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We analyze a discrete time two-sector economic growth model where the production technologies

in the final and human capital sectors are affected by random shocks both directly (via productivity

and factor shares) and indirectly (via a pollution externality). We determine the optimal dynamics

in the decentralized economy and show how these dynamics can be described in terms of a two-

dimensional affine iterated function system with probability. This allows us to identify a suitable

parameter configuration capable of generating exactly the classical Barnsley’s fern as the attractor

of the log-linearized optimal dynamical system. Published by AIP Publishing.
https://doi.org/10.1063/1.5023782

In this paper, we build a two-sector growth model that,

thanks to pollution externalities randomly affecting out-

put and human capital production, allows for a suitable

parameterization that generates the Classical Barnsley’s

fern as the unique attractor of the economy.

I. INTRODUCTION

Over the last two decades, a large and growing number

of studies have tried to characterize the eventual fractal

nature of the steady state in economic models. Indeed, since

the pioneering work by Montrucchio and Privileggi (1999) it

has been well known that traditional macroeconomic models

may give rise to random dynamics possibly converging to

invariant measures supported on fractal sets. Several works

tried to identify the conditions under which this might be the

case by borrowing from the iterated function system (IFS)

literature (Hutchinson, 1981; Vrscay, 1991; and Barnsley,

1993). Most of these works analyze discrete time stochastic

economic growth models with logarithmic utility and Cobb-

Douglas production, either in a one-sector or two-sector

framework, showing that through appropriate log-

transformations their optimal dynamics can be converted

into an affine iterated function system converging to a singu-

lar measure supported on some fractal set; in the case of uni-

dimensional iterated function systems such an attractor can

be the Cantor set (Montrucchio and Privileggi, 1999; Mitra

et al., 2003; Mitra and Privileggi, 2004; 2006; 2009;

Marsiglio, 2012; Privileggi and Marsiglio, 2013; and La

Torre et al., 2015), while in the case of two-dimensional iter-

ated function systems it can be either the Sierpinski gasket or

distorted-copies of the Barnsley’s fern (La Torre et al., 2011;

2015; 2018). With the exception of La Torre et al. (2018)

who considered also shocks affecting factor shares, in all

these works randomness affects economic activities through

the productivity channel, following the Brock and Mirman

(1972) tradition. Some of these works also identify specific

parameter configurations under which the invariant probabil-

ity measure turns out to be either singular or absolutely con-

tinuous (Mitra et al., 2003 and La Torre et al., 2015; 2018).

We contribute to this stochastic growth and fractal

attractor literature by analyzing an economy in which eco-

nomic production is affected by random shocks both directly

(via productivity and factor shares) and indirectly (via a pol-

lution externality). Specifically, we build on the model by La

Torre et al. (2018) in which such direct effects have already

been accounted for in order to allow for pollution to be an

additional and indirect source of randomness. To the best of

our knowledge, none of the extant works has ever considered

how the presence of externalities complicates aggregate

macroeconomic dynamics and what this may imply for the

attractor of the associated iterated function system.

However, accounting for the existence of such a pollution

externality, as widely discussed in the environmental eco-

nomics literature, is important to better characterize potential

economic outcomes. Several papers document and discuss

the extent to which the economy and the environment are

mutually related (IPCC, 2007 and Nordhaus, 2013): on the

one hand, economic activities generate pollution which is the

primary determinant of environmental problems; on the

other hand, environmental degradation precludes pollution

absorption which in turn critically determines economic

capabilities. Moreover, due to the large degree of uncertainty

associated with environmental phenomena, very little is

known with precision about such a bilateral economy-

environment relation, which is most likely to be random

(Soretz, 2003 and Marsiglio and La Torre, 2016). In order to

take these issues into account in the most intuitive way, we

focus on the optimal dynamics in the decentralized economy,

where the externality is not internalized yet but it fully affects
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the evolution of both control and state variables; such a setting

is the most appropriate to give rise to a simple but realistic

characterization of real world dynamics. We show how the

optimal dynamics can be described in terms of a two-

dimensional affine iterated function system with probability,

whose coefficients can eventually take on negative values, dif-

ferently from all extant papers. Such a peculiarity of our

framework, due to the presence of the pollution externality,

allows us to identify a suitable parameter configuration capa-

ble of generating exactly the classical Barnsley’s fern as the

attractor of the log-linearized optimal dynamical system. To

the best of our knowledge, no other macroeconomic model

has ever been able to give rise to the Barnsley’s fern [since

the coefficients in their iterated function system can only take

on positive values, La Torre et al. (2018) model is able to gen-

erate only distorted copies of the fern, which ultimately do not

even remotely resemble a fern] for some specific—but fully

admissible—parameter configuration.

The rest of the paper is organized as follows: In Sec. II,

we briefly recall some basic results from the mathematical the-

ory on the iterated function system, which will help us discuss

our following results. In Sec. III, we formally introduce our

model which consists of a two-sector economic growth model

subject to random shocks affecting economic productive activ-

ities both directly and indirectly, thanks to the role played by

pollution. We also derive the optimal rule for the control varia-

bles and the optimal dynamics of the state variables—physical

and human capital—in the decentralized economy in which

the pollution externality is not internalized. In Sec. IV, we

introduce a log-transformation which allows us to recast the

nonlinear optimal dynamical system in terms of a two-

dimensional affine iterated function system, allowing us to bor-

row from the mathematical literature to discuss its eventual

convergence to an invariant measure supported on some fractal

set. In Sec. V, we present two specific model’s parameteriza-

tions: the first one allows us to obtain exactly the classical

Barnsley’s fern as the attractor of the log-linearized optimal

dynamics; the second one focuses on a more realistic scenario

giving rise to an attractor very different from a fern. In Sec.

VI, we conclude and present directions for future research,

while the Appendix contains a brief sketch of the proof yield-

ing the optimal dynamics of the model presented in Sec. III.

II. PRELIMINARIES ON ITERATED FUNCTION
SYSTEMS

Let ðX; dÞ denote a compact metric space. An N-map

iterated function system (IFS) on X, w ¼ w1;…;wNf g, con-

sists of N contraction mappings on X, i.e., wi : X! X;
i ¼ 1;…;N, with contraction factors ci 2 ½0; 1Þ (see

Barnsley, 1993; Hutchinson, 1981; Barnsley et al., 1986; and

Kunze et al., 2012). Associated with an N-map IFS, one can

define a set-valued mapping ŵ on the space Hð½a; b�Þ of non-

empty compact subsets of X as follows:

ŵ Sð Þ :¼
[N
i¼1

wi Sð Þ; S 2 H a; b½ �ð Þ:

The following two results state a convergence property

of an N-map IFS towards its attractor. More properties and

results can be found in the study by Barnsley (1993),

Hutchinson (1981), and Kunze et al. (2012).

Theorem 1 (Hutchinson, 1981). For A;B 2 HðXÞ

h ŵ Að Þ; ŵ Bð Þ
� �

� ch A;Bð Þ where c ¼ max
1�i�N

ci < 1

and h denotes the Hausdorff metric onHðXÞ.
Corollary 1 (Hutchinson, 1981). There exists a unique

set A 2 Hð½a; b�Þ, the attractor of the IFS w, such that

A ¼ ŵ Að Þ ¼
[N
i¼1

wi Að Þ:

Moreover, for any B 2 H a; b½ �ð Þ, h A; ŵn Bð Þ
� �

! 0 as
n!1.

An N-map Iterated Function System with (constant)
Probabilities (IFSP) ðw; pÞ is an N-map IFS w with associ-

ated probabilities p ¼ p1;…; pNf g;
PN

i¼1 pi ¼ 1.

Let MðXÞ denote the set of probability measures on

(Borel subsets of) X and dMK the Monge-Kantorovich dis-

tance on this space: For l; � 2MðXÞ, with the Monge-

Kantorovich metric

dMK l; �ð Þ ¼ sup
f2Lip1 Xð Þ

ð
f dl�

ð
f d�

� �
;

where Lip1ðXÞ ¼ f : X! R j jf ðxÞ � f ðyÞj � dðx; yÞ
� �

. The

metric space ðMðXÞ; dMKÞ is complete (Barnsley, 1993;

Hutchinson, 1981; and Kunze et al., 2012).

The Markov operator associated with an N-map IFSP is

a mapping M :M!M, defined as follows: For any

l 2 MðXÞ, and for any measurable set S � X, define a mea-

sure � ¼ Ml as

� Sð Þ ¼ Mlð Þ Sð Þ ¼
XN

i¼1

pil w�1
i Sð Þ

� �
:

The following results show that the Markov operator has

a unique invariant measure �� and it is globally attracting.

Theorem 2 (Hutchinson, 1981). For l; � 2 MðXÞ,

dMK Ml;M�ð Þ � cdMK l; �ð Þ :

Corollary 2 (Hutchinson, 1981). There exists a unique
measure �� 2 MðXÞ, the invariant measure of the IFSP
ðw; pÞ, such that

�l Sð Þ ¼ M�lð Þ Sð Þ ¼
XN

i¼1

pi�l w�1
i Sð Þ

� �
:

Moreover, for any � 2 M Xð Þ; dMK �l;Mn�ð Þ ! 0 as n!1.

Theorem 3 (Hutchinson, 1981). The support of the
invariant measure �l of an N-map IFSP ðw; pÞ is the attractor
A of the IFS w, i.e.,

supp �l ¼ A:

In order to determine the attractor of an IFSP, the fol-

lowing random dynamical system known as Chaos Game

055916-2 La Torre, Marsiglio, and Privileggi Chaos 28, 055916 (2018)



might be implemented: Starting from x0 2 X, let us deter-

mine xtþ1 ¼ wrðxtÞ where r is chosen in the interval 1…N
with probabilities p1;…; pN . It can be proved (see Kunze

et al., 2012, for more details) that the orbit of this random

dynamical system is dense in the attractor A.

III. THE MODEL

We analyze a discrete time two-sector economic growth

model where the production technologies in the final and human

capital sectors are affected by random shocks both directly (via

productivity and factor shares) and indirectly (via pollution).

While a large literature has considered the implications of ran-

dom shocks for macroeconomic dynamics by analyzing the

direct channel (Brock and Mirman, 1972; Montrucchio and

Privileggi, 1999; Mitra et al., 2003; and La Torre et al., 2015;

2018), more limited is the number of works analyzing the indi-

rect channel, and, in particular, the effects of pollution on aggre-

gate macroeconomic dynamics (Privileggi and Marsiglio, 2013

and Marsiglio and La Torre, 2016). However, it is now well

known that economic activities and environmental outcomes are

mutually related, thus taking into account the fact that the exis-

tence of some economic-environmental feedback is essential to

understand macroeconomic dynamics. Several studies discuss

that pollution is a by-product of economic activities and how

pollution impacts both aggregate economic activities and health

(IPCC, 2007 and Nordhaus, 2013). We take these issues into

account by (i) allowing output to be the driver of pollution and

(ii) allowing pollution to affect both the productivity of the final

output and that of human capital (meant as a broad form of capi-

tal encompassing not only education but health as well; Barro

and Sala–i–Martin, 2004).

We analyze a standard two-sector optimal growth model

under uncertainty, as discussed in the study by La Torre et al.
(2011), extended to account for such mutual economic-

environmental feedback. Specifically, the representative house-

hold maximizes its lifetime utility subject to the evolution of

physical and human capital. Lifetime utility is the infinite dis-

counted (b > 0 is the discount factor) sum of instantaneous

utilities, and the utility function is assumed to be logarithmic in

consumption. At each time t, the household chooses its level of

consumption, ct, and which share of its human capital, ut, to

devote to the production of the final consumption good, which

is produced according to a Cobb-Douglas technology combin-

ing physical, kt, and human, ht, capital. Also new human capital

is produced according to a Cobb-Douglas technology, which

however employs only human capital (Lucas, 1988 and

Rebelo, 1991). As in the study by La Torre et al. (2018), the

production technologies of the final good and new human capi-

tal are directly affected by exogenous shocks which take both a

multiplicative form through coefficients zt and gt, respectively,

and an exponential form affecting the factor shares in both

production functions; therefore, output is given by

yt ¼ ztAtk
at
t ðuthtÞct , where at and ct denote the random physical

and human capital shares of income, respectively, while human

capital is given by htþ1 ¼ gtBt½ð1� utÞht�/t , with /t denoting

the random human capital share of human capital. In this for-

mulation, At and Bt denote the pollution-induced productivity

levels in the final and human capital sectors, respectively.

Specifically, we assume that At ¼ P�t
t and Bt ¼ P

lt
t , where Pt

denotes pollution which is a by-product of macroeconomic

activities and �t; lt 2 R are random parameters; since these

parameters can take on real values, this accounts for the fact

that pollution may have positive or negative effects on the pro-

duction of the final output and/or human capital. As in

the study by Marsiglio et al. (2016), economic activities gener-

ate pollution according to Pt ¼ k
vt
t hxt

t in order to represent

that the production inputs are characterized by different

pollution-intensities; such intensities are set by parameters vt

and xt, respectively, which, like �t and lt, can take on real val-

ues and are random. This implies that At ¼ k
�tvt
t h�txt

t and

Bt ¼ k
ltvt
t h

ltxt
t , suggesting that randomness through the pollu-

tion channels affects indirectly the production technologies of

the final good and human capital.

The whole ðzt; gt; at; ct;/t; �t; lt; vt;xtÞ 2 R9 is a ran-

dom vector which is independent and identically distributed,

and can take on m values, i.e., at each time t ðzt; gt; at; ct;
/t; �t; lt; vt;xtÞ 2 ðzi; gi; ai; ci;/i; �i; li; vi;xiÞ

� �m

i¼1
. While

shocks zt; gt enter multiplicatively the two Cobb-Douglas

production functions and at; ct;/t represent shocks on the

factor shares, �t; lt; vt;xt are random externalities affecting

final production through two channels: 1) �t; lt determine

how pollution modifies final production and 2) vt;xt deter-

mine how much pollution is generated by the current levels

of physical and human capital, kt and ht, employed in the

production of the composite good. As far as the first

five shocks are concerned, we shall assume that zt; gt > 0;
0 < ai; ci;/i < 1 and ai þ ci � 1 for all i ¼ 1;…;m. We do

not impose any restriction on parameters �i; li; vi;xi, but the

realization of the shock determines whether physical or

human capital is the relatively greener production input

(according to how vt and xt compare). Each vector realiza-

tion, ðzi; gi; ai; ci;/i; �i; li; vi;xiÞ, occurs with (constant)

probability pi, with pi 2 ð0; 1Þ, i ¼ 1;…;m, and
Pm

i¼1 pi ¼ 1.

The optimization problem of the representative house-

hold can be summarized as follows:

V k0; h0; z0; g0; a0; c0;/0; �0; l0; v0;x0ð Þ

¼ max
ct;utf g

X1
t¼0

btE0lnct ; (1)

s:t:
ktþ1 ¼ ztAtk

at
t uthtð Þct � ct

htþ1 ¼ gtBt 1� utð Þht½ �/t

k0 > 0; h0 > 0; z0;g0;a0;c0;/0; �0;l0;v0;x0ð Þare given:

8><
>:

(2)

As in the study by Benhabib and Perli (1994), in the

competitive (decentralized) solution the representative

households take At and Bt as given, meaning that, because of

the pollution externality, this solution will differ from the

planning (centralized) solution. Most papers focusing on the

effects of random shocks on macroeconomic dynamics ana-

lyze the centralized solution where all externalities are inter-

nalized by the social planner; we will instead focus on the

decentralized solution since it is likely to provide us with a

more realistic characterization of real world dynamics. In a

competitive solution, since agents do not take into account the
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existence of the pollution externality, the optimal control prob-

lem is concave such that first order conditions turn out to be

also sufficient. However, even if the household does not inter-

nalize the externality this will affect macroeconomic dynamics,

allowing us to take track of the aggregate effects of pollution.

Hence, assuming that parameters At and Bt are considered as

constants by utility maximizing households when deriving the

first order conditions, similar steps to those in the study by La

Torre et al. (2018)—which are briefly recalled in the

Appendix—allow us to determine the following optimal policy

functions:

ct ¼ 1� bE að Þ½ �yt; (3)

ut ¼
1� bE /ð Þ½ �ct

1� bE /ð Þ½ �ct þ bE cð Þ/t

; (4)

where EðaÞ ¼
Pm

i¼1 piai, EðcÞ ¼
Pm

i¼1 pici, and Eð/Þ
¼
Pm

i¼1 pi/i. Substituting (3) and (4) back into the law of

motion of physical and human capital and taking into account

the pollution-induced productivity levels At ¼ k
�tvt
t h�txt

t and

Bt ¼ k
ltvt
t h

ltxt
t yield the optimal dynamics in the competitive

economy, which turn out to be characterized by the following

equations:

ktþ1 ¼ Dtztk
atþ�tvt
t h

ctþ�txt
t

htþ1 ¼ Htgtk
ltvt
t h

/tþltxt
t

;

(
(5)

with

Dt ¼ bE að Þ 1� bE /ð Þ½ �ct

1� bE /ð Þ½ �ct þ bE cð Þ/t

( )ct

; (6)

Ht ¼
bE cð Þ/t

1� bE /ð Þ½ �ct þ bE cð Þ/t

( )/t

: (7)

IV. LOG-TRANSFORMATION

We can apply the same technique developed in the study

by La Torre et al. (2018) to build a specific transformation

that recasts system (5) into an affine, topologically equiva-

lent system. Specifically, we wish to transform it into a sys-

tem of the following form:

utþ1 ¼ at þ �tvtð Þut þ ct þ �txtð Þwt þ ft

wtþ1 ¼ ltvtut þ /t þ ltxtð Þwt þ #t;

(
(8)

where the coefficients are the exponents of physical and

human capital in our original Eq. (5) plus the parameters

characterizing pollution externalities, and the additive ran-

dom vector ðft; #tÞ 2 R2 takes on m values corresponding to

realizations of the multiplicative shocks ðzt; gtÞ. We will

show that, by imposing some conditions on the parameters,

there exists a one-to-one continuous transformation from the

dynamics of ðkt; htÞ defined by (5) to those of ðut;wtÞ as in

(8). By recalling Sec. II, the convergence of the random

dynamical system in (8) to the steady state can be obtained

by noticing that Eq. (8) is the chaos game associated with an

IFS with probabilities whose associated Markov operator

will be converging to an invariant measure �l.

It may be useful to rewrite (8) in vector terms as follows:

utþ1

wtþ1

" #
¼

at þ �tvt ct þ �txt

ltvt /t þ ltxt

" #
ut

wt

" #
þ

ft

#t

" #
; (9)

where

Qt ¼
at þ �tvt ct þ �txt

ltvt /t þ ltxt

" #
(10)

is a random 2� 2 matrix which, together with the vector

ðft; #tÞ 2 R2, takes on m values corresponding to the m
shock realizations.

Proposition 1. There exists a one-to-one logarithmic
transformation ðkt; htÞ ! ðut;wtÞ defined by

ut ¼ q1lnkt þ q2lnht þ q3

wt ¼ q4lnkt þ q5lnht þ q6

(
(11)

that is topologically conjugate to the nonlinear system (5) pro-
vided that the model’s parameters zi; gi; ai; ci;/i; �i; li; vi;xi,
the constants fi; #i in the IFS (8), together with the coefficients
q1; q2; q3; q4; q5; q6, satisfy the following conditions:

livið Þq2 ¼ ci þ �ixið Þq4

ci þ �ixið Þq1 ¼ ai þ �ivi � /i � lixið Þq2 þ ci þ �ixið Þq5

ai þ �ivi � /i � lixið Þq4 þ liviq5 ¼ liviq1

lnDi þ lnzið Þq1 þ lnHi þ lngið Þq2 þ 1� ai � �ivið Þq3

� ci þ �ixið Þq6 ¼ fi

lnDi þ lnzið Þq4 þ lnHi þ lngið Þq5 þ 1� /i � lixið Þq6

� liviq3 ¼ #i

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

for all i ¼ 1;…;m: (12)

Proof. We use (11) to rewrite both sides of (8)

q1lnktþ1þq2lnhtþ1þq3¼ atþ �tvtð Þ q1lnktþq2lnhtþq3ð Þ
þ ctþ �txtð Þ q4lnktþq5lnhtð
þq6Þþ ft;q4lnktþ1þq5lnhtþ1þq6

¼ ltvt q1lnktþq2lnhtþq3ð Þ
þ /tþltxtð Þ q4lnktþq5lnhtð
þq6Þþ#t:

Then, use (5) to rewrite the LHS in each equation above

in order to obtain the following two equations:

q1lnDt þ q1lnzt þ q1 at þ �tvtð Þlnkt þ q1 ct þ �txtð Þlnht

þq2lnHt þ q2lngt þ q2ltvtlnkt þ q2 /t þ ltxtð Þlnht þ q3

¼ at þ �tvtð Þq1lnkt þ at þ �tvtð Þq2lnht þ at þ �tvtð Þq3

þ ct þ �txtð Þq4lnkt þ ct þ �txtð Þq5lnht

þ ct þ �txtð Þq6 þ ft; (13)
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q4lnDt þ q4lnzt þ q4 at þ �tvtð Þlnkt þ q4 ct þ �txtð Þlnht

þq5lnHt þ q5lngt þ q5ltvtlnkt þ q5 /t þ ltxtð Þlnht þ q6

¼ ltvtq1lnkt þ ltvtq2lnht þ ltvtq3

þ /t þ ltxtð Þq4lnkt þ /t þ ltxtð Þq5lnht

þ /t þ ltxtð Þq6 þ #t: (14)

As these equations must hold for all t � 0, under the

i.i.d. assumption it is sufficient that they hold for all parame-

ters’ values, that is, for all i ¼ 1;…;m; hence, in the sequel

we replace the time index t of each term involving only the

model’s parameters with the index i ¼ 1;…;m (clearly, the

state variables kt and ht remain indexed by t). By equating

the corresponding coefficients in the LHS and the RHS, Eqs.

(13) and (14) become independent of values taken by the

variables lnkt and lnht; this is equivalent to the following

conditions (corresponding to system (25) in the study by La

Torre et al., 2018):

livið Þq2 ¼ ci þ �ixið Þq4

ci þ �ixið Þq1 ¼ ai þ �ivi � /i � lixið Þq2 þ ci þ �ixið Þq5

ai þ �ivi � /i � lixið Þq4 þ liviq5 ¼ liviq1

8><
>:

for all i ¼ 1;…;m:

After joining them with the terms that do not depend on

lnkt and lnht left in Eqs. (13) and (14) we obtain the system

of 5m equations in (12) and the proof is complete. �

System (12) has 5m equations and 6 unknowns,

q1; q2; q3; q4; q5; q6; clearly such a system has no solution

whenever there is more than one state of nature, i.e., when

m � 2, as already with m¼ 2 it has 10 equations in 6

unknowns. Hence, following an approach similar to that pur-

sued in the study by La Torre et al. (2015; 2018), in Sec. V

we will add more constraints on the parameters’ values so to

increase the number of unknowns; specifically we will treat

some values for the coefficients zi; gi as unknowns in order

to have as many unknowns as the number of equations in

(12). A complication ensuing in this case is that system (12)

ceases to be linear, as the new unknowns (even in their log-

expression) lnzi; lngi enter multiplicatively the other

unknowns of the type qi. Therefore, to solve (12) we will

rely on numerical methods.

V. SOME SPECIFIC PARAMETERIZATIONS

We now present two different model’s parameteriza-

tions. The first allow us to generate exactly the classical

Barnsley’s fern, but this requires to impose somehow ques-

tionable parameter values. The second tries to fix this issue

by focusing on more realistic parameter values; this however

gives rise to an attractor very different from a fern.

A. A model generating the classical Barnsley’s fern

It is well known that the classical Barnsley’s fern

(Barnsley, 1993) is produced by the following affine IFS:

w1 u;wð Þ ¼
0 0

0 0:16

" #
u

w

" #
þ

0

0

" #
with prob: p1 ¼ 0:01

w2 u;wð Þ ¼
�0:15 0:28

0:26 0:24

" #
u

w

" #
þ

0

0:44

" #
with prob: p2 ¼ 0:07

w3 u;wð Þ ¼
0:20 �0:26

0:23 0:22

" #
u

w

" #
þ

0

1:60

" #
with prob: p3 ¼ 0:07

w4 u;wð Þ ¼
0:85 0:04

�0:04 0:85

" #
u

w

" #
þ

0

1:60

" #
with prob: p4 ¼ 0:85:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(15)

We now look for a configuration of parameters’ values

for the economic growth model discussed in Sec. III such

that the dynamics described by the IFS (15), generating the

Barnsley’s fern through the chaos game, are obtained as the

result of some logarithmic transformation of the form in (11)

applied to the optimal nonlinear dynamics defined by (5). In

other words, following the arguments developed in Sec. IV

we look for suitable values of the parameters

zi; gi; ai; ci;/i; �i; li; vi;xi that allow the existence of coeffi-

cients q1; q2; q3; q4; q5; q6 solving system (12). Note that the

existence of a pollution externality allows some of the

parameters in the random matrix (10) to take on negative

values, which is specifically required in order to generate the

IFS (15).

The realization of the random matrix Q1 representing

the first map in the IFS (15), w1, imposes a constraint that

yields immediately the values of q2, q4 and q5 for all

i ¼ 1;…; 4. In fact, according to (10), l1v1 ¼ 0 must hold

for i¼ 1; as ðci þ �ixiÞ 6¼ 0 in the wi maps for i ¼ 2;…; 4,

replacing l1v1 ¼ 0 in the first equation of system (12) for

i¼ 1 yields q4 ¼ 0, which, when substituted in the third

equation of system (12) leads to liviq5 ¼ liviq1, which, in
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turn implies that q5 ¼ q1 must hold, as livi 6¼ 0 in the wi

maps for i ¼ 2;…; 4. Finally, using q5 ¼ q1 in the second

set of equations of system (12) and noting that, besides

having ðci þ �ixiÞ 6¼ 0 in the wi maps for i ¼ 2;…; 4;
ðai þ �ivi � /i � lixiÞ 6¼ 0 at least in the w1 map (for i¼ 1),

we observe that also q2 ¼ 0 must hold. Therefore, with

q2 ¼ q4 ¼ 0 and q5 ¼ q1 satisfying the first three equations

in (12) for all i ¼ 1;…; 4, after substituting such values in

the remaining equations the whole system boils down to the

following 8 equations:

lnDi þ lnzið Þq1 þ 1� ai � �ivið Þq3 � ci þ �ixið Þq6 ¼ fi

lnHi þ lngið Þq1 þ 1� /i � lixið Þq6 � liviq3 ¼ #i

for i ¼ 1;…; 4;

(
(16)

having only the three coefficients q1, q3, and q6 as

unknowns.

As anticipated at the end of Sec. IV, we will choose

arbitrary 3 out of the 8 values for the multiplicative shocks

zi; gi (or, equivalently, lnzi; lngi) and leave the remaining 5

values for zi; gi (lnzi; lngi) as unknowns so that, together with

the 3 coefficients q1; q3; q6, (16) becomes a system of 8 equa-

tions in 8 unknowns. Specifically, we will set

lnz1 ¼ �0:4; lng1 ¼ �0:2; and lng2 ¼ 0 (17)

and leave lnz2; lnz3; lnz4; lng3; and lng4 as unknowns, to be

found as part of the solution for system (16).

As far as all other parameters are concerned, we set

b ¼ 0:96, while the constant terms fi and #i in system (16)

are clearly given by the coordinates of the constant vectors

in the maps wi of the IFS (15). To choose all the exponents

involved in the optimal dynamics (5), we must equate the

random matrix Qi defined in (10) to the 4 values considered

in the IFS (15), that is, we must choose values for the expo-

nents ai; ci;/i; �i; li; vi;xi that satisfy the following 4 sets of

conditions:

1:

a1 þ �1v1 ¼ 0

c1 þ �1x1 ¼ 0

l1v1 ¼ 0

/1 þ l1x1 ¼ 0:16

2:

a2 þ �2v2 ¼ �0:15

c2 þ �2x2 ¼ 0:28

l2v2 ¼ 0:26

/2 þ l2x2 ¼ 0:24

8>>>><
>>>>:

8>>>><
>>>>:

3:

a3 þ �3v3 ¼ 0:20

c3 þ �3x3 ¼ �0:26

l3v3 ¼ 0:23

/3 þ l3x3 ¼ 0:22

4:

a4 þ �4v4 ¼ 0:85

c4 þ �4x4 ¼ 0:04

l4v4 ¼ �0:04

/4 þ l4x4 ¼ 0:85:

8>><
>>:

8>><
>>:

1. The third equation for the first shock realization requires

that either l1 or v1 be zero; we opt for the former solution,

l1 ¼ 0, as the latter would imply that a1 is zero as well

from the first equation, which is ruled out by the basic

assumptions on the model’s fundamentals. Such choice

implies that, in the first shock realization, the production

of human capital is not being affected by pollution.

Setting a1 ¼ 0:3 and �1 ¼ �0:5 (output production

decreases in the stock of pollution), the first equation

yields v1 ¼ �0:3=ð�0:5Þ ¼ 0:6 (pollution increases in

the stock of physical capital); setting c1 ¼ 0:6, the second

equation yields x1 ¼ �0:6=ð�0:5Þ ¼ 1:2 (pollution

increases in the stock of human capital as well); finally,

with l1 ¼ 0 the last equation implies that /1 ¼ 0:16. This

configuration envisages v1 < x1, so that human capital

turns out to be more pollution-intense than physical

capital.

2. In the second set of conditions, we set l2 ¼ �0:5 (human

capital production decreases in the stock of pollution), so

that the third equation yields v2 ¼ 0:26=ð�0:5Þ ¼ �0:52

(pollution decreases in the stock of physical capital),

which, by setting a2 ¼ 0:15 in the first equation, leads

to �2 ¼ ð�0:15� 0:15Þ=ð�0:52Þ ¼ 0:3=ð0:52Þ ¼ 0:577

(output production increases in the stock of pollution). By

setting /2 ¼ 0:1, the last equation yields x2 ¼ ð0:24

�0:1Þ=ð�0:5Þ¼0:14=ð�0:5Þ¼�0:28 (pollution decreases

in the stock of human capital), which, after substituting

into the second equation, in turn yields c2¼0:28

�0:577ð�0:28Þ¼0:28þ0:162¼0:442. In this case again

v2<x2, but now both have negative values, which implies

that the stock of pollution is more sensitive to changes in

the stock of physical capital than in the stock of human

capital.

3. In the third set of conditions again we set l3 ¼ �0:5
(human capital production decreases in the stock of pollu-

tion), so that the third equation yields v3 ¼ 0:23=ð�0:5Þ
¼ �0:46 (pollution decreases in the stock of physical capi-

tal), which, by setting a3 ¼ 0:05 in the first equation, leads to

�3 ¼ ð0:20 � 0:05Þ=ð�0:46Þ ¼ 0:15=ð�0:46Þ ¼ �0:326

(output production decreases in the stock of pollution).

By setting c3 ¼ 0:05, the second equation yields x3

¼ð�0:26�0:05Þ=ð�0:326Þ¼0:31=ð0:326Þ¼0:951 (pol-

lution increases in the stock of human capital), which,

after substituting into the last equation, in turn yields

/3 ¼ 0:22�ð�0:5Þð0:951Þ ¼ 0:22þ 0:475¼ 0:695. Also

in this scenario v3 <x3, but now v3 and x3 have opposite

signs, meaning that they affect pollution in opposite

directions.

4. In the fourth shock realization, we set l4 ¼ �0:1 (human

capital production decreases in the stock of pollution), so

that the third equation yields v4 ¼ �0:04=ð�0:1Þ ¼ 0:4
(pollution increases in the stock of physical capital),

which, by setting a4 ¼ 0:89 in the first equation, leads to

�4 ¼ ð0:85� 0:89Þ=ð0:4Þ ¼ �0:04=ð0:4Þ ¼ �0:1 (output

production decreases in the stock of pollution with the
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same intensity as human capital production). By setting c4

¼ 0:06, the second equation yields x4 ¼ ð0:04� 0:06Þ=
ð�0:1Þ ¼ �0:02=ð�0:1Þ ¼ 0:2 (pollution increases in the

stock of human capital), which, after substituting into the

last equation, in turn yields /4 ¼ 0:85� ð�0:1Þð0:2Þ
¼ 0:85þ 0:02 ¼ 0:87. The fourth configuration thus has

v4 > x4, so that physical capital turns out to be more

pollution-intense than human capital.

Table I summarizes all parameters’ values discussed so

far.

Under these parameters’ choices

E að Þ ¼
X4

i¼1

aipi ¼ 0:7735; E cð Þ ¼
X4

i¼1

cipi ¼ 0:0914

and E /ð Þ ¼
X4

i¼1

/ipi ¼ 0:7968;

such that the coefficients (6) and (7) defining the optimal pol-

icy of the model at the end of Sec. III become

Recall that, following the discussion at the beginning of

this section on the parameters’ constraints due to the first

shock realization, q2 ¼ q4 ¼ 0 and q1 ¼ q5. Hence, using the

choice in (17) for the values of lnz1; lng1; lng2, we find the fol-

lowing unique solution for system (16) by means of the stan-

dard (symbolic, not numerical) ‘solve’ routine in Maple

q1 ¼ q5 ¼ 5:6984

q2 ¼ q4 ¼ 0

q3 ¼ 4:3
q6 ¼ 3:9638;

with all multiplicative shock configurations

(18)

where the values of z1, g1, and g2 correspond to the choice in

(17) and all other values are found as a solution of (16).

Figure 1(a) reports the standard Barnsley’s fern by trac-

ing 50,000 random iterations (the Maple code is available

from the authors upon request) of the affine IFS defined in

(15) expressed in terms of the log-transformed variables

u;w. It is well known that the unique invariant measure sup-

ported on the fern is singular (Theorem 1 in La Torre et al.,
2018). Figure 1(b) portraits the attractor of the corresponding

nonlinear IFS defined in (5) for the parameters’ values char-

acterizing our growth model reported in Table I, expressed

in terms of physical and human capital, k, h; such attractor

turns out to be a downsized version of the fern in Fig. 1(a)

(rescaled by a factor 10 on the horizontal axis and by a factor

4 on the vertical axis) which is being translated into the posi-

tive orthant (k and h cannot be negative) and somewhat

straighten up along its main branch.

Some comments on the parametrization employed to

generate the classical fern are needed. Leaving aside the

FIG. 1. Approximation through 50,000

random iterations of (a) the IFS in (15)

generating the standard Barnsley’s fern

as attractor and (b) the attractor of the

corresponding nonlinear IFS in (5) for

the parameters’ values listed in Table I.

TABLE I. Parameters characterizing our model, additive constants, and

probability values corresponding to the IFS (15) generating the classical

Barnsley’s (1993) fern.

i ai ci /i �i li vi xi fi #i pi

1 0.3 0.6 0.16 –0.5 0 0.6 1.2 0 0 0.01

2 0.15 0.442 0.1 0.557 –0.5 –0.52 –0.28 0 0.44 0.07

3 0.05 0.05 0.695 –0.326 –0.5 –0.46 0.951 0 1.60 0.07

4 0.89 0.06 0.87 –0.1 –0.1 0.4 0.2 0 1.60 0.85
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productivity parameter values in (18), the four-shocks

parameters’ configuration reported in Table I does not only

clearly satisfy all the assumptions on the model’s fundamen-

tals, but may even be considered not totally unrealistic, as

the following tentative arguments try to clarify.

The first scenario foresees reasonable values for all

three factor shares (perhaps the human capital share, /1, in

human capital production is too low), an output production

function which decreases in the stock of pollution (�1 < 0),

while the latter increases in both the physical and human

capital stocks (v1;x1 > 0). The only anomalies may appear

to be an output production process that is not being affected

by pollution (l1 ¼ 0) and a human capital production that

generates pollution with and intensity which is the double

of that of physical capital (x1 ¼ 2v1)—i.e., human capital

is a dirtier input than physical capital. The latter feature

may be characteristic in an economy that is more efficient

in producing physical goods than in recycling waste gener-

ated by human activity.

In the second shock configuration, besides perhaps too

low values for the physical and human capital shares in out-

put production and a human capital share in human capital

production even lower than in the first case, the most appar-

ent anomalies are given by a positive relationship between

the pollution stock and output production (�2 > 0)—i.e., pol-

lution becomes itself some exogenous production factor—

together with a negative relationship between both physical

and human capital and pollution stock (v2;x2 < 0)—i.e.,

physical and human capital accumulation reduces pollution.

On the other hand, the negative relationship between pollu-

tion and human capital (l2 < 0) has an intuitive and appeal-

ing interpretation if one attributes to the latter a broader

meaning that includes health. Such a scenario may describe

a virtuous economy that is capable of recycling pollution as

a production enhancer (�2 > 0), while physical together with

human capital accumulation may be thought as general pro-

gress capable of bringing about a better and more efficient

treatment and recycling of polluting by-products.

The third shock environment is characterized by even

smaller values for the physical and human capital shares in

output production, while the human capital share in human

capital production more realistically becomes larger. The

pollution parameters envisage a reasonable negative relation-

ship between the pollution stock and both physical and

human capital production (�3; l3 < 0) together with a posi-

tive relationship between human capital accumulation and

pollution (x3 > 0), while, again, the relationship between

physical capital accumulation and the pollution stock is neg-

ative (v3 < 0)—i.e., physical capital accumulation reduces

pollution. In this case, human capital turns out to be a dirty

input, while physical capital accumulation has a beneficial

effect on the environment. This may occur in an economy

that invests a lot in renewable technologies.

The last exogenous shock includes an output production

function with a very large physical capital share compared to

the human capital share as well as a quite large human capi-

tal share in human capital production, while the pollution

stock decreases both physical and human capital production

(�4; l4 < 0) and both physical and human capital accumula-

tion increase the pollution stock (v4;x4 > 0). Besides the

excessive displacement in the final production factor shares

(there is, however, a growing discussion on the reduction of

the labor income share due to automation, machines and AI

replacing labor in tasks that it used to perform, implying that

scenarios envisaging very low intensities of human capital in

final production may be well deemed plausible. See, e.g.,
Korinek and Stiglitz (2017) and Acemoglu and Restrepo

(2018), who also propose policies aimed at countervailing

such tendency and the inequality it involves), this scenario

seems to describe a somewhat more realistic economy, as

human capital happens to be a greener input than physical

capital (x4 < v4).

B. A tentative more realistic example

Considering the possible drawbacks of our previous

parametrization, we now rely on a set of parameter values

allowing for a more intuitive interpretation of typical real world

situations. Such a configuration is summarized in Table II.

To such a configuration corresponds the following affine

IFS:

w1 u;wð Þ ¼
0:03 0:87

�0:14 �0:44

" #
u

w

" #
þ

0

0

" #
with prob: p1 ¼ 0:15

w2 u;wð Þ ¼
0:06 0:69

�0:15 �0:10

" #
u

w

" #
þ

0

0:44

" #
with prob: p2 ¼ 0:30

w3 u;wð Þ ¼
0:20 0:39

�0:15 0:36

" #
u

w

" #
þ

0

1:60

" #
with prob: p3 ¼ 0:50

w4 u;wð Þ ¼
0:21 0:15

0 0:70

" #
u

w

" #
þ

0

1:60

" #
with prob: p4 ¼ 0:05:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(19)

In order to solve the first 3m equations in system (12) in

one shot, we exploit the same property that we used at the

beginning of Sec. V A of having zero as the left bottom ele-

ment in one of the four stochastic matrices Qi. Specifically,
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we set l4 ¼ 0 for i¼ 4, so that in the fourth shock realization

the production of human capital is not being affected by pol-

lution. The same argument followed in Sec. V A then imme-

diately yields q2 ¼ q4 ¼ 0 and q5 ¼ q1 satisfying the first

three equations in (12) for all i ¼ 1;…; 4; after substituting

such values in the remaining equations the whole system

again boils down to the same 8 equations as in (16) having

only the three coefficients q1, q3, and q6 as unknowns. To

have 8 unknowns in total as well, again we choose arbitrary

3 out of the 8 values for the multiplicative shocks zi; gi (or,

equivalently, lnzi; lngi) and leave the remaining 5 values for

zi; gi (lnzi; lngi) as unknowns; in this example, we will set

lnz1 ¼ lng1 ¼ lng2 ¼ 0 (20)

and leave lnz2; lnz3; lnz4; lng3, and lng4 as unknowns, to be

found as part of the solution for system (16).

We keep the individual discount factor value b ¼ 0:96

and all the values of the constant terms fi and #i in system

(12)—i.e., in the IFS (19)—are the same as the coordinates

of the constant vectors in the maps wi of the IFS (15). We

choose four values for each factor share (the first three col-

umns in Table II) that, together with the probabilities listed

in the last column of Table II, on average resemble empirical

evidence

E að Þ ¼
X4

i¼1

aipi ¼
X4

i¼1

/ipi ¼ 0:3125; and

E cð Þ ¼
X4

i¼1

cipi ¼ 0:6775:

Under these assumptions the coefficients (6) and (7)

defining the optimal policy of the model at the end of Sec.

III become

As far as the four pollution parameters, �i; li; vi;xi,

are concerned, we propose an increasing pattern for both

the (absolute value of the) intensity of pollution affecting

output production, �i, and the intensity of physical capital

accumulation adding to the pollution stock, vi, as the

physical capital share ai in output production increases;

similarly, also the (absolute value of the) intensity of pol-

lution affecting human capital production, li, and the

intensity of human capital accumulation adding to the pol-

lution stock, xi, increase as the human capital share ci in

human capital production increases. The latter property is

consistent with the assumption that in the fourth shock

configuration pollution does not affect the production of

human capital, l4 ¼ 0, for the technical reasons explained

before.

Having set q2 ¼ q4 ¼ 0 and q1 ¼ q5 and using the

choice in (20) for the values of lnz1; lng1; lng2, we find the

following unique solution for system (16) by means of the

standard (symbolic, not numerical) “solve” routine in

Maple

q1 ¼ q5 ¼ �3:6368;

q2 ¼ q4 ¼ 0;

q3 ¼ �4:6267;

q6 ¼ 0:0640;

(21)

TABLE II. Factor shares, additive constants and probability values corre-

sponding to the IFS (19).

i ai ci /i �i li vi xi fi #i pi

1 0.05 0.94 0.05 –0.1 –0.7 0.2 0.7 0 0 0.15

2 0.15 0.84 0.15 –0.3 –0.5 0.3 0.5 0 0.44 0.30

3 0.45 0.54 0.45 –0.5 –0.3 0.5 0.3 0 1.60 0.50

4 0.70 0.29 0.70 –0.7 0 0.7 0.2 0 1.60 0.05

FIG. 2. Approximation through 50,000

random iterations of (a) the attractor of

the affine IFS in (19) and (b) the attrac-

tor of the corresponding nonlinear IFS

in (5) for the parameters’ values listed

in Table II.
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with all multiplicative shocks configurations

where the values of z1, g1, and g2 correspond to the choice in

(20) and all other values are found as a solution of (16).

Figure 2(a) traces 50,000 random iterations to approxi-

mate the attractor of the affine IFS (19) expressed in terms

of the log-transformed variables u;w. By applying condi-

tion (5) of Theorem 1 in the study by La Torre et al. (2018)

to the random matrix Qi defined in (10), we find that

also for the parameters’ values reported in Table II the

invariant measure supported on the attractor in Fig. 2(a) is

singular, as

jdet Q1ð Þjp1 jdet Q2ð Þjp2 jdet Q3ð Þjp3 jdet Q4ð Þjp4

< pp1

1 pp2

2 pp3

3 pp4

4 () 0:1170 < 0:3191:

Figure 2(b) portraits the attractor of the corresponding

nonlinear IFS defined in (5) for the parameters’ values

characterizing our growth model reported in Table II,

expressed in terms of physical and human capital, k, h;

such an attractor turns out to be a downsized version of

the fern in Fig. 2(a), which is being translated into the

positive orthant (k and h cannot be negative) and rotated

by 180�, consistently with both the magnitude and

the (negative) signs of the nonzero coefficients q1, q3, and

q5 in (21).

VI. CONCLUSIONS

We extend the analysis of the fractal nature of

steady states in macroeconomic models, by considering a

stochastic two-sector discrete-time economic growth

model in which shocks affect the production function not

only directly (via productivity and factor shares) but also

indirectly (via a pollution externality). This extension is

meaningful from both economic and mathematical points

of view, since it allows capturing important economy-

environment feedback and it gives rise to an IFS with

potential negative coefficients. This latter characteristic,

completely lacking in the extant literature and due to the

presence of the pollution externality, is essential in order

to prove our main result: a full-fledged macroeconomic

model can generate optimal dynamics which, through an

appropriate log-transformation, converges to a singular

measure supported on the classical Barnsley’s fern. To

the best of our knowledge, no other paper is able to gen-

erate the Barnsley’s fern as an attractor of the optimal

dynamics emerging from a meaningful macroeconomic

model. It should be also emphasized that the key features

of our model allowing for a representation of the log-

transformed optimal dynamics by means of an IFS with

potentially negative coefficients paves the way for possi-

bly characterizing a quite large family of fractal attrac-

tors, including, perhaps, the renowned maple-leaf.

This paper closes an open gap in the stochastic

growth and fractal attractor literature. Three important

questions still remain open: (i) how to characterize also

absolute continuity of the invariant measure in a two-

dimensional affine IFS; (ii) how to extend the analysis in

a framework in which probability is not constant but

place-dependent; and (iii) which other fractal attractors

can be generated from the optimal dynamics of macro-

economic models. These further issues are on top of our

future research agenda.

APPENDIX: OPTIMAL POLICY CALCULATION IN
SECTION III

We first eliminate controls and keep only the two state

variables by restating problem (1) in reduced-form

max
kt;htf g

X1
t¼0

btE0ln ztAtk
at
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

� ktþ1

8<
:

9=
;;

s:t:

0 � ktþ1 � ztAtk
at
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

0 � htþ1 � gtBth
/t
t

k0 > 0; h0 > 0; z0; g0; a0; c0;/0;A0;B0ð Þ are given;

8>>>>>>>><
>>>>>>>>:

(A1)

where, from the households point of view, At ¼ k
�tvt
t h�txt

t and

Bt ¼ k
ltvt
t h

ltxt
t are taken as given. An argument similar to

that used in Sec. III B of La Torre et al. (2018) applies here

to establish that problem (A1) is concave.

The Euler-Lagrange equation with respect to kt is

� 1

zt�1At�1kat�1

t�1 ht�1 �
ht

gt�1Bt�1

� 	 1
/t�1

" #ct�1

� kt

þbEt�1

ztAtatk
at�1
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

ztAtk
at
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

� ktþ1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ 0;

which, by assuming that ktþ1 ¼ sztAtk
at
t ht � ½htþ1=
�

ðgtBtÞ�1=/tgct for some constant 0 < s < 1, and recalling that

ðzt; gt; at; ct;/t;At;BtÞ
� �

is an i.i.d. process, boils down to
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1

kt

s
� kt

¼ bEt�1

ztAtatk
at�1
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

ztAtk
at
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

� sztAtk
at
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

bEt�1 atð Þ
1� sð Þkt

¼ bE að Þ
1� sð Þkt

;

where in the second equality kt has been pulled out of the expectation because, under our assumption, kt

¼ szt�1At�1kat�1

t�1 fht�1 � ½ht=ðgt�1Bt�1Þ�1=/t�1gct�1 is a deterministic choice taken at time t – 1, with all the information available

at that moment (including the optimal choice for ht), and in the last equality we used the i.i.d. assumption on the random vari-

able at, so that EðaÞ ¼
Pm

i¼1 piai is a constant. Then, the Euler-Lagrange equation becomes

s

1� sð Þkt
¼ bE að Þ

1� sð Þkt
;

so that the constant term is given by s ¼ bEðaÞ. Hence, given the optimal choice for the human capital htþ1 (or, equivalently,

utht), the (candidate) optimal policy for the physical capital is given by

ktþ1 ¼ bE að ÞztAtk
at
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

¼ bE að ÞztAtk
at
t uthtð Þct ; (A2)

where in the last equality we have recovered the original control formulation for human capital employed in final production.

Then, from the constraint (2), the optimal consumption as in (3) is immediately obtained.

The Euler-Lagrange equation with respect to ht leads to

�
zt�1At�1ct�1kat�1

t�1 ht�1 �
ht

gt�1Bt�1

� 	 1
/t�1

" #ct�1�1

1

/t�1

ht

gt�1Bt�1

� 	 1
/t�1
�1 1

gt�1Bt�1

zt�1At�1kat�1

t�1 ht�1 �
ht

gt�1Bt�1

� 	 1
/t�1

" #ct�1

� kt

þbEt�1

ztAtctk
at
t ht �

htþ1

gtBt

� 	 1
/t

" #ct�1

ztAtk
at
t ht �

htþ1

gtBt

� 	 1
/t

" #ct

� ktþ1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ 0:

By using the optimal policy for physical capital (A2) for both terms kt and ktþ1, the last equation simplifies into

ct�1

/t�1

ht

gt�1Bt�1

� 	 1
/t�1

ht�1 �
ht

gt�1Bt�1

� 	 1
/t�1

" #
ht

¼ bEt�1

ct

ht �
htþ1

gtBt

� 	 1
/t

" #8><
>:

9>=
>;
:

From the original dynamic constraint in (2), we can recover the control variable formulation for human capital and substitute

ht�1 � ½ht=ðgt�1Bt�1Þ�1=/t�1 with ht�1ut�1 and ht � ½htþ1=ðgtBtÞ�1=/t with htut, while also noting that ½ht=ðgt�1Bt�1Þ�1=/t�1

¼ ð1� ut�1Þht�1, thus obtaining

ct�1 1� ut�1ð Þht�1

/t�1ht�1ut�1ht
¼ bEt�1

ct

htut

� 	
;

which, again after pulling ht out of the expectation from the RHS as it is a deterministic choice taken at time t – 1 with all the

information available at that moment (while ut, representing a decision to be taken at time t, is still unknown at time t – 1), and

simplifying terms, becomes

ct�1 1� ut�1ð Þ
/t�1ut�1

¼ bEt�1

ct

ut

� 	
: (A3)
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Under the i.i.d. assumption, we can safely assume that the

expectation on the RHS is constant, say Et�1ðct=utÞ
¼ Eðc=uÞ 	 C (since the realization ct is associated with a

unique configuration ðzt; gt; at; ct;/t;At;BtÞ of shocks, it is

reasonable to assume that the optimal choice for ut must be

the same whenever such a configuration is realized) and then

rearrange the last equation as

ct�1

ut�1

¼ ct�1 þ bC/t�1;

which, taking expectations on both terms, turns into

E
ct�1

ut�1

� 	
¼ E

c
u

� 	
¼ C ¼ E cð Þ þ bCE /ð Þ;

where under the i.i.d. assumption EðcÞ ¼
Pm

i¼1 pici and

Eð/Þ ¼
Pm

i¼1 pi/i are constants, yielding the expected ratio

E
c
u

� 	
¼ C ¼

E cð Þ
1� bE /ð Þ :

Using the last expression for Et�1ðct=utÞ in (A3), the optimal

fraction of human capital to be employed in the final good

production as in (4) is immediately obtained.

Since the partial derivatives of the instantaneous utility

along the optimal path ðk
t ; h
t Þ defined by (5) are

@

@kt
u ¼ bE að Þ

1� bE að Þ½ �k
t
and

@

@kt
u ¼

bE cð Þ
1� bE /ð Þ½ �h
t

;

the transversality condition

lim
t!1

btE0

bE að Þ
1� bE að Þ½ �k
t

k
t þ
bE cð Þ

1� bE /ð Þ½ �h
t
h
t

( )
¼ 0

is satisfied and the proof is complete.
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