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CONSPECTUS: More than 38,000 substances made only of metal atoms are collected in modern 

structural databases; we may call them intermetallic compounds. They have important industrial 

application and yet they are terra incognita for most of our undergraduate students. Their structural 

complexity and synthesis not easily adaptable to first years laboratory keep them away from the 

standard curricula. They have been described over the years following alternative and complementary 

views such as coordination polyhedra, atomic layers, polyatomic clusters. All these descriptions, albeit 

relied on grounded principles, have been applied on a subjective basis and never implemented as a strict 

computational algorithm. Sometimes, the authors generated multiple views of the same structure 

reported with beautifully drawn figures and/or photos of hand crafted models in seminal works of the 

pre-computer age. With the use of our multi-purpose crystallochemical program package ToposPro we 

explored the structural chemistry of intermetallics with objective and reproducible topological methods 

that allow us to reconcile different structure descriptions. After computing the connectivity pattern 

between the metal atoms on the basis of Voronoi partition of the crystal space we were able to group the 

38,000 intermetallic compounds into 3,700 sets of crystal structures with the same topology of atomic 

net. We have described the different views used in the literature and showed that 12-vertex polyhedra 

are the most frequent (33%) and that almost half of them are icosahedron-like (46%), followed by 

cuboctahedron (25%) and unexpectedly by bicapped pentagonal prism (13%). Looking for layers we 

have found that the hexagonal lattice, which corresponds to the closest packing of spheres on a plane, 

exists in more than 11,000 crystal structures confirming the close packed nature of intermetallics. We 

have also applied the nanocluster approach, which goes beyond the first coordination sphere looking for 

structural units as multi-shell clusters that assemble the whole structure. This approach shows that 41% 

of intermetallics can be assembled with a single nanocluster and that 22.4% of these are packed 

according to the face-centered cubic motif of the closest packing of spheres in a three-dimensional 

space. We have shown that our approach can easily adopt any other building model and hence could 

become a platform for a universal predictive scheme. Within this scheme, all the structural descriptors 

can be related to experimental data and theoretical modeling results, and then can be used to synthesize 

new intermetallic compounds and to foresee novel materials.   
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“‘To understand’ means ‘to simplify’” 

Arkadi and Boris Strugatsky
1
 

Introduction 

In the crystal chemistry of inorganic structures, intermetallic compounds are rightfully considered to 

be the most complex: at present there are known intermetallics with more than 23,000 atoms per unit 

cell.
2
 Intermetallics can be defined as compounds of at least two metals with an ordered, not statistical 

as in alloys, arrangement of atoms. Keeping in mind the prevalence of metals in the Periodic Table the 

diversity of intermetallic structures is quite expected. Besides purely scientific interest, intermetallics 

are important for industry as construction, magnetic and shape memory materials, conductors and 

superconductors, etc. For a better understanding of correlations between physical properties and 

structure we need, first of all, to understand the structure itself. But what does ‘understand’ mean? In 

accordance with the epigraph to this paper, we should find a way to simplify the structure. Therefore, 

chemists have always been trying to decompose crystal structures of intermetallics and describe them in 

a simpler way as ensembles of structural units, which can occur in different extended architectures. 

There are three types structural units, which are traditionally selected in intermetallic structures: 

coordination polyhedra,
3,4

 atomic layers
5
 and polyatomic clusters;

6,7
 sometimes they can be combined in 

the same architecture. However, all these methods of description are essentially subjective, because the 

choice of structural units often depends on the preferences of the researcher. As a result, extremely 

complicated intermetallics like -Mg2Al3
8,9

 gained many quite different descriptions.
5,10–12

 Recently
13

 

we have proposed polyshell onion-like nanoclusters as a special kind of cluster structural units. The 

nanocluster approach implemented as a computer algorithm into our program package ToposPro
14

 

makes the description of even extremely complex intermetallic structures fully automated and unbiased. 

These advantages allowed us to develop a database of intermetallic nanocluster structural units, the 

Topological Types of Nanoclusters (TTN) collection.
15

 We believe that creation of such comprehensive 

datasets of building blocks is one of important steps from spontaneous synthesis to rational design and 

prediction of new intermetallics. In this respect, it would be very fruitful if other structural models 
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mentioned above would be formalized and used for a high-throughput screening of the structural 

databases. This paper outlines a possible way to uniting all these models within a universal approach. 

Topological models of intermetallics 

For geometrical and topological analysis of intermetallics, we have used the crystallographic data 

from the Inorganic Crystal Structure Database (ICSD, release 2016/2)
16

 and Pearson’s Crystal Data 

(version 2014/15).
17

 In total, these databases include more than 38,000 structures composed only by 

metal atoms. We have arranged them over 3,708 topological types, i.e. groups of crystal structures with 

the same topology of atomic net.
18

 The connectivity between metal atoms was determined from the 

Voronoi partition of the crystal space by accounting for all interatomic contacts with solid angles of the 

faces of the Voronoi polyhedra no less than 1.5% of the total solid angle 4π steradian.
19

 Atomic partial 

occupation may also be taken in account. 

The actual version of ToposPro
14

 has tools for separation of all mentioned kinds of structural units in 

an automated mode. These tools are integrated into a user-friendly system, which provides combined 

application of all the models to whole classes of intermetallic compounds. 

Coordination polyhedra. To determine types of coordination polyhedra (CP) we have applied two 

methods:
20

 the Voronoi approach, which uses the topological property of duality of coordination and 

Voronoi polyhedra, and the fingerprint approach, which compares geometrical shapes of polyhedral 

solids by their angular parameters (fingerprints). The latter method allows one to determine the degree 

of distortion (DRank) of the given polyhedron compared to the regular one; the higher Drank the more 

distorted the polyhedron (Fig. 1).  
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Figure 1. A regular icosahedron Ag@Ag12 (DRank=0.001) in the Mg32(Ag13Al36) crystal structure
21

 

(left) and one of the most distorted icosahedra Co@Pr3Co9 (DRank=6.626) in the Pr2Co7 crystal 

structure
22

 (right). 

Icosahedral polyhedra often play a role of structural units (polyhedral nanoclusters) in intermetallics.
6
 

For instance, in the Ca3Ag8 crystal structure
23

 the Ag(1) atoms have a quite regular icosahedral 

environment (DRank=0.361) and these icosahedra assemble the whole structure by packing into a pcu 

motif (Fig. 2). Hereafter we denote the underlying nets, i.e. the nets of centers of structural units,
18

 with 

bold three-letter symbols of the Reticular Chemistry Structure Resource (RCSR) nomenclature
24

 or 

ToposPro NDk-n symbols.
18

  

 

Figure 2. Crystal structure of Ca3Ag8: a regular icosahedron around an Ag(1) atom (left), the Ag(1) 

atoms selected in yellow (middle) and the CPs of the Ag1 atoms (right).  
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Atomic layers. To recognize planar atomic layers of a particular topology we have used the unique 

ability of ToposPro to search for any structural motif, either geometrically planar or corrugated, in the 

infinite net.
14

 For instance, the CoGa3 crystal structure
25

 can be considered as a combination of two 

plane nets with the tts and 2,3L1 topologies (Fig. 3). For the study we have selected 17 topologically 

dense nets, which are not subnets of each other, among the set of two-periodic eleven uninodal Kepler-

Shubnikov nets
26

 and 454 theoretically generated binodal plane nets. These 17 nets (Fig. 4) can be 

treated as ancestors for other nets, which are their subnets, i.e. can be obtained from them by removing 

some nodes (atoms) or edges (bonds) (Fig. 3). We have considered the net dense if its nodes had 

coordination numbers 4, 5, 6 or 7, i.e. close to six, the coordination number of the hexagonal (hxl) net, 

which describes the densest packing of equal balls on a plane.  

 

Figure 3. (Top) Decomposition of the CoGa3 crystal structure on the atomic layers with the tts (left) 

and 2,3L1 (right) topologies; (bottom) the tts (left) and 2,3L1 (right) nets are highlighted in yellow as 

subnets of the hxl net (middle). 
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Figure 4. Some examples of the generated binodal nets selected for the analysis. For each net the 

coordination numbers of nodes are specified. 

 

Nanoclusters. To decompose crystal structure to nanoclusters we have used the ToposPro 

Nanoclustering procedure,
13

 which is based on a strict algorithm and the following principles: 

(i) The crystal structures of intermetallics are assembled of the primary structural units that are 

multishell (onion-like) nanoclusters. The next level of the structure organization, supracluster, is formed 

by several connected primary nanoclusters and characterizes their local binding. The underlying net, 

which is composed by the centers of mass of the nanoclusters, describes the overall topology of the 

nanocluster assembly. 

(ii) The structure may contain single atoms or small polyhedral groups of atoms that fill the voids 

between the nanoclusters and are called spacers. All atoms of the crystal structure should be included in 

the set of the primary nanoclusters and spacers. 

(iii) The centers of the primary nanoclusters occupy the highest-symmetry positions of the structure; 

structural units should be as much regular as possible. 

(iv) The primary nanoclusters cannot have common internal atoms. The connectivity between the 

nanoclusters can be realized through common external atoms or through intercluster bonds. This rule 

restricts the size and the number of the primary nanoclusters. 
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(v) According to the parsimony principle, the crystal structure should be assembled with minimal 

number of primary nanoclusters.  

The nanocluster analysis extends the coordination polyhedron concept: it goes beyond the first 

coordination sphere and analyses polyshell structural units. For instance, the CoMnSb crystal structure
27

 

can be described as an assembly of two-shell 1@14@26 nanoclusters centered by Mn atoms (Fig. 5).  

 

Figure 5. Assembly of the CoMnSb structure with two-shell 1@14@26 nanoclusters: (top left) 

centers of the nanoclusters (Mn atoms), (top middle) first shells and (top right) the complete assembly; 

(bottom) the architecture of the nanocluster: the first (left) and second (right) polyhedral shells.  
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From statistical analysis to prediction 

Why do we need different models to describe intermetallics? What is the best model for a particular 

structure? What useful information can we extract from the model? To answer these key questions we 

should first consider the results of the analysis of all intermetallics with the three models. 

Coordination polyhedra. The concept of the structure description in terms of coordination polyhedra 

is the oldest in crystal chemistry. It is one of the most natural chemical treatments: to consider atoms 

together with their nearest environment. The books by Kripyakevich
28

 and Gladyshevskii
29

 are probably 

the first attempts to classify all intermetallic structures in accordance with the shape of atomic 

coordination polyhedra. However, these classifications were performed manually and by this reason 

could not encompass all known intermetallics and obtain comprehensive statistical data on the local 

atomic environment of metal atoms and overall architecture of the whole structure. Later on, there 

appeared other comprehensive reviews of structure, taxonomy geometrical and physical properties of 

intermetallics including rich statistical data,
30–32

 but they did not concern topological properties. With 

the ToposPro tools, we are able to obtain both geometrical and topological information on crystal 

structures, which will be discussed below. The most frequently encountered are the coordination 

numbers 12, 14, 10 and 9 (Fig. 6). Extremely large coordination numbers (20-28) are usually realized in 

clathrates, for example in the structure of Rb8Na16Ge36,
33

 where Rb and Na atoms are located in cages of 

28 and 20 Ge atoms, respectively.  
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Figure 6. Distribution of coordination numbers in intermetallics.  

The most typical coordination number 12 (one third of all structures) is not surprising because it is the 

largest number of equal spheres that can be in contact with the central one;
34

 this number was widely 

discussed in crystal chemistry with respect to close packings of metal atoms. However, the question is 

not trivial of what kind of CP is the most abundant for this coordination number because the TTN 

collection contains 207 topologically different 12-vertex polyhedra. Nonetheless, the answer that we 

have obtained was quite expected: the most frequent is icosahedron, which corresponds to the uniform 

surrounding of an atom by 12 other similar atoms (Fig. 7). Frank and Kasper noted long ago
35

 that the 

icosahedral coordination is more common than others in the complex intermetallic structures, and our 

results confirm it: almost a half of 12-coordinated atoms have icosahedral polyhedra. The second place 

is occupied by cuboctahedron, which is realized in a quarter of cases. This could also be expected: 

cuboctahedron is one of coordination polyhedra in the periodic close packings, which are well-known 

models in crystal chemistry of metals. However, the third position belongs not to another coordination 

polyhedron of the periodic close packings, hexagonal cuboctahedron, which occupies just the fifth 

place, but to bicapped pentagonal prism.  
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Figure 7. Occurrence (in parentheses) of 12-vertex coordination polyhedra in intermetallics: A – 

icosahedron (46%), B – cuboctahedron (25%), C - bicapped pentagonal prism (13%), D - hexagonal 

cuboctahedron (12%), E - truncated tetrahedron (3.5%).  

However, the topological types of CPs not always exist in geometrically ideal forms as shown in Fig. 

7. While the icosahedral and cuboctahedral CPs indeed tend to be more or less regular, the bicapped 

pentagonal-prismatic ones are often distorted (Fig. 8). The types of distortion can be quite different (Fig. 

9) that shows how difficult is to classify the CP shape manually.  

 

Figure 8. The distributions of the most typical 12-coordinated polyhedra on the degree of distortion 

(DRank) ranged from 0 to 10. 
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Figure 9. Different shapes of bicapped pentagonal prisms depending on the degree of the distortion.  

 

Atomic layers. Pearson in his famous book
5
 proposed topology of atomic layer as a more universal 

and informative taxon than coordination polyhedron. He did an enormous manual work to find all plane 

nets in crystal structures and performed a new classification for 590 out of 650 known structural types 

of intermetallics as stackings of atomic layers (see fig.7.1, part 1 in his book). It was an attempt to 

spread the model of closely packed hexagonal layers, which was quite successful for metals, to any 

intermetallics by consideration of other topological types of planar layers. That was also a way to go 

beyond the coordination polyhedron and to create a collection of infinite (periodic) structural units. It 

seemed impossible to apply this manual classification to sharply increasing amount of crystal data; that 

is why the Pearson’s book remains the only comprehensive review in this field. Nonetheless, the crystal 

chemists still use the atomic layers concept for description of separate structures or short series of 

intermetallics especially to find correlations between different structure types. With the ToposPro 

program package, we are able to check the occurrence of any plane net. In particular, out of the 17 

ancestor nets mentioned above we have found only the hxl net in 188 topological types, which include 

11,740 intermetallic structures. Crystal structures can be solely assembled with the hxl layers as, for 

instance, the close-packed metals; they can also combine with other nets. Pearson described some cases 

of such combination, for instance, the MgCu2 (Laves phase) structure type
36

 can be represented as a 

packing of hexagonal hxl nets and kagome (kgm, which is a subnet of hxl) nets. We should keep in 

mind that structure description in terms of atomic layers depends on the chosen direction: there is an 

alternative representation of the MgCu2 (see p.308, part 2 in the Pearson’s book). 
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Note that there is no strict criterion of what role a layer plays in the crystal structure: whether this is a 

fundamental building block or simply a fragment in the crystal. At least, high occurrence could indicate 

the role. We see that the hxl topological motif is the most common and it agrees with the exceptional 

role, which it has been playing in crystal chemistry for a century. 

Nanoclusters. Letters are arranged into words, words into phrases and sentences. It is natural and 

logical and is reasonable to assume a similar hierarchy in crystals, where atoms play a role of letters, 

and nanoclusters are words. In 2006, Mackay with co-authors
6
 formulated the idea of the grammar for 

crystals. One of the advantages of such concept is that we can use these structural units (nanoclusters) 

for modelling not only periodic crystals, but quasicrystals as well. For instance, Mackay
37

 and 

Bergman
38

 clusters play an important role in the models of the icosahedral quasicrystals and quasicrystal 

approximants. Nanoclusters allow us to go beyond the coordination polyhedra and atomic nets and to 

find deeper correlations between quite different intermetallics.   

Below we consider the simplest nanocluster models, which are built with just one type of nanocluster. 

The TTN collection contains information on 1,234 nanoclusters that can form such ‘mono-nanocluster’ 

models. Among them, there are 1,148 single-shell (polyhedral), 75 two-shell and 11 three-shell 

nanoclusters. In total, 993 topological types and 15,919 (41%) intermetallic structures can be assembled 

with these structural units and that 22.4% of these are packed according to the face-centered cubic motif 

(fcu) of the closest packing of spheres in a three-dimensional space. For instance, the Li17Ge4 crystal 

structure
39

 can be assembled from three-shell nanoclusters with a 1@14@50@96 configuration, which 

form an fcu architecture (Fig. 10). Interesting is that nine of the 11 structures that can be described by 

three-shell nanoclusters model have the fcu topology of the underlying net, while the remaining two 

structures are organized in a body-centered cubic bcu-x motif.  
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Figure 10. Shell-by-shell growing of the nanoclusters in the Li17Ge4 crystal structure: (left) first 14-

atom shell; (center) second 50-atom shell; (right) third 96-atom shell.  

 

Combination of models. What structural unit or model is the best to describe the structural motif? In 

general, this question is incorrect, because different models give us different views of the same structure 

and allow us to understand it better. Moreover, different topological motifs can maintain each other. For 

instance, the crystal structure of PtSn4
40

 can be represented as a stacking of layers of two types, 

consisting of Pt and Sn atoms. The Sn atoms form a tts net, while Pt atoms are placed between the Sn 

layers just in the middle of the squares of the tts net (Fig. 11).  
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Figure 11. (Top) The crystal structure of PtSn4: the Sn atoms (red balls) form layers with the tts 

topology (one of the tts layers is highlighted in yellow); (bottom) an arrangement of Pt atoms (violet 

balls) between the tts layers of Sn atoms.  

On the other hand, the structure can be represented as a packing of Pt@Sn8 tetragonal-antiprismatic 

coordination polyhedra in accordance with the 12T24 motif; each polyhedron is connected to 12 others 

(Fig. 12). Obviously, the polyhedral packing model correlates with the tts layered topology: the Pt@Sn8 

tetragonal antiprisms stabilize the Sn4 squares, while the 12T24-type assembling arranges these squares 

in a tts motif. According to the TTN collection, the cluster 1@8 is widespread: there are 117 topological 

types of intermetallics, which include 1385 crystal structures; all these structures can be described as 

packings of 1@8 or 1@8-based nanoclusters. Using the information one can find relations between 

these structures and PtSn4. 
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Figure 12. Supracluster of the 12-coordinated nanoclusters Pt@Sn8 (left) and the resulting underlying 

net with the 12T24 topology (right).  

 

Other models. As there is no conventional way or ‘the best’ model to describe intermetallics, the 

structure representation can be quite arbitrary. A criterion of robustness of the structure description 

could be a high occurrence of the proposed structural units and/or the corresponding underlying net in 

other intermetallics. For example, the authors
41

 described the Al2.9Ta2.7V1.4 crystal structure as 

composed of a pentagonal-antiprismatic columns (Fig. 3 in the original work). We have proposed an 

alternative nanocluster description of this structure.
15

 Is the pentagonal-antiprismatic columnar model 

reasonable since it does not fit the main models considered above? Using the ToposPro tools, we have 

found the columnar units of this topology in 1,011 structures, which spread over 41 topological types. 

For instance, in the Ga3Nb5 crystal structure
42

 these columns, which were not mentioned by the authors, 

are formed by intersection of the CPs of Nb atoms (Fig. 13).  
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Figure 13.  From the left to the right: a columnar fragment and a packing of the fragments in the 

Ga3Nb5 crystal structure in the [100], [010] and [001] projections.   

 

As we see, such columns are quite widespread in intermetallics and indeed can be treated as structural 

units. It is not surprising: this structural unit consists of interpenetrating icosahedra, which are very 

common. This means that the number of structural models can be essentially extended; we should 

consider different reasonable structure descriptions, check if they encompass many intermetallics and 

collect the abundant models in the databases like the TTN collection. This information can then be used 

in searching for structural correlations and in prediction of new intermetallics. Importantly, when 

choosing the set of reference structural units we do not use any predetermined archetypes; the set is 

being formed during the analysis of crystal structures and the most important units are selected in 

accordance with their occurrence. 

Structure prediction. Prediction of the crystal structure of intermetallics is a great challenge because 

of many non-ignorable influencing factors. Compared to other classes of chemical compounds, like 

covalent, coordination or ionic compounds, for which simple geometrical and topological models show 

a good predictive power, intermetallics require a more complicated approach. From crystallochemical 

point of view, the main reason is that the local and overall structure features are strongly interrelated in 

intermetallics; in most cases, it is not enough to know the nearest environment of atoms to make an 

assumption about the whole structure. On the quantum-mechanics level, this means that the electronic 

structure of separate atoms and atomic ensembles and the band structure essentially interdepend and can 
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vary in a wide range. Thus, a way to a robust predictive scheme could include search for as many as 

possible correlations between local and overall geometrical/topological structure properties and then 

establishing their reflections to the electronic properties. Good examples of such correlations (close 

packing model, Hume-Rothery rules, Zintl-Klemm concept)
30,32

 were found in the 20
th

 century but they 

are still rather exceptions than parts of a universal scheme. 

The approach described in this paper could become a platform for such a universal predictive scheme. 

The geometrical/topological models have essential advantages as they are simple enough to be applied 

to long lists of crystal structures, rest upon reliable and abundant experimental data, and are easy to be 

interpreted. We can now outline their expected development and transformation in the near future and 

determine their place in the structure prediction scheme (Fig. 14). 

 

Figure 14. General scheme of prediction of intermetallic structures. 
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First, the set of models should be extended to include atomic ensembles of any shape, size and 

topology if they were often found in the experimental structures. The criterion of a high abundance 

could be considered primary for a structural unit to be included into a crystal model. As we see, quite 

different atomic configurations (polyhedra, nanoclusters, layers, columns, etc.) can fit this criterion, 

moreover, they can coexist in the same structure that points to correlations between them. A knowledge 

database should be created, which accumulates all abundant structural groups and their correlations. 

Second, the methods of assembling of the structural units should be determined in the form of 

underlying nets. This will extend correlations also between quite different structural units as they can be 

assembled in a similar way as was already shown for different intermetallic clusters assembled in 

accordance with the Laves phase motif.
11 

Third, a number of new descriptors of local geometry and topology should be invented to make denser 

the network of structural correlations. For example, the descriptor of the local connection of 

nanoclusters
15

 allows one to link the supracluster motifs with the entire crystal architecture. 

Last, the information on the electronic and band structure from already existing
43

 and specially 

developed databases should be inserted into the knowledge database and the structural-electronic 

correlations should be revealed and stored. 

The resulting knowledge database can then be used in future expert systems for machine learning and 

predicting intermetallic structures with a much higher reliability than of any experienced human expert. 

Conclusion remarks 

The predictive power of any crystal-chemical approach depends on the number and robustness of 

structural correlations behind it; any rational model, which is based on physically reasonable principles 

and described by a strict algorithm, is a tool to collect such correlations. We are still far from being able 

to state that structural chemistry of intermetallics has a strong predictive power, far by the distance that 

we should cover but very likely not by the time. Fast development of high-throughput data mining 

methods, machine learning algorithms, software and databases for storage and analysis of experimental 

information should drastically speed up extracting knowledge and applying it in computer expert 
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systems. In this paper, we have outlined a crystallochemical approach, which we believe could serve a 

universal tool for formalization of this process. The key point is to rationalize the architecture of 

intermetallic structures, and the topological methods can naturally solve this task. Having an idea about 

building blocks and methods of their assembling we will be able to reveal deeper regularities, which 

will include the electronic component of the intermetallic crystal. The topological information could 

also serve as a basis for simulating crystal growth of intermetallics
44

 like it was recently done for other 

classes of chemical compounds.
45

 In general, the topological methods let us simplify diverse and 

complicated intermetallic structures in a proper way and, hence, understand the knowledge behind them.  
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