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Abstract: The N-heterocyclic carbenes (NHCs) catalyzed aza-benzoin condensation reaction is an 11 
efficient, single step strategy which employs easily available substrates such as aldehydes and 12 
imines to provide a-amino ketones. The multi-functionality and high reactivity of a-amino ketones 13 
make these structures attractive for medicinal chemistry and as precursors of a variety of amine 14 
derivatives. The different electrophilic character of aldehydes and imines ensures a high 15 
regioselective reaction. Enantiomerically enriched a-amino ketones have been synthesized through 16 
stereoselective couplings promoted by chiral N-heterocyclic carbenes. One-pot domino procedures 17 
including an aza-benzoin step allow access to valuable complex molecules.  18 

 19 
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 22 

1. Introduction 23 
a-Amino ketones are widespread structural moieties common to both natural and synthetic 24 

significant compounds in medicinal chemistry (Figure 1) [1–4]. 25 
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Figure 1. Synthetic and natural biologically active a-amino ketones. 29 
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They are largely employed as building blocks for the preparation  of  a  large  number of 31 
molecules and in particular 1,2-aminoalcohols, and vicinal diamines (Scheme 1), important motifs in 32 
many pharmaceutical compounds and widely applied as chiral auxiliaries and ligands in the field of 33 
asymmetric synthesis [5,6]. Moreover, they are precursors in the preparation of many heterocycles 34 
[7-11] and smoothly undergo nucleophilic addition reactions to give a variety of derivatives [12]. 35 
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Scheme 1. Synthetic potential of a-amino ketones. 39 

 40 
Numerous synthetic routes to a-amino ketones are reported in the literature. However, these 41 

methods involve longer multistep transformations starting from functionalized reactants such as 42 
a-azido ketones [13], a-nitro ketones [14] or a-amino acids [12, 15]. 43 

The aza-benzoin condensation reaction, strictly related to the well-known benzoin 44 
condensation reaction, represents the more straightforward approach to a-amino ketones and occurs 45 
with 100% atom economy. 46 

In its most general form, the aza-benzoin condensation reaction, firstly reported in 1988 [16] is a 47 
N-heterocyclic carbene (NHC) catalyzed coupling between an aldehyde and an activated imine 48 
(Scheme 2). The mechanism of this process, in analogy with the benzoin condensation, envisages the 49 
formation of a nucleophilic NHC II from azolium salt I, under basic conditions. Its addition to 50 
aldehyde followed by proton transfer generates an acyl anion equivalent III known as 51 
Breslow-Intermediate, thus causing a reversal of the original electrophilic carbonyl reactivity, 52 
universally known as umpolung (dipole inversion). The acyl anion equivalent can be stabilized by 53 
the  π-back-donation of the carbanion onto the empty pz orbital of the carbene atom giving rise to 54 
hydroxy-enamine-type Breslow Intermediate (Scheme 2).  55 
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Scheme 2. Catalytic cycle of the aza-benzoin condensation 59 
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The nucleophilic attack of Breslow Intermediate to the electrophilic imine, a second proton 60 
transfer step and subsequent elimination furnish the condensation product at the same time 61 
regenerating the catalyst. The wide choice of chiral azolium salts reported in the literature allows 62 
access to the asymmetric version of the reaction affording enantioenriched a-amino ketones [17]. 63 
Besides NHCs also bis(amino)-cyclopropenylidenes (BACs) have been successfully applied as 64 
umpolung promoting species [18]. 65 

Recently, increased attention has been turned to the nature of the nucleophilic partner 66 
including acylsilanes as acyl donors. 67 

The scope of this review article is to provide an overview of the advances in chemoselective 68 
aza-benzoin condensation reactions, covering methods to both racemic and enantiomerically 69 
enriched a-amino ketones. The synthesis of more complex molecules via tandem reactions which 70 
involve an aza-benzoin coupling step is also described.  71 

At last, the synthesis of a selected pharmaceutical candidate which employ the aza-benzoin 72 
condensation as the key reaction of the process is considered.  73 

  74 
 75 

2. Chemoselective aza-benzoin condensation reactions 76 
The major issue to successfully execute the aza-benzoin condensation reaction is the 77 

requirement that the whole process should evolve under kinetical control, where the imine is more 78 
reactive towards Breslow Intermediate than a second molecule of aldehyde, but less reactive if 79 
compared to aldehyde with the NHC catalyst. 80 

Activated imines (Figure 2) are often employed in organic chemistry as equivalents of carbonyl 81 
compounds in reactions with a wide array of nucleophilic reagents [19-21]. 82 
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Figure 2. Some activated imines. 86 

 87 
Compared to the controlled cross-acyloin reaction between two different aldehydes [22], the 88 

use of imines as acyl anion acceptors is advantageous due to the difference in electrophilicity 89 
between aldehydes and imines and to the possibility of further finely adjusting imine reactivity 90 
because of the trivalency of nitrogen. The choice of the imine protecting group is critical. In fact, the 91 
carbene addition to activated N-tosyl and N-phosphinoyl imines to give a stable nitrogen analogues 92 
of Breslow Intermediate that could stop the catalytic cycle, has been found [23]. However, recent 93 
studies have shown that a fast dissociation-recombination process of the carbene/iminium ion pair 94 
takes place in the presence of an acid catalyst (Scheme 3) [24-25]. 95 
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Scheme 3. Fast dissociation-recombination of aza-Breslow intermediate. 97 
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Arylsulfonylamides and tert-butyl- or benzyl aryl(tosyl) carbamates have been widely 99 
employed as imine precursors thank to their simple preparation, high stability and to the aptitude to 100 
provide in situ the reactive imines under mild conditions. Moreover, the introduction of 101 
alkoxycarbonyl functionalities (e.g. Boc or Cbz) as activating groups allows to obtain the final amino 102 
derivatives which can be easily deprotected.  103 

The substrate scope is presently limited to aldimines deriving from aryl or heteroaryl 104 
aldehydes. Conversely, imines obtained from aliphatic aldehydes undergo decomposition or 105 
tautomerization to the more stable enamine derivatives and their use has not yet been realized 106 
(Scheme 4). 107 
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On the other hand, ketimines are of particular interest because they serve as precursors of 111 
tetrasubstituted carbon atoms. However, their utilization have proved to be more challenging due to 112 
their poor reactivity. 113 

 114 

3. Methods to racemic a-amino ketones 115 

3.1 Use of N-heterocyclic carbenes  116 
Murry and co-workers envisioned to carry out the coupling of N-benzylidene 117 

cyclohexanecarboxamide, slowly generated in situ from the parent a-amido sulfone by elimination 118 
of sulfinic acid in order to ensure catalyst turnover, with 4-pyridinecarboxaldehyde in the presence 119 
of commercially available thiazolium salt I-1 and triethylamine (Scheme 5). Under these conditions 120 
the corresponding amino ketone was obtained with 98% yield [26]. 121 
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Scheme 5. Murry and co-workers selected examples of aza-benzoin condensation between 123 
acylimines and aldehydes. 124 

The reaction displays a wide scope with respect to the aldehyde. It is noteworthy that 125 
a,β-unsaturated cinnamaldehyde, under these reaction conditions, did not undergo 1,4-addition and 126 
also aliphatic acetaldehyde reacts although in moderate yield (Scheme 5). 127 

The process is tolerant also to the amide portion of the tosylamide. However, tosylamides 128 
deriving from aliphatic aldehydes bearing an a-proton failed to generate the corresponding 129 
acylimines likely due to the aptitude of these compounds to isomerize to enamides. 130 

Cross-over experiments highlighted that the reaction is under kinetic control and that the 131 
corresponding benzoins are not observed and do not serve as substrates.  132 

Subsequently, Murry disclosed the application of his methodology to a novel one-pot synthesis 133 
of highly functionalized imidazoles, an important class of heterocycles widespread in natural 134 
products and in medicinal chemistry (Scheme 6). 135 
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Scheme 6. Murry and co-workers selected examples of one-pot synthesis of imidazoles. 138 

 139 
The addition of an appropriate amine and acetic acid to the reaction mixture of the a-amino 140 

ketone intermediate followed by heating to reflux provided the ring closure to imidazole. Moreover, 141 
chiral imidazoles can be prepared starting from chiral amines or amino acids. It is noteworthy that 142 
tetra substituted imidazoles, difficult to obtain by other routes, can be synthesized with moderate to 143 
good yields by this methodology. This approach allows access also to substituted oxazoles and 144 
thiazoles in good yields by replacing the amine with triphenylphosphine/iodine or the Lawesson’s 145 
reagent, respectively [27]. 146 

Pseudo-homo-couplings (defined as an aldehyde reacting with an imine derived from the same 147 
aldehyde, Ar = Ar2) and cross-couplings (Ar ǂ Ar2) under thermodynamic control have been 148 
developed some years later by using unactivated aryl imines, aryl aldehydes, thiazolium salt I-1 as 149 
the precatalyst and triethylamine as the base, in refluxing ethanol for 48 hours (Scheme 7).  150 

Under these conditions competing benzoins could reversibily form and behave as substrates for 151 
a-aminoketones formation. 152 
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Cross experiments highlighted that also the a-aminoketone formation is reversible. This 153 
protocol provides the access to aza-benzoin coupling also by less reactive aryl imines [28]. 154 
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Scheme 7. You and coworkers selected examples of intermolecular coupling between unactivated 156 
imines with aldehydes. 157 

 158 
Acylsilanes, disclosed by Brook in 1957, are considered as sterically hindered aldehydes by 159 

virtue of the removable silyl group and undergo smoothly nucleophilic addition reactions [29]. They 160 
have been employed as unconventional donor partners in regioselective intermolecular acyloin 161 
condensation in a number of procedures catalyzed by cyanides [22]. 162 

In the benzoin-type condensation reaction, after the nucleophilic attack of the cyanide catalyst 163 
on the acylsilane, the mechanism involves a [1,2] shift of the migrating SiR3 group (Brook 164 
rearrangement) generating the key stabilized acyl anion equivalent, in analogy with Breslow 165 
catalytic cycle. 166 

The subsequent addition of this species to the competent electrophile, followed by catalyst 167 
release, leads to the desired condensation product (Scheme 8). 168 
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Scheme 8. Acylsilanes as acyl donors in cross benzoin condensation. 171 

Scheidt disclosed the reaction of alkyl and aryl acylsilanes with aromatic 172 
N-diphenylphosphinoyl imines upon exposure to catalytic N-methyl 4,5-dimethyl thiazolium salt 173 
(I-2) (30 mol%), DBU as the base and a stoichiometric amount of isopropanol for 48 hours. Under 174 
these new conditions, the Brook rearrangement occurs smoothly without the need of charged and 175 
potentially toxic cyanide, fluoride or phosphite anions [30]. 176 
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N-phosphinylated amino ketones, completely devoided of any homo-coupling product 177 
contamination in 51-94% yields have been afforded (Scheme 9). 178 
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Scheme 9. Scheidt and co-workers selected examples of aza-benzoin coupling between acylsilanes 180 
and N-diphenylphosphinoyl imines. 181 

The phosphinoyl group on the nitrogen atom can be removed at the end of the reaction under 182 
mild conditions to give a-aminoketones. Alkyl N-phosphinoyl imines have been unsuitable for the 183 
reaction since they undergo isomerization to more stable enamides due to the presence of an 184 
enolizable proton. On the other hand, N-phosphinoyl protecting group is essential for the success of 185 
the reaction. In fact, more reactive N-benzoyl, N-sulfinyl and N-sulfonyl imines interact irreversibly 186 
with the catalyst thus stopping the catalytic cycle. NHCs derived from imidazolium or triazolium 187 
salts did not afford the desired reaction. The proposed mechanism, illustrated in Scheme 10, 188 
envisages the addition of carbene II-2 to acylsilane followed by the formation of intermediate IV via 189 
Brook rearrangement. The reaction of this intermediate with the imine is reversible and thus 190 
unproductive. The subsequent transfer of Si(CH3)3 to isopropanol provides less congested 191 
intermediate III-2 (Breslow Intermediate) that, after imine addition, affords the protected a-amino 192 
ketone and regenerates the catalyst. 193 
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Scheme 10. Catalytic cycle of acyloin-type coupling between acylsilanes and 196 
N-aryldiphenylphosphinoyl imines. 197 

An independent synthesis of intermediate V and its reaction with N-(diphenylphosphinyl) 198 
benzaldimine in the presence of DBU and isopropanol to give the desired product provided 199 
substantial evidence for the proposed catalytic cycle (Scheme 11) [30]. This strategy opened a new 200 
access, induced by neutral carbenes, to the Brook rearrangement. 201 
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Non-enolizable N-protected aryl trifluoromethyl ketimines have been used as acceptor partners 205 
in the coupling with a series of highly reactive furan-2-carbaldehydes to give the corresponding 206 
a-amino-a-trifluoromethyl ketones, bearing a valuable quaternary stereocenter, in moderate to good 207 
yields (32-87%) in the presence of triazolium salt I-3 (Scheme 12) [31]. 208 
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Scheme 12. Enders and co-workers selected examples of trifluoromethyl ketimines and aldehydes 211 
couplings. 212 

 213 

3.2 Use of bis(amino)-cyclopropenylidenes (BACs) 214 
N-heterocyclic carbenes have emerged as powerful, efficient and versatile organocatalysts, 215 

which still are allowing access to new and unexpected organic trasformations. The efforts in 216 
developing non five-membered nitrogen containing heterocyclic carbenes have been rather limited 217 
as a consequence of NHCs success. However, bis(amino)-cyclopropenylidenes (BACs), the smallest 218 
aromatic rings containing a carbene center, have recently been employed in some intriguing 219 
applications [32,33]. Easily prepared in a one-pot reaction, BACs, likewise NHCs, catalytically 220 
induce acyl anion reactivity in aldehydes. Moreover, a significant amount of aldehyde 221 
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self-condensation side product is often formed in NHCs chemistry whereas it is normally absent in 222 
umpolung reactions catalyzed by BACs.  223 

The limited ability of BACs to mediate aldehyde couplings even under ideal conditions 224 
prompted the exploration of their potential in aza-benzoin reactions. After fruitless attempts with 225 
Boc and tosyl imines, P,P-diphenyl N-[(aryl)(tosyl)methyl] phosphinic amides, the more practical 226 
surrogates of the corresponding protected imines, gave productive results in the reaction with 227 
aromatic aldehydes in the presence of bis(diethylamino)cyclopropenium salt VI (Scheme 13) [18]. 228 
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 234 
The reaction is effective with heteroaromatic, para or meta substituted benzaldehydes. In some 235 

cases an excess of aldehyde has been necessary to drive the reaction towards the product. 236 
Both electron-poor and electron-rich groups on the para position of the aromatic ring of the 237 

acceptor are compatible with the reaction. Although the acidic deprotection of phosphinic amides 238 
can be performed under mild conditions, the product proved not to be stable as the free base, 239 
therefore it was necessary to insert again the nitrogen protecting group. 240 

Until now, attempts to develop the asymmetric version of the reaction using a chiral BAC have 241 
not reach the goal. 242 

 243 

4. Methods to enantiomerically enriched a-amino ketones 244 
The first example of asymmetric aza-benzoin reaction is due to Miller and co-workers which 245 

used an unconventional chiral thiazolium salt. Ideally it derives from histidine by replacing the 246 
imidazole ring with the thiazole one (Figure 3). 247 
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Figure 3. Thiazolium derivative and its precursors. 250 

In order to ensure a chiral binding pocket to the reaction partners the thiazolylalanine has been 251 
inserted as the middle aminoacid in a tripeptide sequence and subsequently converted to the 252 
corresponding thiazolium salt. 253 

Enantiomerically enriched a-amino ketones have been obtained by the coupling of aromatic 254 
aldehydes with in situ generated acylimines in the presence of the chiral thiazolylalanine (Taz) 255 
containing peptide salt I-4 (Scheme 14) [34]. 256 
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Scheme 14. Miller and co-workers selected examples of enantioselective intermolecular aza-benzoin 259 
condensation catalyzed by salt I-4. 260 
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The reaction product undergoes to racemization under basic reaction conditions due to 262 

enolization. In order to ensure high enantiomeric excesses, the amount of amine and the reaction 263 
time need to be carefully evaluated. 264 

The assumption that a less activated imine would lead to increased stability of the newly 265 
formed stereocenter prompted Rovis to employ N-Boc-protected imines in the presence of chiral I-5 266 
and aliphatic aldehydes (Scheme 15) [22]. 267 
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igroscopic nature of the salt. Following the optimization of the conditions, the scope of the reaction 275 
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aldehydes. On the other hand, lower yields have been observed when β-branched aliphatic 277 
aldehydes such as iso-butyraldehyde have been employed, whereas a-branched aldehydes do not 278 
react. Electron-rich and electron-poor Boc-arylimines have been used, however ortho-fluoro aryl 279 
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One of the challenges of organic chemists is the ability to highlight different substrate 281 
reactivities in a selective manner. 282 

The use of enals in cross-acyloin couplings is an arduous task since homoenolate, enolate and 283 
acyl anion equivalent can all be generated by reaction with NHCs through different reaction 284 
pathways (Scheme 16).  285 
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Scheme 16. Use of enals in NHCs chemistry. 289 

The choice of the catalyst is the key factor that controls the chemoselectivity of these three 290 
species. 291 

Ye studied the influence of steric and electronic factors of a series of L-pyroglutamic acid 292 
derived triazolium salts on the reactivity of cynnamaldehyde with N-Boc protected trifluoromethyl 293 
phenyl ketimine (Scheme 17) [35]. 294 

The free hydroxy group on the catalyst plays a key role not only for the reduced steric 295 
hindrance compared to its silylated analogous, but, more importantly, thanks to the possible 296 
hydrogen bond formation with the ketimine. The desired products have been obtained in high 297 
yields and enantioselectivities by using catalyst I-10 (Scheme 17). Electron-withdrawing and 298 
electron-donating substituents on the aromatic ring of enals do not change yields and 299 
enantioselectivities. β-Alkyl enals worked well in the reaction, however β-alkyl and β-aryl ynals 300 
resulted in decreased yields, although high ees have still been obtained. 301 
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Scheme 17. Ye and coworkers selected examples of enantioselective intermolecular aza-benzoin 315 
condensation using enals. 316 

 317 
The free hydroxy group on the catalyst plays a key role not only for the reduced steric 318 

hindrance compared to its silylated analogous, but, more importantly, thanks to the possible 319 
hydrogen bond formation with the ketimine. The desired products have been obtained in high 320 
yields and enantioselectivities by using catalyst I-10 (Scheme 17). Electron-withdrawing and 321 
electron-donating substituents on the aromatic ring of enals do not change yields and 322 
enantioselectivities. β-Alkyl enals worked well in the reaction, however β-alkyl and β-aryl ynals 323 
resulted in decreased yields, although high ees have still been obtained. 324 

In order to further explore the scope of the reaction, (Z)-methyl 2-((tert-butoxycarbonyl) 325 
imino)-2-phenylacetate and (Z)-tert-butyl(cyano(phenyl))methylene) carbamate were used as 326 
acceptors. The aza-benzoin products have been obtained in good yields and high enantiomeric 327 
excesses (Scheme 18). 328 

 329 
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Scheme 18. Ye and coworkers selected examples of aza-benzoin reaction. 331 

 332 
Cyclic N-protected ketimines have attracted significant interest, especially within asymmetric 333 

synthesis, due to their easy preparation and handling and their stable E/Z configuration which 334 
ensures a high enantiofacial differentiation. In particular, the oxindole scaffold is a privileged 335 
structural motif common in natural products and in pharmacological active compounds. 336 

The chemoselectivity of the reaction between 2,3-dioxo-2,3-dihydroindole (isatin) derived 337 
ketimines and enals has been studied by Chi [36]. When precatalyst I-11 was used, the reaction 338 
afforded the homoenolates derived adducts (pathway A). Replacing the encumbered and 339 
electron-rich N-mesityl substituent with less hindered and electron-deficient pentafluorophenyl 340 
moiety (I-12) switched the outcome of the reaction towards the aza-coupling product with high 341 
chemoselectivity (pathway B) (Scheme 19). 342 
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Scheme 19. Pathways deriving from reaction between enals and isatin-derived ketimines catalysed 346 
by NHCs. (A) β-carbon reaction. (B) Carbonyl carbon reaction.  347 

 348 
3-Aminooxindoles bearing a quaternary stereocenter with high ees and good yields have been 349 

prepared (Scheme 20). 350 
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Scheme 20. Chi and co-workers selected examples of enantioselective intermolecular aza-benzoin 352 
reactions between enals and isatin-derived ketimines. 353 

 354 
An unprecedented enantioselective aza-benzoin coupling starting from ring-strained 355 

2H-azirines to give chiral aziridines, useful building synthons and valuable pharmaceutical 356 
structural motifs has been recently reported [37]. Functionalized benzaldehydes and heteroaromatic 357 
aldehydes are well tolerated (Scheme 21). Unfortunately aliphatic aldehydes failed to participate in 358 
the reaction (data not shown). 359 

 360 

O

Ar

N

R

HN

+

C6H5O

NBn N

N

Cl

Cl

Cl
BF4

Cs2CO3,
 
MTBE

X

X
 = 

H, 72%, 95%
 ee

X
 = 

Cl,
 
95%, 96%

 ee

X
 = 

Br, 90%, 96%
 ee

X
 = 

CN, 87%, 97%
 ee

HN

C6H5O

Cl

96%, 97%
 ee

HN

C6H5O

H3CO

85%, 94%
 ee

HN

C6H5O

61%, 88%
 ee

S

HN

C6H5O

Ar

35
 examples

HN

C6H5O

57%, 98%
 ee

N
HN

C6H5O

97%, 95%
 ee

N

HN

C6H5O

84%, 98%
 ee

F

1.2
 equiv

 of
 aldehyde, 15

 mol%
 of

 
precatalyst,

 
1
 equiv

 of
 
Cs2CO3,

 
MTBE, 25° C,argon atmosphere.

HN

O
63%, 91%

 ee

Cl

X

X
 = 

F, 90%, 96%
 ee

X
 = 

Cl,
 
88%, 96%

 ee

X
 = 

OCH3
, 90%, 92%

 ee

X
 = 

CH3
, 92%, 93%

 ee

HN

O

Cl

C6H5

HN

O

Cl
HN

O

Cl

C6H5
60%, 85%

 ee 81%, 94%
 ee

R
 = alkyl,

 aryl

I-9

 361 
Scheme 21. Reaction scope 362 



Catalysts 2018, 8, x FOR PEER REVIEW  15 of 22 

 

 363 
The scope of the reaction has been also tested with respect to the 2H-azirines by systematically 364 

varying substituent patterns on the aromatic ring. In all cases high ee and yields have been obtained 365 
When alkyl or alkenyl groups replaced the aromatic ring excellent enantiomeric excesses have 366 

been still achieved although with lower yields. 367 
The scaling up of the reaction afforded excellent yields and ee (Scheme   ). 368 

O

C6H5

N

C6H5

+ HN

C6H5O

C6H5

90%
 
yield, 96%

 ee  369 
Scheme  . Gram-scale synthesis. 370 

 371 
 372 

5. Tandem reactions 373 

In 2011, almost simultaneously, two papers dealing with the preparation of 374 
functionalized dihydroindenones with divergent diastereoselectivity have been published. 375 

Ye and coworkers developed a tandem aza-benzoin/aldol reaction starting from benzene 376 
1,2-dicarboxaldehyde and N-Boc imines using I-1 as precatalyst which afforded exclusively 377 
cis-2-amino-3-hydroxyindenones with yields up to 93% (Scheme 22) [38]. 378 
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Scheme 22. Ye and co-workers selected examples of tandem aza-benzoin/aldol reactions. 381 

Optimized conditions required the use of cesium carbonate to generate the carbene and 382 
diisopropylethylamine in order to promote the formation of the imine. 383 

Phenyl imines with electron-withdrawing groups gave the corresponding indenones with 384 
higher yields compared to imines with electron-donating substituents. Imines bearing both a 385 
m-chlorophenyl or a p-chlorophenyl group showed similar reactivity. Also heteroarylimines gave 386 
high yields. 387 
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You and coworkers developed a process to substituted trans dihydroindenones through a 393 
NHC-catalyzed aza-benzoin/Michael reaction starting from tert-butyl aryl(tosyl) methylcarbamates 394 
and (E)-ethyl 3-(2-formylphenyl)acrylates (Scheme 24) [39]. 395 
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Scheme 24. You and co-workers selected examples of tandem aza-benzoin/Michael reaction. 400 

 401 
In order to obtain high yields of the desired product, 2.2 equivalents of cesium carbonate have 402 

been used. A reduced loading of base furnished some aza-benzoin product together with the 403 
dihydroindenone, while a further increasing the Cs2CO3 decreased the yield. Under the optimized 404 
conditions the tandem reaction tolerated both electron-withdrawing and electron-donating 405 
substituents on the phenyl group of the imine and also heteroarylimines gave good results. 406 
Cyclohexyl-substituted carbamate did not react. Also functionalized acrylates could be used as 407 
suitable substrates. A possible catalytic cycle is depicted in Scheme 25. 408 

 409 
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Scheme 25. Proposed catalytic cycle of tandem aza-benzoin/Michael reaction . 411 

The Breslow Intermediate, generated from the reaction of the carbene catalyst with acrylate, 412 
produced the intermediate VII after addition of imine. A subsequent proton transfer gives 413 
intermediate VIII, which releases the catalyst and the a-amino ketone. It is worth noting that the 414 
imine carbon acts as an electrophile in the first step of the process when reacts with the Breslow 415 
Intermediate, but as a nucleophile in the following Michael addition step. In fact, the enolizable 416 
a-carbon atom in the aza-benzoin product results a stronger nucleophilic site compared to the 417 
contiguous nitrogen atom and reacts in the Michael addition furnishing exclusively the 418 
dihydroindenone derivative. 419 

Bode developed a cascade sequence involving an aza-benzoin/oxy-Cope strategy for the 420 
synthesis of bicyclic a-lactams with diastereoisomeric ratio higher than 10:1 and enantioselectivities 421 
up to 98%. The starting reactants included both 3-alkyl or 3-arylenals and chalcone-derived sulfonyl 422 
imine (Scheme 26) [40]. 423 
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Scheme 26.  Selected examples of Bode and co-workers synthesis of bicycle-lactams. 425 
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Strictly related to the one-pot processes reviewed in this section is a paper dealing with the 426 
addition of homoenolate equivalents to appropriate imines followed by cyclization steps generating 427 
γ-lactams (Scheme 27) [41]. 428 
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Scheme 27. Selected examples of Bode and co-workers catalytic synthesis of lactams. 431 

 432 
Disubstituted γ-lactams with high diastereoselectivity have been obtained in the reaction of a 433 

series of cinnamaldehydes with electron-rich N-sulfonyl imines in the presence of precatalyst I-14. 434 
 435 
 436 
Novel acyl anion acceptors, namely benzylidene thio-ureas, have been used in a domino 437 

aza-benzoin/intermolecular aza-acetalization process for the synthesis of 5-hydroxy-imidazolidene- 438 
2-thiones, a class of heterocycles displaying relevant biological activities (Scheme 28) [42]. 439 
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Scheme 28. Strategy for the synthesis of 5-hydroxy-imidazolidene-2-thiones. 443 

 444 
The generality of the strategy toward imidazolidine-2-thiones was investigated by considering 445 

variations on the structures of both the aromatic aldehydes and the a-sulfonyl amines (Scheme 29). 446 
Further studies demonstrated that the novel cyclization reaction could be run under optimized 447 

conditions on a large scale without losing reactivity or diastereoselectivity. 448 
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Scheme 29. Bortolini and co-workers selected examples of the one-pot synthesis of 451 
5-hydroxy-imidazolidene-2-thiones. 452 

 453 

6. A successful application of aza-benzoin condensation to the synthesis of a pharmaceutical 454 
candidate  455 

Metabotropic Glutamate Receptors 5 (mGluR5) are broadly expressed throughout the central 456 
nervous system and are implicated in different cognitive and behavioural processes. The molecule 457 
depicted in Figure 4 has been identified as a potential candidate for pre-clinical development of 458 
mGluR5 modulators [43]. 459 

tert-Butyl or benzyl ((1R,2S)-1-(5-bromo pyridin-3-yl)-2-(2,5-difluorophenyl)-2-hydroxyethyl) 460 
carbamate have been selected as the key intermediate for the synthesis of the target mGluR5 461 
modulator. Unfortunally, their preparation via aminohydroxylation occurs with low regioselectivity. 462 

The resolutive approach has been envisaged in the asymmetric reduction of a protected 463 
a-aminoketone assembled by a regioselective aza-benzoin condensation catalysed by I-1. 464 

The same approach could be applied for the synthesis of other 1,2-amino alcohols, were the 465 
traditional methods based on functionalization of alkenes may suffer from selectivity issues. 466 

 467 
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 471 

7. Conclusions 472 
The aza-benzoin condensation represents a useful enrichment of organic chemistry tools 473 

complementary to the traditional cross benzoin reaction. 474 
The different electrophilicity of imines with respect to aldehydes and the possibility to further 475 

tune their reactivity by a careful choice of the protecting group on the nitrogen atom, offers the 476 
possibility to solve the problem of chemoselectivity which represents the weak point of the cross 477 
benzoin coupling between two different aldehydes. For this reason, the aza-benzoin condensation 478 
allows an easy access in a regioselective manner to valuable a-amino ketones. The possibility to take 479 
advantage of a great number of structurally different chiral N-heterocyclic carbenes has successful 480 
improved stereoselective protocols which have provided a-amino ketones with high enantiomeric 481 
excesses. Moreover, the experimental requirements consent to include the aza-benzoin condensation 482 
in domino processes for the straightforward synthesis of complex cyclic derivatives. In conclusion, 483 
the aza-benzoin reaction is a general, practical and broad scope methodology which forebodes new 484 
interesting developments. 485 
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