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ABSTRACT
Background The effect of complex alleles in cystic
fibrosis (CF) is poorly defined for the lack of functional
studies.
Objectives To describe the genotype–phenotype
correlation and the results of either in vitro and ex vivo
studies performed on nasal epithelial cells (NEC) in a cohort
of patients with CF carrying cystic fibrosis transmembrane
conductance regulator (CFTR) complex alleles.
Methods We studied 70 homozygous, compound
heterozygous or heterozygous for CFTR mutations: p.
[Arg74Trp;Val201Met;Asp1270Asn], n=8; p.[Ile148Thr;
Ile1023_Val1024del], n=5; p.[Arg117Leu;Leu997Phe],
n=6; c.[1210-34TG[12];1210-12T[5];2930C>T], n=3; p.
[Arg74Trp;Asp1270Asn], n=4; p.Asp1270Asn, n=2; p.
Ile148Thr, n=6; p.Leu997Phe, n=36. In 39 patients, we
analysed the CFTR gating activity on NEC in comparison
with patients with CF (n=8) and carriers (n=4). Finally, we
analysed in vitro the p.[Arg74Trp;Val201Met;Asp1270Asn]
complex allele.
Results The p.[Ile148Thr;Ile1023_Val1024del] caused
severe CF in five compound heterozygous with a class I–II
mutation. Their CFTR activity on NEC was comparable with
patients with two class I–II mutations (mean 7.3% vs
6.9%). The p.[Arg74Trp;Asp1270Asn] and the p.
Asp1270Asn have scarce functional effects, while p.
[Arg74Trp;Val201Met;Asp1270Asn] caused mild CF in four
of five subjects carrying a class I–II mutation in trans, or
CFTR-related disorders (CFTR-RD) in three having in trans a
class IV–V mutation. The p.[Arg74Trp;Val201Met;
Asp1270Asn] causes significantly (p<0.001) higher CFTR
activity compared with compound heterozygous for class
I–II mutations. Furthermore, five of six compounds
heterozygous with the p.[Arg117Leu;Leu997Phe] had mild
CF, whereas the p.Leu997Phe, in trans with a class I–II
CFTR mutation, caused CFTR-RD or a healthy status (CFTR
activity: 21.3–36.9%). Finally, compounds heterozygous for
the c.[1210-34TG[12];1210-12T[5];2930C>T] and a class
I–II mutation had mild CF or CFTR-RD (gating activity:
18.5–19.0%).
Conclusions The effect of complex alleles partially
depends on the mutation in trans. Although larger studies
are necessary, the CFTR activity on NEC is a rapid
contributory tool to classify patients with CFTR dysfunction.

INTRODUCTION
Cystic fibrosis (CF) is a multisystem disease caused
by mutations causing deficient or dysfunctional CF
transmembrane conductance regulator (CFTR)
protein. Typically, CF is characterised by elevated
sweat chloride levels (SCL), obstructive lung
disease, chronic bacterial infections of lower
airways and sinuses, bronchiectasis and male infer-
tility due to obstructive azoospermia. Most patients
with CF have pancreatic insufficiency (PI) although
10–15% have normal exocrine pancreatic function
and frequently show a milder clinical picture.
Often, such cases have at least one CFTR mutation
with a mild functional effect.1

Moreover, an increasing number of patients is
diagnosed as CFTR-related disorders (CFTR-RD)2

generally characterised by a later onset of symp-
toms involving a single organ (ie, pancreatitis, dis-
seminated bronchiectasis, obstructive azoospermia
secondary to congenital bilateral absence of vas def-
erens (CBAVD)),3 usually associated to borderline
SCL and mutations causing a different degree of
CFTR protein dysfunction either in coding4–6 and
in non-coding CFTR gene regions.7 8 Finally, the
growing proportion of newborn screening (NBS)
programmes revealed a large number of infants
having a Cystic Fibrosis Screen Positive,
Inconclusive Diagnosis (CFSPID) including those
infants with discordance between immunoreactive
trypsinogen at the NBS, SCL, CFTR genotype and
clinical phenotype.9 10

More than 2000 CFTR mutations have been
recorded so far worldwide (http://www.genet.
sickkids.on.ca/app) although only a small number of
them are clearly defined as CF-causing on the basis
of functional studies as reported in the CFTR2 site
(http://www.cftr2.org/index.php). Indeed, the use of
CFTR gene sequencing11 leads frequently to the
detection of mutations for which it lacks a clear and
univocal genotype–phenotype correlation12–14 also
because the genetic background and the environ-
ment in which each patient lives contribute to the
individual CF phenotype.12 Furthermore, the exist-
ence of complex alleles complicates even more
genetic counselling.15 16 They result from the
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combination of two or more CFTR mutations in cis (ie, on the
same allele) that usually act as a pathogenic mutation whereas
each single mutation has only a minor or none effect. Few sub-
jects bearing the p.[Arg74Trp;Val201Met;Asp1270Asn],14 16 17

the p.[Ile148Thr;Ile1023_Val1024del],18 19 the p.[Arg117Leu;
Leu997Phe]20–22 and the c.[1210-34TG[12];1210-12T[5];
2930C>T]23 complex alleles were described so far with variable
characteristics. However, a functional characterisation of the
effect of these mutations was performed in a limited number of
cases.17 23

We studied a cohort of patients with CF carrying CFTR
complex alleles and described the genotype–phenotype
correlation and the results of either in vitro and ex vivo studies
performed on nasal epithelial cells (NEC).

METHODS
Subjects population
The study was approved by the ethical committee of the
University of Naples Federico II. We performed a retrospective
analysis of all patients in follow-up at nine Italian CF centres
and included all subjects who were homozygous or compound
heterozygous for the following complex alleles: (1) p.
[Arg74Trp;Val201Met;Asp1270Asn], n=8; (2) p.[Arg74Trp;
Asp1270Asn], n=2; (3) p.[Ile148Thr;Ile1023_Val1024del],
n=5; (4) p.[Arg117Leu;Leu997Phe], n=6; (5) c.[1210-34TG
[12];1210-12T[5];2930C>T], n=3. Furthermore, we studied
subjects homozygous or compound heterozygous for the follow-
ing mutations: (1) (2) p.Asp1270Asn, n=2; (3) p.Ile148Thr,
n=4; and (4) p.Leu997Phe, n=34. Finally, we studied obligate
carriers heterozygous for the p.Ile148Thr (n=2); p.Leu997Phe
(n=2) mutations and for the p.[Arg74Trp;Asp1270Asn]
complex allele (n=2). We measured the CFTR gating activity on
NEC from 39 subjects and compared the data with those
obtained from: (1) patients with CF with two class I–II muta-
tions, n=8, and (2) carriers of class I–II mutations, n=4.

Clinical data
The diagnosis of CF and CFTR-RD was performed according to
the published criteria.2 24 CFSPID subjects were defined as
above reported.9

For each subject, we collected a database including demo-
graphic, clinical and genetic data at diagnosis and during the
follow-up. SCL were obtained by the Gibson and Cooke
method.25 26 It was tested at diagnosis and repeated at the
current age in patients with CFTR-RD or CFSPID (then, we
considered the last available value) and twice at diagnosis in
patients with CF. In each centre, sweat test was always per-
formed in the same laboratory, thus ruling out the lack of har-
monisation between different labs27 and all of them participate
in the National Quality Control Programme.28 SCL were con-
sidered normal for values <40 mmol/L, borderline between 40
and 59 mmol/L and pathological ≥60 mmol/L.26 The last best
forced expiratory volume in 1 second (FEV1), expressed as per-
centage of predicted value for age, according to standardised
reference equations for spirometry29 and performed when
patient was free from pulmonary exacerbations, was recorded
for patients aged over 6 years. Given the interindividual variabil-
ity of FEV1 and the evolution of lung damage with age, the
patients were classified as severe or mild according to Schluchter
et al30 criteria that take into account both FEV1 value and age.
For patients who had died, we considered the last available
value. Pseudomonas aeruginosa chronic infection was defined
according to the modified Leeds criteria.31 Pancreatic sufficiency
(PS) was defined on the basis of at least two values of faecal

pancreatic elastase higher than 200 μg/g measured outside acute
gastrointestinal diseases.32 Faecal pancreatic elastase was evalu-
ated annually in patients with PS and at least 3 months before
enrolment. Pancreatitis was defined according to the report
from the international study group of paediatric pancreatitis.33

CF-related diabetes (CFRD) was diagnosed according to the
American Diabetes Association criteria.34 CF-associated liver
disease was defined by clinical and/or biochemical abnormalities
when imaging demonstrated hepatic parenchymal abnormalities
and/or portal hypertension in the absence of other demon-
strated causes of liver disease.35 Complications such as allergic
bronchopulmonary aspergillosis,36 meconium ileus (MI) or
distal intestinal obstruction syndrome (DIOS), nasal polyposis,
haemoptysis, and pneumothorax were also registered.

Molecular analysis of CFTR
We screened for a commercial panel of mutations with a detec-
tion rate of about 80%37; then, we looked for the most
common rearrangements38 and carried out gene sequencing
(detection rate about 97% for classic CF)39 in cases where one
or both mutations resulted undetected after first-level analysis,
according to European recommendations.11 Furthermore, we
analysed intragenic CFTR short tandem repeats (STR) to
exclude the recurrent origin of several CFTR mutations.40 All
laboratories involved in this study take part in the national
project on standardisation and quality assurance for molecular
genetic testing.41 For CFTR mutations, we used the nomencla-
ture guidelines suggested by the Human Genome Variation
Society. However, for each mutation studied, online
supplementary table 1 reports also the legacy name.

Nasal brushing and culture of NEC
NEC were collected by nasal brushing in 39 subjects. Details are
provided as online supplementary materials.

Quantitative analysis of CFTR channel activity on NEC
Reported as online supplementary material.

HEK293 cell culture
Reported as online supplementary material.

Plasmid constructs and lentiviral vector production
Reported as online supplementary materials.

Western blot analysis
Reported as online supplementary material.

CFTR activity assay on HEK293 cells
Reported as online supplementary material.

Statistics
The t-test was used to compare the levels of CFTR gating activ-
ity on NEC between different groups.

RESULTS
p.[Arg74Trp;Val201Met;Asp1270Asn] and p.[Arg74Trp;
Asp1270Asn] complex alleles and p.Asp1270Asn mutation
Eight subjects were compound heterozygous for the p.[Arg74Trp;
Val201Met;Asp1270Asn] complex allele (table 1).

Six of eight had a class I–II mutation in trans (ie, p.Phe508del:
three cases; p.Asn1303Lys: two cases and p.Ser1206*: one case)
and two of eight had in trans a CFTR mutation with higher
residual function (ie, p.Asp1152His and p.Asp579Gly). Among
patients compound heterozygous with a class I–II mutation,
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four of six were diagnosed with CF. These four patients with
CF had pathological SCL, PS, mild lung disease and none was
colonised by P. aeruginosa; two patients had impaired glucose
tolerance (IGT). The mean CFTR gating activity on NEC (avail-
able from three patients with CF) was 11.2% (range 9.8–
12.0%), significantly higher (p<0.001) as compared with the
mean activity of 6.9% found in eight patients with two class I–II
mutations (figure 1 and table 2).

The two other patients (one with the p.Phe508del mutation
and the other with the p.Ser1206* mutation in trans), aged 12
and 13 years, were diagnosed as CFTR-RD despite normal SCL
(ie, 37 mmol/L) in one of them. The CFTR gating activity on
NEC was available only for the first patient and revealed a
residual activity of 15.0% (table 1).

The two remaining patients with the p.[Arg74Trp;Val201Met;
Asp1270Asn] complex allele, carrying the p.Asp579Gly and the
p.Asp1152His mutation in trans, respectively, were identified
because CBAVD at the age of 37 and 48 years, respectively. The
patient carrying the p.Asp579Gly mutation had altered SCL (ie,
118 mmol/L) despite the monosymptomatic clinical course and a
residual CFTR activity on NEC of 19.1%; the other subject, car-
rying the p.Asp1152His mutation, had normal SCL and CFTR
gating activity of 18.5% (table 1).

Of the two subjects with the p.[Arg74Trp;Asp1270Asn]
complex allele, one was classified as CFTR-RD and had the c.
[1210-34TG;12 1210-12T[5]] complex allele in trans. He had
CBAVD alone, normal SCL and a CFTR gating activity on NEC
of 18.9% (table 1). The other, revealed by NBS, was previously
diagnosed as CFSPID and now classified as healthy at the age of
5 years old.

Both clinical data and SCL were normal in the two subjects
with the p.Asp1270Asn mutation (in trans with a class I–II
mutation). The CFTR gating activity on NEC, available only for
one of them, was 44.0% (figure 1 and table 2). Finally, we ana-
lysed the residual CFTR gating activity on NEC from two car-
riers of the p.[Arg74Trp;Asp1270Asn] complex allele. They had
values of 92.6% and 94.0%, respectively.

Furthermore, we studied in vitro either the synthesis of
CFTR protein by western blot and the CFTR gating activity in

HEK293 cells transfected with the different mutations of the p.
[Arg74Trp;Val201Met;Asp1270Asn] complex allele. Western
blot analysis revealed two bands (figure 2). The C band repre-
sents the mature, fully glycosylated protein, while the B band
represents the core-glycosylated protein. We calculated, for each
mutant, the ratio between the C band and the total protein
(band B+C). For the p.[Arg74Trp;Val201Met;Asp1270Asn]
mutant, we obtained a ratio of 21%; the p.[Arg74Trp;
Asp1270Asn] double mutant gave a ratio of 64% and, finally,
the p.Asp1270Asn mutant is associated with a ratio of 83%
(figure 2). These data compare with a 58% and 40% ratio
obtained for the p.Phe508del and for the p.Asn1303Lys
mutants, respectively (figure 2). We then evaluated the CFTR
activity, that is, the rate of iodide efflux (figure 3) that was as
high as 38.6%, 42.8% and 45.4% of the wild type for the
triple, the double and the single mutant, respectively. These data
compare with the values of 2.9% and 0.2% obtained for the p.
Phe508del and for the p.Asn1303Lys mutants, respectively.

p.[Ile148Thr;Ile1023_Val1024del] complex allele and p.
Ile148Thr mutation
All the five patients with the p.[Ile148Thr;Ile1023_Val1024del]
complex allele (table 3) had a class I–II mutation in trans (ie, p.
Phe508del: two subjects; p.Lys684SerfsX38: one subject; p.
Asn1303Lys: one subject and p.Gly85Glu: one subject).

All the patients had pathological SCL and PI; lung function
ranged from normal (three cases) to severe (two cases) lung
impairment. Three patients had CFRD and two had severe liver
disease that was the cause of death (table 3). The mean CFTR
gating activity (available only for three patients) on NEC was
7.3% (range 6.5–7.8%; figure 1 and table 2). Such a value was
not significantly different as compared with the mean value of
6.9% obtained in patients with CF with two class I–II
mutations.

All four subjects with the p.Ile148Thr mutation were com-
pound heterozygotes with a class I–II mutation on the other
allele. They were adults, asymptomatic and had normal SCL
(table 3). They were revealed as CF carrier by molecular ana-
lysis, being consanguineous of patients with CF. The CFTR

Figure 1: Cystic fibrosis
transmembrane conductance regulator
(CFTR) gating activity measured on
epithelial nasal cells in several groups
of subjects. The values obtained for
each sample and the groups are
reported in table 2.
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gating activity on NEC ranged from 41.0% to 56.0% (figure 1
and table 2). Finally, two further healthy subjects were revealed
as heterozygous for the p.Ile148Thr mutation being partner of
CF carriers. They had a CFTR activity on NEC of 87.4% and
86.3%, respectively.

p.[Arg117Leu;Leu997Phe] complex allele and p.Leu997Phe
mutation
Two siblings were homozygous for the p.[Arg117Leu;
Leu997Phe] complex allele (table 4, reported as online
supplementary material). One is a woman diagnosed with CF
with PS at 48 years because of recurrent pneumonia and chronic

colonisation by P. aeruginosa. The CFTR gating activity on NEC
was 39.0% (figure 1 and table 2). Her sibling is a 58-year-old
male with CBAVD alone, and a SCL of 88 mmol/L. We also
studied two pairs of siblings compound heterozygous for the
p.[Arg117Leu;Leu997Phe] complex allele and the pArg334Trp
(1 sib-pair) or the p.Gly85Glu (the other sib-pair, table 3) muta-
tions. All subjects were affected by CF with PS. The CFTR
gating activity on NEC, available only for one adult female
(compound heterozygous for the p.Arg334Trp mutation), was
19.5% (figure 1 and table 2).

Moreover, we observed two subjects homozygous for the p.
Leu997Phe mutation (table 4). The first has CBAVD alone and

Table 2 CFTR gating activity measured on epithelial nasal cells in the following groups of patients: (A) CF with PI and two class I–II CFTR
mutations; (B) CF with PI compound heterozygous for the [p.Ile148Thr;p.Ile1023_Val1024del] complex allele and a class I–II CFTR mutation; (C)
CF with PS and compound heterozygous for a complex allele and a class I–II CFTR mutation; (D) CFTR-related disorders; (E) healthy subjects
compound heterozygous for a class I–II mutation and a sequence variation with no functional effect; (F) healthy subjects heterozygous for a class
I–II mutation; (G) healthy subjects heterozygous for a sequence variation with no functional effect; and (H) subjects with a undefined diagnosis

Gating activity (%)

Group n CFTR genotype Individual Mean (SD)

A 1 p.[Phe508del];[Phe508del] 5.9 6.9 (1.1)
2 p.[Phe508del];[Phe508del] 6.2
3 p.[Phe508del];[Phe508del] 7.9
4 p.[Phe508del];[Phe508del] 8.1
5 p.[Phe508del];[Phe508del] 7.7
6 p.[Gly542*];[Ser1297PhefsX5] 7.7
7 p.[Gly542*];[Ser1297PhefsX5] 6.8
8 p.[Asn1303Lys];c.[579+1G>T] 5.2

B 9 p.[Ile148Thr;Ile1023_Val1024del];[Phe508del] 7.7 7.3 (0.7)
10 p.[Ile148Thr;Ile1023_Val1024del];[Phe508del] 7.8
11 p.[Ile148Thr;Ile1023_Val1024del];[Asn1303Lys] 6.5

C 12 p.[Arg74Trp;Val201Met;Asp1270Asn];[Phe508del] 12.0 14.3 (4.4)
13 p.[Arg74Trp;Val201Met;Asp1270Asn];[Asn1303Lys] 9.8
14 p.[Arg74Trp;Val201Met;Asp1270Asn];[Asn1303Lys] 11.8
15 c.[1210-34TG[12];1210-12T[5];2930C>T];[1000C>T] 19.5
16 c.[1210-34TG[12];1210-12T[5];2930C>T];[579+1G>T] 18.5

D 17 p.[Arg74Trp;Val201Met;Asp1270Asn];[Phe508del] 15.0 19.5 (3.0)
18 p.[Arg74Trp;Val201Met;Asp1270Asn];[Asp579Gly] 19.1
19 p.[Arg74Trp;Val201Met;Asp1270Asn];[Asp1152His] 18.5
20 c.[220C>T;3808G>A];[1210-34TG[12];1210-12[5]] 18.9
21 p.[Leu997Phe];[Gly542*] 24.8
22 p.[Leu997Phe];[Asn1303Lys] 21.3
23 c.[1210-34TG[12];1210-12T[5];2930C>T];[Asn1303Lys] 19.0

E 24 p.[Asp1270Asn];[Asn1303Lys] 44.0 45.8 (6.9)
25 p.[Ile148Thr];[Phe508del] 42.3

26 p.[Ile148Thr];[Phe508del] 41.0
27 c.[443T>C];[579+1G>T] 56.0

F 28 p.[Phe508del];[=] 40.7 54.9 (15.4)
29 p.[Gly542*];[=] 76.8
30 p.[Asn1303Lys];[=] 49.3
31 p.[Gly542*];[=] 53.0

G 32 p.[Ile148Thr];[=] 87.4 87.6 (5.4)
33 p.[Ile148Thr];[=] 86.3
34 p.[Leu997Phe];[Asn1303Lys] 86.4
35 p.[Leu997Phe];[Asn1303Lys] 78.9
36 p.[Arg74Trp;Asp1270Asn];[=] 92.6
37 p.[Arg74Trp;Asp1270Asn];[=] 94.0

H 38 p.[Arg117Leu;Leu997Phe];[Arg117Leu;Leu997Phe] 39.0
39 p.[Leu997Phe];[Leu997Phe] 28.9

CF, cystic fibrosis; PI, pancreatic insufficiency; PS, pancreatic sufficiency.

Genotype-phenotype correlations

228 Terlizzi V, et al. J Med Genet 2017;54:224–235. doi:10.1136/jmedgenet-2016-103985

 on 24 M
ay 2018 by guest. P

rotected by copyright.
http://jm

g.bm
j.com

/
J M

ed G
enet: first published as 10.1136/jm

edgenet-2016-103985 on 13 O
ctober 2016. D

ow
nloaded from

 

http://dx.doi.org/10.1136/jmedgenet-2016-103985
arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth

arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth

arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth

arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth

http://jmg.bmj.com/


borderline SCL. The second, at the age of 21 years, has
only chronic sinus disease with nasal polyposis (found at
the age of 8 years old) and normal SCL. The CFTR gating
activity on NEC was 28.9%.

Figure 2 Western blot analysis of the cystic fibrosis
transmembrane conductance regulator (CFTR) protein
glycosylation in HEK293 cells stably expressing the wild type (1)
or the mutant p.Phe508del (2), p.Asn1303Lys (3), p.[Arg74Trp;
Val201Met;Asp1270Asn] (4), p.[Arg74Trp;Asp1270Asn] (5) and
p.Asp1270Asn (6) proteins. Band C represents the mature, fully
glycosylated protein, whereas band B represents the
unglycosylated protein. The histogram shows the C/B+C ratio.
The values are 1:98%, 2:58%, 3:4%, 4:21%, 5:65% and 6:86%.

Figure 3 (A) Changes of fluorescence of stimulated HEK293
cells stably expressing the wild type (wt) or the mutants p.
Phe508del, p.Asn1303Lys, p.[Arg74Trp;Val201Met;Asp1270Asn]
(RDV), p.[Arg74Trp;Asp1270Asn] (RD) and p.Asp1270Asn (D)
CFTR protein (mixture of 20 mM forskolin and 100 mM IBMX).
The values were expressed as relative fluorescence F/F0, where F
is the change in fluorescence with time and F0 is the minimum
fluorescence. (B) The rate of fluorescence change was quantified
from the maximal slope using the best fitting of the fluorescence
change and was (1) wt: 100%, (2) p.Phe508del: 2.9%, (3) p.
Asn1303Lys: 0.2%, (4) RDV: 38.6%, (5) DV: 42.8% and (6) D:
45.4%.
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Eight patients compound heterozygous for the p.Leu997Phe
and a class I–II mutation and six patients compound heterozy-
gous for the p.Leu997Phe and another mutation (table 4) had
monosymptomatic CFTR-RD (CBAVD: nine cases; recurrent
pancreatitis: three cases; isolated bronchiectasis: two). Six of
them had borderline SCL and eight had normal SCL. In two
patients from this group, both carrying a class I–II mutation on
the other allele, the CFTR residual gating activity on NEC was
24.8% and 21.3%, respectively.

Nine subjects (aged 2–5 years old) compound heterozygous
for the p.Leu997Phe mutation and a class I–II mutation (four
cases) or another mutation (five cases) had been classified as
CFSPID. At present, all of them are asymptomatic (table 4) and
have normal SCL.

Nine subjects (aged 31–46 years old) compound heterozygous
for the p.Leu997Phe and a class I–II mutation (four cases) or
another mutation (five cases) were classified as healthy, being all
asymptomatic. Seven of the nine subjects had normal SCL, in
two of the nine the SCL were in the borderline range over the
last 2 years (60 mmol/L in both the cases in the last evaluation).
The nine subjects had been identified for familiarity with
patients with CF (six cases) or being partner of CF carrier sub-
jects (three cases). For one of them, the CFTR activity on NEC
was 36.9%.

Finally, two healthy subjects heterozygous for the
p.Leu997Phe mutation were analysed for the CFTR gating
activity on NEC that revealed values of 86.4% and 78.9%
(tables 2 and 4, and figure 1).

In 10 subjects bearing the p.Leu997Phe mutation (including
the two homozygous subjects), the analysis of the STR revealed
that the IVS8CA, IVS17b TA and CA haplotype associated with
the p.Leu997Phe mutation was invariably 20, 13 and 7, respect-
ively, thus excluding a recurrent origin of the mutation.

c.[1210-34TG;[12];1210-12T[5]2930C>T] complex allele
We studied three patients with the c.[1210-34TG[12];1210-12T
[5];2930C>T] complex allele in trans with a class I–II mutation
(table 5).

One had CF with PS, a well-maintained pulmonary function
despite P. aeruginosa chronic colonisation and pathologic SCL.
Two other patients had CFTR-RD. The CFTR gating activity
measured on NEC was, respectively, 18.5% in the patient with
CF and 19.0% in the first of the two patients suffering for
CFTR-RD (figure 1 and table 2).

Finally, a synopsis of CF clinical expression in patients with
different CFTR genotypes is reported in online supplementary
table 2.

DISCUSSION
This is the first study including a large number of subjects, car-
rying different CFTR complex alleles that were evaluated for the
genotype–phenotype correlation and were analysed for the
CFTR residual gating activity using the ex vivo system of NEC
obtained by brushing.

The p.[Arg74Trp;Val201Met;Asp1270Asn] was found in
eight patients and is a mild CF-causing mutation whose clinical
impact is influenced by the mutation in trans. We found this
mutation in trans with a class I–II mutation, resulting either in
CF-PS (four patients) or in CFTR-RD (two patients). In two
other patients, the mutation was in trans with mutations with
intrinsic residual CFTR function (ie, p.Asp579Gly and p.
Asp1152His) that usually have a less severe clinical impact.42 43

They had CBAVD, and they compare with four patients previ-
ously described with the same complex allele in trans with mild
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mutations and CBAVD alone.16 17 The mean CFTR gating activ-
ity on NEC in three patients with CF that had in trans a class
I–II mutation resulted 11.2% versus a mean of 6.2% (p<0.001)
found in patients with CF and two class I–II mutations and
17.5% in three patients with CFTR-RD, confirming the higher
residual activity of the p.[Arg74Trp;Val201Met;Asp1270Asn]
mutated protein. The study of in vitro expression (never previ-
ously performed for the triple mutant) was performed to define
the effect of the complex allele without the influence of the
mutation in trans. The p.[Arg74Trp;Val201Met;Asp1270Asn]
construct causes a relevant reduction in the processing of the
mature protein (ie, 21%), but it gives rise to a CFTR residual
gating activity of 38% that compares with the residual activity
of 2.9% and 0.2% observed for the p.Phe508del and for the p.
Asn1303Lys mutants, respectively, adding on the milder func-
tional effect of the p.[Arg74Trp;Val201Met;Asp1270Asn]
complex allele as compared with class I–II mutations.

We found the p.[Arg74Trp;Asp1270Asn] complex allele in a
child originally classified as CFSPID,9 44 currently asymptomatic
at the age of 5 years old and in a patient with and normal SCL
and CBAVD (with a residual CFTR activity on NEC of 18.9%).
The p.[Arg74Trp;Asp1270Asn] complex allele has been
reported only in two asymptomatic subjects so far.17

Furthermore, we observed two adults with the p.Asp1270Asn in
trans with the p.Phe508del and the p.Asn1303Lys, respectively,
both asymptomatic with normal SCL. So far, the p.Asp1270Asn
sequence variation has never been described in subjects with CF
or CFTR-RD and it was found with a high frequency in healthy
subjects.17 The CFTR activity assessed on NEC from two het-
erozygotes for the p.[Arg74Trp;Asp1270Asn] complex allele
revealed a residual gating activity >90% in both cases, and the
activity obtained from a subject compound heterozygous for the
p.Asp1270Asn and the p.Phe508del was 44.0%, comparable
with that obtained from heterozygous carriers of the p.
Phe508del mutations. Finally, either the [p.Arg74Trp;p.
Asp1270Asn] complex allele or the p.Asp1270Asn mutation
caused only a slight reduction in the synthesis of the mature
protein (65% and 86%) in vitro and were associated with a
gating activity of 43% and 45%, respectively. All these data
(that however need to be confirmed on larger number of cases)
indicate that such mutations are not enough to cause disease45

in contrast with the definition of CFTR2 that classifies the p.
Asp1270Asn as a mutation with varying clinical consequence
(http://www.cftr2.org/index.php).

The p.[Ile148Thr;Ile1023_Val1024del] complex allele acts as
a severe CFTR mutation. In fact, it was observed in trans with a

class I–II mutation in five patients with CF-PI and severe com-
plications of the disease, and the CFTR gating activity on NEC
was comparable with that observed in patients with CF with
two class I–II mutations. On the contrary, the p.Ile148Thr
variant does not have clinical impact: we found such sequence
variation in trans with a class I–II CFTR mutation in four
asymptomatic adults with a gating activity of CFTR on NEC
ranging 41.0–56.0% (ie, in the range observed in carrier sub-
jects of a class I–II mutation). Finally, the CFTR gating activity
measured on NEC from two healthy volunteers heterozygous
for the p.Ile148Thr (ie, 87.4% and 86.3%) further confirms
that the sequence variation alone has a minimal functional
effect, in agreement with the data obtained in model systems46

and with its high frequency in healthy subjects.17

We studied two siblings homozygous for the p.[Arg117Leu;
Leu997Phe] complex allele (ie, the first cases with such a geno-
type at our knowledge), both diagnosed in adulthood. The first
was diagnosed as CF for the altered SCL with a mild clinical
course and the sibling had CBAVD alone with pathological SCL.
Similarly, four other patients compound heterozygous for the
complex allele and another CFTR mutation have mild CF with
PS. The residual CFTR gating activity on NEC of 39.0%
obtained in one of the homozygous patients and that of 19.5%
obtained in one of the cases compound heterozygous for the
complex allele and the p.Arg334Trp mutation indicates that the
p.[Arg117Leu;Leu997Phe] mutation is associated with a higher
residual function as compared with class I–II mutations. These
data compare with four patients compound heterozygous for
the p.[Arg117Leu;Leu997Phe] and another CFTR mutation that
displayed a mild CF with PS in two cases and a more severe
form of the disease with or without PI in two.20

We found the p.Leu997Phe homozygous or in trans with a
known causing mutation either in patients with CFTR-RD
(mainly CBAVD) or in healthy subjects, in agreement with previ-
ous reports.20 21 47 Furthermore, some of our subjects, classified
as CFSPID in infancy, resulted free from symptom during the
follow-up in the successive years, again in agreement with previ-
ous studies.48 Going to the functional analysis of CFTR on
NEC, in two patients with CFTR-RD and both compound het-
erozygous for the p.Leu997Phe and a class I–II mutation (ie, the
p.Gly542* and the p.Asn1303Lys, respectively), we obtained a
residual activity of 21.3% and 24.8%, while the activity mea-
sured on an asymptomatic subject compound heterozygous with
the p.[Phe508del];[p.Leu997Phe] genotype was 36.9%. Thus,
the p.Leu997Phe is associated with a higher residual gating
activity of CFTR as compared with class I–II mutations, but

Table 5 Demographic and clinical data of subjects bearing the c.[1210-34TG[12];1210-12T[5];2930C>T] complex allele

Gender
Current age
(years) Diagnosis

Age at
diagnosis
(years)

Cause of
diagnosis Allele 1 Allele 2

SCL*
(mmol/L)

Current
FEV1 (%)

Pancreatic
status

CFTR
gating Other

M 22 CF 18 Respiratory
symptoms

c.[1210-34TG
[12];1210-12T
[5];2930C>T]

c.579+1G>T 87 104 PS 18.5 Pa col.

M 43 CFTR-RD 25 CBAVD c.[1210-34TG
[12];1210-12T
[5];2930C>T]

p.Asn1303Lys 50 110 PS 19.0 Recurrent
pancreatitis

F 32 CFTR-RD 19 Recurrent
pancreatitis

c.[1210-34TG
[12];1210-12T
[5];2930C>T]

p.Asn1303Lys 41 100 PS n.a.

*For the patient with CF, we reported SCL at diagnosis while for the patients with CFTR-RD we reported current SCL.
CBAVD, congenital bilateral absence of vas deferens; CF, cystic fibrosis; CFTR-RD, cystic fibrosis transmembrane conductance regulator-related disorders; SCL, sweat chloride level; FEV1,
forced expiratory volume in 1 second; PS, pancreatic sufficiency; Pa col, Pseudomonas aeruginosa chronic colonisation.
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with a wide range of variability. The different clinical and func-
tional impact of the p.Leu997Phe mutation does not appear to
depend on the mutation in trans with the p.Leu997Phe. In fact,
either among the CFTR-RD or among asymptomatic subjects,
the p.Leu997Phe mutation was found in homozygosis or in
trans with both class I–II mutations (ie, p.Phe508del, p.
Asn1303Lys) and with mild mutations like the p.Asp1152His or
the c.[1210-34TG[12];1210-12T[5]] complex allele.43

Furthermore, the STR analysis40 performed on several patients
with CFTR-RD as well as on several asymptomatic subjects
excluded the recurrent origin of the p.Leu997Phe mutation and,
thus, the possibility that the mutation would be associated—in
some cases—with other intragenic mutations that would inter-
fere with its functional impact. We suggest that gene variants
within the promoter region7 or at the 30UTR8 may modulate
CFTR expression explaining the variability of the p:Leu997Phe
mutation. Of course, factors besides CFTR such as environment
and modifier genes contribute to modulate the symptoms of the
disease of each patient with CF.

Finally, the three patients with the c.[1210-34TG
[12];1210-12T[5];2930C>T] complex allele had a severe muta-
tion in trans, that is, p.Asn1303Lys: two cases and the c.579
+1G>T: one case.49 One had a very mild clinical course and
was classified as CF since SCL were 87 mmol/L. The remaining
were classified as CFTR-RD. The CFTR gating activity was
18.5% (in the patient with CF) and 19.0% in one of the
patients with CFTR-RD, indicating that the c.[1210-34TG
[12];1210-12T[5];2930C>T] complex allele only partially
impairs the CFTR activity and, thus, it acts as a mild mutation.
These results (to be extended on a larger number of cases with
the same genotype) are in agreement with those reported in a
patient compound heterozygous for the c.[1210-34TG
[12];1210-12T[5];2930C>T] complex allele and the p.
Phe508del mutation with a mild course of the disease (similar
to our three cases), even if nasal potentials and monocyte func-
tional assay results were compatible with a CF phenotype
despite borderline SCL.23

Some cases warrant a further comment due to the discord-
ance between SCL (italics in tables 1–3), symptoms and the
residual CFTR gating activity on NEC. Two asymptomatic
adults with the p.Leu997Phe (one compound heterozygous with
the severe p.Phe508del and another with the mild c.
[1210-34TG[12];1210-12T[5]]) had SCL of 60 mmol/L (con-
firmed during the last 2 years). Furthermore, some discordance
between SCL and mild clinical symptoms was found in the two
siblings homozygous for the p.[Arg117Leu;Leu997Phe]
complex allele (the first of which had a residual CFTR gating
activity as high as 39%). The high SCL observed in all these
cases may depend on the strong functional effect that the p.
Leu997Phe specifically exerts on the Cl− conductance in sweat
cells observed in vitro.21 We found a discordance between SCL
and the clinical expression of the disease also in patients with
other genotypes, that is, the SCL of 118 mmol/L found in a
patient compound heterozygous for the p.[Arg74Trp;
Val201Met;Asp1270Asn] and the p.Asp579Gly mild muta-
tion,42 again with a mild phenotype (CBAVD alone) and a
residual gating activity not matching with the diagnosis of CF
(ie, 19.1%). Finally, we found several patients with a clear clin-
ical picture of CFTR-RD, a residual CFTR gating activity on
NEC around 20% and SCL ranging 30–40 mmol/L that most
authors report as normal values in adults26 even if the European
recommendations for CFTR-RD diagnosis suggest that SCL
between 30 and 40 mmol/L would be considered borderline.2

These discordances again point on the role of the whole

genomic background of patients with CF and the environment
in which they live in modulating the clinical expression of the
disease. However, in most of such patients, the measure of the
CFTR gating activity on NEC was in agreement with the clinical
picture. This is a poorly invasive tool that may contribute (once
validated on a higher number of cases) to classify the patients
and may help to predict the clinical severity of the disease, par-
ticularly in cases where discordance between clinical picture,
SCL and genetics would occur.
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