Accepted Manuscript

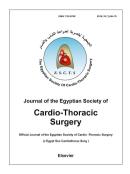
Predictors of unfavourable early outcome following Fontan completion

Amr Ashry, Ahmed Ghoneim, Francesco Donatelli, Alessandro Frigiola, Ahmed Elminshawy

PII: S1110-578X(18)30055-5

DOI: 10.1016/j.jescts.2018.05.002

Reference: JESCTS 137


To appear in: Journal of the Egyptian Society of Cardio-Thoracic Surgery

Received Date: 11 April 2018

Accepted Date: 4 May 2018

Please cite this article as: Ashry A, Ghoneim A, Donatelli F, Frigiola A, Elminshawy A, Predictors of unfavourable early outcome following Fontan completion, *Journal of the Egyptian Society of Cardio-Thoracic Surgery* (2018), doi: 10.1016/j.jescts.2018.05.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Predictors of unfavourable early outcome	1
following Fontan completion	2
	3
	4
	5
Amr Ashry ¹ * "MRCS", Ahmed Ghoneim ¹ "MD", Francesco Donatelli ² "MD",	6
Alessandro Frigiola ² "MD", Ahmed Elminshawy ¹ "MD"	7
	8
Institute:	9
1- Cardiothoracic Surgery Department, Assiut University Hospital, Assiut, Egypt.	10
2- Cardiac Surgery Department, Gruppo San Donato, Milan, Italy.	11
	12
Abstract word count: 241 words	13
Article word count: 2540 words	14
	15
Corresponding author: Amr Ashry (MRCS)	16
Assistant lecturer (Registrar) of cardiothoracic surgery, Assiut University hospital,	17
Assiut, Egypt.	18
Email: dramrashry1@gmail.com	19
Phone number: +201005002884	20
Address: Assiut University Hospital, Department of cardiothoracic surgery, Assiut,	21
Egypt Postal code: 71526	22
	23
Key words: Fontan; Single ventricle; early outcome	24
	25
	26

Abstract:	27
Background: Although the magnificent improvement in Fontan operation results in	28
the last two decades, there are still some concerns regarding the unfavourable early	29
outcomes that may follow Fontan completion.	30
Methods: From 2003 to 2016, 79 Patients underwent Fontan operation at IRCCS	31
Policlinico San Donato. Unfavourable early outcome was defined by the presence of	32
one or more of these occurrences: prolonged hospital stay > 25 days, Prolonged	33
pleural effusion \geq 14 days and Prolonged inotropic support \geq 72 hours. Univariable	34
and multivariable analyses were performed to detect the risk factors associated with	35
early unfavourable outcome after Fontan completion.	36
Results: Prolonged hospital stay > 25 days was found in 24.05% of patients and its	37
associated significant risk factors were low preoperative O_2 saturation (p 0.007),	38
Fontan fenestration (p 0.009) and plasma transfusion (p 0.030). Prolonged pleural	39
effusion \geq 14 days was found in 24.05% and no significant risk factors were detected.	40
Prolonged inotropic support \geq 72 hours was found in 35.44% and significant risk	41
factors were prolonged cardiopulmonary bypass time (P 0.003), fenestration (P	42
0.023), plasma transfusion (P 0.028) and non staged Fontan (P 0.039). In	43
multivariable analysis of combined unfavourable outcome, significant risk factors	44
were fenestration (P 0.030) with some trends towards low preoperative O_2 saturation	45
(P 0.056).	46
Conclusion: Unfavourable early outcome can occur following Fontan completion	47
with associated prolonged hospital stay. Risk factors include low preoperative O_2	48
saturation, prolonged cardiopulmonary bypass time, Fontan fenestration, Plasma	49
transfusion and non staged Fontan.	50
	51

ACCEPTED MANUSCRIPT	
(1) Introduction	52
Since the introduction of Fontan operation by Fontan and Baudet [1] in 1971, several	53
modifications have been applied to it with the same basic concept of directing	54
systemic venous return directly to the pulmonary arteries bypassing the right side of	55
the heart.	56
The extracardiac conduit using Goretex tube with inferior cavo-pulmonary connection	57
is considered the most routinely used technique for Fontan completion in these days	58
since published by Marcelletti et al. in 1990. [2]	59
Thanks to the many adjustments applied to this procedure and marked improvement	60
in the postoperative care through the last two decades, surgical results have been	61
much improved and the incidence of mortality and early failure have markedly	62
declined recently [3, 4, 5]	63
However, unfavourable postoperative morbidities are still present and several patients	64
need prolonged length of stay after the operation. In this study we investigate risk	65
factors associated with unfavourable early outcome after Fontan completion.	66
	67
(2) Patients and Methods:	68
We included all patients who had Fontan procedure at IRCCS Policlinico San Donato	69
(Milan, Italy) in 14 years from 2003 to 2016 with the exclusion of conversion of	70
previous atrio-pulmonary anastomosis and lateral tunnel to extracardiac Fontan.	71
Retrospective review of patients' charts, preoperative, operative and postoperative	72

notes was conducted to collect the studied variables.

In this study prolonged length of stay was defined if more than 75 percentile (> 25 74 days) and prolonged pleural effusion was defined as per greater than 75 percentile 75 after surgery (\geq 14 days). Prolonged inotropic support was defined as major 76

80

ACCEPTED MANUSCRIPT

catecholamines administration for \geq 72 hours. The presence of one or more of these 77 occurrences was defined as combined unfavorable outcome. 78

Patients population

A total of 79 patients were included in the study. Demographic data and 81 univentricular cardiac anomalies are summarized in the table 1 and 2. Previous 82 modified B-T shunt was done in 33 patients (41.77%) while 31 patients (39.24%) had 83 previous pulmonary artery banding. 21 patients (26.58%) required previous atrial 84 septectomy. Previous bidirectional Glenn was performed in 66 patients (83.5%), while 85 13 patients (16.5%) had bidirectional Glenn anastomosis at the same time of Fontan. 86 The type of Fontan operation used was extracardiac conduit in 93.7% (n=74) of 87 patients and the remaining patients had intracardiac tunnel (n=5). Fenestration was 88 needed only in 10 cases (12.7%). All cases were operated on cardiopulmonary 89 bypass. Aortic cross clamp and cardioplegia were used in 35.4% of cases (n=28). 90 Eleven patients needed AV valve repair (13.9%). Median intensive care unit stay was 91 3 days (IQR: 2-4 days). Median hospital stay was 18 days (IQR: 13-25 days). There 92 was no hospital mortality although 2 patients had Fontan take down due to failure and 93 high pressure in the circuit. Post operative data are shown in table 3. 94

Statistical Analysis:

95 96

All continuous parameters were given as median and inter quartile range (IQR). 97 Categorical data were summarized as frequencies and percentages. Univariable 98 analysis using logistic regression was used to identify risk factors for prolonged 99 hospital stay, prolonged pleural drainage duration, prolonged inotropic support and 100 combined unfavourable outcome. The significant variables associated with combined 101

unfavourable outcome were used to construct the multivariable logistic regression. P-	102
value was considered significant when < 0.05 . Data analyses were performed with	103
Stata Statistical Software (Release 12; StataCorp 2011College Station. TX: StataCorp	104
LP).	105
	106
(3) Results	107
Unfavourable postoperative outcome	108
The statistical analysis on unfavorable early postoperative course was performed	109
taking in consideration 28 variables.	110
1- Prolonged hospital stay, defined as hospital stay more than 25 days after For	ntalnl 1
completion.	112
2- Prolonged pleural effusion, defined as longer than 14 days.	113
3- Prolonged inotropic support, defined as catecholamine administration to main	tailn14
circulation for \geq 72 hours.	115
	116
A- Prolonged hospital stay:	117
Prolonged hospital stay > 25 days was found in 19 patients (24.05%). Univariable	118
analysis for associated risk factors was done and shown in table 4. Significant risk	119
factors correlated with prolonged hospital stay were low preoperative O ₂ saturation (p	120
0.007), Fontan fenestration (p 0.009) and plasma transfusion in postoperative day 0 (p	121
0.030).	122
	123
B- Prolonged pleural effusion:	124

Prolonged pleural effusion \geq 14 days was found in 19 patients (24.05%). Univariable 125 analysis for associated risk factors was done and showed that no significant risk 126

CCEPTED MANUSCRIPT

factors were detected. Eleven patients (13.9%) required placement of additional chest				
tube for re-accumulation of pleural effusion after removal of previous chest tubes.	128			
	129			
<u>C- Prolonged inotropic support:</u>	130			
Prolonged inotropic support \geq 72 hours was found in 28 patients (35.44%).	131			
Univariable analysis for associated risk factors was done and showed that significant	132			
risk factors were cardiopulmonary bypass time (P-value 0.003), fenestration (P-value	133			
0.023), plasma transfusion in postoperative day 0 (P-value 0.028) and non staged	134			
Fontan with concomitant bidirectional Glenn at the same intervention (P-value 0.039)	135			
as shown in table 5.	136			
	137			
	138			
D- Combined unfavorable outcome:	139			
After studying combined outcome regarding the 3 variables we have selected for	140			
unfavorable outcome, we found that 33 patients (41.77%) lie in this category.	141			
Univariable and multivariable analyses by logistic regression were done for risk	142			
factors associated with unfavorable outcome and significant risk factors are shown in	143			

factors associated with unfavorable outcome and significant risk factors are shown in 143 tables 6 and 7. In univariable analysis, risk factors were fenestration (P-value 0.019), 144 long cardiopulmonary bypass time (P-value 0.026), low preoperative O₂ saturation (P-145 value 0.027) and plasma transfusion (P-value 0.036). In multivariable analysis, 146 cardiopulmonary bypass time (P-value 0.168) and plasma transfusion (P-value 0.081) 147 lost their significance, while significant risk factors were fenestration (P-value 0.030) 148 with some trends towards low preoperative O_2 saturation (P-value 0.056). 149

150

151

152

(4) Discussion:

This study reviews 14 years experience of Fontan operation at IRCCS Policlinico San153Donato (Italy) and evaluates the early outcome and the risk factors for postoperative154unfavourable outcomes.155

Regarding prolonged hospital stay after Fontan operation, Sasaki et al. [6] defined 156 prolonged length of stay as hospital stay greater than 75 percentile after surgery which 157 was defined greater than or equal to 15 days. Independent risk factors for prolonged 158 length of stay included high hemoglobin level (odds ratio, 1.29; p = 0.003), high mean 159 pulmonary artery pressure (odds ratio, 1.14; p = 0.037), low aortic saturation (odds 160 ratio, 0.92; p = 0.008) and fenestration (odds ratio, 2.4; p = 0.021). Other previous 161 studies focusing on prolonged hospital stay reported higher PAP, decreasing systemic 162 oxygen saturation, old age and the diagnosis of HLHS as risk factors. [7, 8, 9] 163 In our study, prolonged hospital stay was found in 19 patients (24.05%). Significant 164 165 risk factors were fenestration (P-value 0.009), low preoperative O₂ saturation (P-value 0.007) and plasma transfusion (P-value 0.030). 166

Our finding that the presence of a fenestration is associated with increased length of 167 stay and postoperative complications is in contrast to most prior reports, and deserves 168 mention. In many prior reports, fenestration has been associated with better outcomes 169 [10, 11], including a decreased risk of death, decreased pleural effusion duration and 170 less hospital stay. In particular, Lemler et al. [12] performed the prospective 171 randomized trial to investigate the clinical utility of fenestration in patients with 172 standard preoperative risk profiles for 49 consecutive Fontan operations. They 173 concluded that baffle fenestration improves short term outcome in standard-risk 174 patients by decreasing pleural drainage, hospital stay, and need for additional 175 postoperative procedures. In our series, where fenestration was used in a particular 176 subgroup of high risk patients, the association of prolonged length of stay and more 177

complications is consistent with their high risk nature, rather than the presence of the 178 fenestration per se. The same happened with plasma transfusion which was usually 179 associated with low cardiac output state early in ICU and those patients represent 180 more complex cases who needed more time for optimization of the cardiac output. It's 181 recommended to perform Fontan completion early before deterioration of O_2 182 saturation because in our series it is found that low preoperative O_2 saturation is a risk 183 factor for prolonged hospitalization. 184

Regarding pleural effusion, median drainage days was 8 days (IQR: 6-13 days). 185 Pleural effusions after the Fontan operation contribute significantly to morbidity and 186 prolonged hospitalization. Prolonged pleural effusion \geq 14 days was found in 19 187 patients (24.05%) and no significant associated risk factors were detected. Gupta et al. 188 [13] studied risk factors for persistent pleural effusion after extracardiac Fontan and 189 stated that 37% had pleural drainage lasting > 14 days and significant risk factors 190 were lower preoperative oxygen saturation (P-value, 0.011) and the presence of 191 postoperative infections (P-value, 0.003). Fu et al. [14] reported that 38.9% of patients 192 had pleural effusion for more than 15 days and multivariate analysis results showed 193 that non-fenestration, low preoperative oxygen saturation, and postoperative 194 infections were independent risk factors or prolonged pleural effusion. Fenestration of 195 the Fontan baffle has been reported to significantly reduce the duration of pleural 196 effusions in several reports. [11, 12] 197

In our experience we do not routinely perform fenestration of the extracardiac baffle. 198 This procedure is reserved for patients with high risk hemodynamics and increased 199 pulmonary pressure detected by increased CVP. In our study, the presence of 200 fenestration was not found to significantly affect persistent pleural effusions. 201

In the study published by Ovroutski et al [15], prolonged inotropic support > 72 hours 202 was found in 21,4 % of patients following Fontan completion demonstrating that 203 heterotaxia, the presence of a systemic right ventricle, low preoperative arterial 204 oxygen saturation and the use of cardioplegia were significant risk factors (P-value < 205 0.05). 206

In our series, prolonged inotropic support > 48 hours was found in 28 patients 207 (35.44%). Significant risk factors were cardiopulmonary bypass time (P-value 0.003). 208 fenestration (P-value 0.023), plasma transfusion (P-value 0.028) and non staged 209 Fontan with concomitant bidirectional Glenn at the same intervention (P-value 0.039). 210 Although both long cardiopulmonary bypass time and non staged Fontan are risk 211 factors similar to those reported in the Literature, fenestration as a risk factor seems to 212 be peculiar of our experience. The association of fenestration with prolonged 213 inotropic support, prolonged hospital stay and combined unfavorable outcome is 214 explained by patient selection and the indication of this procedure only in high risk 215 216 cases.

217

218

Limitations:

The main limitation of the study is its relatively small number of patients, its219retrospective nature and being a single center study. To detect more risk factors of220unfavourable early outcome following Fontan completion and to ameliorate the221postoperative course, a multicenter study with standard selection criteria may be222needed in the future to refine statistical analysis outcomes and help in avoiding or223reducing the risk of unfavourable early outcome after Fontan completion.224

225

ACCEPTED MANUSCRIPT	
(5) Conclusion:	227
Unfavourable early outcome with prolonged hospital stay remains a frequent issue	228
following Fontan completion. Risk factors include low preoperative O ₂ saturation,	229
prolonged cardiopulmonary bypass time, Fontan fenestration, Plasma transfusion and	230
non staged Fontan.	231
Fontan staging, minimizing cardiopulmonary bypass time duration, optimizing low	232
cardiac output treatment and early Fontan completion before deterioration of arterial	233
O ₂ saturation must be performed in order to improve the results in terms of	234
complicated course with prolonged length of stay.	235
	236
Funding sources:	237
None.	238
	239
Conflict of interest:	240
None.	241
	242
Acknowledgments:	243
None.	244
	245
	246
	247
	248
	249
	250

Ashry et al. 11 ACCEPTED MANUSCRIPT	
References :	251
[1] Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971; 26:240-8.	253 254
	255
[2] Marcelletti C, Corno A, Giannico S, Marino B. Inferior vena cava-pulmonary	256
artery extracardiac conduit. A new form of right heart bypass. J Thorac Cardiovasc	257
Surg 1990;100(2):228-32.	258
	259
[3] Cetta F, Feldt RH, O'Leary PW, et al. Improved early morbidity and mortality	260
after Fontan operation: the Mayo Clinic experience, 1987 to 1992. Journal of the	261
American College of Cardiology 1996; 28(2): 480-6.	262
	263
[4] Wolff D, van Melle JP, Ebels T, Hillege H, van Slooten YJ, Berger RM. Trends	264
in mortality (1975–2011) after one-and two-stage Fontan surgery, including	265
bidirectional Glenn through Fontan completion. Eur J Cardiothorac Surg	266
2013;45(4):602-9.	267
	268
	269
[5] Gentles TL, Mayer Jr JE, Gauvreau K, et al: Fontan operation in five hundred	270
consecutive patients: Factors influencing early and late outcome. J Thorac Cardiovasc	271
Surg 1997; 114(3):376–91.	272
	273
	274
[6] Sasaki J, Dykes JC, Sosa LJ, et al. Risk factors for longer hospital stay following	275
the Fontan operation. Pediatr Crit Care Med. 2016;17(5):411-19.	276

	278
[7] Rogers LS, Glatz AC, Ravishankar C, et al: 18 years of the Fontan operation at	279
a single institution: Results from 771 consecutive patients. J Am Coll Cardiol	280
2012; 60:1018-25.	281
	282
	283
[8] Meyer DB, Zamora G, Wernovsky G, et al: Outcomes of the Fontan procedure	284
using cardiopulmonary bypass with aortic cross-clamping. Ann Thorac Surg 2006;	285
82:1611–18.	286
	287
	288
[9] Hannan RL, Zabinsky JA, Salvaggio JL, et al: The Fontan operation: The pursuit	289
of associated lesions and cumulative trauma. Pediatr Cardiol 2011; 32:778-84.	290
	291
[10] Gaynor JW, Bridges ND, Cohen MI, et al: Predictors of outcome after the Fontan	292
operation: Is hypoplastic left heart syndrome still a risk factor? J Thorac Cardiovasc	293
Surg 2002; 123:237–45.	294
	295
[11] Bridges ND, Mayer JE Jr, Lock JE, et al: Effect of baffle fenestration on	296
outcome of the modified Fontan operation. Circulation 1992; 86:1762-69.	297
	298
[12] Lemler MS., Scott WA., Leonard SR, Stromberg D & Ramaciotti C.	299
Fenestration improves clinical outcome of the Fontan procedure. Circulation. 2002;	300
105(2): 207-12.	301
	302

ACCEPTED MANUSCRIPT [13] Gupta A, Daggett C, Behera S, Ferraro M, Wells W, Starnes V. Risk factors for persistent pleural effusions after the extracardiac Fontan procedure. J Thorac Cardiovasc Surg. 2004;127:1664-9. [14] Fu S, Feng ZC, Dietmar S. Factors influencing pleural effusion after Fontan operation: an analysis with 95 patients. Chin Med Sci J. 2010;25:38-43. [15] Ovroutski, S., Sohn, C., Barikbin, P. et al. Analysis of the risk factors for early failure after extracardiac Fontan operation. Ann Thorac Surg. 2013; 95: 1409–16.

Tables:

3	3	7
\mathcal{I}	\mathcal{I}	'

338

339

Variable	Mean	SD	Median	IQR	Min.	Max.
Age	9.66	6.29	7.3	5.6 - 11.5	2.88	33.9
Weight	28.47	16.03	21	17 - 37	12	84
Height	126.32	23.02	125	108 - 143	91	183
BSA	0.98	0.36	0.88	0.71 – 1.23	0.56	2.07
E F %	70.2	6.57	70	70 – 75	50	80
PAP mean	12.4	3.56	13	10 – 15	4	20
Creatinin preop	0.51	0.17	0.5	0.4 - 0.6	0.2	1.13
Ht. preop.	49.32	6.03	48.6	45 - 53.3	38	74
Bilirubin preop.	0.88	0.56	0.71	0.5 - 1.05	0.21	3.4
Glenn-Fontan interval yrs	6.45	4.72	5	3.5 - 8	1	27

Table 1: Demographic and preoperative data:

BSA= Body surface area, EF%= Ejection fraction, PAP mean= mean pulmonary artery pressure,	340
Ht=hematocrit	341
	342
	343
	344
	345
	346
	347
	348
	349

Ashry et al. 14

Table 2: Diagnosis

Diagnosis	Ν	Percentage(%)
Tricuspid atresia	20	25.32%
DORV	15	18.99%
DILV	10	12.66%
HLHS	8	10.13%
AVSD	5	6.33%
Isomerism	4	5.06%
Pulmonary atresia	3	3.80%
TGA	6	7.59%
Univentricular heart	5	6.33%
CC-TGA	3	3.80%
Total	79	100%

Table (1): List of diagnosis

DORV= double outlet right ventricle, DILV= double inlet left ventricle, HLHS= hypoplastic left heart syndrome, AVSD= atrio ventricular septal defect, TGA= transposition of great arteries, CC-TGA= congenitally corrected transposition of great arteries.

Mean	±SD	Median	IQR	Min	Max
115.5	18.05	118	103 – 130	70	148
68.6	15.20	69	56 – 79	34	103
15.2	3.1	15	13 – 18	7	23
37.4	6.55	37	33 - 41	25	71
23.5	69.6	11	7 – 16		560
10.66	6.04	8	6 – 13	3	27
3.7	3.98	3	2-4	1	30
21.11	11.55	18	13 – 25	8	64
	115.5 68.6 15.2 37.4 23.5 10.66 3.7	115.5 18.05 68.6 15.20 15.2 3.1 37.4 6.55 23.5 69.6 10.66 6.04 3.7 3.98	115.5 18.05 118 68.6 15.20 69 15.2 3.1 15 37.4 6.55 37 23.5 69.6 11 10.66 6.04 8 3.7 3.98 3	115.5 18.05 118 $103 - 130$ 68.6 15.20 69 $56 - 79$ 15.2 3.1 15 $13 - 18$ 37.4 6.55 37 $33 - 41$ 23.5 69.6 11 $7 - 16$ 10.66 6.04 8 $6 - 13$ 3.7 3.98 3 $2 - 4$	115.5 18.05 118 $103 - 130$ 70 68.6 15.20 69 $56 - 79$ 34 15.2 3.1 15 $13 - 18$ 7 37.4 6.55 37 $33 - 41$ 25 23.5 69.6 11 $7 - 16$ 1 10.66 6.04 8 $6 - 13$ 3 3.7 3.98 3 $2 - 4$ 1

Table 3: Post operative features:

MAP= mean arterial pressure, CVP= central venous pressure, Hct= hematocrit%, MV= mechanical375ventilation .376

- - -

Table 4: Univariable analysis of risk factors of prolonged hospital stay

Variables	Odds Ratio	Standard error	Z	P-value	95% Confidence interval
Age	0.96	0.05	- 0.80	0.424	0.87 – 1.06
Weight	1.006	0.016	0.38	0.704	0.97 – 1.04
Height	1	0.012	0.01	0.991	0.978 - 1.023
BSA	1.23	0.897	0.28	0.780	0.29 - 5.14
Pap mean	1.01	0.75	0.11	0.909	0.87 – 1.167
Preop. O2 saturation	0.896	0.04	- 2.70	0.007	0.83 - 0.97
Creatinine Preop	0.36	0.605	- 0.61	0.543	0.014 - 9.58
Hct	0.995	0.044	- 0.12	0.901	0.912 - 1.08
Bilirubin	0.56	0.33	- 0.98	0.33	0.179 – 1.78
Diagnosis	1.187	0.108	1.89	0.059	0.99 – 1.42
mB-T shunt	0.76	0.41	- 0.50	0.618	0.26 - 2.21
PA banding	1.55	0.83	0.83	0.407	0.55 - 4.41
BD Glenn	1.91	1.56	0.79	0.430	0.38 - 9.49
Avv regurge	0.96	0.197	- 0.20	0.840	0.64 - 1.43
Antegrade flow	1.16	0.66	0.27	0.784	0.39 - 3.52
Preop. arrhythmia	1.06	1.25	0.05	0.964	0.103 – 10.79
Extracardiac	1.29	1.48	0.22	0.827	0.134 - 12.26
Fenestration	6.46	4.62	2.61	0.009	1.59 - 26.25
Bypass time	1.005	0.006	0.78	0.438	0.99 – 1.02
Low Hct	0.95	0.056	- 0.94	0.345	0.84 - 1.06
Low temp.	1.03	0.14	0.19	0.852	0.79 – 1.34
MAP	1	0.017	0.05	0.959	0.97 - 1.04
CVP	1.014	0.87	0.16	0.873	0.86 – 1.199
Hct	1	0.039	0.24	0.807	0.93 – 1.09
Transfusion	6	6.42	1.67	0.094	0.74 - 48.84
Blood	2.68	1.66	1.59	0.112	0.79 - 9.04
Plasma	4.36	2.97	2.16	0.030	1.15 - 16.56
Platelets	0.36	0.396	- 0.93	0.352	0.042 - 3.09

BSA = body surface area, pap= pulmonary artery pressure, MAP= mean arterial pressure, CVP= central venous pressure.

403 404

Table 5: Significant risk factors associated with prolonged inotropic support:

Variables	Odds Ratio	Standard error	Z	P-value	95 % Confidence interval
BD Glenn	0.27	0.17	- 2.07	0.039	0.08 - 0.93
Fenestration	5.33	3.94	2.27	0.023	1.26 - 22.66
Bypass time	1.02	0.007	3	0.003	1.007 - 1.04
Plasma	3.26	1.76	2.19	0.028	1.13 – 9.38

	405
	406
	407
	408
	409
	410
~	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
\mathbf{C}	423
	424
Y.	425
	426
	427
	428
	429

- 430
- 431

Table 6: Significant risk factors associated with combined unfavorable outcome432after univariable analysis:433

Variables	Odds Ratio	Standard error	Z	P-value	95 % Confidence interval
Fenestration	7.04	5.84	2.35	0.019	1.39 – 35.77
Bypass time	1.01	0.006	2.23	0.026	1.002 – 1.03
Plasma	2.86	1.44	2.10	0.036	1.07 - 7.66
O2 sat. %	0.92	0.35	- 2.21	0.027	0.85 – 0.99

 Table 7: Multivariable analysis for significant risk factors associated with unfavorable outcome:

Variables	Odds Ratio	Standard error	Z	P-value	95 % Confidence interval
fenestration	7.35	6.53	2.14	0.025	1.29 - 41.95
Bypass time	1.01	0.007	1.38	0.168	0.996 - 1.02
Plasma	2.67	1.50	1.74	0.081	0.89 - 8.06
O2 sat. %	0.93	0.04	- 1.91	0.056	0.86 - 1.002

#