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A novel SCN9A splicing mutation in a compound heterozygous girl with congenital insensitivity to 

pain, hyposmia and hypogeusia 
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Abstract 

Congenital insensitivity to pain is a rare autosomal recessive disorder presenting with a spectrum of 

clinical features caused by mutations in different genes. A 10-year-old girl with congenital insensitivity 

to pain, hyposmia and hypogeusia, and her unaffected twin and parents underwent next generation 

sequencing of SCN9A exons and flanking splice sites. Transcript analysis from whole blood successfully 

assayed the effect of the mutation on the mRNA splicing by PCR amplification on cDNA and Sanger 

sequencing. We identified the novel splicing variant c.1108-2A>G compound with the p.Arg896Gln 

(c.2687G>A) missense mutation previously described in a homozygous patient. The new intronic 

variant was predicted to induce exon 10 skipping. Conversely, SCN9A mRNA assay demonstrated its 

partially deletion with a loss of 46 nucleotides causing a premature stop codon in position p.Gln369 

(NP_002968). Genetic analysis showed that the two variants were biallelic, being the mother and 

brother heterozygous carriers of the missense mutation, and the father heterozygous for the splicing 

mutation. Skin biopsy showed lack of Meissner’s corpuscles, loss of epidermal nociceptors and normal 

autonomic organ innervation. We report a novel splicing mutation and provide clues on its pathogenic 

effect, broadening the spectrum of genotypes and phenotypes associated to congenital insensitivity 

to pain. 
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Introduction 

Congenital insensitivity to pain (CIP) is a rare autosomal recessive syndrome encompassing a 

spectrum of clinical features that include hyposmia or anosmia, mental retardation, fever episodes, 

anhydrosis and other autonomic dysfunctions. Central to the disorder is the inability of affected 

subjects to transmit potentially noxious stimuli throughout the nociceptive pathway. The lack of pain 

perception and, therefore, of its awareness, leads to the accumulation of injuries, bruises, bone 

fractures, and other tissue injuries such as tongue or finger wounds due to self-biting and multiple 

burns, which contribute in reducing life expectancy of affected children. Mutations in different genes 

essential for pain sensing have been described is patients harboring party different 

phenotypes.(Nahorski, et al., 2015)  

The first description of a person who apparently did not feel any pain except headache was published 

in 1932 (Dearborn, 1932). More structured clinical descriptions, including anhydrosis and mental 

retardation, date back to the 50s’ of the 20thcentury,(Schon, et al., 1993) about 50 years before the 

discovery of the first causative mutations in NTRK1, the gene encoding a tyrosine receptor for nerve 

growth factor (Indo, et al., 1996). The syndrome was classified as hereditary sensory and autonomic 

neuropathy (HSAN) type IV or congenital insensitivity to pain and anhydrosis (OMIM256800), and the 

role of NTRK1 was later elucidated(Shaikh, et al., 2017). Mutations in NGFB have been associated with 

childhood or adult onset of insensitivity to pain and classified as HSAN type V (Nahorski, et al., 2015).  

A phenotype most commonly limited to insensitivity to pain and anhydrosis, with invariably normal 

intelligence, has been associated to loss-of-function mutations, principally nonsense, of SCN9A 

encoding the 1.7 sodium channel α subunit (OMIM: 603415).(Cox, et al., 2006) Evidence of the 

genetic and phenotypic heterogeneity of the syndrome, named also channelopathy-associated 

insensitivity to pain (OMIM 243000), came thereafter with the identification of further SCN9A 

mutations.(Bogdanova-Mihaylova, et al., 2015; Cox, et al., 2010; Goldberg, et al., 2007; Kurban, et al., 

2010; Nilsen, et al., 2009; Peddareddygari, et al., 2014; Shorer, et al., 2014; Staud, et al., 2011; 

Wheeler, et al., 2014; Yuan, et al., 2011) In these patients, large neuron-dependent sensory 

modalities, such as touch and proprioception, are unaffected or mildly affected as shown by sural 

nerve biopsy and nerve conduction studies (Ahmad, et al., 2007; Yuan, et al., 2013). Hyposmia or 

anosmia, hypogeusia, bone dysplasia, and variable autonomic dysfunctions can enrich the clinical 

picture (Bartholomew, et al., 2014; Yuan, et al., 2013). More recently, a gain-of-function mutation in 
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SCN11A encoding the 1.9 sodium channel α subunit has been found to segregate with the phenotype 

of insensitivity to pain, anosmia, hyperhidrosis, gastrointestinal dysfunction, mild muscular weakness 

and, in some patients, intense pruritus.(Leipold, et al., 2013) 

A small number of inactivating mutations in SCN9A have been published and, among these, truncating 

variants due to nonsense mutations or small ins/del represents the majority. We describe, providing 

evidence of the pathogenic effect and pathological details widening the phenotype, a novel splicing 

mutation biallelic to a known missense mutation in SCN9A found in a young patient with pain 

insensitivity and hyposmia. 

 

Methods 

Clinical picture 

The proband was a young girl born pre term at the 36th week of pregnancy, twin of a heterozygous 

brother from non-consanguineous parents. She did not show dysmorphic features and had a regular 

motor and intellectual development. At the age of two years, she started biting her tongue, hands and 

feet, and could near her fingers to the flame of a candle without discomfort. The neurological 

examination was normal except for the evidence that she did not retract when stimulated with a 

pricking pin, what was even clearer when punctured for blood tests. Due to her young age, 

quantitative sensory testing (QST), a psychophysical exam requiring the full compliance of the subject, 

could not be performed. Nevertheless, she perceived normally tactile and vibratory stimuli at the 

clinical evaluation. Sensory and motor nerve conduction study showed normal amplitude and velocity 

of upper and lower limb nerves. The dynamic sweat test (DST) was normal indicating an efficient 

sweat production, and dense and homogeneous pattern of activated sweat glands (Fig. 1A). Skin 

biopsy showed that autonomic structures maintained a normal innervation (Fig. 1B) whereas there 

was a complete lack of Meissner’s corpuscles (Fig. 1C, 1D) and a severe reduction of epidermal nerve 

fiber density (1.6/mm) (Fig. 1E, 1F).  

Over the years, the patient attended brilliantly the school and lived a fairly normal life also thanks to 

the familiar support. Even though she learnt how to avoid accidental traumas and self-inflicted 

injuries, she experienced the painless fracture of the elbow bone and several episodes of purulent 

otitis with tympanic membrane perforation. She was re-evaluated at age of eight years, when 

hyposmia and hypogeusia become apparent. DST showed the regular recruitment of sweat glands and 
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normal production of sweat after pilocarpine by iontophoresis confirming that sudomotor function 

was not affected. QST showed a normal perception of tactile stimuli tested using Semmes Weinstein 

calibrated monofilaments and normal thresholds for cold and warm innocuous stimuli tested by a 

computer assisted system (Thermal sensory analyzer - TSA 2001 – Medoc) equipped with a 3x3 cm 

Peltier device using the method of limits. She was able to discriminate between mechanical stimuli 

delivered with blunt or sharp probes, whereas pinprick test did not elicit pain. Follow-up skin biopsy 

confirmed the severe reduction of epidermal nerve fibers (0.8/mm) and the lack of Meissner’s 

corpuscles, with retained autonomic dermal annexes innervation. Genetic tests ruled out mutations in 

the exon 17 of NTRK1 gene (cr. 1q23-q31) and in the coding exon of NGFB gene (cr.1p13.1). 

SCN9A mutation screening and mRNA assay 

Patient’s, her twin and parents’ genomic DNA were extracted from peripheral blood sampling with 

Puregene Blood Kit (Qiagen), according to manufacturer instructions. Genetic analysis was performed 

on proband sample by a molecular inversion probe-NGS (MIP-NGS) approach, sequenced on HiSeq 

2500 Illumina platform. Single molecules MIPs were designed to capture the coding and exon-flanking 

intron sequences of nine sodium channel genes expressed in the nociceptive pathway. Relying on the 

association between loss-of-function mutations in the SCN9A gene (HGNC:10597) and the phenotype 

presented, this gene was first investigated. Both NGS results confirmation and the inheritance pattern 

were assessed by Sangers sequencing, using a primer pair covering exon 10 and its flanking splice sites 

(CATGCCTGTCAAATTGAAATA and CCGTTTGCATTTCTACCTCT). Amplicons were purified with 

IllustraExoProStar 1-Step (GE Healthcare) and bi-directionally sequenced using Big Dye Terminator 

v1.1 Cycle Sequencing Kit on a 3130xl Genetic Analyzer System (Applied Biosystems, Thermo-Fisher). 

Splicing consequences were tested on the SCN9Atranscript (NM_002977.3). Total RNA of the proband 

was extracted from peripheral blood collected in a PaxGene Tube, using the PaxGene® RNA extraction 

kit (all by Qiagen), according to manufacturer instructions. Retrotranscription was obtained by using 

SuperScript VILO cDNA Synthesis Kit (Invitrogen), cDNA was amplified in two different PCR reactions, 

using a forward primer hybridizing exon 9 and two different reverse primers, spanning either till exon 

10 or to exon 11 (9F: ACTTTCAGCTGGGCCTTCTT;10R: CAACCACAGCCAGGATCAAG; 11R: 

TGAGAGGCCCATAATTCTGCT). cDNA amplicons were separated on a low-melting agarose gel, 

different sized fragments were cropped out, purified with PureLink™ Quick Gel Extraction Kit 
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(Invitrogen™) and then sequenced by Sanger technique as mentioned above. Splicing mutation 

prediction was assessed by Alamut software, provided by Interactive-biosoftware under license. 

 

Results 

After the application of standardized pipeline for the analysis of MIP-NGS data output, two single 

nucleotide variants in SCN9A gene (NM_002977.3) were identified (Fig. 2A): a missense mutation in 

exon 16 leading to a substitution of the arginine residue in position 896 with a glutamine 

(p.Arg896Gln), and a nucleotide substitution affecting the exon 9 splice acceptor site (c.1108-2A>G). 

Inheritance testing demonstrated the biallelic condition. SCN9A gene sequencing on the unaffected 

family members showed the heterozygous missense mutation in the mother and the brother, 

whereas the father harbored the heterozygous splicing mutation. The proband transcript analysis was 

carried out by the amplification of the exonic region interested by the splicing mutation and revealed 

the presence of an unexpected amplicon band, 46bp shorter than the control, and the WT allele 

bands (Fig. 2B). Sanger sequencing of the shorter fragment showed a 46 bp deletion indicating the 

delocalization of intron 9 splice acceptor site 46 nucleotides downstream within the exon 10 (Fig. 2C). 

 

Discussion 

We reported a new SCN9A splicing mutation in a compound heterozygous young patient presenting 

with CIP, hyposmia and hypogeusia. The clinical features resembled those observed in the majority of 

patients previously reported as affected by loss-of-function SCN9A mutations. Indeed, our patient 

showed normal intelligence and autonomic functions, and had no dysmorphisms.  

The missense mutation p.Arg896Gln localizes in the transmembrane region that delimits the channel 

pore in the second domain (S5-S6/DII). It was previously identified in a homozygous CIP patient from 

consanguineous Bedouin parents and reported to have to a loss-of-function effect on the 

protein.(Cox, et al., 2010) This study highlighted the importance of the aminoacid sequence delimiting 

the pore region, which is highly conserved between orthologous and paralogous genes, not only for 

the electrophysiological properties of the channel, but also for its correct folding and surface 

localization. Recently, this variant has been reported in dbSNP (rs1024152367) with a minor allele 

frequency of 8x10-6 (www.ncbi.nlm.nih.gov/projects/SNP).  
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The novel intronic variant c.1108-2A>G found in our patient was neither reported in literature nor in 

public databases. It affects the splice acceptor site of intron 9. Several bioinformatics tools (MaxEnt, 

NNSPLICE, HSF, SpliceSiteFinderLike, GeneSplicer, Hum Splicing Finder) predicted a strong effect on 

the splicing mechanism inducing exon 10 skipping. To investigate the effect of the splicing mutation 

on the transcript, we analysed the SCN9A mRNA obtained from patient’s whole blood. The potentially 

mis-spliced region, from exon 9 to exon 11, was amplified by standard PCR. The fragments 

dimensional analysis on agarose gel showed the presence of two bands, one showing the expected 

length and a shorter one that was further characterized by Sanger sequencing. Differently from what 

predicted in silico, the exon 10 was not skipped but only partially deleted. Indeed, the nucleotide 

substitution in c.1108-2 caused the displacement of the canonical acceptor splice site by 46 

nucleotides within the exon 10. The loss of 46 nucleotides at the mRNA level (r.1108_1153del46) 

induced a shift in the reading frame, introducing a stop codon in position p.Gln369 (NP_002968). 

The expression pattern of SCN9A in different cell types is still not fully defined. Interestingly, we have 

found sufficient traces of SCN9A transcript in whole blood sampling to allow a direct study of the 

mutation effect at the mRNA level, making redundant the in vitro model for the splicing mutation 

assay. 

Skin biopsy analysis allowed expanding the features of the phenotype associated with this compound 

mutation. Indeed, we first demonstrated the lack of Meissner’s mechanoreceptors, despite light 

touch sensation was normal as expected (Nahorski, et al., 2015). Moreover, there was a severe 

denervation of the epidermis reflecting the loss of terminal nociceptors and explaining the lack of 

peripheral pain sensation. This finding is common to other inherited forms of CIP. Finally, structure 

and innervation density of cutaneous autonomic organs, including sweat glands, were normal 

differently from what expected in patients harboring mutations in NTRK1, NGFB, and PRDM12 genes 

in whom and anhydrosis is associated with CIP (Nahorski, et al., 2015). 

Albeit overlapping, some phenotypic features might address the molecular diagnosis of CIP patients 

who, however, should be tested for all known genes when using next generation sequencing 

approach. SCN9A inactivating mutations should be searched in patients with anosmia, normal 

intelligence and normal (Ahmad, et al., 2007) or mildly abnormal (Yuan, et al., 2013) large sensory 

nerve fiber function. In patients with normal intelligence showing a pattern of pain insensitivity 

restricted to the limbs rather than diffuse and no anosmia, mutations in PRDM12 should be 
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considered.(Zhang, et al., 2016) CIP patients with normal intelligence, hyperhidrosis, gastrointestinal 

dysfunction and mild muscular weakness, without anosmia, neuropathy, or cardiovascular 

dysautonomia could harbor SCN11A mutations (Leipold, et al., 2013). When CIP is associated with 

impaired cognitive development and anhydrosis, the underlying molecular defect could be in the 

NTRK1 gene (Shaikh, et al., 2017).  

We have identified and characterized a new molecular defect of SCN9A in a young patient with CIP, 

hyposmia and hypogeusia that widens the spectrum of Nav1.7 impairments underlying this 

phenotype, and have demonstrated the effect of the mutation on whole blood transcript assay. 
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Figure 1. A shows the normally dense and homogeneous pattern of sweat drop imprints obtained in the 
patients after pilocarpine stimulation by dynamic sweat test. Consistently, B shows the normal pattern of 

sweat gland innervation by postganglionic sudomotor nerves. Confocal micrographs of glabrous (C, D) and 

hairy (E, F) skin biopsy sections from the patient (C, E) and an age-matched healthy subject (D, F). In C, 
note the complete lack of Meissner corpuscles and in E the severe reduction of intraepidermal nerve fiber 
density, compared to D and F, respectively. In green, nerve fibers marked with the pan neuronal marker 

protein-gene-product 9.5; in red, blood vessels and basement membranes marked with collagen IV; in blue, 
endothelia and keratinocytes marked with ULEX Europaeus. Scale bar equals 100 µm.  
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Figure 2. A. Localization of the two null mutations in Nav1.7 structure. The splicing mutation c1108-2A>G 
on the paternal allele induces the premature truncation from the sixth segment of the first domain (S6-DI). 

The missense mutation on the maternal allele is localized in the pore-delimiting region.  
B. Proband SCN9A genomic sequencing, on the left side, revealed a nucleotide substitution in position 

c.1108-2.  The run on agarose gel shown different bands from the SCN9A transcript amplification: in the 
patient lane (P) there is an unexpected fragment compared to the healthy control (C). Sanger sequencing of 
the two bands, on the right side, revealed the deletion of 46 nucleotides as consequence of the canonical 

splicing site abolition and the new splicing-acceptor site recognition.  

C.  The splicing mutation on the genomic DNA and cDNA led to the deletion of 46 nucleotides on the mature 
transcript. Black arrows indicate the primer pair used for the cDNA amplification and sequencing.  
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