Manuscript Details

Manuscript number ENVPOL_2018_911_R2

Title The interactions of Fullerene C60 and Benzo(α)pyrene influence their

bioavailability and toxicity to zebrafish embryos

Article type Research Paper

Abstract

This study aimed to assess the toxicological consequences related to the interaction of fullerene nanoparticles (C60) and Benzo(α)pyrene (B(α)P) on zebrafish embryos, which were exposed to C60 and B(α)P alone and to C60 doped with B(α)P. The uptake of pollutants into their tissues and intra-cellular localization were investigated by immunofluorescence and electron microscopy. A set of biomarkers of genotoxicity and oxidative stress, as well as functional proteomics analysis were applied to assess the toxic effects due to C60 interaction with B(α)P. The carrier role of C60 for B(α)P was observed, however adsorption on C60 did not affect the accumulation and localization of B(α)P in the embryos. Instead, C60 doped with B(α)P resulted more prone to sedimentation and less bioavailable for the embryos compared to C60 alone. As for toxicity, our results suggested that C60 alone elicited oxidative stress in embryos and a down-regulation of proteins involved in energetic metabolism. The C60 + B(α)P induced cellular response mechanisms similar to B(α)P alone, but generating greater cellular damages in the exposed embryos.

Keywords Fullerene nanoparticles; Danio rerio; oxidative stress; proteomics; trojan horse

effect.

Corresponding Author Camilla Della Torre

Corresponding Author's

Institution

University of Milano

Order of Authors Camilla Della Torre, Daniela Maggioni, Anna Ghilardi, Marco Parolini, Nadia

Santo, Claudia Landi, Laura Madaschi, Stefano Magni, Stefano Tasselli, Miriam Ascagni, Luca Bini, caterina la porta, DEL GIACCO LUCA, Andrea Binelli

Suggested reviewers Lucia De Marchi, Dana Kuehnel, Carlo Pretti, José Monserrat, Berit Glomstad

Submission Files Included in this PDF

File Name [File Type]

letter to editor.doc [Cover Letter]

Comments from the reviewers.docx [Response to Reviewers]

highlights rev.docx [Highlights]

graphical abstract.pdf [Graphical Abstract]

manuscriptEnvPoll_revised2.docx [Manuscript File]

fig1 new.pdf [Figure]

fig2 rev.tif [Figure]

fig.3 new.pdf [Figure]

fig.4 new.tif [Figure]

Table1 rev.docx [Table]

Supporting information_rev.docx [Supporting File]

TablesSI_rev2.docx [Supporting File]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Milano, 13th June 2018

Dear Editor,

find enclosed the revised version of our paper entitled: "The interactions of Fullerene C_{60} and Benzo(α)pyrene influence their bioavailability and toxicity to zebrafish embryos"

by: Camilla Della Torre*, Daniela Maggioni, Anna Ghilardi, Marco Parolini, Nadia Santo, Claudia Landi, Laura Madaschi, Stefano Magni, Stefano Tasselli, Miriam Ascagni, Luca Bini, Caterina La Porta, Luca Del Giacco and Andrea Binelli.
* corresponding author

We appreciated very much the accurate second revision made by the Reviewers, and removed errors according to their comments.

Yours sincerely Camilla Della Torre, PhD. e-mail: camilla.dellatorre@unimi.it

Comments from the reviewers:

-Reviewer 1

- The authors revised the manuscript according to the suggestions of all reviewers. I recommend to accept the manuscript. I just found a few typos that shall be removed before final acceptance:

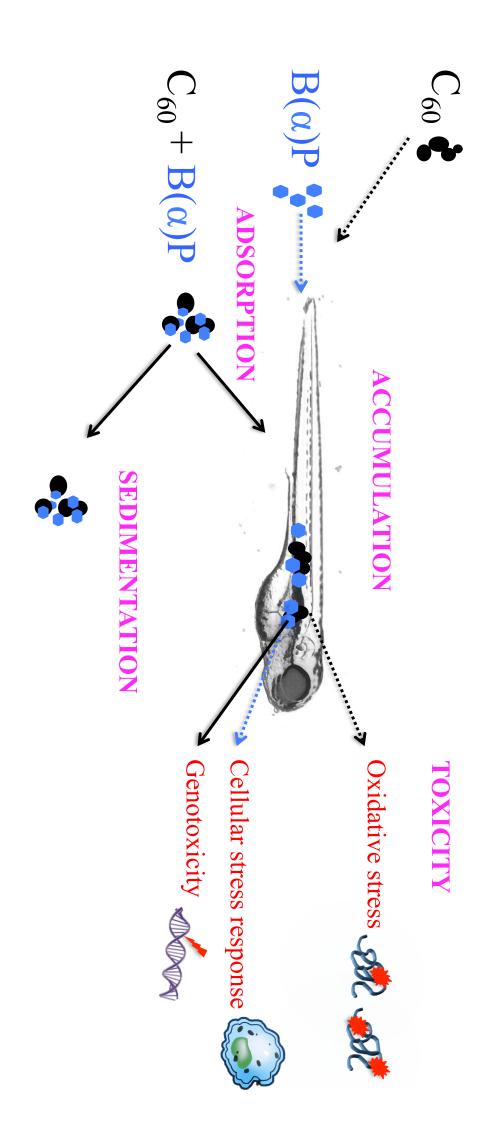
Abstract, second sentence: 'The uptake of pollutants and their tissues...' -> The uptake of pollutants into their tissues?

Tables S1-3: Proteins modifies in zebrafish embryos.... -> Proteins modified in....

The typos errors have been removed accordingly

-Reviewer 3

- Authors have adequately responded to my concerns. I have no further concerns or requests.


Adsorption of $B(\alpha)P$ increases C_{60} sedimentation process

The $B(\alpha)P$ adsorbed on C_{60} is accumulated in embryos similarly to $B(\alpha)P$ alone

 C_{60} exposure triggers oxidative stress condition

 $B(\alpha)P$ alone and adsorbed on $C_{60}\,\text{induced}$ the expression of stress proteins

 $C_{60}\ doped\ with\ B(\alpha)P$ produced greater cellular effect

1 The interactions of Fullerene C_{60} and $Benzo(\alpha)pyrene$ influence their bioavailability and

2 toxicity to zebrafish embryos

3

- 4 Camilla Della Torre¹, Daniela Maggioni², Anna Ghilardi¹, Marco Parolini³, Nadia Santo¹, Claudia
- 5 Landi⁴, Laura Madaschi¹, Stefano Magni¹, Stefano Tasselli⁵, Miriam Ascagni¹, Luca Bini⁴, Caterina
- 6 La Porta³, Luca Del Giacco¹, Andrea Binelli¹

7

- 8 ¹Department of Biosciences, University of Milan, Italy
- 9 ²Department of Chemistry, University of Milan, Italy
- ³Department of Environmental Science and Policy, University of Milan, Italy
- ⁴Department of Life Science, University of Siena, Italy
- 12 5CNR-IRSA (National Research Council-Water Research Institute), Brugherio, Italy

13

14

Abstract

- 15 This study aimed to assess the toxicological consequences related to the interaction of fullerene
- nanoparticles (C_{60}) and Benzo(α)pyrene (B(α)P) on zebrafish embryos, which were exposed to C_{60}
- and $B(\alpha)P$ alone and to C_{60} doped with $B(\alpha)P$. The uptake of pollutants into their tissues and intra-
- 18 cellular localization were investigated by immunofluorescence and electron microscopy. A set of
- 19 biomarkers of genotoxicity and oxidative stress, as well as functional proteomics analysis were
- applied to assess the toxic effects due to C_{60} interaction with $B(\alpha)P$. The carrier role of C_{60} for
- $B(\alpha)P$ was observed, however adsorption on C_{60} did not affect the accumulation and localization of
- B(α)P in the embryos. Instead, C₆₀ doped with B(α)P resulted more prone to sedimentation and less
- bioavailable for the embryos compared to C_{60} alone. As for toxicity, our results suggested that C_{60}
- 24 alone elicited oxidative stress in embryos and a down-regulation of proteins involved in energetic
- 25 metabolism. The C_{60} + $B(\alpha)P$ induced cellular response mechanisms similar to $B(\alpha)P$ alone, but
- 26 generating greater cellular damages in the exposed embryos.

27 Capsule

- Once C_{60} nanoparticles and $B(\alpha)P$ meet in water, they reciprocally affect their bioavailability and, by
- 29 consequence, their toxicity to organisms.

Keywords: Fullerene nanoparticles; Danio rerio; oxidative stress; proteomics; trojan horse effect

1. Introduction

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Fullerenes are carbonaceous nanoparticles (NPs) broadly used in several applications including targeted drug delivery systems, lubricants, energy devices, catalysis, surfaces for antiwear applications, cosmetics and sporting goods, due to their outstanding chemico-physical properties (Yadav and Kumar 2008; Mousavi et al., 2017). As a result of the growing production of fullerenes - and especially C₆₀- there is rising concern regarding their presence and impacts on the natural ecosystems. Indeed, fullerenes nanoparticles have been detected in many environmental matrices as atmospheric aerosol (Sanchis et al., 2012) waters (Farrè et al., 2010; Pakarinen et al., 2013; Astefanei et al., 2014), sediments (Sanchis et al., 2015) and soils (Carboni et al., 2016). Therefore, it is extremely important to assess their interactions and toxic effects on wildlife, with particular emphasis on aquatic environments, which act as ultimate sinks for NPs. In fact, the same properties that render fullerenes a unique and innovative material can trigger deleterious effects to natural biocenosis. The toxicity of C₆₀ has been described in bacteria (Freitas Cordiero et al., 2014), crustaceans (Klaper et al., 2009), bivalves (Canesi et al., 2010; Al-Subiai et al., 2012), chironomids (Waissi et al., 2017) and fishes (Ferreira et al., 2012; Gorrochategui et al., 2017) as well as the potential for trophic transfer (Fortner et al., 2010; Chen et al., 2014). Besides its inherent toxicity, C₆₀ has also exceptional sorption capacity towards hydrophobic chemicals (Hu et al., 2014; Velzeboer et al., 2014) that may significantly affect their bioavailability, bioconcentration and toxicity. Although some studies showed the ability of C_{60} to sequester diverse contaminants and to reduce their toxicity (Yang et al., 2010; Park et al., 2011), it can conversely act as carrier for organic pollutants enhancing their biological effects on the organisms (Baun et al., 2008; Al-Subiai et al., 2012; Ferreira et al., 2014; Seke et al., 2017; Li et al., 2017). Therefore, the release of C₆₀ into the aquatic environment in the presence of toxic chemicals may pose a further risk for ecosystems, with hardly predictable effects.

This study aimed to assess the interactive effects of fullerene NPs (C_{60}) and Benzo(α)pyrene $(B(\alpha)P)$ on zebrafish (*Danio rerio*) embryos. Specifically, we doped C_{60} with $B(\alpha)P$ ($C_{60}+B(\alpha)P$ from now on) and compared the effect on zebrafish embryos exposed to the two contaminants singly administered and to the $C_{60} + B(\alpha)P$ complex. This experimental plan allowed to assess the accumulation and toxicity only of the B(a)P adsorbed on C₆₀ without any interference of free hydrocarbon. A thorough evaluation of chemico-physical interactions between the two pollutants has been performed, and the uptake and distribution of C_{60} and $B(\alpha)P$ were shown through advanced microscopy techniques. To evaluate whether $C_{60} + B(\alpha)P$ affects different molecular pathways compared to the two singly administered pollutants, a suite of biomarkers was applied. The activity of proteins involved in the detoxification and antioxidant response, namely glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD), was measured, while the oxidative damage was assessed by the measurement of protein carbonylation (PCC). The genotoxicity was assessed by the application of single gel cell electrophoresis (SCGE) assay, DNA diffusion assay and Micronucleus test. Proteomics analysis was also performed to evaluate changes of embryos proteome profile, and suggesting possible mechanisms of action of the pollutants, both alone or in combination.

72

73

71

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

2. Materials and Methods

- 74 2.1 Materials
- 75 C₆₀ (CAS number: 99685-96-8) and all reagents used for chemical and biomarker analyses were
- 76 purchased by Sigma-Aldrich (Steinheim, Germany). $B(\alpha)P$ powder (CAS number: 50-32-8) was
- supplied by Dr. Ehrenstorfer, (Augsburg, Germany).

78

- 79 2.2 C₆₀ characterization
- The bulk C_{60} and $C_{60} + B(\alpha)P$ were observed at Zeiss LEO 912ab Energy Filtering TEM operating
- at 100 kV, at a magnification of 25-50,000x using a CCD-BM/1 K system.

82 Dynamic Light Scattering (DLS) was used to measure the hydrodynamic diameter (size distribution) and the charges at the surface (ζ -potential) of water suspended C₆₀ nanoparticles. The 83 84 measurements were performed on a Malvern Zetasizer Nano ZS instrument (Malvern instruments, 85 UK) equipped with a device for the ζ-potential measurement, employing a solid state He-Ne laser 86 (633 nm) as a light source and recovering the scattered light at an angle of 173° (Series software – version 7.02 – Particular Sciences, UK).

88

89

90

91

92

93

94

95

96

97

98

99

100

87

2.3 B(α)P sorption on C₆₀

Two aliquots of C₆₀ (200 mg/L) were suspended in 200 mL of MilliQ water and stirred for 15 days at 20 °C. The first aliquot was doped with 1 mg/L B(α)P dissolved in dimethylsulhpoxide (DMSO), while the second portion was not contaminated. The two suspensions were stirred for 5 days at 20 °C in the dark. They were then centrifuged at 3,000 x g for 30 min. The precipitated C_{60} with $B(\alpha)P$ adsorbed were completely dried in an oven at 40 °C and used for embryos exposures. For measuring the $B(\alpha)P$ fraction remaining solubilized in water, the supernatants were treated with toluene (1:5 v/v, respectively) leaving the mixture under stirring for 90 min at 20 °C in order to extract the free $B(\alpha)P$ solubilized in water by liquid/liquid extraction. The amount of $B(\alpha)P$ in toluene solutions was measured by fluorescence detection, as described in Supplementary Materials. The same technique was used to measure the amount of $B(\alpha)P$ adsorbed on C_{60} NPs. In this case, the samples were prepared by dissolving 5 mg of dried $C_{60} + B(\alpha)P$ in 200 mL toluene. A sample containing 5 mg of untreated C₆₀ in 200 mL toluene served as a blank.

102

103

104

105

106

101

2.4 Preparation of C₆₀ suspensions and hydrodynamic behaviour in exposure media

The C_{60} and $C_{60} + B(\alpha)P$ were suspended and equilibrated at concentration of 20 mg/L, in zebrafish water (ZFW) for 10 days by stirring in the dark at 20 °C. DLS analysis was performed as described above to determine both hydrodynamic diameters and surface charges (ζ potentials) of each sample.

To evaluate the sedimentation process, the UV-vis absorbance spectra of the two suspensions were aquired on an Agilent model 8543 spectrophotometer at room temperature.

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

107

108

2.5 Zebrafish embryo exposure

Adult zebrafish of the AB strain were bred in the fish facility of the Department of Biosciences (University of Milan), to obtain 1-cell stage embryos. Our facility is strictly compliant with the Italian legislation (Legislative Decree No. 116/92) concerning animal welfare, as also certified by the authorization released by the Milan municipality (Art. 10 of Legislative Decree No. 116, dated 27.1.1992). Animal procedures were carried out in conformity with the relevant guidelines and regulations. To avoid any physical interference with the uptake of C₆₀, removal of chorion with pronase (0.5 mg/mL) was performed at 24 h post-fertilization (hpf), immediately prior to the exposure. Embryos were then exposed to B(α)P (8 μ g/L), C₆₀ (20 mg/L) and to C₆₀ + B(α)P in Petri dishes in a total volume of 4 mL. B(α)P concentrations were defined based on the effective B(α)P sorption on C₆₀ (20 mg/L) measured by emission spectra (see results). A preliminary range-finding assured that concentrations of C_{60} and $B(\alpha)P$ were not able to produce mortality or any morphological embryos alteration. Control embryos were exposed to zebrafish water (ZFW) and to vehicle (0.08% DMSO) only. The exposure proceeded until 96 hpf under semistatic conditions, renewing the exposure solutions every 24 h in new vessels. To prevent embryos pigmentation for $B(\alpha)P$ visualization in tissues, ZFW was added with 0.003% 1-phenyl 2-thiourea (PTU). For biochemical analyses and proteomics, embryos were stored at -80 °C until processing. For advanced microscopy and genotoxicity assessment, embryos were immediately processed at the end of the exposure as described below. Experiments were run at least 3 times for each analysis.

130

131

129

2.6 Electron microscopy

A detailed description of ultrastructural analysis procedures is reported in Binelli et al. (2017). Ten embryos from each experimental group were fixed in a mixture containing 4% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffered solution (pH 7.4). Then the embryos were postfixed in 1% OsO₄, dehydrated in a graded ethanol series and infiltrated in Araldite-Epon. Ultrathin sections of about 70 nm were obtained by Ultracut E microtome (Reichert, Austria). Counterstain of sections was not performed to avoid interference with C₆₀ visualization. Digital images were acquired using a CCD-BM/1K system, and image elaboration was performed using the ESI vision software AnalySIS (Soft Imaging Systems, Muenster, Germany).

2.7 Immunohistochemistry

Details of the procedure are described in Binelli et al. (2017). Briefly, embryos were fixed in paraformaldehyde (4%) and cryo-protected. For immunofluorescence, cryostat sections (10 μ m) were incubated with primary antibody anti-polycyclic aromatic hydrocarbons (anti-PAHs 1/100 in PBS, Santa Cruz) and exposed to secondary antibody (Alexa Fluor 488 goat anti-mouse 1:200, Thermo Fisher Scientific). Finally, samples were mounted in PBS/glycerol (1:2 v/v) with DNA-binding dye 40-60-diamidino2-phenylindole (DAPI). Sections were observed by a confocal microscope Leica SP2 microscope equipped with He/Kr and Ar laser (Leica, Wetzlar, Germany).

2.8 Accumulation of C_{60} in zebrafish embryos

The quantification of C_{60} accumulated in zebrafish embryos was performed according to the method described by Waissi et al. (2017), with slight modifications. Embryos were exposed in triplicate to C_{60} and $C_{60} + B(\alpha)P$ and to ZFW only (N = 160 for each treatment). After 96 hpf, embryos were collected and washed with MilliQ water, then homogenized in 1 mL of 2% NaCl solution. Toluene (1 mL) was added, the solution vortexed and transferred in an ultrasonic bath for 15 min. After sedimentation, the toluene fraction was collected and C_{60} absorbance was measured at 335 nm using a Jenway spectrophotometer (Stone, UK). The baseline absorbance detected in controls was

subtracted to absorbance of C_{60} samples. The C_{60} concentration was determined based on standard curve (0.01-10 μ g/mL r^2 = 0.9997).

160

161

158

159

- 2.9 Biomarkers analyses
- A detailed description of biomarkers analysis is reported in Supplementary Materials. The GST,
- SOD and CAT activities were analysed on homogenates obtained from pools of 60 embryos for
- each treatment. PCC was evaluated on homogenates obtained from pools of 80 embryos.
- Genotoxicity was performed on cells dissociated from a pool of 10 zebrafish embryos (three pools
- per treatment) according to the methods described in Parolini et al. (2017). Briefly, cell viability
- was assessed by the trypan blue dye exclusion method. The percentage of DNA in the comet tail
- and the ratio between migration length and comet head diameter (LDR) were used as endpoints of
- primary genetic damages. The apoptotic and necrotic cell frequency and the frequency of
- micronuclei (MN%) were measured as fixed genetic damage.

171

- 172 2.10 Functional proteomics
- 173 The analysis was performed on pools of 90 embryos for each experimental group. A detailed
- description of the procedure is reported by Binelli et al. (2017). Briefly, 200 µg of protein for each
- group were precipitated using a chloroform/methanol/water mixture (4:1:3 v/v). Proteins
- 176 resuspended in rehydratation (denaturing) buffer were loaded in 18 cm pH 3–10 non-linear gradient
- 177 IPG strips (GE Healthcare, Milan, Italy) and IEF was performed on the Ettan IPGphor II system
- 178 (GE Healthcare, USA). Protein separation in the second dimension was performed on 12%
- acrylamide gel in an Ettan DALTsix electrophoretic unit (GE Healthcare, UK). Gels were died by
- silver stain (ProteoSilver Plus Silver Stain kit; Sigma Aldrich, Milan, Italy), according to producer
- instructions. Gel images were analyzed by the ImageMaster 2D Platinum software (Amersham
- Biosciences, USA). Significant protein differences were investigated comparing gels from controls
- group (ZFW, DMSO) with those from treatment groups. Spots were statistically evaluated in terms

of the mean relative volume (vol.%) using Student's t-test for unpaired samples taking p<0.05 as significant treshold. A further criterion for differential regulation was employed such as minimum 2-folds change cut-off relative to controls. Significantly modified protein spots were excised from gels, destained, dehydrated with acetonitrile and digested with trypsine (Sigma Aldrich, Milan, identified **MALDI** TOF-TOF (matrix-assisted Italy). The proteins were by laser desorption/ionization time of flight) mass spectrometry analysis; the Peptide Mass Fingerprinting (PMF) was performed using an Ultraflex III MALDI-TOF/TOF mass spectrometer (Bruker Daltonics, Billerica, MA, United States). Spectra were analyzed by the Flex Analysis software v.3.0. Mascot (Matrix Science Ltd., London, UK, http://www.matrixscience.com). On-lineavailable software was used for PMF search in NCBInr or Swiss-Prot/TrEMBL databases with taxonomy set for Danio rerio.

195

196

184

185

186

187

188

189

190

191

192

193

194

- 2.11 Statistical analysis
- 197 Biomarker data were investigated through one-way analysis of variance (ANOVA) after checking
- 198 for normality and homoscedasticity, taking p < 0.05 as significance cut-off. The ANOVA was
- 199 followed by the Duncan's post-hoc test to investigate significant differences between exposure
- groups. The analyses were performed using the STATISTICA 7.0 software package.

201

202

3. Results and Discussion

- 203 3.1 C₆₀ characterization
- 204 The bulk C₆₀ consisted mostly of isometric NPs, with mean diameter estimated by TEM
- 205 micrographs of about 35.6 ± 10.9 nm and few submicrometric aggregates. A similar structure was
- observed also for $C_{60} + B(\alpha)P$ (Fig. S1). The DLS analysis of C_{60} suspension in MilliQ water (1
- 207 mg/mL) showed the presence of a homogeneous population of NPs aggregates with hydrodynamic
- radius of 519 ± 169 nm, and polydispersion index (PDI) of 0.39. The stability of the suspension was

209 confirmed by the highly negative surface charge value (-36 \pm 1 mV) derived from a ζ -potential

210 measurement.

212

213

214

215

216

217

218

219

220

221

223

224

227

228

229

230

231

232

233

234

In ZFW, the Z average measured for C_{60} suspension (20 mg/L) was 899 ± 97 nm with PDI of 0.376,

indicating the presence of homogeneous population of NPs (trace red in Fig. 1A). On the contrary,

the suspension of $C_{60} + B(\alpha)P$ showed the presence of two aggregate populations, centered at 767 ±

44 nm and 189 ± 13 nm (trace blue in Fig. 1A) showing also the presence of smaller aggregates.

Nevertheless, the counts per second of scattered light in this second set of measurements resulted

very poor, indicating that a very quick sedimentation phenomenon occurred. Indeed, the suspension

just after the DLS measurement pointed out evident sediment at the bottom of the cuvette (Fig. S2).

Moreover, UV-Vis analysis highlighted also a significant sedimentation of C_{60} + $B(\alpha)P$ with respect

to C₆₀ alone, leading to a decrease of concentration of the suspended NPs in ZFW (Fig. 1B). These

results suggested that once contaminated with B(α)P, C₆₀ NPs were more prone to aggregation and

to be easily settled out of suspension.

Finally, the ζ potential value of C₆₀ alone was -23.4 \pm 0.2 mV, and a similar value was measured for

 C_{60} combined with $B(\alpha)P$, equal to -21.6 ± 0.3 mV.

225 3.2 B(α)P sorption on C₆₀

A small fraction (2.9 %) of the administered B(α)P was recovered in the water phase after 5 days of

contamination, while a marked amount of B(α)P (38%) was adsorbed on C₆₀, equal to 378 μ g/g.

Based on these results, the concentration of $B(\alpha)P$ corresponding to suspensions containing 20

mg/L of C_{60} was set to 8 µg/L. These results confirmed the sorption capacity of C_{60} towards $B(\alpha)P$

in the water media as reported for other PAHs (Baun et al., 2008; Hu et al., 2014). Such findings

highlighted that C_{60} could alter significantly the fate and transport of $B(\alpha)P$ in the aquatic

ecosystems. Moreover our results suggest that as $B(\alpha)P$ is relatively stable and can move in the

atmosphere for a long time, it can bind to atmospheric NP such as C₆₀, and be subsequently

introduced in the water environment. The high sedimentation rate observed for the complex C60 +

235 $B(\alpha)P$ strongly suggests that a relevant fraction of the hydrocarbon adsorbed on C_{60} could reach and accumulate in the sediments.

237

250

- 238 3.3 Accumulation of C_{60}
- 239 The measurement of C₆₀ body burden showed a higher accumulation in embryos exposed to C₆₀ alone (16.32 \pm 6.45 ng/embryo, corresponding to three-fold increase) than C_{60} contaminated with 240 241 $B(\alpha)P$ (3.90 ± 3.39 ng/embryo). Therefore, the observed increase of C_{60} sedimentation due to $B(\alpha)P$ 242 adsorption reduced the NPs bioavailability and uptake by the embryos. This result highlight that, in 243 natural conditions, the presence of contaminants in water could significantly influence the 244 environmental fate of C₆₀, potentially enhancing its distribution in sediments. According with our result, a previous study on zebrafish embryos showed that the combination of C₆₀ and Hg²⁺ 245 246 increased NPs size and sedimentation, resulting in a lower accumulation of NPs in embryos, 247 compared to the C₆₀ alone (Henry et al., 2013). Similarly, two other studies on nano-TiO₂ in 248 combination with metals have suggested that chemico-physical interactions (e.g. adsorption) 249 between NPs and contaminants can significantly alter their accumulation in organisms (Pavagadhi
- TEM observations showed a microvilli-mediated internalization of C_{60} NPs in enterocytes mediated (Fig. 2A). The adsorption of $B(\alpha)P$ on C_{60} did not modify this behavior, as also doped NPs entered enterocytes, (Fig. 2B). TEM observations confirmed the ability of C_{60} to pass through the gill cell membranes and accumulate in the epithelium cells (Fig. 2C).
- 255 3.4 $B(\alpha)P$ accumulation

et al., 2014; Fan et al., 2016).

The B(α)P fluorescence signal was detected in gills (Fig. 3C, D) and in the gastrointestinal tract (Fig. 3F, G) of embryos exposed to the hydrocarbon. A similar pattern was revealed also in C₆₀ + B(α)P exposed embryos, showing that C₆₀ can act as carrier for the adsorbed B(α)P. Confocal observations suggested that the B(α)P adsorbed on C₆₀ enters the organism mostly through the

gastrointestinal tract, where it can be released and transferred to other compartments as described for different carbon nanomaterials (CNMs; Wang et al. 2011; Su et al., 2013; Seke et al., 2017). Nevertheless, the mechanisms determining the release of contaminants from CNMs and distribution in the organism are still barely understood, and might vary depending on the CNM. For instance, in our recent study we showed that the $B(\alpha)P$ sorbed on carbon nanopowder (CNPW) was taken up by zebrafish embryos and it followed the physical contaminant distribution rather than its natural accumulation (Binelli et al., 2017). On the contrary, the immunoistochemistry analysis showed that the adsorption on C_{60} did not affect the embryo $B(\alpha)P$ distribution. It is known that fullerene structures, as well as other allotropic carbon-based materials like carbon nanotubes (CNT), interact with the aromatic moieties of many different molecules by π - π interactions (Lu et al., 2006). Yet the sorption of aromatic hydrocarbons by C₆₀ has been calculated and compared with the ability of CNTs to absorb these small molecules (Huffer et al., 2017), concluding that the sorption by CNTs is stronger than that by C₆₀ and may be attributable, among others, to the smaller surface area of the fullerene aggregates in water with respect to the ones of other CNMs (Yang et al., 2006). Therefore, the small difference in the biodistribution of $B(\alpha)P$ when administered alone or associated to C_{60} , could be due to a faster equilibrium release from this material with respect to the dissociation from other carbon-based materials in the physiological environment as the gastrointestinal fluids.

277

278

279

280

281

282

283

284

285

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

3.5 Effects of C_{60}

No mortality or teratogenic effects have been recorded in zebrafish embryos exposed to contaminants alone or in combination. Concerning the oxidative stress biomarkers, exposure to $B(\alpha)P$ determined a significant inhibition of CAT activity compared to DMSO (p <0.0001), but did not affect SOD activity. A significant increase of SOD (p = 0.0004) and CAT (p = 0.01) activities was observed in embryos exposed to C_{60} alone. On the other hand, the activity of the two enzymes was restored to control levels following $C_{60} + B(\alpha)P$ exposure, resulting significantly lower in respect to C_{60} alone (p = 0.0003 for SOD and p = 0.0013 for CAT) (Fig. 4A,B). The measurement

286 of protein carbonylation showed an increase in carbonyl content exclusively in embryos exposed to 287 C_{60} alone compared to controls (p = 0.019; Fig. 4D). 288 The increase of SOD and CAT activity confirmed the ability of C₆₀ to induce antioxidant response, 289 as already pointed out in other studies performed on several aquatic models (Usenko et al., 2008; 290 Klaper et al., 2009; Ferreira et al., 2012; Waissi et al., 2017; Lv et al., 2017). The oxidative stress 291 generated by C₆₀ was also confirmed by the increase of protein carbonylation -marker of oxidative 292 damage- observed in embryos exposed to C₆₀ alone. Indeed, the carbonylation of proteins involved 293 in various cellular mechanisms has been described, as consequence of the oxidative stress generated 294 following exposure to NPs (Driessen et al., 2015). On the contrary, there was no evidence of 295 oxidative damage in co-exposure, and a significant reduction of the activity of antioxidant enzymes 296 was observed in comparison to the single pollutant. This result is likely related to the lower accumulation of C_{60} observed in embryos exposed to the $B(\alpha)P$ doped NPs in respect to C_{60} alone, 297 298 therefore unable to induce a measurable cellular response. 299 A significant increase of GST activity was observed in embryos exposed to $B(\alpha)P$ (p = 0.012) and 300 C_{60} (p = 0.0002 vs control) administered alone. GST is involved in phase II of 301 metabolism/detoxification catalyzing the conjugation of glutathione to several environmental 302 pollutants and oxidative stress by-products (van der Oost et al., 2003). The induction of GST 303 activity upon exposure to C₆₀ alone confirmed the active role of this enzyme in the cellular response 304 to the NPs, as observed in previous studies (Usenko et al., 2008; Klaper et al., 2009). On the 305 contrary, it is intriguing that $C_{60} + B(\alpha)P$ determined a significant reduction of GST activity with 306 respect to control (p = 0.0002) (Fig. 3C). This result agrees with previous observations concerning 307 CNPW contaminated with $B(\alpha)P$ (Della Torre et al., 2017). The same effect was also reported in a 308 study on zebrafish hepatocytes exposed to C₆₀ and B(α)P (Ferreira et al., 2014), suggesting a 309 specific inhibition of this enzyme, which may be due to a physical interaction with the doped NPs. 310 However, the results obtained so far do not allow the identification of the mechanism underlying 311 this inhibition.

312 Concerning genotoxicity, the exposure to $B(\alpha)P$ alone increased significantly the DNA % in the 313 comet tail (p < 0.0001) as well as the LDR (p = 0.033) in respect to DMSO (Fig. 4F,G), but did not 314 induce cell necrosis and occurrence of MN (Fig. 4H,I). Our results confirmed the genotoxic 315 potential of $B(\alpha)P$, which triggered the onset of DNA damage; its weak effect is likely related to the 316 short exposure time (72 h), which may have been not sufficient to determine fixed genetic damages, 317 as normally expected after exposure to $B(\alpha)P$ (Parolini et al., 2017). The C₆₀ administered alone did not cause any primary or fixed DNA damage compared to controls. 318 319 The results highlighted the absence of genotoxic effects by C_{60} in agreement with previous studies 320 showing the low genotoxic potential of C₆₀ (Jacobsen et al., 2008) and the inability to generate 321 primary damage to biological systems both in vitro and in vivo (Shinoara et al., 2009; Matsuda et 322 al., 2011; Ema et al., 2012). 323 Conversely, in embryos exposed to $C_{60} + B(\alpha)P$, a significantly higher frequency of necrotic cells 324 was found compared to control (p < 0.0001) and C_{60} administered alone (p = 0.0012) (Fig. 4H). 325 Exposure to $C_{60} + B(\alpha)P$ also resulted in the increase of MN occurrence compared to controls (p = 326 0.047), even if the MN frequency of this group did not exceed 5 % (Fig. 4I). An extremely low 327 frequency of apoptotic cells was found in all exposure conditions (<2% data not shown). The results highlighted that the adsorption of $B(\alpha)P$ increased the cellular damage with respect to the C_{60} alone. 328 329 Two possible hypotheses could explain this effect: the first one suggests that when the pollutants 330 are administered in co-exposure $(C_{60} + B(\alpha)P)$ they induce an increase of cell disruption without 331 direct interacting with the DNA. Alternatively, the reduction of GST activity elicited by the two 332 contaminants administered together might reduce the detoxifying capacity of the embryos, thus 333 enhancing the genotoxic effects of $B(\alpha)P$. In support of the latter hypothesis, a higher cell death and 334 genotoxicity, together with the inhibition of GST activity, were observed upon exposure to CNPW 335 and $C_{60} + B(\alpha)P$, in previous studies (Ferreira et al., 2014; Della Torre et al., 2017).

336

337

3.6 Functional proteomics

The application of proteomics allowed the identification of molecular events involved in the responses to pollutants alone and in co-exposure. About 2,000 different spots in each analyzed gel were visualized: 220 spots were in common between DMSO and B(α)P, 235 between control and C_{60} , and 173 between control and $C_{60}+B(\alpha)P$ (Fig. S3). A significant variation in terms of volume percentage for 28, 50 and 21 spots was measured for the three treatments, respectively. The final cut-off (\geq 2-folds) revealed 23, 34 and 14 varied spots for the treatments in comparison to controls. The exposure to $B(\alpha)P$ up-regulated 12 different proteins and down-regulated the remaining 11 with respect to DMSO (Fig. S4). The C₆₀ administered alone down-regulated 31 different proteins and overregulated 3 of them (Fig. S4). The co-exposure $C_{60} + B(\alpha)P$ induced a significant overregulation of 13 proteins and down-regulation of 1 protein only (Fig. S4). Mass spectrometry analysis allowed the identification of 12 changed proteins in embryos exposed to $B(\alpha)P$, 27 proteins for C_{60} exposure and 5 varied proteins for the co-exposure (Tab. 1,S1,S2,S3). Going deeper, a variation in the amount of vitellogenin cleavage products (Vtg1,5,7) was observed in all the three exposure groups. Vtgs are glycophospholipoproteins, which constitute the yolkproteins precursors in all oviparous species, including Teleosts. Vtgs are synthesized in the liver of female and incorporated into oocytes where, following a proteolytic cleavage, provide essential nutrients for the embryos (Byrne et al., 1989). Therefore, Vtgs proteolitic cleavage processes are fundamental for the proper embryo development and the evaluation of Vtgs profiles, both at gene and protein level, is considered a useful tool for highlighting toxic effects due to various types of environmental pollutants (Muncke and Eggen 2006; Gundel et al., 2007; 2012; Hanish et al., 2010; Ponnodurai et al., 2012; Hao et al., 2013). The C_{60} -induced down-regulation of Vtgs is in line with the effects on zebrafish embryos following exposure to Quantum Dots (Petushkova et al., 2015) and on adults of Daphnia magna exposed to Ag-NPs (Rainville et al., 2014). In this latter study, a significant reduction of Vtg-like proteins was observed together with an increase in protein oxidation. Therefore the down-regulation of Vtgs could be due to the protein oxidation processes as a consequence of the oxidative stress generated by C_{60} .

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

In addition to nutritional function, Vtgs have a protective role towards different stressors (Sun and Zhang, 2015). Particularly, the involvement of Vtg1-like proteins in the DNA repair mechanism has been demonstrated in zebrafish embryos (Lai et al., 2006). Therefore, the over-regulation of Vtg1 observed in embryos exposed to $B(\alpha)P$ and to $C_{60} + B(\alpha)P$ might suggest the induction of a 368 protective mechanism involved, for instance, in the genotoxic damage repair processes. Another protein engaged in the lipid metabolism and in metabolic processes is the ApolipoproteinA-I (Apoa1b), which was modulated in embryos exposed to $B(\alpha)P$ and C_{60} administered singly, albeit in opposite way. The alteration of Apoalb due to modification – oxidation for instance- might trigger cytotoxic and degenerative effects, therefore promoting the onset of circulatory alterations (Park and Cho, 2011; Filipe et al., 2013). Indeed, a recent study highlighted that the exposure of zebrafish embryos to particulate matter_{2.5} (PM_{2.5}) could enhance the occurrence of cardiovascular toxicity through the proteolitic degradation of lipoproteins (Kim et al., 2015). The down-regulation of Apoa1b suggested a similar mechanism also for C_{60} . Conversely, the over-regulation of Apoa1b measured in embryos exposed to $B(\alpha)P$ paralleled the increase of Vtg1. Indeed, Apoab1 in fact also owns anti-inflammatory and antioxidant properties (Filipe et al., 2013), 379 which could contribute to the protective response of the embryos towards this pollutant. The exposure to both contaminants, administered alone and in combination, affected the betahemoglobin (BE1), a protein assigned to oxygen transport. The modulation of BE1 in fish is usually related to environmental stress conditions, such as modification of temperature, salinity and hypoxia (Eissa e Wang, 2016), but also to the exposure to environmental pollutants (Duarte et al., 2010; Narra 2016). The observed alteration of BE1 content might affect oxygen supply, thereby compromising the development and survival of the embryos. The exposure to C_{60} induced the down-regulation of several kinases such as muscle creatine kinase A (Ckma), creatine kinase M-type isoform X1 (Ckmb) and nucleoside diphosphate kinase B (Nme2b.2). These proteins are involved in cellular signaling, growth and differentiation, as well as energetic metabolism (Tanimura et al., 2014). The alteration of kinases levels might induce the

364

365

366

367

369

370

371

372

373

374

375

376

377

378

380

381

382

383

384

385

386

387

388

389

onset of negative effects on embryos. Indeed, the loss of Nme2b.2 induced severe vasculature malformations (Feng et al., 2014) and cardiomyopathy (Hippe et al., 2009) in zebrafish embryos. The exposure to $B(\alpha)P$ determined a down-regulation of Type I cytokeratin enveloping layer (Cyt1). Cytokeratins are structural proteins involved in the formation of intermediate filaments of epithelial cells and in the mainteinance of cell integrity and adhesion in tissues, promoting resistance to mechanical stress (Padhi et al., 2006). The down-regulation of several keratins (Krt4, Krt5 e Krt8) has been already observed in zebrafish embryos exposed to $B(\alpha)P$ (20 µg/L) (Binelli et al., 2017), supporting the hypothesis that this chemical is able to affect the functionality of structural proteins. Another down-regulated protein in embryos exposed to $B(\alpha)P$ is the Fatty Acid Binding Protein 7 (Fabp7), a chaperonine responsible for cellular fatty acid transport (Furuhashi and Hotamisligil, 2013). At the embryonic level, Fabp7 plays a key role in the development of the central nervous system and affects proper development of the visual system (Liu et al., 2004). Therefore, $B(\alpha)P$ might alter the development and function of the nervous system and the visual apparatus through the down-regulation of Fabp7, as previously suggested (He et al., 2012; Binelli et al., 2017). Overall, proteomic analysis confirmed the different mechanism of action of single contaminants and their combination. Results suggested that the oxidative stress generated by C₆₀ triggers a general reduction of the metabolic activity in the embryos, confirming recent findings of Lv and coauthors (2017), who suggested that the toxicity of C_{60} in D. magna might be correlated with oxidative stress and reduction of energy acquisition. On the contrary, $B(\alpha)P$ alone and adsorbed on C_{60} up-regulated

411

412

413

414

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

4. Conclusions

The present study showed how the adsorption of $B(\alpha)P$ by C_{60} altered the hydrodynamic behavior of the NPs, consequently reducing their bioavailability and intake by the embryos. We showed that

proteins involved in the homeostatic response to cellular stress.

- the $B(\alpha)P$ adsorbed on C_{60} is bioavailable and accumulated in embryos. The integration of data
- obtained through biomarkers and functional proteomics suggests that $B(\alpha)P$ alone and $C_{60} + B(\alpha)P$
- 417 affect similar cellular mechanisms, with the latter triggering severer cellular damages.
- 418 Our results highlight that, in the natural environment complex chemico-physical-biological
- 419 interactions arise, possibly determining unexpected ecotoxicological consequences for the
- 420 organisms.

421 Acknowledgements

- This study was financially supported by the "Cariplo Foundation" grant number 2013-0817. We are
- 423 grateful to Giorgio Binelli for his precious advices on statistical analysis.

425 Figure Captions

424

- Figure 1 C_{60} characterization. DLS profile of C_{60} alone and contaminated with $B(\alpha)P$, in zebrafish
- water (A). Particle size distribution of 3 measurements of 10 runs is given by numbers. UV-Vis
- 428 spectra of C_{60} suspensions (B).
- Figure 2. C₆₀ observation in embryos. TEM images showing C₆₀ indicated by arrows in gut (A) of
- embryos exposed to C_{60} and in gut (B) and gills (C) of $C_{60} + B(\alpha)P$. n = nucleus, m = 1
- mitochondrion, my = microvilli, 1 = lumen.
- Figure 3. $B(\alpha)P$ accumulation. Cryostate sections showing the uptake of $B(\alpha)P$ (in red) in gills
- 433 (C,D,E) and digestive apparatus (F,G,H) of zebrafish embryos. Controls (A-B), $B(\alpha)P(C,F)$, C_{60} +
- 434 $B(\alpha)P(D-G)$ and $C_{60}(E,H)$. DNA (nuclei) is marked in blue (DAPI coloration). SB = swim bladder,
- 435 L = gut lumen, Y = yolk sac.
- Figure 4. Effects on biomarkers. Effects on the activity (mean \pm SEM) of SOD (A) CAT (B),
- 437 GST (C); protein carbonylation (D); and genotoxic effects as DNA strand breaks (E), LDRs (F),
- occurrence of necrotic cells (G) and MN (H) measured in zebrafish embryos (96 hpf) (n = 3; pool of

- 439 3 independent experiments). Different letters correspond to values significantly different (one-way
- 440 ANOVA, Duncan's *post-hoc* test, p < 0.05).

441

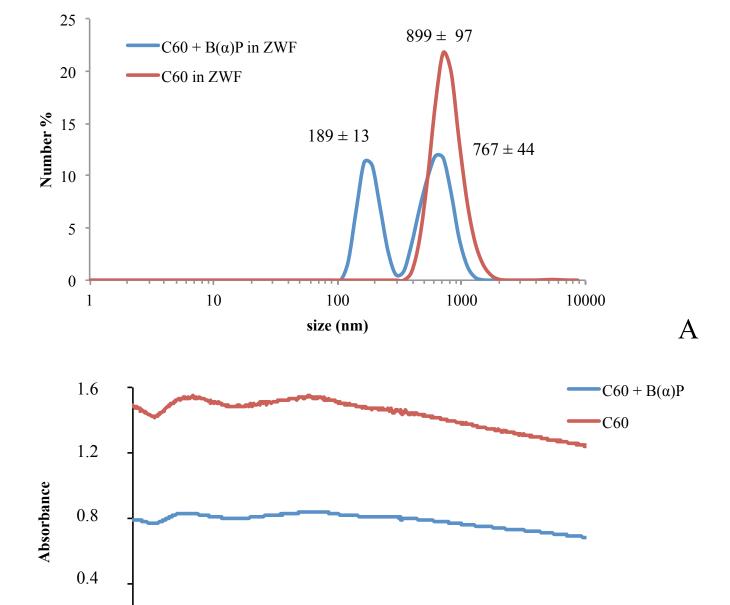
442

443 References

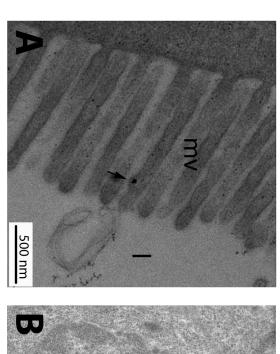
- 1. Al-Subiai, S.N., Arlt, V.M., Frickers, P.E., Readman, J.W., Stolpe, B., Lead, J.R., Moody, A.J., Jha,
- 445 A.N., 2012. Merging nano-genotoxicology with eco-genotoxicology: an integrated approach to
- determine interactive genotoxic and sub-lethal toxic effects of C(60) fullerenes and fluoranthene in
- marine mussels, *Mytilus sp.*, Mutat. Res. 745, 92-103.
- 448 2. Astefanei, A., Núnez, O., Galceran, M.T., 2014. Analysis of C60-fullerene derivatives and pristine
- fullerenes in environmental samples by ultrahigh performance liquid chromatography–atmospheric
- pressure photoionization-mass spectrometry, J. Chromatogr. A 1365, 61–71.
- 3. Baun, A., Sorensen, S.N., Rasmussen, R.F., Hartmann, N.B., Koch, C.B., 2008. Toxicity and
- bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of
- aggregates of nano-C-60. Aquat. Toxicol. 86, 379–387.
- 454 4. Binelli, A., Del Giacco, L., Santo, N., Bini, L., Magni, S., Parolini, M., Madaschi, L., Ghilardi, A.,
- Maggioni, D., Ascagni, M., Armini, A., Prosperi, L., Landi, C., La Porta, C., Della Torre, C., 2017.
- Carbon Nanopowder act as a Trojan-horse for Benzo(a)pyrene in *Danio rerio* embryos.
- 457 Nanotoxicology 11, 371-381.
- 5. Byrne, B.M., Gruber, M., Gruber, A.B., 1989. The evolution of yolk proteins. Progr. Biophys Mol.
- 459 Biol. 53, 33–69.
- 6. Carboni, A., Helmus, R., Parsons, J.R., Kalbitz, K., de Voogt, P., 2016. A method for the
- determination of fullerenes in soil and sediment matrices using ultra-high performance liquid
- 462 chromatography coupled with heated electrospray quadrupole time of flight mass spectrometry. J.
- 463 Chromatogr. A 1433, 123–130.
- 7. Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A., Pojana, G., 2010. Biomarkers in
- 465 Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60
- fullerene, Nano-TiO₂, Nano-SiO₂). Aquat. Toxicol. 100, 168-177.

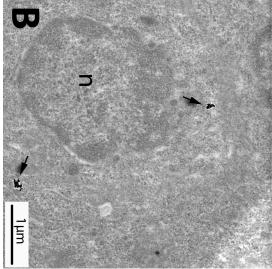
- 8. Chen, Q., Yin, D., Li, J., Hu, X., 2014. The effects of humic acid on the uptake and depuration of
- fullerene aqueous suspensions in two aquatic organisms. Environ. Toxicol. Chem. 33, 1090-1097.
- 9. Della Torre, C., Parolini, M., Del Giacco, L., Ghilardi, A., Ascagni, M., Santo, N., Maggioni, D.,
- Magni, S., Madaschi, L., Prosperi, L., La Porta, C., Binelli, A., 2017. Adsorption of B(α)P on
- Carbon Nanopowder affects accumulation and toxicity on zebrafish (*Danio rerio*) embryos. Environ.
- 472 Sci: Nano 4, 1132-1146.
- 10. Driessen, M.D., Mues, S., Vennemann, A., Hellack, B., Bannuscher, A., Vimalakanthan, V.,
- Riebeling, C., Ossig, R., Wiemann, M., Schnekenburger, J., Kuhlbusch, T.A.J., Renard, B., Luch,
- A., Haase, A., 2015. Proteomic analysis of protein carbonylation: a useful tool to unravel
- 476 nanoparticle toxicity mechanisms. Part. Fibr. Toxicol. 12,36.
- 11. Duarte, R.M., Honda, R.M., Val, A.L., 2010. Acute effects of chemically dispersed crude oil on gill
- ion regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma
- 479 *macropomum*). Aquat. Toxicol. 97, 134-141.
- 480 12. Eissa, N., Wang, H-P., 2016. Transcriptional stress responses to environmental and husbandry
- 481 stressors in aquaculture species. ☐ Rev. Aquacult. 8, 61–88.
- 482 13. Ema, M., Tanaka, J., Kobayashi, N., Naya, M., Endoh, S., Maru, J., Hosoi, M., Nagai, M., Nakajima,
- 483 M., Hayashi, M., Nakanishi, J., 2012. Genotoxicity evaluation of fullerene C₆₀ nanoparticles in a
- comet assay using lung cells of intratracheally instilled rats. Regulat. Toxicol. Pharmacol. 62, 419–
- 485 424.
- 486 14. Fan, W., Peng, P., Li, X., Ren, J., Liu, T., Wang, X., 2016. Effect of titanium dioxide nanoparticles
- on copper toxicity to *Daphnia magna* in water: Role of organic matter. Water Res. 105, 129-137.
- 488 15. Farre, M., Perez, S., Gajda-Schrantz, K., Osorio, V., Kantiani, L., Ginebreda, A., □Barceló, D.,
- 489 2010. First determination of C₆₀ and C₇₀ fullerenes and N- methylfullereopyrrolidine C₆₀ on the
- suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion
- trap tandem mass spectrometry. J. Hydrol. 383, 44–51.
- 492 16. Ferreira, J.L., Lonne, M.N., França, T.A., Maximilla, N.R., Lugokenski, T.H., Costa, P.G., Fillmann,
- 493 G., Soares, F.A., de la Torre, F.R., Monserrat, J.M., 2014. Co-exposure of the organic nanomaterial
- fullerene C₆₀ with benzo[a]pyrene in *Danio rerio* (zebrafish) hepatocytes: evidence of toxicological

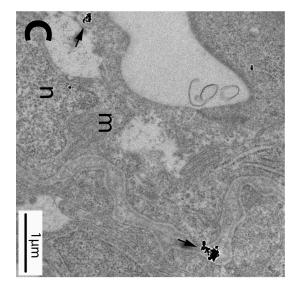
- interactions. Aquat. Toxicol. 147, 76-83.
- 496 17. Feng, Y., Gross, S., Wolf, N.M., Butenschön, V.M., Qiu, Y., Devraj, K., Liebner, S., Kroll, J.,
- Skolnik, E.Y., Hammes, H-P., Wieland, T., 2014. Nucleoside Diphosphate Kinase B Regulates
- Angiogenesis Through Modulation of Vascular Endothelial Growth Factor Receptor Type 2 and
- Endothelial Adherens Junction Proteins. Arterioscler. Thromb. Vasc. Biol. 34, 2292-2300.
- 18. Filipe, P., Morlière, P., Silva, J.N., Mazière, J-C., Patterson, L.K., Freitas, J.P., Santus, R., 2013.
- Plasma Lipoproteins as Mediators of the Oxidative Stress Induced by UV Light in Human Skin: A
- Review of Biochemical and Biophysical Studies on Mechanisms of Apolipoprotein Alteration, Lipid
- Peroxidation, and Associated Skin Cell Responses. Ox. Med. Cell. Longev. 285825.
- 19. Freitas Cordeiro, L., Marques, B.F., Wilges Kist, L., Bogo, M.R., Lopez, G., Pagano, □G., Clemes I.,
- Guerreiro, K., Monserrat, J.M., 2014. Toxicity of fullerene and nanosilver nanomaterials against
- bacteria associated to the body surface of the estuarine worm Laeonereis acuta (Polychaeta,
- Nereididae). Mar. Environ. Res. 99, 52-59.
- 508 20. Furuhashi, M., Hotamisligil, G.S., 2008. Fatty acid-binding proteins: role in metabolic diseases and
- potential as drug targets. Nat. Rev. 7, 489-503.
- 510 21. Gorrochategui, E., Li, J., Fullwood, N.J., Ying, G-G., Tian, M., Cui, L., Shen, H., Lacorte, S.,
- Tauler, R., Martin, F.L., 2017. Diet-sourced carbon-based nanoparticles induce lipid alterations in
- tissues of zebrafish (Danio rerio) with genomic hypermethylation changes in brain. Mutagenesis
- 513 32, 91–103.
- 514 22. Gündel, U., Benndorf, D., von Bergen, M., Altenburger, R., Küster, E., 2007. Vitellogenin cleavage
- products as indicators for toxic stress in zebra fish embryos: A proteomic approach. Proteomics 7,
- 516 4541–4554.
- 517 23. Gündel, U., Kalkhof, S., Zitzkat, D., von Bergen, M., Altenburger, R., Küster, E., 2012.
- 518 Concentration—response concept in ecotoxicoproteomics: Effects of different phenanthrene
- 519 concentrations to the zebrafish (*Danio rerio*) embryo proteome. Ecotoxicol. Environ. Saf. 76, 11-22.
- 520 24. Hanisch, K., Kuster, E., Altenburger, R., Gundel, U., 2010, Proteomic Signatures of the Zebrafish
- 521 (Danio rerio) Embryo: Sensitivity and Specificity in Toxicity Assessment of Chemicals. Int. J.
- 522 Proteom.. 630134.


- 523 25. Hao, R., Bondesson, W., Singh, A.V., Riu, A., McCollum, C.W., Knudsen, T.B., Gorelick, D.A.,
- Gustafsson, J-A., 2013. Identification of Estrogen Target Genes during Zebrafish Embryonic
- Development through Transcriptomic Analysis. PlosOne 11, e79020.
- 526 26. He, C., Wang, C., Zhou, Y., Li, J., Zuo, Z., 2012. Embryonic exposure to benzo(a)pyrene influences
- neural development and function in rockfish (Sebastiscus marmoratus). Neurotoxicology 33, 758-
- 528 762.
- 529 27. Henry, T.B., Wileman, S.J., Boran, H., Sutton, P., 2013. Association of Hg2+ with aqueous (C60)n
- aggregates facilitates increased bioavailability of Hg2+ in zebrafish (Danio rerio). Environ. Sci.
- 531 Technol. 47, 9997-10004.
- 28. Hippe, H-J., Wolf, N.M., Abu-Taha, I., Mehringer, R., Just, S., Lutz, S., Niroomand, F., Postel, E.H.,
- Katus, H.A., Rottbauer, W., Wieland, T., 2009. The interaction of nucleoside diphosphate kinase B
- with G dimers controls heterotrimeric G protein function. Proceed. Nat. Am. Soc. 106, 16269-16274.
- 535 29. Hu, X., Li, J., Chen, Q., Lin, Z., Yin, D., 2014. Combined effects of aqueous suspensions of
- fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: Evaluated with
- negligible depletion solid-phase microextraction. Sci. Tot. Environ. 493, 12-21. □
- 30. Huffer, T., Sun, H., Kubicki, J.D., Hofmann, T., Kah, M., 2017. Interactions between aromatic
- hydrocarbons and functionalized C_{60} fullerenes insights from experimental data and molecular
- 540 modelling. Environ. Sci: Nano 4, 1045-1052.
- 31. Jacobsen, N.R., Pojana, G., White, P., Muller, P., Cohn, C.A., Korsholm, K.S., Vogel, U.,
- Marcomini, A., Loft, S., Wallin, H., 2008. Genotoxicity, Cytotoxicity, and Reactive Oxygen Species
- Induced by Single-Walled Carbon Nanotubes and C_{60} Fullerenes in the FE1-MutaTM Mouse Lung
- Epithelial Cells. Environ. Mol. Mutagen. 49, 476-487.
- 32. Kim, J-Y., Lee, E-Y., Inho Choi, I., Kim, J., Cho, K-H., 2015. Effects of the Particulate Matter_{2.5}
- 546 (PM_{2.5}) on Lipoprotein Metabolism, Uptake and Degradation, and Embryo Toxicity. Mol. Cells 38,
- 547 1096-1104.
- 33. Klaper, R., Crago, J., Barr, J., Arndt, D., Setyowati, K., Chen, J., 2009. Toxicity biomarker
- expression in daphnids exposed to manufactured nanoparticles: Changes in toxicity with
- functionalization. Environ. Pollut. 1571, 1152-1156.

- 34. Lai, Y-S., Chiue, L-F., Hsu, T., 2006. Low-Molecular-Weight Vitellogenin 1-Like Proteins are
- 552 Components of a UV-Damaged-DNA Binding Activity Highly Expressed in Zebrafish ☐(Danio
- 553 rerio) Embryos. J. Exp. Zool. 305A, 215–224.
- 35. Li, J., Hu, L-X., Ying, G-G., Martin, F.L, 2017. Co-exposure of C₆₀ fullerene with benzo[a]pyrene
- results in enhanced biological effects in cells as determined by Fourier-transform infrared
- spectroscopy. Environ. Sci: Nano 4, 1404-1418.
- 36. Liu, R.Z., Denovan-Wright, E.M., Degrave, A., Thisse, C., Thisse, B., Wright, J.M., 2004.
- Differential expression of duplicated genes for brain-type fatty acid-binding proteins (fabp7a and
- fabp7b) during early development of the CNS in zebrafish (Danio rerio). Gen. Express. Patt. 4,
- 560 379–387.
- 37. Lu, J., Nagase, S., Zhang, X., Wang, D., Ni, M., Maeda, Y., Wakahara, T., Nakahodo, T., Tsuchiya,
- T., Akasaka, T., Gao, Z., Yu, D., Ye, H., Mei, W.N., Zhou, Y., 2006. Selective Interaction of Large
- or Charge-Transfer Aromatic Melecules with Metallic Single-Wall Carbon Nanotubes: Critical Role
- of the Molecular Size and Orientation. J. Am. Chem. Soc. 128, 5114–5118.
- 565 38. Lv X., Huang, B., Zhu, X., Jiang, Y., Chen, B., Tao, Y., Zhou, J., Cai, Z., 2017. Mechanisms
- underlying the acute toxicity of fullerene tu Daphnia magna: Energy acquisition restriction and
- oxidative stress. Wat. Res. 123, 696-703.
- 39. Matsuda, S., Matsui, S., Shimizu, Y., Matsuda, T., 2011. Genotoxicity of Colloidal Fullerene C60.
- 569 Environ. Sci. Technol. 45, 4133–4138.
- 570 40. Mousavi, S.Z., Nafisi, S., Maibach, H.I., 2017. Fullerene nanoparticle in dermatological and
- cosmetic applications. Nanomed: Nanotechnol. Biol. Med. 13, 1071–1087.
- 41. Muncke, J., Eggen, R.I.L., 2006. Vitellogenin 1 mRNA as an early molecular biomarker for
- endocrine disruption in developing zebrafish (*Danio rerio*). Environ. Toxicol. Chem. 25, 2734–41.
- 574 □
- 575 42. Narra, M.R., 2016. Single and cartel effect of pesticides on biochemical and haematological status of
- 576 Clarias batrachus: A long-term monitoring. Chemosphere 144, 966-974.
- 43. Padhi, B.K., Akimenko, M-A., Ekker, M., 2006. Independent expansion of the keratin gene family in
- teleostean fish and mammals: An insight from phylogenetic analysis and radiation hybrid mapping


- of keratin genes in zebrafish. Gene 368, 37–45.
- 580 44. Papaconstantinou, J., 2009. Oxidative modification and aggregation of creatine kinase from aged mouse skeletal muscle. Aging 1, 557-572.
- 582 45. Park, K-H., Cho, K-H., 2011. A zebrafish model for the rapid evaluation of pro-oxidative and
- inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-
- density lipoproteins. Fish Shell. Immunol. 31, 904-910.
- 46. Park, J.W., Henry, T. B., Ard, S., Menn, F. M., Compton, R. N., Sayler, G. S., 2011. The association
- between nC(60) and 17 alpha- ethinylestradiol (EE2) decreases EE2 bioavailability in zebrafish and
- alters nanoaggregate characteristics. Nanotoxicology 5, 406–416.
- 47. Parolini, M., Ghilardi, A., Della Torre, C., Magni, S., Prosperi, L., Calvagno, M., Del Giacco, L.,
- Binelli, A., 2017. Environmental concentrations of cocaine and its main metabolites modulated
- antioxidant response and caused cyto-genotoxic effects in zebrafish embryo cells. Environ. Pollut.
- 591 226, 504-514.
- 48. Pavagadhi, S., Sathishkumar, M., Balasubramanian, R., 2014. Uptake of Ag and TiO2 nanoparticles
- by zebrafish embryos in the presence of other contaminants in the aquatic environment. Wat. Res.
- 594 55, 280-291.
- 49. Petushkova, N.A., Kuznetsova, G.P., Larina, O.V., Kisrieva, Y.S., Samenkova, N.F., Trifonova,
- 596 O.P., Miroshnichenko, Y.V., Zolotarev, K.V., Karuzina, I.I., Ipatova O.M., Lisitsa A.V., 2015. One-
- dimensional proteomic profiling of *Danio rerio* embryo vitellogenin to estimate quantum dot
- 598 toxicity. Proteom. Sci. 13, 17.
- 599 50. Ponnudurai RP, Basak T, Ahmad S, Bhardwaj G, Chauhan RK, Singh RA, et al. 2012. Proteomic
- analysis of zebrafish (*Danio rerio*) embryos exposed to cyclosporine A. J. Prot. 75, 1004–17.
- 51. Rainville, L-C., Carolan, D., Varela, A.C., Doyle, H., Sheehan, D., 2014. Proteomic evaluation of
- citrate-coated silver nanoparticles toxicity in *Daphnia magna*. Analyst 139, 1678-1686.
- 52. Sanchis, J., Berrojalbiz, N., Caballero, G., Dachs, J., Farre, M., Barcelo, D., 2012. Occurrence of
- aerosol-bound fullerenes in the mediterranean sea atmosphere. Environ. Sci. Technol. 46, 1335–
- 605 1343. □
- 53. Sanchis, J., Oliviera, L.F., Leão, F.B., Farre, M., Barcelo, D., 2015. Liquid chromatography-


- atmospheric pressure photoionization—Orbitrap analysis of fullerene aggregates on surface soils and
- river sediments from Santa Catarina (Brazil). Sci. Tot. Eniron. 505, 172–179.
- 54. Seke, M., Milica Markelic, M., Morina, A., Jovic, D., Korac, A., Milicic, D., Djordjevic, A., 2017.
- Synergistic mitotoxicity of chloromethanes and fullerene C_{60} nanoaggregates in Daphnia magna
- midgut epithelial cells. Protoplasma 254, 1607-1616.
- 55. Shinohara, N., Matsumoto, K., Endoh, S., Maru, J., Nakanishi, J., 2009. In vitro and in vivo
- genotoxicity tests on fullerene C₆₀ nanoparticles. Toxicol. Lett. 191, 289-296.
- 56. Su, Y., Yan, X.M., Pu, Y.B., Xiao, F., Wang, D.S., Yang, M., 2013. Risks of Single-Walled Carbon
- Nanotubes Acting as Contaminants- Carriers: Potential Release of Phenanthrene in Japanese Medaka
- 616 (Oryzias latipes). Environmen. Sci. Technol. 47, 4704–4710.
- 57. Sun, C., Zhang S., 2015. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk
- Proteins in Fish. Nutrients 7, 8818–8829.
- 58. Tanimura, A., Horiguchi, T., Miyoshi, K., Hagita, H., Noma, T., 2014. Differential Expression of
- Adenine Nucleotide Converting Enzymes in Mitochondrial Intermembrane Space: A Potential Role
- of Adenylate Kinase Isozyme 2 in Neutrophil Differentiation. PlosOne 9, e89916.
- 59. Usenko, C.Y., Harper, S.L., Tanguay, R.L., 2008. Fullerene C60 exposure elicits an oxidative stress
- 623 response in embryonic zebrafish. Toxicol. Appl. Pharmacol. 229, 44–55.
- 624 60. van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in
- 625 environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57–149.
- 626 61. van der Ploeg, M.J.C., Baveco, J.M., van der Hout, A., Bakker, R., Rietjens, I.M.C.M., van den
- Brink, N.W., 2011. Effects of C60 nanoparticle exposure on earthworms (Lumbricus ruellus) and
- implications for population dynamics. Environmen. Pollut. 159, 198–203.
- 62. Velzeboer, I., Kwadijk, C.J.A.F., Koelmans, A.A., 2014. Strong Sorption of PCBs to Nanoplastics,
- Microplastics, Carbon Nanotubes, and Fullerenes. Environ. Sci. Technol. 48, 4869-4876.
- 63. Waissi, G.C., Bold, S., Pakarinen, K., Akkanen, J., Leppänen, M.T., Petersen, E.J., Kukkonen,
- J.V.K., 2017. *Chironomus riparius* exposure to fullerene-contaminated sediment results in oxidative
- stress and may impact life cycle parameters. J. Haz. Mat. 322, 301-309.
- 634 64. Wang, Z., Zhao, J., Song, L., Mashayekhi, H., Chefetz, B., Xing. B., 2011. Adsorption and


635 Desorption of Phenanthrene on Carbon Nanotubes in Simulated Gastrointestinal Fluids. Environ. 636 Sci. Technol. 45, 6018-6024. 637 65. Yadav, B.C., Kumar, R., 2008. Structure, properties and applications of fullerenes. Int. J. 638 Nanotechnol. Applicat. 2, 15-24. 639 66. Yang, K., Zhu, L.Z., Xing, B.S., 2006. Adsorption of polycyclic aromatic hydrocarbons by carbon 640 nanomaterials. Environ. Sci. Technol. 40, 1855-1861. 67. Yang, X.Y., Edelmann, R.E., Oris, J.T., 2010. Suspended C60 nanoparticles protect against short-641 642 term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia 643 magna. Aquat. Toxicol. 100, 202-210. 644 645



В

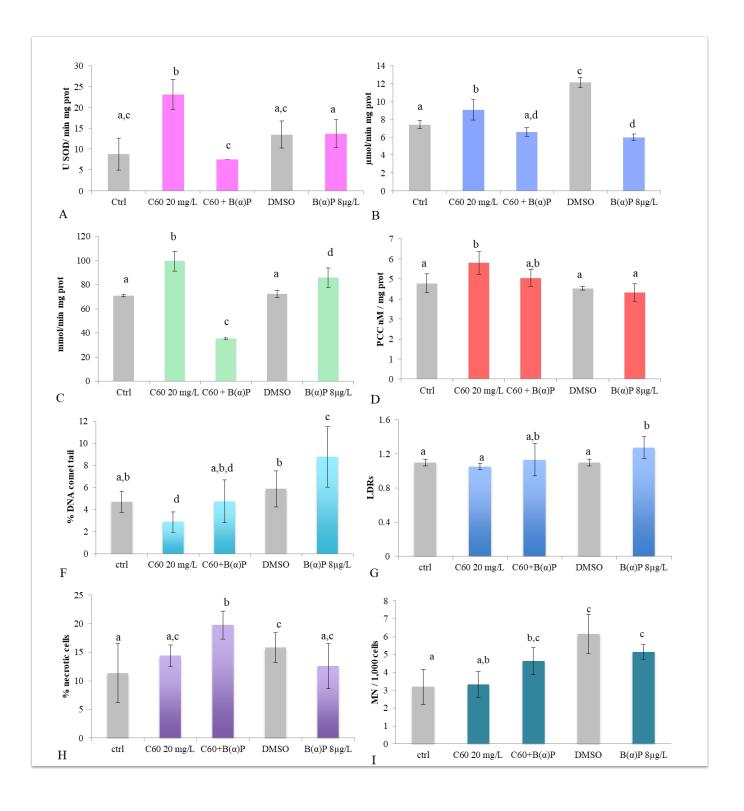


Table 1 Proteins modified in zebrafish embryos upon exposure to C_{60} and $B(\alpha)P$ singly and in combination

Spota	Fold change (↓/↑) ^b	Protein identification	NCBInr Accession number	Molecular function ^c
B(α)P vs DMSO			
2	2.3↓	Type I cytokeratin. enveloping layer (Cyt1)	AAH65653.1	Structural molecule activi
6	3.2↑	Apolipoprotein A-I precursor (Apoa1b)	NP 001093614.2	Lipid transport
7	3.6↑	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	Oxygen transport
9	2.5↑	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	Oxygen transport
11	2.0↓	Fatty acid binding protein 7, brain, a (Fabp7a)	NP_571680.1	Lipid transport
14	2.9↑	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
19				
20	2.8↑	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	Oxygen transport
21	2.5↑	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
	2.5↑	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	Oxygen transport
27	3.6↑	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
30	2.0↓	Vitellogenin 5 (Vtg 5)	AAH97081.1	Lipid transport
	C ₆₀ vs Ctrl			
1	4.0↓	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
5	3.5↓	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
6	2.9↓	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
7	3.0↓	muscle creatine kinase a (Ckma)	NP_571007.2	Kinase activity
	·		_	ATP binding
9	3.4↓	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
10	2.1↓	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
11	2.0↓	Apolipoprotein A-I precursor (Apoa1b)	NP 001093614.2	Lipid transport
12	3.0↓	Vitellogenin 1 (Vtg 1)	AAK94945.1	Lipid transport
13	2.3↓	Vitellogenin 1 precursor (Vtg 1)	NP 001038362.3	Lipid transport
16	3.7↓	Vitellogenin 1 (Vtg 1)	AAI39514.1	Lipid transport
17	2.7↓	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	Oxygen transport
20	3.2↓	Hemoglobin beta embryonic-1.1 (BE1)	NP 932339.1	Oxygen transport
21	3.2↓	Vitellogenin 1 (Vtg 1)	AAK94945.1	Lipid transport
22	8.1↓	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
24	7.2↓	Vitellogenin 7 (Vtg7)	AAW56971.1	Lipid transport
26	2.8↓	muscle-specific creatine kinase (Ckma)	AAK64515.1	Kinase activity
20	2.04	muscle-specific creating kinase (Ckina)	AAK04313.1	ATP binding
27	2.8↓	muscle-specific creatine kinase (Ckma)	AAK64515.1	Kinase activity
21	2.04	muscle-specific creating kinase (Ckina)	AAK04313.1	ATP binding
32	3.1↓	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
33	4.9↓	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	Oxygen transport
35	2.6↓	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
38	3.0↓	creatine kinase M-type isoform X1 (Ckmb)	XP_005157650.1	Kinase activity
36	3.04	creatine kinase wi-type isotorin A1 (Ckinb)	AF_003137030.1	ATP binding
43	3.0↓	nucleoside diphosphate kinase B (Nme2b.2)	ND 571002.1	ATP binding
46	2.3↓	Vitellogenin 1 (Vtg 1)	NP_571002.1 AAK94945.1	Lipid transport
				Oxygen transport
47 52	3.3↓	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	, , ,
52 52	2.3↓	Vitellogenin 1 precursor (Vtg 1)	NP_001038362.3	Lipid transport
53 54	2.7↓	nucleoside diphosphate kinase B (Nme2b.2)	NP_571002.1	ATP binding
	3.0↓ + B(α)P vs Ctrl	Vitellogenin 1 (Vtg 1)	AAK94945.1	Lipid transport
~00	()-			
1	4.1↑	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport
5	4.1↑	Vitellogenin 1 (Vtg 1)	AAI39514.1	Lipid transport
7	2.9↑	Vitellogenin 1 (Vtg 1)	AAI39514.1	Lipid transport
8	2.4↑	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	Oxygen transport
12	2.8↑	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport

 $[^]a$ ID number of spot on 2-DE map; b fold change increase (\uparrow) or decrease (\downarrow) in terms of relative spot volume (%V) in comparison with control (ZFW or DMSO);

^c from <u>www.uniprot.org</u> site.

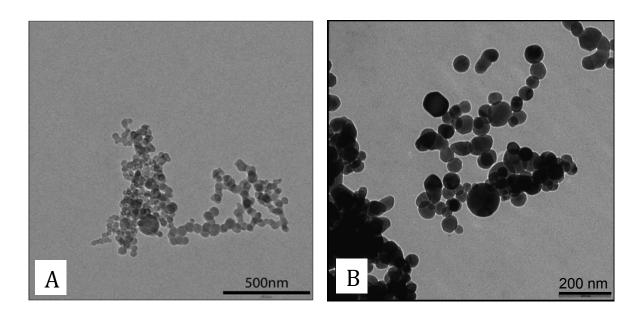
Supporting information

The interactions of Fullerene C_{60} and $Benzo(\alpha)pyrene$ influence their bioavailability and toxicity to zebrafish embryos

Camilla Della Torre, Daniela Maggioni, Anna Ghilardi, Marco Parolini, Nadia Santo, Claudia Landi, Laura Madaschi, Stefano Magni, Stefano Tasselli, Miriam Ascagni, Luca Bini, Caterina La Porta, Luca Del Giacco, Andrea Binelli

1. Methods

1.1 Fluorescence detection of $B(\alpha)P$ adsorption on C_{60}


Excitation and emission spectra were obtained with an Edinburgh FLS980 spectrofluorometer equipped with a 450 W xenon arc lamp. The spectra were corrected for source intensity (lamp and grating) and emission spectral response (detector and grating) by standard correction curves. The emission spectra of four toluene solutions of $B(\alpha)P$ at different concentrations (0.10, 1.0, 10, 100 mg/L) added with C_{60} fullerene (25 mg/L) - to take into account possible energy transfer phenomena occurring between $B(\alpha)P$ and C_{60} - were analyzed, and a calibration curve obtained by plotting the intensity maxima of the peaks ($\lambda_{exc} = 360$ nm, $\lambda_{em} = 430$ nm). Then, the $B(\alpha)P$ concentration was measured on three independent samples of C_{60} stock suspension contaminated with $B(\alpha)P$ (1 mg/L) in water, dried, and the aggregates suspended in toluene and analysed for the quantification of the $B(\alpha)P$ adsorbed portion (detection limit ≥ 0.05 mg/L).

1.2 Biomarkers analysis

Embryos were homogenized using a pestle in 100 mM potassium phosphate buffer (KCl 100 mM, EDTA 1 mM, protease inhibitors 1:100 v/v, dithiothreitol 1 mM pH 7.4). The homogenates were centrifuged at 15,000 x g for 10 minutes at 4 °C. The GST activity was measured by adding reduced glutathione (1 mM) in 100 mM phosphate buffer (pH 7.4) and using CDNB (1mM) as substrate. The reaction was monitored for 1 min at 340 nm. The CAT activity was determined by measuring the consumption of H₂O₂ (50 mM) in 100 mM potassium phosphate buffer (pH 7) at 240 nm. The SOD activity was determined by measuring the degree of inhibition of cytochrome c (10 μM) reduction by the superoxide anion generated by the xanthine oxidase (1.87 mU/mL)/hypoxanthine (50 μM) reaction at 550 nm. The activity is given as SOD units (1 SOD unit=50% inhibition of the xanthine oxidase reaction). Protein carbonyls were derivatized with 2,4-dinitrophenylhydrazine (DNPH) (10 mM in 2M HCl). Proteins were then precipitated and the pellet washed and resuspended in guanidine hydrochloride (6 M). The absorbance of protein-hydrozone was measured at 370 nm (Mecocci et al., 1999). The total protein content of each sample was measured according to the Bradford (1976) method using bovine serum albumin as standard.

Concerning biomarkers of genotoxicity, first we confirmed that the mean cell viability of dissociated cells from embryos exposed to $B(\alpha)P$ and C_{60} alone and combined was always higher than the threshold value (70%) suggested for the application of the genotoxicity tests (Kirkland et al., 2007). The alkaline (pH > 13) Single Cell Gel Electrophoresis (SCGE) assay was performed according to the method described in Koshmel et al. (2008). One hundred cells per slide (n = 9; three slides per each pool) were analyzed using the Comet Score® image analysis software. The apoptotic cell frequency (%) was assessed analyzing three hundred cells per slide (n=6; two slides per each pool). The frequency of micronuclei (MN‰) was calculated on 400 cells/slide (n=6; two slides per each pool) according to Pavlica et al. (2000).

2. Results

Fig. S1 TEM images of bulk $C_{60}(A)$ and $C_{60} + B(\alpha)P(B)$.

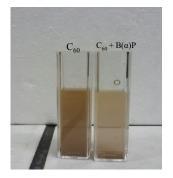


Fig. S2 Sedimentation of suspensions of C_{60} alone compared to $C_{60} + B(\alpha)P$ in zebrafish water.

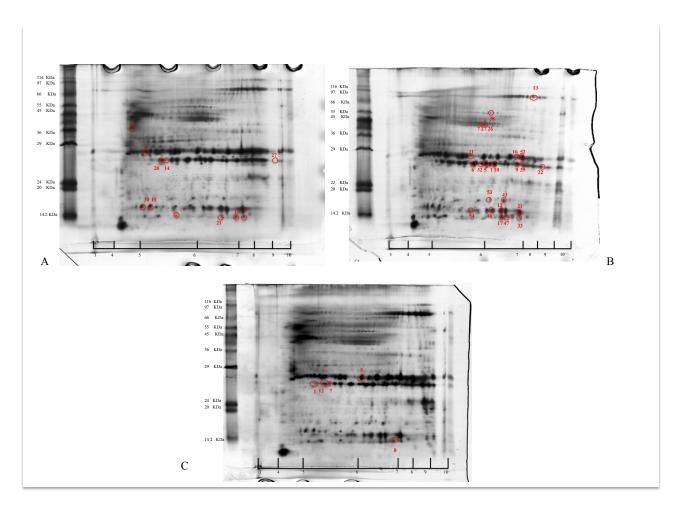
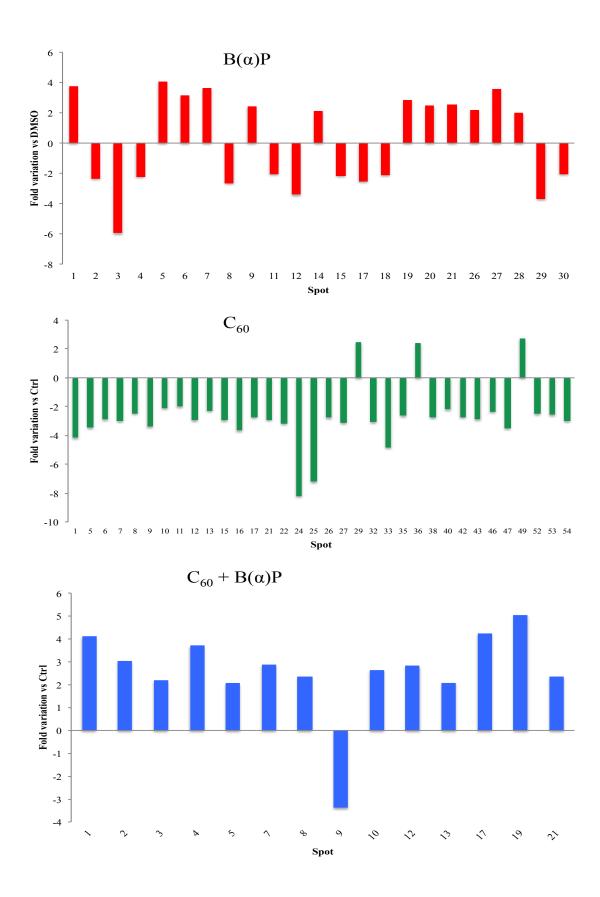
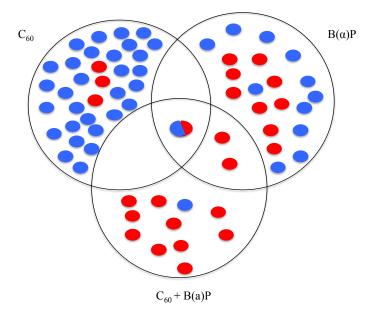




Fig. S3 Representative 2DE gels of zebrafish (96 hpf) exposed to $B(\alpha)P$ and C_{60} alone and C_{60} + $B(\alpha)P$. Red circles highlight proteins identified through mass spectrometry analysis.

Fig. S4 Protein spots differentially expressed in zebrafish (96 hpf) exposed to B(α)P, C₆₀ and C₆₀ + B(α)P, with respect to controls. The *y-axis* represents the fold change (in terms of relative spot volume, % V) of the protein spots, where a positive value indicates an increase in abundance and a negative value indicates a decrease in abundance.

Fig. S5 Venn diagram shows common protein spots between treatments (blue=down-regulation; red=up-regulation).

References

Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.

Kirkland, D.J., Hayashi, D., Jacobson-Kram, M., Kasper, P., MacGregor, J.T., Müller, L., Uno Y. 2007. Summary of major conclusions from the 4th IWGT, San Francisco, 9–10 September. Mutat. Res., 627, 5–9.

Kosmehl, T., Hallare, A.V., Braunbeck, T., Hollert, H., 2008. DNA damage induced by genotoxicants in zebrafish (*Danio rerio*) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) □ as measured by the comet assay. Mutation Research 650, 1-14.

Mecocci P., Fano G., Fulle S., MacGarvey U., Shinobu L., Polidori M.C., 1998. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radical Biology and Medicine 26, 303–8.

Pavlica, M., Klobucar, M., Vetma, G.I.V., Erben, N., Papeš D., 2000. Detection of micronuclei in haemocytes of zebra mussel and ramshorn snail exposed to pentachlorophenol. Mutation Research 465, 145–150.

Table S1 Proteins modified in zebrafish embryos (96 hpf) exposed to $B(\alpha)P$ 8 $\mu g/L$ respect to DMSO

1	Fold change		NCBInr		Theoretical	Experimen	Masco	Mascot search results ^f	llts ^r
Spot**	(Protein identification	Accession number	Molecular function	pI/MW (kDa) ^d	tal pl/MW (kDa) ^e	Sequence coverage (%)s	N°. of matched peptides ^h	Score
2	2.3↓	Type I cytokeratin. enveloping layer (Cyt1) [Danio rerio]	ААН65653.1	Structural molecule activity	46.53/5.13	41.36/4.7	15	6/11	68
6	3.2↑	Apolipoprotein A-I precursor (Apoa1b) [Danio rerio]	NP_001093614.2	Lipid transport	30.18/6.05	30.56/5.1	28	7/11	78
7	3.6↑	Hemoglobin beta embryonic-1.1 (BE1)	NP_932339.1	Oxygen transport	16.27/6.89	13.19/5.7	29	4/4	84
9	2.5↑	Hemoglobin beta embryonic-1.1 (BE1) [Danio rerio]	NP_932339.1	Oxygen transport	16.27/6.89	13.19/7.3	29	4/6	73
Ξ	2.0↓	Fatty acid binding protein 7, brain, a (Fabp7a) [Danio rerio]	NP_571680.1	Lipid transport	14.97/5.43	15.09/5.3	40	5/16	70
14	2.9↑	Vitellogenin 1 (Vtg 1) [Danio rerio]	AAH94995.1	Lipid transport	36.58/ 9.23	27.40/5.5	30	7/10	109
19	2.8↑	Hemoglobin beta embryonic-1.1 (BE1) [Danio rerio]	NP_932339.1	Oxygen transport	16.27/6.89	13.19/6.9	29	4/4	84
20	2.5↑	Vitellogenin 1 (Vtg 1) [Danio rerio]	AAH94995.1	Lipid transport	36.58/ 9.23	27.40/5.3	24	7/10	101
21	2.5↑	Hemoglobin beta embryonic-1.1 (BE1) [Danio rerio]	NP_932339.1	Oxygen transport	16.27/6.89	13.19/6.7	29	4/4	84
27	3.6↑	Vitellogenin 1 (Vtg 1) [Danio rerio]	AAH94995.1	Lipid transport	36.58/ 9.23	28.10/9.2	26	7/21	72
30 a ID and	2.01	Vitellogenin 5 (Vtg 5) [Danio rerio]	AAH97081.1	Lipid transport	150/8.77	15.09/5.2	12	12/32	67
	a ID number of enot on 2-DE man.	n 2-DE man:							

^a ID number of spot on 2-DE map; ^b fold change increase (↑) or decrease (↓) in terms of relative spot volume (%V) in comparison with control (DMSO). ^c from www.uniprot.org site;

Table S2 Proteins modified in zebrafish embryos (96 hpf) exposed to C₆₀ 20 mg/L respect to Ctrl

16	13	12	11	10	9	7	6	5	1	Spar	
3.7↓	2.3↓	3.0↓	2.0↓	2.1↓	3.4↓	3.0↓	2.9↓	3.5↓	4.0↓	(↓/↑) ^b	Fold
Vitellogenin 1	Vitellogenin 1 precursor (Vtg 1) [Danio rerio]	Vitellogenin 1 (Vtg 1) [Danio rerio]	Apolipoprotein A-I precursor (Apoa1b) [Danio rerio]	Vitellogenin 1 (Vtg 1) [Danio rerio]	Vitellogenin 1 (Vtg 1) [<u>Danio rerio]</u>	Muscle creatine kinase a (Ckma) [Danio rerio]	Vitellogenin 1 (Vtg 1) [Danio rerio]	Vitellogenin 1 (Vtg 1) [<u>Danio rerio]</u>	Vitellogenin 1 (Vtg 1) [<u>Danio rerio]</u>	identification	Protein
AAI39514.1	NP_001038362.3	AAK94945.1	NP_001093614.2	AAH94995.1	AAH94995.1	NP_571007.2	AAH94995.1	AAH94995.1	AAH94995.1	Accession number	NCBInr
Lipid transport	Lipid transport	Lipid transport	Lipid transport	Lipid transport	Lipid transport	Kinase activity ATP binding	Lipid transport	Lipid transport	Lipid transport	function	Molecular
117/9.07	151/8.74	159/ 8.68	30.18/6.05	36.58/9.23	36.58/9.23	43/6.32	36.58/ 9.23	36.58/9.23	36.58/ 9.23	(kDa) ^d	Theoretical
30.68/6.9	77.95/8	16.25/6.4	30.68/5.9	27.67/6.2	27.67/6.8	44.39/6.3	27.67/5.8	27.67/6.0	27.67/6.1	(kDa)°	Experimental
13	19	11	18	41	39	32	48	38	37	Sequence coverage (%) ^s	Masc
10/23	23/35	10/13	5/7	13/31	13/29	11/17	18/43	12/22	13/27	N°. of matched peptides ^h	Mascot search results ^r
67	170	99	58	144	135	140	167	150	151	Score	lts ^f

^d Predicted p*I* and MW according to protein sequence; ^e Experimentally determined p*I* and MW;

f Results obtained by Peptide Mass Fingerprinting analysis;

g Percentage of sequence coverage of matched peptides in the identified proteins;

h number of matched peptide/total number of peptide searched;

h probabilistic score sorted by the software (protein scores greater than 60 were indicated as significant. p<0.05. by the program)

52	47	46	43	38	35	33	32	27	26	24	22	21	20	17	
2.3↓	3.3	2.3↓	3.0↓	3.0↓	2.6↓	4.9↓	3.1↓	2.8↓	2.8↓	7.2↓	8.1↓	3.2↓	3.2↓	2.7↓	
Vitellogenin 1 precursor (Vtg 1) [<u>D</u> anio rerio]	Hemoglobin beta embryonic-1.1 (BE1) [Danio rerio]	Vitellogenin 1 (Vtg 1) [Danio rerio]	nucleoside diphosphate kinase B (Nme2b.2)	creatine kinase M- type isoform X1 (Ckmb) [<i>Danio rerio</i>]	Vitellogenin 1 (Vtg 1) <i>[Danio rerio]</i>	Hemoglobin beta embryonic-1.1 (BE1) [Danio rerio]	Vitellogenin 1 (Vtg 1) [<u>Danio rerio]</u>	muscle-specific creatine kinase (Ckma) [Danio rerio]	muscle-specific creatine kinase (Ckma) [Danio rerio]	Vitellogenin 7 (Vtg7) [<u>Danio rerio]</u>	Vitellogenin 1 (Vtg 1) <i>[Danio rerio]</i>	Vitellogenin 1 (Vtg 1) [Danio rerio]	Hemoglobin beta embryonic-1.1 (BE1) [<i>Danio rerio</i>]	[Danio rerio] Hemoglobin beta embryonic-1.1 (BE1) [Danio rerio]	(Vtg 1)
NP_001038362.3	NP_932339.1	AAK94945.1	NP_571002.1	XP_005157650.1	AAH94995.1	NP_932339.1	AAH94995.1	AAK64515.1	AAK64515.1	AAW56971.1	AAH94995.1	AAK94945.1	NP_932339.1	NP_932339.1	
Lipid transport	Oxygen transport	Lipid transport	ATP binding	Kinase activity ATP binding	Lipid transport	Oxygen transport	Lipid transport	Kinase activity ATP binding	Kinase activity ATP binding	Lipid transport	Lipid transport	Lipid transport	Oxygen transport	Oxygen transport	
150/8.74	16.27/6.89	150/ 8.68	17.23/6.75	43.11/6.29	36.58/ 9.23	16.27/6.89	36.58/ 9.23	43.03/6.32	43.03/6.32	24.49/ 8.37	36.58/ 9.23	150/ 8.68	16.27/6.89	16.27/6.89	
30.68/7	14.87/6.5	16.01/6.2	18.56/6.7	48.50/6.3	27.67/7.3	14.87/6.9	27.67/5.8	45.05/6.3	45.05/6.3	28.50/ 7.9	27.26/8.3	16.25/7	13.19/6.7	14.87/6.5	
12	43	9	56	18	27	34	38	27	26	49	36	10	29	29	
12/34	5/10	9/14	8/12	6/7	7/18	5/9	10/17	9/16	9/13	12/21	10/21	11/21	4/4	4/9	
63	83	79	117	84	78	84	131	103	113	182	117	81	84	64	

Table S3 Proteins modified in zebrafish embryos (96 hpf) exposed to C_{60} 20 mg/L + B(α)P 8 μ g/L respect to Ctrl

fon Accession number ^c n 1 AAH94995.1 L [6] AA139514.1 L [6] AA139514.1 L [6] AA139514.1 L [6] Ox Ox (BE1) AAH94995.1 L [6] AAH94995.1 L	1	Fold	Protein	NCBInr	Molecular	Theoretical	Experimental	Masco	Mascot search results	tsf
4.1↑ Vitellogenin 1 (Vtg 1) AAH94995.1 Lipid transport 36.58/ 9.23 27.40/5.2 30 9/18 ### Interviol (Vtg 1) ### Interviol (Vtg 1) AAH94995.1 Lipid transport 117/ 9.07 30.7/6 10 7/12 ### Interviol (Vtg 1) ### Interviol (Vtg 1) AAH39514.1 Lipid transport 117/ 9.07 27.40/5.5 30 7/10 ### 2.4↑ ### Hemoglobin beta embryonic-1.1 (BE1) NP_932339.1 Oxygen transport 16.27/6.89 13.19/6.7 29 4/4 ### 2.8↑ Vitellogenin 1 AAH94995.1 Lipid transport 36.58/ 9.23 27.40/5.3 24 7/10 ### 1.8 ### 1.9 ### 1.2 ##	Spor	cnange (↓/↑) ^b	identification	Accession number ^c	function	(kDa) ^d	(kDa)°	Sequence coverage (%) ^g	N°. of matched peptides ^h	Score
Danio reria AA139514.1 Lipid transport 117/9.07 30.7/6 10 7/12	_	4.1	Vitellogenin 1 (Vtg 1)	AAH94995.1	Lipid transport	36.58/ 9.23	27.40/5.2	30	9/18	112
4.1↑ Vitellogenin 1			[<u>Danio rerio]</u>							
(Vtg 1) [Danio rerio] [Danio rerio] 2.9↑ Viellogenin 1 AAI39514.1 Lipid transport 117/9.07 27.40/5.5 30 7/10 2.9↑ Viellogenin 1 AAI39514.1 Lipid transport 117/9.07 27.40/5.5 30 7/10 2.4↑ Hemoglobin beta embryonic-1.1 (BE1) NP_932339.1 Oxygen transport 16.27/6.89 13.19/6.7 29 4/4 [Danio rerio] AAH94995.1 Lipid transport 36.58/9.23 27.40/5.3 24 7/10 [Danio rerio] [Danio rerio] AAH94995.1 Lipid transport 36.58/9.23 27.40/5.3 24 7/10	5	$4.1\uparrow$	Vitellogenin 1	AAI39514.1	Lipid transport	117/9.07	30.7/6	10	7/12	93
			(Vtg 1)							
2.9↑ Vitellogenin 1 (Vtg 1) [Danio rerio] AAI39514.1 Lipid transport 117/9.07 27.40/5.5 30 7/10 2.4↑ Hemoglobin beta embryonic-1.1 (BE1) [Danio rerio] NP_932339.1 Oxygen transport 16.27/6.89 13.19/6.7 29 4/4 2.8↑ Vitellogenin 1 (Vtg 1) [Danio rerio] AAH94995.1 Lipid transport 36.58/9.23 27.40/5.3 24 7/10			[Danio rerio]							
(Vtg 1) (Vtg 1) [Danio rerio] [Danio rerio] 2.4↑ Hemoglobin beta embryonic-1.1 (BE1) NP_932339.1 Oxygen transport 16.27/6.89 13.19/6.7 29 4/4 [Danio rerio] [Danio rerio] AAH94995.1 Lipid transport 36.58/9.23 27.40/5.3 24 7/10 [Danio rerio] [Danio rerio]	7	2.9↑	Vitellogenin 1	AAI39514.1	Lipid transport	117/9.07	27.40/5.5	30	7/10	109
Danio rerio Danio rerio Danio rerio Danio rerio			(Vtg 1)							
2.4↑ Hemoglobin beta NP_93239.1 Oxygen transport 16.27/6.89 13.19/6.7 29 4/4 embryonic-1.1 (BE1) [Danio rerio] 2.8↑ Vitellogenin 1 AAH94995.1 Lipid transport 36.58/9.23 27.40/5.3 24 7/10 [Danio rerio]			[Danio rerio]							
embryonic-1.1 (BE1) [Danio rerio] 2.8↑ Vitellogenin 1 AAH94995.1 Lipid transport 36.58/9.23 27.40/5.3 24 7/10 (Vtg 1) [Danio rerio]	8	2.4↑	Hemoglobin beta	NP_932339.1	Oxygen transport	16.27/6.89	13.19/6.7	29	4/4	84
[Danio rerio] [Danio rerio] 2.8↑ Vitellogenin 1 AAH94995.1 Lipid transport 36.58/9.23 27.40/5.3 24 7/10 [Danio rerio] [Danio rerio] [Danio rerio] 24 7/10			embryonic-1.1 (BE1)							
2.8↑ Vitellogenin i AAH94995.1 Lipid transport 36.58/9.23 27.40/5.3 24 7/10 (Vtg 1) [Danio rerio]			[Danio rerio]							
	12	2.8↑	Vitellogenin 1	AAH94995.1	Lipid transport	36.58/ 9.23	27.40/5.3	24	7/10	101
[Danio rerio]			(Vtg 1)		,					
			[Danio rerio]							

^a ID number of spot on 2-DE map;

b fold change increase (↑) or decrease (↓) in terms of relative spot volume (%V) in comparison with control (ZFW).

^c from www.uniprot.org site; ^d Predicted p*I* and MW according to protein sequence; ^e Experimentally determined p*I* and MW;

f Results obtained by Peptide Mass Fingerprinting analysis;

g Percentage of sequence coverage of matched peptides in the identified proteins; h number of matched peptide/total number of peptide searched;

i probabilistic score sorted by the software (protein scores greater than 60 were indicated as significant. p<0.05. by the program)

^b fold change increase (↑) or decrease (↓) in terms of relative spot volume (%V) in comparison with control (ZFW). c from www.uniprot.org site;

- ^d Predicted pI and MW according to protein sequence;
 ^e Experimentally determined pI and MW;
 ^f Results obtained by Peptide Mass Fingerprinting analysis;
 ^g Percentage of sequence coverage of matched peptides in the identified proteins;
 ^h number of matched peptide/total number of peptide searched;
 ^h probabilistic score sorted by the software (protein scores greater than 60 were indicated as significant. p<0.05. by the program)