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Abstract. Let G be a finite group, and Irr(G) the set of irreducible complex

characters of G . We say that an element g ∈ G is a vanishing element of G if

there exists χ in Irr(G) such that χ(g) = 0. In this paper, we consider the set

of orders of the vanishing elements of a group G , and we define the prime graph

on it, which we denote by Γ(G) . Focusing on the class of solvable groups, we

prove that Γ(G) has at most two connected components, and we characterize

the case when it is disconnected. Moreover, we show that the diameter of

Γ(G) is at most 4 . Examples are given to round the understanding of this

matter. Among other things, we prove that the bound on the diameter is best

possible, and we construct an infinite family of examples showing that there

is no universal upper bound on the size of an independent set of Γ(G) .
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Introduction

Given a finite group G , it is possible to recognize several sets of positive integers

arising from the group structure of G . Just to mention some of the most relevant

and classical instances, one can consider the set o(G) consisting of the orders of

the elements of G , or the set cs(G) of conjugacy class sizes of G , or the set cd(G)

whose elements are the degrees of the irreducible complex characters of G .

In this context, it appears natural to ask to what extent the group structure of G

is reflected and influenced by sets of positive integers as above, and a useful tool in

this kind of investigation is the so-called prime graph. Given a finite set of positive

integers X , the prime graph Π(X) is defined as the simple undirected graph whose

vertices are the primes p such that there exists an element of X divisible by p ,

and two distinct vertices p , q are adjacent if and only if there exists an element of

X divisible by pq .

The graph Π(o(G)), which in this paper we shall denote by Π(G), is also known

as the Gruenberg-Kegel graph of G , and has been extensively studied. Let us focus

our attention on the class of finite solvable groups, which will be our environment

2000 Mathematics Subject Classification. 20C15.

The first and the second author are partially supported by the MIUR project “Teoria dei

gruppi e applicazioni”. The third author is partially supported by the Ministerio de Educación y

Ciencia proyecto MTM2007-61161 and by “Programa José Castillejo”, MEC.
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throughout the whole paper. For every group G belonging to this class, it is known

that Π(G) cannot have independent sets of size greater than 2 (that is, for every

choice of three distinct vertices of Π(G), there is an edge of Π(G) joining two

of them. See Proposition 1.5). From this fact the following properties can be

derived at once: the number of connected components of Π(G) is at most 2, if

Π(G) is disconnected then each connected component is a complete graph, and the

diameter of Π(G) (i.e. the maximum distance between two vertices lying in the

same connected component, which is set to be 0 if there are no vertices) is at most

3. The latter bound is attained, as shown in [8, Example 3]. Moreover, the solvable

groups G such that Π(G) is disconnected were classified by Gruenberg and Kegel

(see Theorem 1.3).

Our aim in this paper is to analyze, via the prime graph, a particular subset

of o(G), which we denote by vo(G) and which encodes information coming from

the set Irr(G) of irreducible complex characters of G . Let Van(G) denote the set of

vanishing elements of G , that is, Van(G) = {g ∈ G | χ(g) = 0 for some χ ∈ Irr(G)} .

We define vo(G) to be the set {o(g) | g ∈ Van(G)} consisting of the orders of the

elements in Van(G). In a sense, vo(G) can be regarded as o(G) filtered by the

irreducible characters of G . Given that, we define the vanishing prime graph Γ(G)

of G as the prime graph Π(vo(G)).

As might be expected, Γ(G) shares some properties with Π(G). One of the main

results of this paper, which should be compared with Theorem 1.3, is the following

Theorem A. We say that G is a nearly 2-Frobenius group if there exist two normal

subgroups F and L of G with the following properties: F = F1 ×F2 is nilpotent,

where F1 and F2 are normal subgroups of G , furthermore G/F is a Frobenius

group with kernel L/F , G/F1 is a Frobenius group with kernel L/F1 , and G/F2

is a 2-Frobenius group (see Definition 1.1 for the definition of a 2-Frobenius group).

Theorem A. Let G be a finite solvable group. Then Γ(G) has at most two con-

nected components. Moreover, if Γ(G) is disconnected, then G is either a Frobenius

or a nearly 2-Frobenius group.

It is worth mentioning that the bound on the number of connected components

provided by Theorem A can be attained both by Frobenius groups and by nearly

2-Frobenius groups, as shown respectively in [1, Example 2] and in Example 3.6 of

this paper.

In order to obtain the bound on the number of connected components in The-

orem A, we cannot use the simple argument which yields the same conclusion for

Π(G). In fact, quite surprisingly, not only Γ(G) can have independent sets of size

3, but we can construct an infinite family of examples showing that there is no

upper bound on the size of such independent sets.
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Theorem B. Let k be a positive integer. There exists a finite solvable group G

such that Γ(G) is connected, and it has an independent set of size k .

The above result appears to be remarkable, also taking into account that both

the prime graphs made on cs(G) and on cd(G) cannot have independent sets of

size greater than 2 if G is solvable (see [2] and [10]).

As the last main result of this paper, we also prove the following theorem con-

cerning the diameter of Γ(G) (note that, by a classical result of Burnside, the

diameter of Γ(G) is 0 if and only if G is abelian). This result should be compared

with Corollary 1.6.

Theorem C. Let G be a finite solvable group. Then the diameter of Γ(G) is

at most 4 . Moreover, if Γ(G) is disconnected, then the diameter of Γ(G) is at

most 1 .

The bound provided by Theorem C is sharp, as shown by Example 5.2.

To conclude, we mention that the vertex set of Γ(G) can be strictly smaller

than the one of Π(G) (consider for instance the symmetric group S3 ). Namely, [3,

Theorem A] provides a necessary condition for this to happen: if a prime p is

not a vertex of Γ(G), then G has a normal Sylow p -subgroup (this holds in fact

also for nonsolvable groups). Moreover, if p and q are vertices of Γ(G) which are

adjacent in Π(G), then they are not necessarily adjacent in Γ(G) (in other words,

Γ(G) is not an induced subgraph of Π(G)). As an example, consider the group

G = S3×D10 , where D10 is the dihedral group of order 10: it can be checked that

3 and 5 are vertices of Γ(G) which are linked in Π(G), but not in Γ(G).

Throughout the whole paper, every abstract group will be assumed to be a finite

group.

1. Preliminaries

We start by recalling a theorem originally due to Gruenberg and Kegel. To do

this, we first recall the definition of 2-Frobenius group.

Definition 1.1. A group G is said to be a 2-Frobenius group if there exist two

normal subgroups F and L of G with the following properties: L is a Frobenius

group with kernel F , and G/F is a Frobenius group with kernel L/F .

Remark 1.2. It is worth noticing that every 2-Frobenius group is solvable. More

precisely, assuming the setting of Definition 1.1, the groups L/F and G/L are

cyclic. In fact, the group L/F is a Frobenius kernel and it is also isomorphic to

a Frobenius complement. Then L/F is nilpotent and all its Sylow subgroups are

either cyclic or generalized quaternion groups. If |L/F | is even, then the unique

involution of L/F is central in G/F , a contradiction. So, |L/F | is odd and hence

L/F is cyclic. The group G/L is isomorphic to a subgroup of Aut(L/F ), hence
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G/L is abelian. Now, G/L is isomorphic to a Frobenius complement of G/F , so

it is cyclic.

Theorem 1.3. ([11, Theorem A]) . Let G be a solvable group. Then Π(G) has

at most two connected components. Moreover, if Π(G) is disconnected, then G is

either a Frobenius or a 2-Frobenius group.

The following lemma concerning group actions of Frobenius groups will often

come in useful.

Lemma 1.4. ([7, 8.3.5]) . Let G be a Frobenius group with kernel F and com-

plement H . Assume that G acts on the abelian group A with (|A|, |F |) = 1 and

CA(F ) = 1 . Then CA(H) 6= 1 .

As mentioned in the Introduction, the bound on the number of connected com-

ponents provided by Theorem 1.3 can be easily deduced (together with the other

properties listed in Corollary 1.6) from the next proposition, originally appeared as

Proposition 1 in [8] (for the sake of completeness, we present a proof here). As cus-

tomary, given an integer n , we denote by π(n) the set of prime numbers dividing

n and, given a group G , we write π(G) for π(|G|). Note that π(G) is the vertex

set of Π(G).

Proposition 1.5. Let G be a solvable group, and let p , q , r be distinct vertices

of Π(G) . Then at least two among p , q and r are adjacent in Π(G) .

Proof. Let G be a counterexample of minimal order. Since G is solvable, the

existence of Hall subgroups and the minimality of G imply that π(G) = {p, q, r} .

Further, a minimal normal subgroup A of G must be, say, a Sylow p-subgroup of

G . Let K be a p -complement of G and observe that the Fitting subgroup F(K)

of K (denote it by F ) has prime power order: F is, say, a q -group. Then, if H is

a Sylow r -subgroup of K , the group FH is a Frobenius group with kernel F and

complement H . So Lemma 1.4 yields CA(H) 6= 1, whence pr divides the order of

some element of G , a contradiction.

Corollary 1.6. Let G be a solvable group. Then the diameter of Π(G) is at most

3 . Moreover, if Π(G) is disconnected, then the diameter of Π(G) is at most 1 .

In Proposition 1.7, as a kind of converse to Theorem 1.3, we gather some in-

formation on the connected components of Π(G) when G is a solvable Frobenius

group, or a 2-Frobenius group.

Proposition 1.7. (a) Let G be a solvable Frobenius group with kernel F and

complement H . The graph Π(G) has two connected components, whose vertex sets

are ρ1 = π(F ) and ρ2 = π(H) , and which are both complete graphs.

(b) Let G be a 2-Frobenius group, and F,L be as in Definition 1.1 . The graph

Π(G) has two connected components, whose vertex sets are ρ1 = π(L/F ) and

ρ2 = π(G/L) ∪ π(F ) , and which are both complete graphs.
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Proof. By the structure of Frobenius and 2-Frobenius groups, in both cases (a)

and (b) every nonidentity element of G is either a ρ1 -element or a ρ2 -element and

ρ1 ∩ ρ2 = ∅ . Hence Π(G) is disconnected. By Theorem 1.3 and Corollary 1.6 (to-

gether with Remark 1.2), the connected components of Π(G) are complete graphs

with vertex sets ρ1, ρ2 .

As shown in Section 2, the Fitting subgroup F(G) of G plays a prominent role

when dealing with vanishing elements. The next proposition, which is a well known

fact concerning this subgroup, requires some notation. Let G be a group, and let

V be a chief factor of G (that is, there are two normal subgroups A ≥ B of G

such that V = A/B is a minimal normal subgroup of G/B ). In what follows,

we denote by CG(V ) the unique subgroup C of G containing B and such that

C/B = CG/B(V ). Also, let M be a normal subgroup of G . If V = A/B is a

chief factor of G such that A ≤M , then we say that V is a G-chief factor of M .

Finally, we say that {V1, ..., Vn} is a set of G-chief factors of M if Vi = Mi/Mi−1

where 1 = M0 ≤M1 ≤ · · · ≤Mn = M is part of a chief series of G passing through

M .

Proposition 1.8. Let G be a solvable group, and {V1, ..., Vn} a set of G-chief

factors of F(G) . Then we have F(G) =
⋂n
i=1 CG(Vi) .

Proof. Set C =
⋂n
i=1 CG(Vi), F = F(G), and note that F ≤ C by [5, III, Satz 4.3].

Note also that, given any set {W1, ...,Wm} of G-chief factors of F , by the Jordan-

Hölder Theorem we have m = n and C =
⋂m
i=1 CG(Wi). Assume for a contradic-

tion that F < C , and let D/F be a minimal normal subgroup of G/F with D ≤ C .

Since G is solvable, D/F is a p-group for some prime p . Write L = Op′(F ) E G

and let P be a Sylow p -subgroup of D . By assumption, P centralizes the elements

of a set of G -chief factors of L and hence, by coprimality, P centralizes L . This

yields P ≤ Op(D) ≤ Op(G) ≤ F , a contradiction.

2. Vanishing elements and the Fitting subgroup

We first consider a situation in which a vanishing element of a group G lies in

F(G).

Proposition 2.1. Let G be a group, and assume that F(G) contains an element

of Van(G) . Then there exists g ∈ F(G) ∩Van(G) such that π(o(g)) = π(F(G)) .

Proof. Let us set F = F(G). Denote by x an element in F ∩ Van(G), and by τ

the set π(o(x)). Also, let N and M be respectively the Hall τ -subgroup and the

Hall τ ′ -subgroup of F . We claim that, for every y in M , the element g = xy lies

in Van(G). Given that, it will be enough to choose y in M with π(o(y)) = π(M).



6 S. DOLFI, E. PACIFICI, L. SANUS, AND P. SPIGA

In fact, let χ be an irreducible character of G such that χ(x) = 0, and let α be

an irreducible constituent of χN . We get

0 = χ(x) = e

s∑
i=1

αgi(x),

where e = 〈χN , α〉 6= 0, and {g1, ..., gs} is a right transversal for the inertia sub-

group IG(α) in G .

Consider now the irreducible character α × 1M of F . It is easy to check that

IG(α× 1M ) = IG(α). Let γ be an irreducible character of IG(α× 1M ) lying over

α × 1M , and set ψ = γG . Notice that, by the Clifford Correspondence, we get

ψ ∈ Irr(G). Then, setting f = 〈ψF , α× 1M 〉 , for every y in M we have

ψ(xy) = f

s∑
i=1

(α× 1M )gi(xy) = f

s∑
i=1

αgi(x) = 0 ,

and xy is in Van(G), as claimed.

On the other hand, we now focus on elements lying outside the Fitting subgroup.

We start with an observation that will be repeatedly used.

Remark 2.2. We point out two statements concerning the vanishing elements of

G and of the quotients of G .

First, if N is a normal subgroup of G , then any character of G/N can be

viewed, by inflation, as a character of G . In particular, if xN ∈ Van(G/N), then

xN ⊆ Van(G).

Second, if M , N are normal subgroups of G and if there exists ψ ∈ Irr(N)

which vanishes on N \M , then every element in N \M is a vanishing element of

G . In fact, for every n in N \M and for every g in G , clearly we have ng ∈ N \M :

choosing χ ∈ Irr(G) which lies over ψ , we have that χ(n) is a sum of values of the

kind ψ(ng), which are all 0.

As a consequence of Remark 2.2 we get the following lemma.

Lemma 2.3. If G is a Frobenius or a 2-Frobenius group, then G\F(G) ⊆ Van(G) .

Lemma 2.3 describes one particular situation in which it is easily seen that every

element outside F(G) is a vanishing element of G . In fact, although at the time of

this writing it is not known whether this property holds for every solvable group,

a great deal of information in this respect is provided by an important result by

Isaacs, Navarro and Wolf, which we state next.

Theorem 2.4. ([6, Theorem D]) . Let G be a solvable group. If x is a nonvan-

ishing element of G , then xF(G) is a 2-element of G/F(G) .

The main purpose of this section is to prove two lemmas (Lemma 2.10 and

Lemma 2.11) concerning the structure of a solvable group G such that Γ(G) is

disconnected, which will be useful for the proof of Theorem A.
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Lemma 2.5. Let G be a solvable group, and V a chief factor of G . Let N � G

be such that NCG(V )/CG(V ) is abelian. Then N \CG(V ) ⊆ Van(G) .

Proof. Let A and B be normal subgroups of G such that V = A/B . Replacing G

with the quotient group G/B , it is easily seen that we can assume B = 1, so that

V is a minimal normal subgroup of G and it can be regarded as a simple G -module

over a suitable prime field GF(p). Set Ḡ = G/CG(V ), and adopt the bar conven-

tion. By Clifford’s theorem, V is a semisimple (and faithful) N̄ -module. This

forces Op(N̄) to be trivial, and therefore, as N̄ is abelian, we get (|N̄ |, |V |) = 1.

As is well known, it follows that there exists a regular orbit in the action of N̄ on

the elements of V . Applying the Glauberman Correspondence ([4, Theorem 18.9]),

there exists φ ∈ Irr(V ) such that IN̄ (φ) = 1, whence IN (φ) = N ∩CG(V ).

Now, let χ be an irreducible character of G lying over φ . By the Clifford

Correspondence we have χ = ψG , where ψ is an irreducible character of I = IG(φ).

For every g in G , we get

Ig ∩N = (I ∩N)g = IN (φ)g ≤ CG(V )g = CG(V ).

As χ vanishes in G \
⋃
g∈G I

g , the desired conclusion follows.

Lemma 2.6. Let G be a solvable group, and N a normal subgroup of G . If

N/F(N) is abelian, then N \ F(N) ⊆ Van(G) .

Proof. Let {V1, V2, . . . , Vn} be a set of G-chief factors of F(N), and C =
⋂n
i=1 CN (Vi).

Clearly C centralizes a set of N -chief factors of F(N). By Proposition 1.8, then

C ≤ F(N). Further, F(N) ≤ F(G) and hence F(N) ≤ C , so C = F(N).

Now observe that, for every i ∈ {1, ..., n} , the group NCG(Vi)/CG(Vi) is isomor-

phic to a quotient of N/F(N), therefore it is abelian and we can apply Lemma 2.5.

We conclude that every element in N \
⋂n
i=1 CG(Vi) = N \ F(N) lies in Van(G).

Lemma 2.7. Let M , N be normal subgroups of G such that M < N , M is

nilpotent and N/M is a p-group for some prime p . Assume that (p, |M |) = 1 , and

that CN (M) ≤ M . Assume also that if x ∈ Van(G) , then either (o(x), |M |) = 1

or (o(x), p) = 1 holds. Then N is a Frobenius group with kernel M .

Proof. By the Schur-Zassenhaus Theorem, there exists a complement P of M

in N . If A is a characteristic abelian subgroup of P , then AM E G and, by

Lemma 2.6, AM \ M ⊆ Van(G). Thus, our assumption on the orders of the

elements in Van(G) implies that CAM (m) ≤ M for every nontrivial m ∈ M . So

AM is a Frobenius group with kernel M . It follows that A is cyclic. This shows

that every characteristic abelian subgroup of P is cyclic.

By [9, Theorem 1.2], we can write P = ET with E ∩ T = Z ≤ Z(P ), |Z| = p ,

and [E, T ] = 1. The group E is extraspecial or E = Z . There exists a cyclic
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subgroup U ≤ T with |T : U | ≤ 2 and U = CT (U). Further, U and EU are

characteristic subgroups of P .

In the case when E 6= Z we have (EU)′ = Z and U = Z(EU), whence, by [4,

Theorem 7.5], every nonlinear character of EU vanishes on EU \ U .

Write G = G/M and adopt the bar convention. Observe that U,EU E G .

By the previous paragraph and by Remark 2.2, we have EUM \ UM ⊆ Van(G).

Further, applying again Lemma 2.6, we see that UM \M ⊆ Van(G). Therefore,

EUM \M ⊆ Van(G). It follows that CEUM (m) ≤M for every nontrivial m ∈M ,

and hence EUM is a Frobenius group with kernel M .

Now, if p is odd we get P = EU , therefore N = EUM , and we are done.

If p = 2, then EU is either cyclic or generalized quaternion. Assume first

that EU is generalized quaternion. Since EU/Z is abelian, and since the index

of the derived subgroup of a generalized quaternion group is 4, it follows that

EU = E ' Q8 , and U = Z . In particular, T = CT (Z) = CT (U) = U . Hence, in

this case we get P = EU , therefore N = EUM , and we are done.

Finally, if EU is cyclic, then EU = U and P = T . Now, U is an abelian

normal subgroup of index at most 2 in P , so that every nonlinear character of P

vanishes on P \ U . By Remark 2.2, it follows that N \ UM ⊆ Van(G). Hence, as

UM \M ⊆ Van(G), we get that N \M ⊆ Van(G). Thus, CN (m) ≤M for every

nontrivial m ∈M , that is, N is a Frobenius group with kernel M .

Lemma 2.8. Let G be a solvable nonnilpotent group with Fitting subgroup F , and

assume (|F |, |G/F |) = 1 . If (o(g), |F |) = 1 for every g ∈ Van(G) \ F , then G is

a Frobenius group with kernel F .

Proof. By the Schur-Zassenhaus Theorem, there exists a complement H of F in

G . Let p be a prime such that P = Op(H) is nontrivial. We have that PF E G ,

F is a nilpotent p′ -group, and CPF (F ) ≤ F . Thus, by Lemma 2.7, we see that

PF is a Frobenius group with kernel F . In particular, P is cyclic or generalized

quaternion.

So, L = F(H) = C × Q with C cyclic of odd order and Q either cyclic or

generalized quaternion.

If Q = 1, then L clearly has a characteristic series whose factors are cyclic

of prime order. Indeed, the same conclusion holds also if Q 6= 1 and Q 6' Q8 ,

as in this case L has a unique cyclic subgroup of index 2. If Q ' Q8 , then L

has a characteristic series whose factors are cyclic of prime order or isomorphic to

C2 × C2 . Therefore, in any case, every H -chief factor of L is cyclic or isomorphic

to C2 × C2 . Let now V be any of these factors and D = H/CH(V ).

If V is cyclic, then D is abelian, and an application of Lemma 2.5 yields that

H \CH(V ) lies in Van(H).

If V ' C2 ×C2 , then D is isomorphic to a subgroup of S3 . If D has order less

than 6, then we can argue as in the paragraph above, getting H\CH(V ) ⊆ Van(H).
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In the case when D is isomorphic to S3 , the group D has an abelian normal sub-

group A/CH(V ) of index 2. By Lemma 2.5, A\CH(V ) lies in Van(H). Moreover,

every element of D not lying in A/CH(V ) is in Van(D), and we conclude, applying

Remark 2.2, that also in this case H \CH(V ) lies in Van(H).

Since Proposition 1.8 yields L =
⋂n
i=1 CH(Vi), where {V1, ..., Vn} is a set of

H -chief factors of L , we get H \ L ⊆ Van(H) and hence G \ LF ⊆ Van(G).

We now show that LF \F ⊆ Van(G). Recall that L = C×Q , where C is cyclic

of odd order and Q is either a cyclic 2-group or a generalized quaternion group. We

define a cyclic characteristic subgroup U of L as follows: we set U = Z(L) if Q is

cyclic or isomorphic to Q8 , otherwise we set U to be the unique cyclic subgroup of

index 2 in L . Given that, every element in UF \ F is in Van(G) by Lemma 2.6.

Moreover, in the cases when U < L , there exists a nonlinear irreducible character

ψ of L such that ψ vanishes on L\U . Now Remark 2.2 yields LF \UF ⊆ Van(G).

The conclusion so far is that every element in G\F is a vanishing element of G .

Now, if there exists a nonidentity element h ∈ H which centralizes a nonidentity

element f ∈ F , then hf is an element not lying in F (hence a vanishing element)

whose order is not coprime with |F | . We reached a contradiction, and the proof is

complete.

Remark 2.9. If π is a subset of the vertex set of the graph Γ, then we define the

induced subgraph Γπ as the subgraph of Γ with vertex set π and such that two

vertices in π are adjacent in Γπ if and only if they are adjacent in Γ. It will often

be useful to note what follows. Let G be a solvable group, and let F denote its

Fitting subgroup. By [3, Theorem A], every prime in π = π(G/F ) is a vertex of

Γ(G). Moreover, if s and t are primes in π which are adjacent in Π(G/F ), then

they are adjacent in Γ(G) as well. In fact, take x in G such that o(xF ) is divisible

by st : as xF is clearly not a 2-element of G/F , the element x is in Van(G) by

Theorem 2.4, and its order is divisible by st . Summing up, this says that Π(G/F )

is a subgraph of Γ(G)π .

Lemma 2.10. Let G be a solvable group, and assume that Γ(G) is disconnected.

If Π(G/F(G)) is connected, then G is a Frobenius group with kernel F .

Proof. Setting F = F(G) and π = π(G/F ) we note that, by Remark 2.9 and by

our assumptions, Γ(G)π is connected.

We claim that F contains some vanishing element of G . In fact, assume

F ∩ Van(G) = ∅ , and take a vertex r of Γ(G). There exists an element g of

Van(G) such that r divides o(g) and, since g is in G \ F , o(g) must be divisible

by a suitable prime in π . This argument shows that every vertex in Γ(G) is adja-

cent to a prime in π . But, Γ(G)π is connected, and this leads to a contradiction.

Now, by Proposition 2.1, every prime in σ = π(F ) is a vertex of Γ(G), and

Γ(G)σ is a complete graph. It is then clear that G is not nilpotent, and that we



10 S. DOLFI, E. PACIFICI, L. SANUS, AND P. SPIGA

must have (|F |, |G/F |) = 1. Also, our assumptions imply that every g ∈ Van(G)\F
is such that (o(g), |F |) = 1. We are in a position to apply Lemma 2.8, which yields

the conclusion.

Lemma 2.11. Let G be a solvable group, and assume that Γ(G) is disconnected.

If Π(G/F(G)) is also disconnected, then G/F(G) is a Frobenius group and every

element in G \ F(G) lies in Van(G) .

Proof. Let us denote by F and K respectively the first and the second term of

the upper Fitting series of G . Since the prime graph of G/F is disconnected,

by Theorem 1.3 we have that G/F is either a Frobenius group or a 2-Frobenius

group. In order to treat the two cases simultaneously, we shall set L = G if G/F is

a Frobenius group, whereas L will denote the third term of the Fitting series of G if

G/F is 2-Frobenius. Therefore, in any case L/F is a Frobenius group with kernel

K/F . Also, given a prime p which divides |K/F | , we shall set P/F = Op(K/F ).

Consider the quotient group Ḡ = G/Φ(G), and adopt the bar convention. The

group F̄ can be viewed as a semisimple Ḡ-module (possibly in mixed characteris-

tic), whence, by Clifford’s Theorem ([4, 2.14]), it is a semisimple P̄ -module. Let q

be a prime dividing the order of [P̄ , F̄ ] , and let Q̄ be a Sylow q -subgroup of F̄ . We

get [P̄ , F̄ ] = [P̄ , Q̄] · [P̄ ,Oq′(F̄ )] , whence our assumption that q divides the order of

[P̄ , F̄ ] forces [P̄ , Q̄] to be nontrivial. Note that, since Op(F̄ ) is a semisimple mod-

ule under the action of the p-group P/F , we get [P̄ ,Op(F̄ )] = [P/F,Op(F̄ )] = 1.

In particular, Q̄ is not Op(F̄ ) (i.e. q 6= p) and, by coprimality, C[P̄ ,Q̄](P̄ ) = 1.

Consider now a Frobenius complement H/F of L/F , and observe that HP/F

is a Frobenius group with kernel P/F . Moreover, [P̄ , Q̄] is an HP/F -module

in characteristic q (which is coprime to |P/F |) and in which no element is fixed

by P/F . We are in a position to apply Lemma 1.4 (note that [P̄ , Q̄] is certainly

abelian, since it is a module), obtaining that there exists a nontrivial element in

[P̄ , Q̄] which is fixed by H/F . As a consequence, there exists an element g in

L \ K whose order is divisible by q . Recalling now that every element in L \ K
lies in Van(G) (see Remark 2.2 and Lemma 2.3), we have that the given prime q

is adjacent in Γ(G) to a prime in π(L/K).

Set σ = π(K/F ) ∪ π(G/L), and τ = π(L/K). Recall that, by Remark 2.9

and Proposition 1.7, Γ(G)σ and Γ(G)τ are complete graphs. We next show the

following: let x be an element in Van(G) whose order is divisible by p , then o(x) is

coprime to the order of [P̄ , F̄ ] (recall that p ∈ σ ). In fact, assume by contradiction

that there exist a prime q ∈ π([P̄ , F̄ ]) , and x ∈ Van(G) such that o(x) is divisible

by pq . In particular, q is adjacent in Γ(G) to the prime p of σ . On the other

hand, by the conclusion in the paragraph above, q is adjacent in Γ(G) to a prime

in τ . Since Γ(G)σ,Γ(G)τ are connected, we have that all the primes in π(G/F )

lie in the same connected component of Γ(G), and this forces F to contain some

vanishing element. Then, by Proposition 2.1, all the primes in π(F ) (including q )
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are vertices of Γ(G) which are pairwise adjacent, and this leads to the contradiction

that Γ(G) is connected.

Since, as already observed, we have [P̄ ,Op(F̄ )] = 1, it is easily seen that

F̄ = [P̄ , F̄ ]×CF̄ (P̄ ). We are then in a position to apply Lemma 2.7 to the group

Ḡ/CF̄ (P̄ ), with F̄ /CF̄ (P̄ ) playing the role of M and P̄ /CF̄ (P̄ ) playing the role

of N , obtaining that P̄ /CF̄ (P̄ ) is a Frobenius group with kernel F̄ /CF̄ (P̄ ). In

particular P/F , which is isomorphic to a Frobenius complement of that group, is

cyclic or generalized quaternion. We have already observed that, still denoting by

H/F a Frobenius complement of K/F in L/F , the group H/F acts fixed-point

freely (by conjugation) on P/F . But now P/F cannot be a 2-group, otherwise its

unique involution would be centralized by H/F . We conclude that K/F has odd

order and, since it is nilpotent with cyclic Sylow subgroups, it is cyclic. Moreover,

G/K acts faithfully on K/F , whence it is abelian, and L is forced to be G . The

group G/F is then a Frobenius group. Since K/F has odd order, Lemma 2.3

together with Theorem 2.4 yield that every element in G \ F lies in Van(G), thus

completing the proof.

Remark 2.12. We note that Lemma 2.10 and Lemma 2.11 show, among other

things, that if G is solvable and Γ(G) is disconnected, then G \ F(G) ⊆ Van(G).

We invite the reader to compare this remark with Theorem 2.4.

3. Connected components: a proof of Theorem A

In this section we shall prove Theorem A. We start by recalling the definition of

nearly 2-Frobenius group.

Definition 3.1. A group G is said to be a nearly 2-Frobenius group if there exist

two normal subgroups F and L of G with the following properties: F = F1 × F2

is nilpotent, where F1 and F2 are normal subgroups of G , furthermore G/F is a

Frobenius group with kernel L/F , G/F1 is a Frobenius group with kernel L/F1 ,

and G/F2 is a 2-Frobenius group.

Note that, by Remark 1.2, every nearly 2-Frobenius group is solvable.

Proposition 3.2. Let G be a solvable group with Fitting subgroup F . Let p1, p2, r

be distinct primes such that p1, p2 ∈ π(G/F ) are not adjacent in Π(G/F ) , and r

lies in π(F ) . Then the following conclusions hold.

(a) There exist g in G and i ∈ {1, 2} such that pir is a divisor of o(g) , and pi is

a divisor of o(gF ) .

(b) If, in addition, Π(G/F ) is disconnected, then an element g as in (a) can be

chosen to be in Van(G) .

Proof. (a): Somewhat more generally, we shall prove the claim with any nilpotent

normal subgroup N of G in place of F , and we shall argue by induction on the
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order of the group. Denoting by H a Hall {p1, p2} -subgroup of N , we see that

G/H and N/H satisfy the hypothesis. If H 6= 1, by induction we find an element

gH in G/H of order divisible by pir , and such that the coset of gH modulo N/H

has order divisible by pi . The element g has the required properties, thus we may

assume H = 1.

Now, we have that {p1, p2, r} is a set of three distinct primes dividing the order

of the solvable group G , and therefore, by Proposition 1.5, G contains an element

g whose order is divisible by the product of two of these primes. If p1p2 divides

o(g) then it also divides the order of gN ∈ G/N , a contradiction. Hence the order

of g is divisible by p1r or by p2r and, since p1 and p2 are not in π(N), the order

of gN in G/N must be divisible by p1 or by p2 .

(b): In view of part (a) and Theorem 2.4, we only have to focus (up to changing

p1 with p2 ) on the case when p1 = 2, there are elements in G \ F whose order

is divisible by 2r (whereas there is no element of order divisible by p2r ), and for

every such element g we get that gF is a 2-element of G/F .

By Theorem 1.3, G/F is either a Frobenius group or a 2-Frobenius group.

Denote by K the second term of the Fitting series of G , and set π = π(K/F ). If

2 6∈ π , then every element in G/F of even order lies outside K/F , whence it is a

vanishing element of G by Remark 2.2 and Lemma 2.3, and we are done. Therefore

we may assume that 2 ∈ π , so that O2(G/F ) > 1. Let Z/F = Z(O2(G/F )). Since

Z/F is abelian, by Lemma 2.6 every element in Z \ F lies in Van(G). Hence it

suffices to find an element x ∈ Z \ F of order divisible by 2r .

Let Q ∈ Sylp2(G) and H = ZQ . Since p2 and 2 are not adjacent in Π(G/F ),

we have that H/F is a Frobenius group with kernel Z/F , and it is easy to see that

F = F(H). Clearly there are no elements of order p2r in H . By part (a), we have

that there is x ∈ H \ F of order divisible by 2r . Then xF ∈ H/F is a 2-element

and hence xF ∈ Z/F . Thus x ∈ Z \ F ⊆ Van(G), as desired.

Theorem A. Let G be a solvable group. Then Γ(G) has at most two connected

components. Moreover, if Γ(G) is disconnected, then G is either a Frobenius or a

nearly 2-Frobenius group.

Proof. Set F = F(G), and assume that Γ(G) is disconnected. If Π(G/F ) is

connected then, by Lemma 2.10, G is a Frobenius group.

What is left is to consider the case when Π(G/F ) is disconnected. Under this

assumption, Lemma 2.11 yields that G/F is a Frobenius group and that every

element in G \ F is a vanishing element of G . Let L/F denote the Frobenius

kernel of G/F , and define ρ1 = π(G/L), ρ2 = π(L/F ). For i ∈ {1, 2} , set

πi = ρi ∪ {t prime | t divides o(g) where gF is a nonidentity ρi-element}.

We claim that the vertex set of Γ(G) is π1 ∪ π2 . Since G \ F ⊆ Van(G), the

set π1 ∪ π2 is a subset of the vertex set of Γ(G). Let r be in π(F ), and assume
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r 6∈ ρ1 ∪ ρ2 . Choose any pi in ρi , for i = 1, 2. By Proposition 3.2(a), we get an i

in {1, 2} and an element g in G \ F whose order is divisible by pir and gF is a

ρi -element. Hence r ∈ πi . Thus the vertex set of Γ(G) is indeed π1 ∪ π2 . Notice

that, g being a vanishing element of G , we also proved that r is adjacent in Γ(G)

to every prime in ρi .

Next, we claim that π1 , π2 are the connected components of Γ(G). Recall

that, by Proposition 1.7 and Remark 2.9, Γ(G)ρ1 ,Γ(G)ρ2 are complete subgraphs

of Γ(G). As seen in the paragraph above, every prime in πi \ρi is adjacent in Γ(G)

to some prime in ρi (in fact, to every prime in ρi ), and so Γ(G)πi
is connected.

This concludes the proof of Theorem A as regards the bound on the number of

connected components.

Finally, let Fi be a Hall πi -subgroup of F , so that F = F1 × F2 , and let H

be a Hall π1 -subgroup of G . We see that H/F1 acts fixed-point freely on L/F1 ,

otherwise we would get an element gF1 in G/F1 whose order is divisible by a prime

in π1 and a prime in π2 : of course g is not in F , so it is in Van(G), and this

yields a contradiction. Whence G/F1 = HL/F1 is a Frobenius group with kernel

L/F1 . Furthermore, the same argument shows that L/F2 is a Frobenius group

with kernel F/F2 , therefore G/F2 is a 2-Frobenius group. We conclude that G is

a nearly 2-Frobenius group, and the proof is complete.

As a kind of converse to Theorem A, in the rest of this section we gather some

information on the connected components of Γ(G) when G is a solvable Frobenius

group, or a nearly 2-Frobenius group.

Lemma 3.3. Let G be a solvable Frobenius group with Frobenius kernel F and

Frobenius complement H . If F ∩ Van(G) 6= ∅ , then we have Γ(G) = Π(G) ,

otherwise Γ(G) coincides with the connected component of Π(G) with vertex set

π(H) .

Proof. By Remark 2.9, the connected component of Π(G) with vertex set π(H) is

a connected component of Γ(G). Now Proposition 2.1 yields the conclusion.

It may be worth mentioning that both the situations outlined in the conclusions

of Lemma 3.3 can occur. An example of the latter situation is S3 , whereas an

infinite family of examples of the former is provided in [1, Example 2].

Lemma 3.4. Let G be a nearly 2-Frobenius group. If Γ(G) is disconnected, then

each connected component is a complete graph.

Proof. Let F1, F2, F, L be as in Definition 3.1. Write π1 = π(F1), π2 = π(F2),

σ = π(L/F ), τ = π(G/L). Set G = G/F2 and adopt the bar convention. Since G

is a 2-Frobenius group, as observed in Remark 1.2 we have that L/F and G/L are

cyclic.
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We claim that there exists an element g ∈ G\L such that π(o(g)) ⊇ π1∪ τ . Let

xL be a generator of G/L . We can clearly assume that there exists q ∈ π1\π(o(x)).

Let Zq be the centre of the Sylow q -subgroup of F . Then the Frobenius group

G/F acts on Zq and Lemma 1.4 yields CZq
(x) 6= 1. Therefore, there exists an

element y ∈ Z(F )∩CF (x) such that π(o(y)) = π1 \ π(o(x)). Considering g = xy ,

we see that π(o(g)) ⊇ π1 ∪ τ .

By Remark 2.2 and Lemma 2.3, the element g is a vanishing element of G , and

so Γ(G)π1∪τ is a complete subgraph of Γ(G).

The group L/F1 is a nilpotent normal subgroup of G/F1 . Since L/F 6= 1, there

exists an element h ∈ L\F such that π2∪σ = π(L/F1) ⊆ π(o(h)). By Remark 2.2

and Lemma 2.3, the element h is a vanishing element of G and so Γ(G)π2∪σ is a

complete subgraph of Γ(G).

Finally, if Γ(G) is not connected, then clearly π1 ∪ τ, π2 ∪ σ are the connected

components of Γ(G).

Remark 3.5. Let G be a solvable group such that Γ(G) is disconnected. Lemma 3.3

(together with Proposition 1.7) and Lemma 3.4 show that the connected compo-

nents of Γ(G) are complete graphs.

We conclude the section with an example of a nearly 2-Frobenius group G such

that Γ(G) is disconnected (whereas Π(G) is connected, as G is not a 2-Frobenius

group). This, together with the previous theorem and [1, Example 2], completes

the picture.

Example 3.6. Let T be the normal 2-complement of the affine semilinear group

AΓL(1, 53), whence |T | = 3 · 53 · 31, and consider the (unique up to equivalence)

nontrivial action of T on a cyclic group C of order 79. Call G the semidirect

product CoT formed accordingly. We have that F(G) has order 53 · 79, and it

is abelian. We claim that Van(G) = G \ F(G). In fact, G \ F(G) is contained

in Van(G); moreover, no divisor of |G/F(G)| is a linear combination of 5 and 79

with nonnegative integer coefficients, thus we can apply [1, Theorem 2.3] to get

that F(G) ∩ Van(G) = ∅ . Given that, we have that Γ(G) is disconnected, with

connected components {3, 5}, {31, 79} .

4. Independent sets: a proof of Theorem B

Recall that, given a graph Γ, a subset π of the vertex set of Γ is said to

be independent if no two elements of π are adjacent in Γ. In this section we

consider the question whether there exists a universal upper bound for the size of

an independent set in Γ(G). As mentioned in the Introduction, we shall see that the

answer is negative even in the class of solvable groups. Note that this is remarkably

in contrast to what happens for the Gruenberg-Kegel graph (see Proposition 1.5)
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and for many other graphs attached to a solvable group G , such as the prime graph

on cs(G) or on cd(G) (see [2] and [10]).

We start with some preliminary results.

Lemma 4.1. Given a set of prime numbers {p1, ..., pk} , there exists a set of prime

numbers {q1, ..., qk} such that pj divides qi − 1 for every pair of distinct i, j in

{1, ..., k} and such that p1, . . . , pk, q1, . . . , qk are pairwise distinct.

Proof. For every i ∈ {1, . . . , k} , let ni be defined as
∏
j 6=i pj . By Dirichlet’s

Theorem on primes in arithmetic progression, there exists a prime qi such that

qi ≡ 1 mod ni . In particular, we have that pj divides qi − 1 for every j 6= i .

Since we have infinitely many choices for each qi , we can choose them so that

p1, . . . , pk, q1, . . . , qk are pairwise distinct.

Given p1, . . . , pk, q1, . . . , qk as in Lemma 4.1, we establish some notation. Set

n =
∏
pi , and m =

∏
qi . Also, define ni = n/pi and mi = m/qi . Now, let ai be

an invertible element of Z/qiZ of order ni (such an ai does exist, as ni divides

qi − 1). By the Chinese Remainder Theorem, we can find an integer a such that

a ≡ ai mod qi for every i = 1, . . . , k .

Next, let Cn = 〈x〉 be a cyclic group of order n , and Cm = 〈y〉 a cyclic group of

order m . Note that, by our assumption on m , n and a , the map y 7→ ya defines

an automorphism of Cm of order n . Consider the semidirect product G = CmoCn
formed according to the action given by yx = ya .

Finally, let A = {α1, . . . , αk}, B = {β1, . . . , βk} be two disjoint sets. We denote

by Γk the graph with vertex set A ∪B and with edge set

{{αi, αj}, {βi, βj}, {αi, βi} | i 6= j}.

Note that Γk is a prism where each of the two bases is a complete graph.

Lemma 4.2. The graph Π(G) is isomorphic to Γk .

Proof. Since Cn , Cm are cyclic subgroups of G , we have that the pi ’s are pairwise

adjacent in Π(G), and the same holds for the qi ’s.

It remains to prove that, for every i and j in {1, ..., k} , the vertices pi and qj

are adjacent in Π(G) if and only if i = j . Now, by construction, the element x acts

(by conjugation) on 〈ymj 〉 as an automorphism of order nj . Therefore, CCn(ymj )

has order n/nj = pj , and the claim is proved.

From now on, we shall assume that k ≥ 3, and that qi > n for every i ∈ {1, ..., k} .

As regards the latter assumption, Dirichlet’s theorem on primes in arithmetic pro-

gression certainly enables us to make it.

Lemma 4.3. The graphs Π(G) and Γ(G) have the same vertex set. Furthermore,

the edge set of Γ(G) is {{pi, pj}, {pi, qi} | i 6= j} .
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Proof. We prove that {pi, pj} and {pi, qi} are edges of Γ(G). Let M be the

normal subgroup of G of order qiqj and N be the subgroup of G containing Cm

such that |N : Cm| = pipj . Note that since k ≥ 3 we have Cm > M . Clearly,

M ≤ N are normal subgroups of G and by construction N/M is a Frobenius group

with Frobenius kernel Cm/M and with Frobenius complement of order pipj . By

Remark 2.2 and Lemma 2.3, the elements in N \Cm are vanishing elements for G .

Therefore {pi, pj} and {pi, qi} are edges of Γ(G).

To conclude it is enough to prove that Cm ∩ Van(G) = ∅ . Let χ be in Irr(G),

and g ∈ Cm such that χ(g) = 0. Now, χCm
= λ1 + · · · + λs , where λi is an

irreducible character of Cm and s divides n . In particular, since χ(g) = 0, we get

a vanishing sum of s m-th roots of unity. Therefore, by [1, Theorem 2.3], s must

be a linear combination with nonnegative integer coefficients of q1, . . . , qk . Clearly,

this contradicts the fact that we chose qi > n for every i ∈ {1, ..., k} .

Theorem B, which we state again, follows at once by the discussion above.

Theorem B. Let k be a positive integer. There exists a finite solvable group G

such that Γ(G) is connected, and it has an independent set of size k .

Proof. Construct G as in the previous discussion. Then Γ(G) is connected and,

by Lemma 4.3, the set {q1, . . . , qk} is an independent set of Γ(G).

5. Diameter of the graph: a proof of Theorem C

Let G be a solvable group, and let p , q be vertices lying in the same connected

component of Γ(G). In what follows, we shall write d(p, q) to denote the distance

between p and q in Γ(G) (that is, the minimum length of a path joining p and

q ). We shall also use the symbol p ∼ q to mean that p and q are adjacent vertices

of Γ(G) or that p = q . Finally, we define the diameter of Γ(G) as follows.

diam(Γ(G)) = max{d(p, q) | p, q lie in the same connected component of Γ(G)}.

The last preliminary remark.

Remark 5.1. We note that d(p, q) ≤ 3 whenever p and q lie in the same connected

component of Π(G/F ) (here F = F(G)). Moreover, if Π(G/F ) is disconnected,

then d(p, q) ≤ 1. This follows at once from Remark 2.9 together with Corollary 1.6.

We can now prove Theorem C, which we state again.

Theorem C. Let G be a solvable group. Then the diameter of Γ(G) is at most 4 .

Moreover, if Γ(G) is disconnected, then the diameter of Γ(G) is at most 1 .

Proof. If Γ(G) is disconnected, then the result follows by Remark 3.5. Thus we

may assume that Γ(G) is connected and, given two vertices p , q of Γ(G), we have

to prove that d(p, q) ≤ 4. Set F = F(G).
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Assume Π(G/F ) connected and Van(G) ∩ F 6= ∅ . If p, q ∈ π(G/F ), then by

Remark 5.1 d(p, q) ≤ 3. If p, q ∈ π(F ), then by Proposition 2.1 d(p, q) ≤ 1. Up

to relabelling, it remains to consider the case p ∈ π(G/F ) and q ∈ π(F ). Since

Γ(G) is connected, there is an element g in Van(G) of order divisible by sr for

some s ∈ π(G/F ) and r ∈ π(F ). Since p, s ∈ π(G/F ) and r, q ∈ π(F ), by

Remark 5.1 and Proposition 2.1 there exists a path p ∼ s1 ∼ s2 ∼ s ∼ r ∼ q with

s1, s2 ∈ π(G/F ). Observe that, if the vertices in this path are not pairwise distinct,

then we are done. Now, either p, s2 are odd or s1, s are odd. In the former case,

by Proposition 3.2(a) and Theorem 2.4, either p ∼ q (so d(p, q) ≤ 1) or s2 ∼ q (so

d(p, q) ≤ 3). The latter case is similar.

Assume Π(G/F ) connected and Van(G) ∩ F = ∅ . If p, q ∈ π(G/F ) then,

as above, d(p, q) ≤ 3. If p, q ∈ π(F ), then, as Van(G) ∩ F = ∅ , there exist

sp, sq ∈ π(G/F ) such that p ∼ sp and q ∼ sq . Therefore, by Remark 5.1, there

exists a path p ∼ sp ∼ s1 ∼ s2 ∼ sq ∼ q with s1, s2 ∈ π(G/F ). Now, either

sp, s2 are odd or s1, sq are odd. In the former case, by Proposition 3.2(a) and

Theorem 2.4, either sp ∼ q (so d(p, q) ≤ 2) or s2 ∼ q (so d(p, q) ≤ 4). The latter

case is similar. Up to relabelling, it remains to consider the case p ∈ π(G/F ) and

q ∈ π(F ). As Van(G) ∩ F = ∅ , there exists sq ∈ π(G/F ) such that q ∼ sq . So

d(p, sq) ≤ 3 and d(p, q) ≤ 4.

For the rest of the proof we shall assume that Π(G/F ) is disconnected.

Assume Van(G) ∩ F 6= ∅ . If p, q are in π(G/F ) and lie in the same connected

component of Π(G/F ), then d(p, q) ≤ 1. So we may assume that p, q lie in distinct

connected components of Π(G/F ). Since Γ(G) is connected, there exist primes sp

and sq of π(G/F ), in the connected component of Π(G/F ) containing respectively

p and q , and primes rp, rq in π(F ) such that sp ∼ rp , sq ∼ rq . Consider the path

p ∼ sp ∼ rp ∼ rq ∼ sq ∼ q . By Proposition 3.2(b) either p ∼ rp (so d(p, q) ≤ 4) or

q ∼ rp (so d(p, q) ≤ 3). If p, q ∈ π(F ), then by Proposition 2.1 d(p, q) ≤ 1. Up to

relabelling, it remains to consider the case p ∈ π(G/F ) and q ∈ π(F ). Since Γ(G)

is connected, there exists a prime s ∈ π(G/F ) in the same connected component of

Π(G/F ) containing p , and a prime r in π(F ) such that s ∼ r . Now, p ∼ s ∼ r ∼ q
and d(p, q) ≤ 3.

Assume Van(G) ∩ F = ∅ . We claim that there exist r ∈ π(F ) and s1, s2 in

distinct connected components of Π(G/F ), such that s1 ∼ r ∼ s2 . In fact, let

s1, s2 be vertices lying in distinct connected components of Π(G/F ) such that

d(s1, s2) is as small as possible. Let s1 ∼ r1 ∼ r2 ∼ · · · ∼ rk ∼ s2 be a path of

minimal length connecting them. By Remark 5.1, it is clear that ri 6∈ π(G/F ) for

every i = 1, . . . , k . On the other hand, since Van(G)∩F = ∅ , for every g ∈ Van(G)

the order of g is divisible by some prime in π(G/F ). It follows that k = 1 and the

claim is proved. If p, q are in π(G/F ) and lie in the same connected component

of Π(G/F ), then d(p, q) ≤ 1. So we may assume that p lies in the connected
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component of Π(G/F ) containing s1 and q lies in the connected component of

Π(G/F ) containing s2 . Hence we have the path p ∼ s1 ∼ r ∼ s2 ∼ q and

d(p, q) ≤ 4. If p, q ∈ π(F ), then, as Van(G) ∩ F = ∅ , there exist sp, sq ∈ π(G/F )

such that p ∼ sp and q ∼ sq . If sp and sq lie in the same connected component of

Π(G/F ), then p ∼ sp ∼ sq ∼ q and d(p, q) ≤ 3. So we may assume that sp lies in

the connected component of Π(G/F ) containing s1 and sq lies in the connected

component of Π(G/F ) containing s2 . Now, by Proposition 3.2(b) either sp ∼ q (so

d(p, q) ≤ 2) or s2 ∼ q . In the latter case p ∼ sp ∼ s1 ∼ r ∼ s2 ∼ q and d(p, q) ≤ 5.

Applying again Proposition 3.2(b) we have that either s1 ∼ p (so d(p, q) ≤ 4)

or s2 ∼ p (so d(p, q) ≤ 2). Up to relabelling, it remains to consider the case

p ∈ π(G/F ) and q ∈ π(F ). As Van(G)∩F = ∅ , there exists sq ∈ π(G/F ) such that

q ∼ sq . If sq is in the same connected component of Π(G/F ) containing p , then

d(p, q) ≤ 2. So we may assume that p lies in the connected component of Π(G/F )

containing s1 and that sq lies in the connected component of Π(G/F ) containing

s2 . Hence we have the path p ∼ s1 ∼ r ∼ s2 ∼ sq ∼ q . By Proposition 3.2(b)

either p ∼ q (so d(p, q) ≤ 1) or s2 ∼ q (so d(p, q) ≤ 4).

We conclude providing an infinite family of solvable groups G with Γ(G) of

diameter 4. Indeed, Γ(G) will be a path of length 4.

Example 5.2. Let q1 be an odd prime which is not a Mersenne prime. Let p1

be a prime different from q1 , and let p2 be a Zsigmondy prime divisor of qp11 − 1

(which certainly exists by our assumptions on q1 ). It is an elementary exercise to

show that p1 divides p2 − 1. Let p3 be a prime dividing q1 − 1 and q2 a prime

such that q2 > p1p2p3 and p1p3 | q2 − 1. Note that the existence of the prime q2

is guaranteed by Dirichlet’s theorem on primes in arithmetic progression.

The semilinear group ΓL(1, qp11 ) contains a subgroup K isomorphic to the non-

abelian group (Cp2 oCp1)×Cp3 . Pick V an elementary abelian q1 -group of rank

p1 and Cq2 a cyclic group of order q2 . Consider the natural action of K on V as

a subgroup of GL(p1, q1), and the action of K on Cq2 so that Cp2 centralizes Cq2
and K/Cp2 acts fixed-point-freely on Cq2 . Set G = (V × Cq2) oK .

Clearly, F(G) = V × Cq2 and G \ F(G) ⊆ Van(G). By construction, no

divisor of |G/F(G)| is a linear combination of q1, q2 with nonnegative integer

coefficients, thus we can apply [1, Theorem 2.3] to get F(G) ∩ Van(G) = ∅ .

Hence, Van(G) = G \ F(G). Now, it is easy to check that Γ(G) is the path

q1 ∼ p1 ∼ p3 ∼ p2 ∼ q2 .
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