMARKS

We have described a method of approximating
probability measures on a compact metric space
(X, d) by invariant measures of iterated functions
with place-dependent probabilities (IFSPDP). The
approximation is performed by means of “moment
matching.” In this paper we have considered the
special case X = [0, 1] with affine IFS maps and
probabilities, cf. Eq. (1). In principle, the method
described here can be extended to higher dimen-
sions, e.g., [0, 1]2 , but the algorithm becomes much
more complicated because of the multinomial na-
ture of the moments. (The affine probability func-
tions also become more complicated.)

Our method on X = [0, 1] can also be ex-
tended to employ higher-degree-polynomial (place-
dependent) probability functions pi(x). In this case,
additional sets of constraints involving the higher-
order coefficients of the probability functions will, of
course, be required. The relationship between infi-
nite moment vectors g and h of measures µ and
ν = Mµ, respectively, will have the same linear
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i∗ N N IFSPDP
0 dD(X)(g, ḡ

IFSPDP) N IFSP
0 dD(X)(g, ḡ

IFSP)

2 4 3 6.81 × 10−2 3 1.09 × 10−1

3 8 5 1.07 × 10−2 4 2.10 × 10−2

4 16 7 2.93 × 10−4 6 1.11 × 10−3

5 32 8 5.86 × 10−6 8 2.06 × 10−5

Fig. 8 Cumulative distribution functions for invariant measures of 8-map IFSPDP (left) and IFSP (right) from Table 4
which approximate the invariant measure ν∞ of the nonlinear dynamical system xn+1 = a∞x(1− x). In each case, the CDF
for the measure ν is also shown for comparison.

form h = Ag as in Eq. (34), but the matrix A will
have additional nonzero bands above the diagonal.
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APPENDIX. IMPORTANT
PROPERTIES FROM ERGODIC
THEORY USED IN EXPERIMENT
NO. 3 OF SECTION 3

Here we simply state the important properties of
measure-preserving transformations and ergodicity
which are relevant to Experiment No. 3 in Section
3. We refer the reader to some standard mono-
graphs21,22 for details, i.e., formal definitions and
proofs.

Without loss of generality, we simply continue to
let (X, d) denote a compact metric space andM(X)
the set of probability measures on Σ, the σ-algebra
of Borel subsets of X.

Definition 18. A mapping T : X → X is said to
be measure preserving if there exists a µ ∈ M(X)
such that for any measurable set S ⊂ X,

µ(S) = µ(T−1(S)) , (61)

where

T−1(S) := {x ∈ X | T (x) ∈ S } . (62)

The measure µ is said to be invariant with respect
to T .

Theorem 19. (Bogoliubov-Krilov) Let T : X → X
be continuous. Then there exists at least one mea-
sure µ ∈ M(X) that is invariant with respect to
T .

Theorem 20. (Birkhoff-Khinchin) Let T : X → X
be continuous with invariant measure µ and f ∈
L1(X,µ), i.e.,

∫

X |f | dµ < ∞. Then the following
limit exists for a.e. x ∈ X,

f̂(x) = lim
N→∞

1

N

N−1
∑

n=0

f(T nx) . (63)

Clearly, f̂(Tx) = f̂(x) for a.e. x ∈ X, from which
it follows that

∫

X
f(x) dµ(x) =

∫

X
f̂(x) dµ(x) . (64)

Definition 21. Let T : X → X be continuous with
invariant measure µ. Then T is said to be ergodic
if the only elements B ∈ Σ for which B = T−1(B)
satisfy µ(B) = 0 (zero measure) or µ(B) = 1 (full
measure).

The following result is a consequence of the
Birkhoff-Khinchin Theorem:

Theorem 22. Let T : X → X be continuous with
invariant measure µ. Furthermore, assume that T
is ergodic. Then f̂(x) = f∗, a constant, from which
it follows that

lim
N→∞

1

N

N−1
∑

n=0

f(T nx) =

∫

X
f dµ . (65)

Eq. (65) is the famous “time average equals space
average” result.

With reference to Experiment No. 3 in Section
3, it has been proved20 that the logistic map over
[-1,1] equivalent to Ta∞ is ergodic and that the sup-
port of its unique invariant measure is a Cantor-like
set. It follows that Ta∞ : S∞ → S∞ with invariant
measure ν∞ supported on S∞, is ergodic, i.e., the
conditions of Definition 21 are satisfied. (Note that
ν∞(S) = 0 for any set S ⊂ X \ S∞.)
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